
MUST: A Framework for Training Task-oriented Dialogue Systems
with Multiple User SimulaTors

Anonymous ACL submission

Abstract

Recent works try to optimize a Task-oriented001
Dialogue System with reinforcement learning002
(RL) by building user simulators. However,003
most of them only focus on training the di-004
alogue system using a single user simulator.005
In this paper, we propose a framework called006
MUST to improve the dialogue agent by uti-007
lizing multiple user simulators simultaneously008
shown in Figure 1. Two core research prob-009
lems of the proposed MUST are: (1) how to010
specify these different simulators effectively011
in the RL training? and (2) what model archi-012
tecture should we use to learn a user simula-013
tor with better generalization capability? To014
tackle the first problem, we formulate the sim-015
ulator selection task to train the system agent016
as a Multi-armed bandit (MAB) problem and017
modify one Upper Confidence Bound (UCB)018
algorithms called UCB1 to guide this selec-019
tion process. To deal with the second problem,020
we present a new user simulator model called021
U-GPT based on the Generative Pre-trained022
Transformer (GPT). Extensive empirical results023
demonstrate that the dialogue system trained by024
the proposed MUST achieves a better perfor-025
mance than those trained by a single user sim-026
ulator and our modified UCB1 algorithm can027
accelerate the MUST training. Furthermore, we028
reveal that our GPT-based user simulator out-029
performs previous learning-based simulators030
through direct and indirect evaluations.031

1 Introduction032

Task-oriented dialogue systems aim to help users033

accomplish their various tasks such as requesting034

information, restaurant reservations through natural035

language conversations. They have recently gained036

increasing attention in both academia and indus-037

tries. Researchers usually divide the task-oriented038

dialogue systems into four components: Natu-039

ral Language Understanding (NLU), Dialog State040

Tracker (DST), Dialog Policy Learning (POL), and041

System Agent

Response
Group

User Simulator

User Simulator

User Simulator

System Agent
 User Simulator

Reward

(a) RL with a single user simulator.

(b) RL with the proposed MUST.

...

Reward

The distribution among
all User Simulators

Modified UCB1 algorithm

User Simulator

Figure 1: The comparison of training the system agent
between previous works with a single simulator (a) and
our proposed MUST with multiple user simulators (b).

Natural Language Generation (NLG). These differ- 042

ent modules can be trained independently or jointly 043

in an end-to-end manner (Ham et al., 2020; Peng 044

et al., 2021; Hosseini-Asl et al., 2020). To build 045

more intelligent and human-like dialogue systems, 046

reinforcement learning (RL) is often adopted to 047

learn system actions through interacting with users. 048

However, directly interacting with human users is 049

time-consuming and expensive. The most used 050

approach is to build a user simulator that is agenda- 051

based (Schatzmann et al., 2007; Schatzmann and 052

Young, 2009) or learned with neural networks such 053

as RNN based on a corpus of dialogues (Asri et al., 054

2016; Kreyssig et al., 2018; Gur et al., 2018) in- 055

stead of real humans to train the system agent. 056

To learn a user simulator, the agenda-based user 057

simulators (ABUS) design handcrafted rules to 058

mimic user behaviors, yet this approach is labo- 059

rious and can hardly generalize across domains. 060

The RNN-based simulators are prone to overfitting 061

1

and lack of mechanisms to flexibly explore various062

user behaviors. Existed works either train a system063

agent by building one user simulator with these064

methods or train different system agents using dif-065

ferent user simulators (Shi et al., 2019) and pick the066

best performing one. In realistic scenarios, differ-067

ent users could have very different behaviors, we068

contend that the system agent trained by a single069

user simulator is not efficacious and a better way is070

to use multiple user simulators modeling different071

users to train the system agent simultaneously.072

In this work, we propose a framework called073

MUST to utilize different user simulators simulta-074

neously to train a system agent. Motivated by the075

Multi-armed bandit (MAB) problem, we treat each076

user simulator as a bandit’s arm. As our goal is077

to obtain a more robust system agent, we modify078

one Upper Confidence Bound (UCB) (Auer et al.,079

2002) algorithm1 called UCB1 to help the proposed080

MUST to accelerate the system agent training by081

learning more from those user simulators that the082

system agent has not performed very well i.e. low083

success rate during the RL training process. Fur-084

thermore, the quality of user simulators will affect085

the effectiveness of our MUST since we cannot086

obtain a good system agent if all user simulators087

are bad. To improve previous RNN-based meth-088

ods on building user simulators and validate the089

effectiveness of MUST, we also present a new user090

simulator model named U-GPT. U-GPT recasts091

all sub-modules in modeling user simulators as092

a sequence prediction problem and completes all093

sub-tasks sequentially in an end-to-end manner by094

leveraging the auto-regressive language model GPT095

(Radford et al., 2018, 2019).096

Our extensive experimental results on the restau-097

rant search task from MultiWOZ (Budzianowski098

et al., 2018) show that the dialogue system trained099

by the proposed MUST achieves a better perfor-100

mance than those trained by any single user sim-101

ulator, including the one (referred to as U-GPTIL102

in our later experiments.) trained with dialogue103

sessions sampled from different user simulators.104

Moreover, our newly proposed GPT-based user sim-105

ulator is more preferable to previous RNN-based106

simulators through direct and indirect evaluations.107

Altogether, our technical contribution in this108

work is three-fold: (1) To the best of our knowl-109

edge, we are the first to train the system agent using110

1Selecting the arm maximizing the cumulative expected
reward.

multiple user simulators, and we propose MUST 111

with an effective RL perspective using a modified 112

UCB1 algorithm. (2) We present a new model 113

named U-GPT which leverages GPT to learn the 114

user simulator. (3) The overall results show that 115

the dialogue system trained with MUST performs 116

best, and our newly proposed U-GPT by itself is 117

more preferable to previous RNN-based simulators 118

through direct and indirect evaluations. 119

2 Preliminary 120

Before presenting our methods, we first provide 121

some details about the Multi-armed bandit problem 122

and the UCB1 algorithm (Auer et al., 2002). 123

2.1 Multi-armed Bandit Problem 124

Reinforcement learning policies face the explo- 125

ration versus exploitation trade-off, which can be 126

described as the search for a balance between ex- 127

ploring the environment to find profitable actions 128

while taking the empirically best action as often as 129

possible. This exploration vs exploitation dilemma 130

has been widely studied as a Multi-armed bandit 131

(MAB) problem. 132

In the MAB problem, there are K arms, and 133

each arm j has a fixed but unknown reward distribu- 134

tion Rj with an expectation µj . At each time step 135

t = 1, 2, ..., T , the decision maker must choose 136

one of these K arms. We denote the arm pulled 137

at time step t as jt ∈ {1, ...,K}. After pulling an 138

arm, it will receive a reward Xjt which is a real- 139

ization drawn from the arm’s underlying reward 140

distribution. The decision masker’s objective is to 141

maximize the cumulative expected reward over the 142

time horizon
∑T

t=1E[Xjt] =
∑T

t=1 µjt . 143

UCB1. The Upper Confidence Bound (UCB) al-
gorithms are classic allocation strategies to solve
the MAB problem. Here we give an introduction
to UCB1 (Auer et al., 2002), which is one of the
UCB algorithms. This policy first pulls each arm
once. Then the index of the arm will be played
from t = K + 1 to T is the sum of two terms:

