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Abstract

Recent works try to optimize a Task-oriented
Dialogue System with reinforcement learning
(RL) by building user simulators. However,
most of them only focus on training the di-
alogue system using a single user simulator.
In this paper, we propose a framework called
MUST to improve the dialogue agent by uti-
lizing multiple user simulators simultaneously
shown in Figure 1. Two core research prob-
lems of the proposed MUST are: (1) how to
specify these different simulators effectively
in the RL training? and (2) what model archi-
tecture should we use to learn a user simula-
tor with better generalization capability? To
tackle the first problem, we formulate the sim-
ulator selection task to train the system agent
as a Multi-armed bandit (MAB) problem and
modify one Upper Confidence Bound (UCB)
algorithms called UCBI1 to guide this selec-
tion process. To deal with the second problem,
we present a new user simulator model called
U-GPT based on the Generative Pre-trained
Transformer (GPT). Extensive empirical results
demonstrate that the dialogue system trained by
the proposed MUST achieves a better perfor-
mance than those trained by a single user sim-
ulator and our modified UCB1 algorithm can
accelerate the MUST training. Furthermore, we
reveal that our GPT-based user simulator out-
performs previous learning-based simulators
through direct and indirect evaluations.

1 Introduction

Task-oriented dialogue systems aim to help users
accomplish their various tasks such as requesting
information, restaurant reservations through natural
language conversations. They have recently gained
increasing attention in both academia and indus-
tries. Researchers usually divide the task-oriented
dialogue systems into four components: Natu-
ral Language Understanding (NLU), Dialog State
Tracker (DST), Dialog Policy Learning (POL), and
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Figure 1: The comparison of training the system agent
between previous works with a single simulator (a) and
our proposed MUST with multiple user simulators (b).

Natural Language Generation (NLG). These differ-
ent modules can be trained independently or jointly
in an end-to-end manner (Ham et al., 2020; Peng
et al., 2021; Hosseini-Asl et al., 2020). To build
more intelligent and human-like dialogue systems,
reinforcement learning (RL) is often adopted to
learn system actions through interacting with users.
However, directly interacting with human users is
time-consuming and expensive. The most used
approach is to build a user simulator that is agenda-
based (Schatzmann et al., 2007; Schatzmann and
Young, 2009) or learned with neural networks such
as RNN based on a corpus of dialogues (Asri et al.,
2016; Kreyssig et al., 2018; Gur et al., 2018) in-
stead of real humans to train the system agent.

To learn a user simulator, the agenda-based user
simulators (ABUS) design handcrafted rules to
mimic user behaviors, yet this approach is labo-
rious and can hardly generalize across domains.
The RNN-based simulators are prone to overfitting



and lack of mechanisms to flexibly explore various
user behaviors. Existed works either train a system
agent by building one user simulator with these
methods or train different system agents using dif-
ferent user simulators (Shi et al., 2019) and pick the
best performing one. In realistic scenarios, differ-
ent users could have very different behaviors, we
contend that the system agent trained by a single
user simulator is not efficacious and a better way is
to use multiple user simulators modeling different
users to train the system agent simultaneously.

In this work, we propose a framework called
MUST to utilize different user simulators simulta-
neously to train a system agent. Motivated by the
Multi-armed bandit (MAB) problem, we treat each
user simulator as a bandit’s arm. As our goal is
to obtain a more robust system agent, we modify
one Upper Confidence Bound (UCB) (Auer et al.,
2002) algorithm! called UCB1 to help the proposed
MUST to accelerate the system agent training by
learning more from those user simulators that the
system agent has not performed very well i.e. low
success rate during the RL training process. Fur-
thermore, the quality of user simulators will affect
the effectiveness of our MUST since we cannot
obtain a good system agent if all user simulators
are bad. To improve previous RNN-based meth-
ods on building user simulators and validate the
effectiveness of MUST, we also present a new user
simulator model named U-GPT. U-GPT recasts
all sub-modules in modeling user simulators as
a sequence prediction problem and completes all
sub-tasks sequentially in an end-to-end manner by
leveraging the auto-regressive language model GPT
(Radford et al., 2018, 2019).

Our extensive experimental results on the restau-
rant search task from MultiWOZ (Budzianowski
et al., 2018) show that the dialogue system trained
by the proposed MUST achieves a better perfor-
mance than those trained by any single user sim-
ulator, including the one (referred to as U-GPTr,
in our later experiments.) trained with dialogue
sessions sampled from different user simulators.
Moreover, our newly proposed GPT-based user sim-
ulator is more preferable to previous RNN-based
simulators through direct and indirect evaluations.

Altogether, our technical contribution in this
work is three-fold: (1) To the best of our knowl-
edge, we are the first to train the system agent using

!Selecting the arm maximizing the cumulative expected
reward.

multiple user simulators, and we propose MUST
with an effective RL perspective using a modified
UCBI algorithm. (2) We present a new model
named U-GPT which leverages GPT to learn the
user simulator. (3) The overall results show that
the dialogue system trained with MUST performs
best, and our newly proposed U-GPT by itself is
more preferable to previous RNN-based simulators
through direct and indirect evaluations.

2 Preliminary

Before presenting our methods, we first provide
some details about the Multi-armed bandit problem
and the UCBI1 algorithm (Auer et al., 2002).

2.1 Multi-armed Bandit Problem

Reinforcement learning policies face the explo-
ration versus exploitation trade-off, which can be
described as the search for a balance between ex-
ploring the environment to find profitable actions
while taking the empirically best action as often as
possible. This exploration vs exploitation dilemma
has been widely studied as a Multi-armed bandit
(MAB) problem.

In the MAB problem, there are K arms, and
each arm j has a fixed but unknown reward distribu-
tion R; with an expectation p;. At each time step
t = 1,2,...,T, the decision maker must choose
one of these K arms. We denote the arm pulled
at time step t as j; € {1, ..., K}. After pulling an
arm, it will receive a reward X, which is a real-
ization drawn from the arm’s underlying reward
distribution. The decision masker’s objective is to
maximize the cumulative expected reward over the
time horizon 37| F[X,,] = 371 1y,

UCBI1. The Upper Confidence Bound (UCB) al-
gorithms are classic allocation strategies to solve
the MAB problem. Here we give an introduction
to UCBI1 (Auer et al., 2002), which is one of the
UCB algorithms. This policy first pulls each arm
once. Then the index of the arm will be played
from ¢t = K 4 1 to T is the sum of two terms:
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Jt = argmax)_(j +
J

where X ; 1s the average reward obtained from arm
J » T+ is the number of times arm j has been played
so far. The first term is simply the current average
reward and the second one is related to the size of
the one-sided confidence interval for the average



reward within which the true expected reward falls
with overwhelming probability.

3 Methodology

3.1 Problems

We propose a framework called MUST to obtain
a better system agent by utilizing multiple simu-
lators simultaneously. There are two key points
to implement this framework: the first is how to
use these different simulators effectively in the