jt = arg max
j
X̄j +

√
2 ln t

Tj,t
,

where X̄j is the average reward obtained from arm 144

j , Tj,t is the number of times arm j has been played 145

so far. The first term is simply the current average 146

reward and the second one is related to the size of 147

the one-sided confidence interval for the average 148

2

reward within which the true expected reward falls149

with overwhelming probability.150

3 Methodology151

3.1 Problems152

We propose a framework called MUST to obtain153

a better system agent by utilizing multiple simu-154

lators simultaneously. There are two key points155

to implement this framework: the first is how to156

use these different simulators effectively in the RL157

training, and the second is what model architecture158

we should adopt to build a good simulator to be159

used with MUST. In the following two sections, we160

will detail our proposals to the above two problems.161

3.2 RL with Multiple User Simulators162

Given K user simulators denoted as U1, U2, . . . ,163

UK which have different behaviors, we aim to train164

a system agent S with these simulators by RL. The165

simplest way is that we put these K user simula-166

tors in the RL environment and pick a simulator167

randomly with a uniform distribution to interact168

with S when collecting each new dialogue and use169

the obtained reward to update the system agent S170

with policy gradient. It is not efficient nor opti-171

mal because the system agents trained by different172

user simulators have different convergence speeds173

with RL. To allow the system agent to learn from174

different user simulators efficiently by MUST, we175

think it should sample the user simulators whose176

corresponding system agents are easy to converge177

fewer times and pay more attention to those user178

simulators whose corresponding system agents are179

harder to converge.180

Therefore, motivated by the MAB problem, we181

treat each user simulator as a bandit’s arm and mod-182

ify the UCB1 algorithm to calculate a distribution183

D used to guide how to specify different user sim-184

ulators in the RL training to train the system agent185

S. This distribution D is designed to assign lower186

weights to user simulators that the system agent S187

already performs well and higher weights to those188

that S performs not very well. The implementation189

of MUST with the modified UCB1 algorithm is190

presented in Algorithm 1. We use T to denote the191

total number of dialogues that will be sampled in192

the whole training process. In the first T0 dialogues,193

we use a uniform distribution to sample these user194

simulators to train S. After that, we let the system195

agent S interact d times with each simulator Uj196

to obtain its success rate X̄j and use these K suc-197

Algorithm 1: Implementing MUST with
the modified UCB1 algorithm

1 Input: Initiate the values of hyperparameters
T, T0, e, d, s;

2 for t = 0, ..., T0 do
3 Sample a simulator Uj , j ∈ {1...K}

with a uniform distribution;
4 Let the system agent S interact with Uj

to have a new dialogue;
5 Use the reward obtained for the dialogue

to update S with a RL algorithm;
6 Let S interact d times with each simulator

Uj to calculate its success rate X̄j ;
7 Calculate a baseline with these success rates

and a scalar s, b = min(X̄1, ..., X̄K) ∗ s;
8 Initiate the distribution

D = {d1, ..., dK}, dk =
1

X̄j−b∑K

j=1
1

X̄j−b

.

9 for t = T0 + 1, ..., T do
10 if t%e! = 0 then
11 Sample a simulator Uj , j ∈ {1...K}

from the distribution D;
12 Let the system agent S interact with

Uj to have a new dialogue and use
the obtained reward to update S;

13 else
14 for j = 1, ...,K do
15 Let S interact d times with the

simulator Uj to recalculate its
success rate X̄j ;

16 calculate x̂j = X̄j +
√

2 ln t
Tj,t

;

17 Recalculate the baseline
bt = min(x̂1, ..., x̂K) ∗ s;

18 Calculate x̂j = 1/(x̂j − bt);
19 Update the distribution:

D = {d1, ..., dK}, dk = x̂k∑K

j=1
x̂k

;

20 Output: The dialogue system S.

cess rates to initiate the distribution D (lines 2-8). 198

In the following steps, we specify different user 199

simulators to train S by the distribution D (lines 200

10-12). And we will evaluate the RL model S every 201

e episodes and update the distribution D with the 202

new success rates (lines 14-19). The hyperparame- 203

ter of s is used to calculate a baseline and control 204

the smoothness of distribution D. If s is larger, D 205

is sharper. 206

3

hello! what can i help you? <eos_resp> [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food venetian pricerange
expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type] food area <eos_pol> i am looking at a place to eat that
serves venetian food in the centre. <eos_utt> unfortunately, i do not see any restaurants that serve venetian in the centre of town. would you like to try a
different area or type of cuisine? <eos_resp> nooffer [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food
chinese pricerange expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type_change] food <eos_pol> Do you
have any [value_food] restaurants ? <eos_utt>

Hello! What can I help you?
constraint: [], book: [],
recommend: [], select: [], request: []

inform_type: [food, area]

I am looking at a place to eat that serves
[value_food] food in the [value_area] .

I am looking at a place to eat that serves
Venetian food in the centre.

Unfortunately, I don't see any
restaurants that serve Venetian in the
centre of town. Would you like to try
a different area or type of cuisine?

Yes there are 10 in the centre of town.
Any price preference?

constraint: [nooffer], book: [],
recommend: [], select: [], request: []

inform_type_change: [food]

Do you have any [value_food] restaurants ?

Do you have any Chinese restaurants?

{"info":{"food": "Venetian",
"pricerange": "expensive",
"area": "centre"},

"book": {"time": "12:00",
"day": “Wednesday",
"people": "4"}}

{"info":{"food": “Chinese",
"pricerange": "expensive",
"area": "centre"},

"book": {"time": "12:00",
"day": “Wednesday",
"people": "4"}}

System Agent User Simulator
(2) Goal Generator(1) NLU

(2) Goal Generator

(3) POL

(4) NLG

(4) NLG

(3) POL

Lexicalization

Lexicalization

(a) The details of the first two-turn interactions between a system agent and our U-GPT.

(b) An example of the model input for training U-GPT.

(1) NLU

𝑆:

𝑆ଵ:

𝑆ଶ:

𝑁ଵ:

𝐴ଵ:

𝑈:

𝐴:

𝑁:

𝑈ଵ:

𝐺:

𝐺ଵ:

Figure 2: The overview of our U-GPT which consists of Natural Language Understanding (NLU), Goal Generator,
Dialog Policy Learning (POL), and Natural Language Generation (NLG) and uses the auto-regressive language
model GPT to understand the system inputs, generate the user actions and the user utterances given the dialogue
context and the user goals sequentially in an end-to-end manner. (a) gives a detailed description of the first two-turn
interactions between a system agent and our U-GPT. For training U-GPT, we need to convert the dialogue context
and all annotations to sequences of tokens. (b) presents the training example of the first two-turn dialogues in (a).

3.3 Modeling User Simulator with GPT207

In this section, we illustrate how our U-GPT mod-208

els the user simulator based on GPT. And We will209

demonstrate that it is a better choice if we want to210

train a single user simulator or add a new simulator211

into MUST in later experiments (Section 4.4.2).212

User Simulator. If we treat a user simulator as213

a dialog agent, we can use the same framework as214

the dialog system to build it. However, their roles215

are different. The user agent has a goal describ-216

ing a target entity (e.g., a restaurant at a specific217

location), and should express its goal completely218

in an organized way by interacting with the system219

(Takanobu et al., 2020). For the system agent, it220

does not know the user’s goal at the beginning and221

should gradually understand the user’s utterances,222

query the database to find entities, and provide use-223

ful information to see if accomplishing the user’s224

task. Since only the system can access the database,225

the user does not know if its goal can be satisfied.226

Once the database result returned by the system227

agent is empty, the user agent should learn to com-228

promise and change its goal. Therefore, the user229

agent has another module called Goal Generator230

(Kreyssig et al., 2018), which is responsible for 231

initiating a goal or generating a new goal. 232

As Figure 2(a) shown, our U-GPT consists of 233

four modules, which are Natural Language Under- 234

standing (NLU), Goal Generator, Dialog Policy 235

Learning (POL), and Natural Language Genera- 236

tion (NLG). Dialogues consist of multiple turns. 237

In the first turn t = 0, U-GPT (1) first outputs 238

its NLU results N0 by understanding the system 239

input S0, and (3) decide its actions A0 which is 240

a list of pairs: (action_type, slot_name) based on 241

(2) its initial goal G0 and {S0, N0}. U-GPT then 242

(4) conditions on {S0, N0, G0, A0} to generate the 243

delexicalized utterance U0. The generated place- 244

holders in U0 will be filled using the corresponding 245

slot values in the goal G0. When the conversa- 246

tion proceeds to turn t, U-GPT (1) generates the 247

NLU results Nt based on all of previous dialogue 248

history and generated outputs {C0, . . . , Ct−1, St}, 249

here Ci = [Si, Ni, Gi, Ai, Ui]. If there has "no- 250

offer" intent in Nt representing that no entities 251

could satisfy current constraints, then (2) Goal Gen- 252

erator should generate a new goal Gt. Then U- 253

GPT will continue to (3) generate the user acts At 254

4

and (4) generate delexicalized utterance Ut condi-255

tioned on {C0, . . . , Ct−1, St, Nt, Gt} sequentially.256

We should notice that the user utterances occurred257

in the history context should be lexicalized because258

they contain important information.259

Figure 2(b) shows an example of training se-260

quence which consists of the concatenation x =261

[C0, C1]. In order to leverage GPT, we need to262

convert the generated outputs {Ni, Gi, Ai, Ui} to263

sequences of tokens resembling a text. And we in-264

troduce delimiter tokens <eos_resp>, <eos_nlu>,265

<eos_goal>, <eos_pol>, <eos_utt> to signal the266

ending of sequence representations of different267

modules. For the NLU results Nt, we use five268

categories: “inform”, “request”, “book inform”,269

“select”, “recommend” same as Shi et al. (2019) to270

represent them. And we also introduce five tokens271

[eos_constraint], [eos_book], [eos_recommend],272

[eos_select], [eos_request] to record different in-273

formation. All of these tokens and the intents of274

user actions will be added to the vocabulary of GPT275

as additional special tokens. For training U-GPT,276

we use the same training objective as GPT which277

is to maximize the following likelihood:278

L(U) =
∑
i

logP (ui|ui−k, ..., ui−1; Θ),279

∀ ui ∈ {S0, N0, G0, A0, U0, ..., At, Ut},280

where k is the size of the context window, and the281

conditional probability P is parameterized with Θ.282

4 Experiments283

Our experiments can be divided into two parts. In284

the first part, we train a system agent S-MUST with285

the proposed MUST and compare its performance286

with other system agents trained by a single sim-287

ulator to prove that we can obtain a better system288

agent with MUST. In the second part, we will prove289

that our GPT-based user simulator can outperform290

previous RNN-based simulators through direct and291

indirect evaluations.292

4.1 Baselines293

There are six user simulators provided by Shi et al.294

(2019), which are Agenda-Template (U-AgenT),295

Agenda-Retrieval (U-AgenR), Agenda-Generation296

(U-AgenG), RNN-Template (U-RNNT), RNN-297

Retrieval (U-RNNR), RNN-End2End (U-RNN) 2298

trained with different dialog planning and genera-299

tion methods.300
2Here we rename these six simulators for clarifying the

role of agents.

U-AgenT, U-AgenR, U-AgenG. The DM man- 301

ager modules of U-AgenT, U-AgenR, and U- 302

AgenG are rule-based methods. For the NLG mod- 303

ule, these three simulators are respectively using 304

the template, retrieval, and generation methods. 305

U-RNNT, U-RNNR, U-RNN. The DM manager 306

modules of U-RNNT, U-RNNR use Sequicity (Lei 307

et al., 2018) as its backbone which is an RNN- 308

based seq2seq model with copy mechanism. For 309

the NLG module, they are using the template, re- 310

trieval methods respectively. U-RNN uses Sequic- 311

ity as its backbone in an end-to-end manner. 312

These user simulators will be used to train the 313

system agent S-MUST by our proposed MUST 314

with the modified UCB1 algorithm. Any system 315

agent trained by a single user simulator should be 316

the baseline of S-MUST. Because our U-GPT is 317

an end-to-end model based on GPT, we will use 318

U-RNN as the baseline of U-GPT. 319

4.2 Dataset and Evaluation Measures 320

MultiWOZ Restaurant Domain Dataset. The 321

original task in MultiWOZ (Budzianowski et al., 322

2018) was to model the system response. Shi et al. 323

(2019) annotate the user intents and the user-side 324

dialog acts in the restaurant domain of MultiWOZ 325

to build user simulators, which has a total of 1,310 326

dialogues. 327

Simulated Agenda Dataset. We simulated 2,000 328

dialogues from each rule-based simulator U-AgenT, 329

U-AgenR, U-AgenG, and their corresponding sys- 330

tem agents respectively, and processed these dia- 331

logues to have the same annotation format as the 332

MultiWOZ restaurant domain dataset. 333

Evaluation Measures. For evaluations on dia- 334

logue systems, we report the average success rate 335

of them interacting with different user simulators. 336

The success rate between a pair of a user simula- 337

tor and a system agent is calculated by sampling 338

200 dialogues between them in later experiments. 339

To evaluate user simulators, we adopt both indi- 340

rect evaluations and direct evaluations as in Shi 341

et al. (2019). In fact, we can also evaluate a user 342

simulator indirectly using the average success rate 343

of the system agent trained by this simulator. It 344

is called cross-model evaluation (Schatzmann and 345

Young, 2009) which assumes a strategy learned 346

with a good user model still performs well when 347

tested on poor user models. It can indirectly evalu- 348

ate the behavior diversity generated by user simula- 349

5

System\User U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTSL U-GPTIL Avg. ↑ Std. ↓
S-AgenT 97.5 54.0 72.5 98.5 92.5 77.0 78.0 89.0 82.4 14.1
S-AgenR 96.0 90.0 97.5 98.5 97.5 82.0 80.5 96.0 92.3 6.8
S-AgenG 79.0 78.5 95.0 98.5 96.5 81.5 79.0 91.0 87.4 8.2
S-RNNT 30.5 23.0 35.5 99.0 97.5 84.0 75.5 66.0 63.9 28.5
S-RNNR 30.0 23.0 30.0 96.5 93.5 70.5 68.5 56.0 58.5 26.9
S-RNN 20.0 23.5 20.0 73.0 63.0 77.0 56.5 45.0 47.3 22.2
S-GPTSL 60.5 51.5 59.5 97.0 94.0 92.0 82.0 84.5 77.6 16.7
S-GPTIL 97.5 83.5 97.5 94.5 94.0 82.5 80.5 96.5 90.8 6.8
S-MUST 97.5 89.5 96.5 97.0 97.5 90.0 82.5 96.0 93.3 5.1

Table 1: Success rates of the system agents tested against various user simulators. Each column represents one user
simulator, each row represents one RL system trained with a specific simulator, e.g. S-AgenT means the RL system
trained with U-AgenT. Each entry shows the success rate of 200 dialogues obtained by having the user simulator
interact with the system agent.

tors. For direct evaluations, we adopt six evaluation350

measures for the automatic evaluation: average ut-351

terance length, vocabulary size, Dist-1, Dist-2 (Li352

et al., 2016) and Entropy (Zhang et al., 2018). We353

also ask human users to rate the simulated dia-354

logues3 to assess the user simulators directly. We355

use five same metrics as (Shi et al., 2019) which356

are Fluency, Coherence, Goal Adherence, Diver-357

sity, and an Overall quality to assess the behaviors358

of user simulators from multiple aspects.359

4.3 Implementations360

U-GPTIL. A simple method to utilize multiple361

user simulators is learning a new simulator with dia-362

logue sessions collected from these user simulators363

and training the system agent with this new simu-364

lator by Imitation Learning (IL). U-GPTIL is first365

pre-trained on the simulated agenda dataset which366

has a total of 6,000 dialogues. Then we sample367

1,400 dialogues from the simulated agenda dataset368

and merge them with 1,310 MultiWOZ restaurant369

domain dialogues to continue to fine-tune our U-370

GPT. We denote the system agent trained by U-371

GPTIL as S-GPTIL and use it as another baseline372

of S-MUST.373

U-GPTSL
4. It is also pre-trained on the simulated374

agenda dataset and fine-tuned on the 1,310 Multi-375

WOZ restaurant domain dataset with our U-GPT.376

S-MUST. Six user simulators provided by Shi377

et al. (2019) have very different behaviors accord-378

ing to the reported experimental results, therefore379

they become a good choice to implement MUST.380

Because the system agents trained by U-AgenG, U-381

RNNR, U-RNN have no advantages over U-AgenT,382

3The system agent for simulating dialogues is a third-party
system provided by (Shi et al., 2019) which was built based
on hand-crafted rules.

4SL is short for Supervised Learning.

U-AgenR, U-RNNT, we decide to use U-AgenT, U- 383

AgenR, U-RNNT, and U-GPTSL to train S-MUST. 384

All system agents trained by user simulators with 385

RL have the same architecture described in Shi 386

et al. (2019). The RL algorithm and the reward 387

used are also the same for a fair comparison. 388

U-GPTSL-RNN
5. Because the implementation of 389

U-RNN mainly consists of NLU and NLG, we 390

remove the POL module from U-GPT and use the 391

same annotated data as U-RNN to fine-tune it to 392

compare our U-GPT with the RNN-based methods 393

fairly. And we name it as U-GPTSL-RNN. 394

User Simulators NLU DM NLG
U-AgenT RNN Agenda Template
U-AgenR RNN Agenda Retrieval
U-AgenG RNN Agenda Generation
U-RNNT RNN Template
U-RNNR RNN Retrieval
U-RNN RNN (NLU + NLG)
U-GPTSL-RNN Transformer (NLU + NLG)
U-GPTSL Transformer (NLU + POL + NLG)
U-GPTIL Transformer (NLU + POL + NLG)

Table 2: The architectures of all user simulators.

We give an overview (Table 2) of the architec- 395

tures of all user simulators that occurred in this 396

paper to illustrate the differences between them. 397

The dialogue management (DM) module contains 398

two sub-modules, the DST and POL modules. 399

4.4 Results and Analysis 400

4.4.1 Evaluations on Dialogue Systems 401

The last column and the second last column in 402

Table 1 show that S-MUST achieves the highest av- 403

erage success rate (93.3) interacting with eight user 404

simulators and these eight success rates have the 405

5We provide the implementation details of all user simula-
tors that are based on U-GPT in appendix A.1.

6

0 50000 100000 150000 200000
The number of dialogues

 (a) The learning curves of S-MUST.

0

20

40

60

80

100

Th
e

av
er

ag
e

su
cc

es
s r

at
e

Modified UCB1
Uniform Distribution

U-AgenT

U-AgenR

U-RNNT
U-GPT_SL

(b) The proportion of each user simulator
 that has been sampled.

37.7%
23.0%

22.4% 16.9%

0 50000 100000 150000 200000
The number of dialogues

 (c) The success rate of S-MUST
 performing with U-AgenT.

0

20

40

60

80

100

Th
e

su
cc

es
s r

at
e

Modified UCB1
Uniform Distribution

0 50000 100000 150000 200000
The number of dialogues

 (d) The success rate of S-MUST
 performing with U-AgenR.

0

20

40

60

80

100
Th

e
su

cc
es

s r
at

e

Modified UCB1
Uniform Distribution

0 50000 100000 150000 200000
The number of dialogues

 (e) The success rate of S-MUST
 performing with U-RNNT.

0

20

40

60

80

100

Th
e

su
cc

es
s r

at
e

Modified UCB1
Uniform Distribution

0 50000 100000 150000 200000
The number of dialogues

 (f) The success rate of S-MUST
 performing with U-GPT_SL.

0

20

40

60

80

100

Th
e

su
cc

es
s r

at
e

Modified UCB1
Uniform Distribution

Figure 3: The analysis of training S-MUST with four good user simulators of U-AgenT, U-AgenR, U-RNNT,
U-GPTSL by the modified UCB1 algorithm and the uniform distribution. (a) shows the learning curves of S-MUST
in the RL training. In the first 120,000 episodes in both situations, we use the uniform distribution to sample these
simulators. (b) gives an overview of the proportion of each user simulator that has been sampled by the modified
UCB1 algorithm in the last 80,000 episodes. We further analyze the performance of S-MUST interacting with each
user simulator in the RL training and the details are shown in (c)-(f).

smallest standard deviation. Moreover, S-MUST406

improves over S-GPTIL by 2.5 points in the aver-407

age success rate. We also give an analysis about408

our training strategy. From Figure 3(a), we can see409

that training S-MUST with U-AgenT, U-AgenR, U-410

RNNT, U-GPTSL by the modified UCB1 algorithm411

converges faster than by the uniform distribution.412

To understand this result, we further plot the per-413

formance of S-MUST interacting with each user414

simulator in the RL training shown in Figure 3(c)-415

(f) and find that S-MUST trained by the user simu-416

lator U-AgenR converges last. Combining Figure417

3(b) which shows us the proportion of each user418

simulator that has been sampled by the modified419

UCB1 algorithm in the last 80,000 episodes of RL,420

we know that the modified UCB1 algorithm would421

sample the user simulator whose corresponding422

system agent is harder to converge more times and423

this could help the system agent converges faster.424

The overall experimental results prove that the pro-425

posed MUST is powerful and versatile to cope with426

a variety of user simulators to train a system agent427

effectively by the modified UCB1 algorithm.428

4.4.2 Evaluations on User Simulators429

For the indirect evaluation of user simulators, we430

use the average success rates of the system agents431

trained by them. The average success rates are cal-432

System Avg. ↑ Std. ↓
S-RNN 47.3 22.2
S-GPTSL-RNN 67.1 24.1

Table 3: The cross-model evaluation results of user
simulators. We put the detailed results in the table 7.

User Simulators Utt ↑ Vocab ↑DIST-1 ↑DIST-2 ↑ENT-4 ↑
U-RNN 10.95 205 1.17% 3.14% 4.98
U-GPTSL-RNN 14.00 262 1.13% 3.53% 5.62

Table 4: Automatic evaluation metrics of user simulators
include average utterance length (Utt), vocabulary size
(Vocab), distinct-n (DIST-n) and entropy (ENT-n).

culated by letting each RL system interact with all 433

eight user simulators that same as the eight user 434

simulators used in Table 1. Table 3 shows the cross- 435

model evaluation results. We can see that the aver- 436

age success rate of S-GPTSL-RNN far exceeds that 437

of S-RNN. This represents that our U-GPT can per- 438

form more various behaviors than U-RNN to help 439

the system agent explore the dialogue states. 440

The automatic evaluation results in Table 4 and 441

the language diversity score (Hu.Div in Table 5) 442

evaluated by humans directly tell us that the dia- 443

logues generated by our U-GPT are more diverse 444

than by U-RNN in the level of language. And the 445

remaining metrics in Table 5 tell us that our U-GPT 446

7

User Simulators Hu.Fl ↑Hu.Co ↑Hu.Go ↑Hu.Div ↑Hu.All ↑
U-RNN 2.80 2.30 2.86 2.74 2.30
U-GPTSL-RNN 4.10 4.04 4.30 3.70 4.00

Table 5: Human evaluation results of user simulators.
The metrics include sentence fluency (Hu.Fl), coherence
(Hu.Co), goal adherence (Hu.Go), language diversity
(Hu.Div) and an overall score (Hu.All).

can generate more fluent dialogues and is more like447

a real human that could express its goal completely.448

We give some examples in the appendix D.1.449

4.5 Discussion450

We also compare our U-GPTSL-RNN with U-451

RNNT and U-RNNR in the appendix B. Our U-452

GPTSL-RNN can generate more diverse language453

and more various behaviors than U-RNNT accord-454

ing to the cross-model evaluation and automatic455

evaluation. However, U-RNNT performs better456

than our U-GPTSL-RNN in the overall performance457

according to the human evaluation. We think it458

is because the NLG module of U-RNNT is the459

template-based method and the generated dialogues460

from them are easy for the third-party system to461

interact with. The user utterances generated by U-462

RNNR are retrieved from a corpus that is written463

by real humans. We think that the dialogues are464

written by humans usually have higher language465

diversity than the dialogues generated by models.466

Even though the dialogues generated by U-RNNR467

are more diverse, the dialogues generated by our468

U-GPTSL-RNN are more fluent and coherent. Also,469

the cross-model evaluation results show that U-470

GPTSL-RNN can help to learn a more robust system471

agent than U-RNNR, but the Hu.All score in the472

human evaluation gives an opposite result. The gap473

between cross-model evaluation metrics, automatic474

metrics, and real human evaluation represents that475

the evaluation of the user simulators is challenging.476

5 Related Work477

The ABUS (Schatzmann et al., 2007; Schatzmann478

and Young, 2009) represents the user state as a479

stack of user actions, called the agenda. The mech-480

anism that generates the user response and updates481

the agenda does not require any data, though it can482

be improved using data. (Asri et al., 2016) mod-483

eled user simulation as a sequence-to-sequence task484

and user behavior is learned entirely from data but485

ignores the goal changes. (Kreyssig et al., 2018)486

introduces a Neural User Simulator (NUS) consist-487

ing of a goal generator that generates its own goal 488

and possibly changes it during a dialogue, a feature 489

extractor, and a neural network-based sequence- 490

to-sequence model (Sutskever et al., 2014). Even 491

though these simulators can generate successful 492

conversations, they lack the necessary mechanisms 493

to produce diverse responses. (Gur et al., 2018) de- 494

velop a hierarchical seq2seq user simulator (HUS) 495

to allow the model to capture undiscovered parts of 496

the user goal without an explicit DST module and 497

several variants by utilizing a latent variable model 498

to inject random variations into user responses to 499

generate diverse user responses. 500

A work similar to us in building the user simu- 501

lator is (Mohapatra et al., 2021). It uses GPT-2 to 502

build a user bot and uses the data collected from 503

this user bot and an agent bot to achieve improve- 504

ments in both low-resource settings as well as in 505

the overall task performance of the agent bot. How- 506

ever, their user simulator mainly consists of Re- 507

sponse Generator and Response Selector modules 508

in a different way from us and Response Genera- 509

tor generates the response conditioned on the goal 510

instruction expressed in a natural language, not a 511

structured goal expressed in slot types, slots, and 512

values. (Shi et al., 2019) implements six user simu- 513

lators in both the ABUS and the RNN-based User 514

Simulators and presents a comprehensive evalua- 515

tion framework for user simulator study. These six 516

simulators have very different behaviors, however, 517

they do not use them together to train a more robust 518

system agent. Our framework is the first work to 519

consider training the system agent with different 520

user simulators. 521

6 Conclusion 522

In this paper, we propose a framework named 523

MUST to improve the system agent by using dif- 524

ferent user simulators simultaneously and a new 525

method named U-GPT which leverages GPT to im- 526

prove the user simulator. we conduct automatic 527

evaluation, cross-evaluation, and human assess- 528

ments on them. The experiment results demon- 529

strate that our proposed MUST can significantly 530

improve the robustness of the system agent upon 531

the baseline methods and our U-GPT can generate 532

more diverse language and more various behaviors 533

than RNN-based user simulators to help the system 534

agent explore the dialogue states. In the future, we 535

plan to apply our proposed methods and training 536

techniques to multi-domain scenarios. 537

8

References538

Layla El Asri, Jing He, and Kaheer Suleman. 2016. A539
sequence-to-sequence model for user simulation in540
spoken dialogue systems.541

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.542
2002. Finite-time analysis of the multiarmed ban-543
dit problem. Machine Learning, 47(2–3):235–256.544

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang545
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-546
madan, and Milica Gašić. 2018. MultiWOZ - a large-547
scale multi-domain Wizard-of-Oz dataset for task-548
oriented dialogue modelling. In Proceedings of the549
2018 Conference on Empirical Methods in Natural550
Language Processing, pages 5016–5026, Brussels,551
Belgium. Association for Computational Linguistics.552

Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, and553
Pararth Shah. 2018. User modeling for task oriented554
dialogues.555

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and556
Kee-Eung Kim. 2020. End-to-end neural pipeline557
for goal-oriented dialogue systems using GPT-2. In558
Proceedings of the 58th Annual Meeting of the Associ-559
ation for Computational Linguistics, pages 583–592,560
Online. Association for Computational Linguistics.561

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,562
Semih Yavuz, and Richard Socher. 2020. A simple563
language model for task-oriented dialogue. In Ad-564
vances in Neural Information Processing Systems,565
volume 33, pages 20179–20191. Curran Associates,566
Inc.567

Florian Kreyssig, Iñigo Casanueva, Paweł568
Budzianowski, and Milica Gašić. 2018. Neural user569
simulation for corpus-based policy optimisation of570
spoken dialogue systems. In Proceedings of the 19th571
Annual SIGdial Meeting on Discourse and Dialogue,572
pages 60–69, Melbourne, Australia. Association for573
Computational Linguistics.574

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,575
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-576
plifying task-oriented dialogue systems with single577
sequence-to-sequence architectures. In Proceedings578
of the 56th Annual Meeting of the Association for579
Computational Linguistics (Volume 1: Long Papers),580
pages 1437–1447, Melbourne, Australia. Association581
for Computational Linguistics.582

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,583
Michel Galley, and Jianfeng Gao. 2016. Deep re-584
inforcement learning for dialogue generation. In Pro-585
ceedings of the 2016 Conference on Empirical Meth-586
ods in Natural Language Processing, pages 1192–587
1202, Austin, Texas. Association for Computational588
Linguistics.589

Biswesh Mohapatra, Gaurav Pandey, Danish Contrac-590
tor, and Sachindra Joshi. 2021. Simulated chats for591
building dialog systems: Learning to generate con-592
versations from instructions.593

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan- 594
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist: 595
Building task bots at scale with transfer learning and 596
machine teaching. 597

Alec Radford, Karthik Narasimhan, Tim Salimans, and 598
Ilya Sutskever. 2018. Improving language under- 599
standing by generative pre-training. 600

Alec Radford, Jeff Wu, Rewon Child, David Luan, 601
Dario Amodei, and Ilya Sutskever. 2019. Language 602
models are unsupervised multitask learners. 603

Victor Sanh, Lysandre Debut, Julien Chaumond, and 604
Thomas Wolf. 2020. Distilbert, a distilled version of 605
bert: smaller, faster, cheaper and lighter. 606

Jost Schatzmann, Blaise Thomson, Karl Weilhammer, 607
Hui Ye, and Steve Young. 2007. Agenda-based user 608
simulation for bootstrapping a POMDP dialogue sys- 609
tem. In Human Language Technologies 2007: The 610
Conference of the North American Chapter of the 611
Association for Computational Linguistics; Compan- 612
ion Volume, Short Papers, pages 149–152, Rochester, 613
New York. Association for Computational Linguis- 614
tics. 615

Jost Schatzmann and Steve Young. 2009. The hidden 616
agenda user simulation model. IEEE Transactions on 617
Audio, Speech, and Language Processing, 17(4):733– 618
747. 619

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu. 620
2019. How to build user simulators to train RL-based 621
dialog systems. In Proceedings of the 2019 Confer- 622
ence on Empirical Methods in Natural Language Pro- 623
cessing and the 9th International Joint Conference 624
on Natural Language Processing (EMNLP-IJCNLP), 625
pages 1990–2000, Hong Kong, China. Association 626
for Computational Linguistics. 627

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. 628
Sequence to sequence learning with neural networks. 629

Ryuichi Takanobu, Runze Liang, and Minlie Huang. 630
2020. Multi-agent task-oriented dialog policy learn- 631
ing with role-aware reward decomposition. In Pro- 632
ceedings of the 58th Annual Meeting of the Associa- 633
tion for Computational Linguistics, pages 625–638, 634
Online. Association for Computational Linguistics. 635

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 636
Chaumond, Clement Delangue, Anthony Moi, Pier- 637
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 638
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 639
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 640
Teven Le Scao, Sylvain Gugger, Mariama Drame, 641
Quentin Lhoest, and Alexander Rush. 2020. Trans- 642
formers: State-of-the-art natural language processing. 643
In Proceedings of the 2020 Conference on Empirical 644
Methods in Natural Language Processing: System 645
Demonstrations, pages 38–45, Online. Association 646
for Computational Linguistics. 647

9

http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
http://arxiv.org/abs/1811.04369
http://arxiv.org/abs/1811.04369
http://arxiv.org/abs/1811.04369
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
http://arxiv.org/abs/2010.10216
http://arxiv.org/abs/2010.10216
http://arxiv.org/abs/2010.10216
http://arxiv.org/abs/2010.10216
http://arxiv.org/abs/2010.10216
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/D19-1206
http://arxiv.org/abs/1409.3215
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,648
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.649
Generating informative and diverse conversational650
responses via adversarial information maximization.651
In NeurIPS.652

A Implementation Details 653

A.1 Training user simulators 654

We implement our GPT-based user simulators with 655

DistilGPT2 (Sanh et al., 2020), a distilled version 656

of GPT-2 by HuggingFace’s Transformers (Wolf 657

et al., 2020). We select the best performing models 658

on validation set through hyperparameters search of 659

learning rate and batch size. The best models was 660

fine-tuned with batch size of 64 and the learning 661

rate of 5e-3 over the corresponding dataset. And 662

we use the greedy decoding strategy for U-GPT 663

generating word-tokens in the inference phrase. 664

A.2 Training the S-MUST 665

Parameters
T 200,000
T0 120,000
e 2,000
d 200
s 0.75

Table 6: The hyperparameters used for training the S-
MUST.

The hyperparameters used in our modified UCB1 666

algorithm to train the S-MUST are listed in the 667

Table 6. 668

B The comparisons between U-RNNT, 669

U-RNNR and our U-GPTSL-RNN 670

We also compare our U-GPTSL-RNN with U-RNNT 671

and U-RNNR. 672

Compared with U-RNNT, the cross-model eval- 673

uation results (Table 7), the automatic evaluation 674

results (Table 8) and the Hu.Div score in the hu- 675

man evaluation results (Table 9) show that our U- 676

GPTSL-RNN performs better. However, as Table 677

9 shown, U-RNNT performs better than our U- 678

GPTSL-RNN in the overall performance according 679

to the human evaluation. We think it is because the 680

third-party system also has an impact on the gener- 681

ated dialogues and the NLG module of U-RNNT is 682

the template-based method which leads to that the 683

generated dialogues from U-RNNT are easy for the 684

third-party system to understand and interact with. 685

The automatic evaluation results (Table 8) and 686

the Hu.Div score in the human evaluation results 687

(Table 9) show that U-RNNR can generate more 688

diverse language than our U-GPTSL-RNN. We 689

think it is because the user utterances generated 690

10

System \User U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTSL U-GPTIL Avg. ↑ Std. ↓
S-RNNT 30.5 23.0 35.5 99.0 97.5 84.0 75.5 66.0 63.9 28.5
S-RNNR 30.0 23.0 30.0 96.5 93.5 70.5 68.5 56.0 58.5 26.7
S-RNN 20.0 23.5 20.0 73.0 63.0 77.0 56.5 45.0 47.3 22.2
S-GPTSL-RNN 36.5 38.0 42.0 95.5 94.0 89.0 80.5 61.0 67.1 24.1

Table 7: Cross study results. Each entry shows the success rate obtained by having the user simulator interacting
with the RL system for 200 times.

User Simulators Utt ↑ Vocab ↑DIST-1 ↑DIST-2 ↑ENT-4 ↑
U-RNNT 9.83 192 0.77% 1.51% 4.24
U-RNNR 11.06 346 2.45% 9.59% 6.59
U-GPTSL-RNN 14.00 262 1.13% 3.53% 5.62

Table 8: Automatic evaluation results of U-RNNT, U-
RNNR and U-GPTSL-RNN. The metrics include average
utterance length (Utt), vocabulary size (Vocab), distinct-
n (DIST-n) and entropy (ENT-n).

User Simulators Hu.Fl ↑Hu.Co ↑Hu.Go ↑Hu.Div ↑Hu.All ↑
U-RNNT 4.60 4.68 4.96 3.34 4.70
U-RNNR 3.92 3.88 4.72 3.94 4.16
U-GPTSL-RNN 4.10 4.04 4.30 3.70 4.00

Table 9: Human evaluation results of U-RNNT, U-
RNNR and U-GPTSL-RNN. The metrics include sen-
tence fluency (Hu.Fl), coherence (Hu.Co), goal adher-
ence (Hu.Go), language diversity (Hu.Div) and an over-
all score (Hu.All).

by U-RNNR are retrieved from a corpus that is691

written by real humans and the sentences writ-692

ten by humans are usually more diverse than the693

sentences generated by generative models. Even694

though the dialogues generated by U-RNNR are695

more diverse, the dialogues generated by our U-696

GPTSL-RNN are more fluent and coherent. Also,697

the cross-model evaluation results (Table 7) show698

that U-GPTSL-RNN can help to learn a more robust699

system agent than U-RNNR, but the Hu.All score700

in the human evaluation (Table 9) gives an opposite701

result.702

C Comparision between our U-GPT and703

the ABUS704

U-GPTIL-AgenR. Because building simulators us-705

ing rule-based approaches is independent with the706

data set, we collect 2,000 dialogues sampled from707

interactions between U-AgenR and S-AgenR to708

fine-tune our U-GPT for comparing with U-AgenT,709

U-AgenR, U-AgenG. And we name this imitated710

user simulator as U-GPTIL-AgenR.711

We can see that the average success rate of S-712

GPTIL-AgenR is higher than S-AgenT, S-AgenG at713

least 4.9 points from Table 10. The automatic evalu-714

ation (Table 11) and the Hu.Div score in the human 715

evaluation of Table 12 represent that U-AgenR has 716

the highest language diversity. We think it is the rea- 717

son why the average success rate of S-GPTIL-AgenR 718

is slightly lower than S-AgenR. It is easily under- 719

stood because U-GPTIL-AgenR is trained on the 720

simulated dialogues from U-AgenR using IL and 721

we know that it is more difficult to imitate when the 722

training data is more diverse. But the difference of 723

0.9 points between S-AgenR and S-GPTIL-AgenR 724

proves that our U-GPT has a good ability on learn- 725

ing from past experiences. The NLG module of 726

U-AgenR uses Retrieval method. If we ignore it, 727

U-GPTIL-AgenR will have the highest language di- 728

versity. Therefore, we can claim that our U-GPT 729

can generate various user behaviors and diverse lan- 730

guage. Also, U-AgenT performs best in the over- 731

all performance on the human evaluation (Table 732

12). And the performance of our U-GPTIL-AgenR 733

is much better than U-AgenG. We also give some 734

examples in the appendix D.2. 735

D Case Study 736

D.1 U-RNN vs U-GPTSL-RNN 737

We give two examples to show the superiority of 738

our U-GPT. Compared with U-GPTSL-RNN, U- 739

RNN is more likely to ignore the system response 740

to state its goal when interacting with the system 741

agent. As shown in Table 13, we highlight the user 742

utterances generated not well by U-RNN in red 743

color. U-RNN first ignore the request about the 744

“food” type asked by the system agent and give its 745

“book” information about the goal directly. And 746

then U-RNN repeats three times to state that the 747

restaurant it is looking for should be in the expen- 748

sive price range. As a result, the dialogue generated 749

by U-RNN fail as the user does not inform food 750

type and book time. For the same goal, our U- 751

GPTSL-RNN completes its goal in four turns and 752

the generated dialogue are fluent and coherent. 753

11

System \User U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTSL U-GPTIL Avg. ↑ Std. ↓
S-AgenT 97.5 54.0 72.5 98.5 92.5 77.0 78.0 89.0 82.4 14.1
S-AgenR 96.0 90.0 97.5 98.5 97.5 82.0 80.5 96.0 92.3 6.8
S-AgenG 79.0 78.5 95.0 98.5 96.5 81.5 79.0 91.0 87.4 8.2
S-GPTIL-AgenR (ours) 94.0 85.0 94.5 97.0 98.0 85.0 81.0 96.5 91.4 6.2

Table 10: Cross study results on U-GPTIL-AgenR and the three ABUS. Each entry shows the success rate obtained
by having the user simulator interacting with the RL system for 200 times.

User Simulators Utt ↑ Vocab ↑DIST-1 ↑DIST-2 ↑ENT-4 ↑
U-AgenT 9.65 180 0.76% 1.61% 4.51
U-AgenR 11.61 383 2.24% 10.06% 7.05
U-AgenG 8.07 159 0.59% 1.17% 4.15
U-GPTIL-AgenR 9.70 298 1.15% 4.60% 5.47

Table 11: Automatic evaluation results of U-
GPTIL-AgenR and the three ABUS. The metrics include
average utterance length (Utt), vocabulary size (Vocab),
distinct-n (DIST-n) and entropy (ENT-n).

User Simulators Hu.Fl ↑Hu.Co ↑Hu.Go ↑Hu.Div ↑Hu.All ↑
U-AgenT 4.60 4.60 4.96 3.58 4.48
U-AgenR 3.88 3.56 4.62 4.02 3.78
U-AgenG 3.40 3.36 4.26 3.40 3.54
U-GPTIL-AgenR 4.08 3.36 4.20 3.82 3.62

Table 12: Human evaluation results of U-GPTIL-AgenR

and the three ABUS. The metrics include sentence
fluency (Hu.Fl), coherence (Hu.Co), goal adherence
(Hu.Go), language diversity (Hu.Div) and an overall
score (Hu.All).

D.2 U-AgenR vs U-GPTIL-AgenR754

The NLG module of U-AgenR uses Retrieval755

method. As shown in Table 14, U-AgenR first756

wants to find a moderate restaurant. However, the757

retrieved template is not proper as the beginning of758

the conversation. And there has no constraint about759

the location of the restaurant, but U-AgenR uses760

the word “dontcare” to fill the retrieved template761

directly which leads to an influent user utterance.762

Then U-AgenR is satisfied with the recommenda-763

tion of the system agent and decides to book a table764

on Tuesday. Also the retrieved template used to765

convey this user action is so weird. To this end,766

even though U-AgenR can complete its goal, but767

the fluency and coherence of the generated dia-768

logue is poor. The dialogue generated by our U-769

GPTIL-AgenR are more fluent and coherent.770

12

Goal {’id’: ’SNG02148.json’, ’info’: {’food’: ’indian’, ’pricerange’: ’expensive’, ’area’: ’west’},
’book’: {’time’: ’18:00’, ’day’: ’tuesday’, ’people’: ’8’}}

Agent Sentence Agent Sentence

U-RNN I would like to find an expensive restaurant
in the west part of town. U-GPTSL-RNN

I am looking for an expensive place to dine.
i want it to be on the west side of town.

System Do you have a preference on the food? System Do you have a preference on the food?
U-RNN I would like to book a table for 8 people on tuesday. U-GPTSL-RNN Yes, I would prefer indian food if necessary.

System
Tandoori palace is a indian restaurant on the west side
of town. It’s in the expensive price range.
Is there anything else I can help you with?

System

Tandoori palace is an indian restaurant on the
west side of town. It’s in the expensive
price range. Is there anything else I can
help you with?

U-RNN That is the restaurant to be in the expensive price range. U-GPTSL-RNN
Yes, that sounds good. could you reserve a
table for 8 at 18:00 on tuesday?

System
Cocum is a indian restaurant on the west side of town.
It’s in the expensive price range.
Is there anything else I can help you with?

System I have booked the reservation for you.
And you reference number is ABC.

U-RNN That is the restaurant to be in the expensive price range. U-GPTSL-RNN
Great, that is all i will be needing today.
thank you for your help.

System
Rice boat is a indian restaurant on the west side of town.
It’s in the expensive price range.
Is there anything else I can help you with?

U-RNN That is the restaurant to be in the expensive price range.

System

Maharajah tandoori restaurant is an indian restaurant on

the west side of town. It’s in the expensive price range.
Is there anything else I can help you with?

U-RNN That is all i needed. Thank you for your help.

Table 13: An example of dialogue session comparison between U-RNN and U-GPTSL-RNN.

Goal {’id’: ’SSNG0179.json’, ’info’: {’food’: ’turkish’, ’pricerange’: ’moderate’},
’book’: {’people’: ’7’, ’day’: ’tuesday’, ’time’: ’12:30’}}

Agent Sentence Agent Sentence

U-AgenR A moderate restaurant please U-GPTIL-AgenR
I am looking for a moderately priced
restaurant.

System Do you have a preference on the food and area? System Do you have a preference on the food and area?

U-AgenR I would like some good turkish food .
near the dontcare of town would be great. U-GPTIL-AgenR

I am looking for an inexpensive turkish
restaurant.

System
Anatolia is a turkish restaurant on the centre side
of town. It’s in the moderate price range.
Is there anything else I can help you with?

System
Anatolia is a turkish restaurant on the centre side
of town. It’s in the moderate price range.
Is there anything else I can help you with?

U-AgenR On tuesday please U-GPTIL-AgenR
There will be 7 of us and we would like to
eat at 12:30.

System Could you please tell me how many people and
what time you would like for the reservation? System Could you please tell me what day you would

like for the reservation?

U-AgenR I would like a reservation at 12:30 for a party
of 7 . U-GPTIL-AgenR On tuesday please

System I have booked the reservation for you.
And you reference number is ABC. System I have booked the reservation for you.

And you reference number is ABC.
U-AgenR Wonderful , thanks . That s all i need . U-GPTIL-AgenR Thank you for your help, good day.

Table 14: An example of dialogue session comparison between U-AgenR and U-GPTIL-AgenR.

13

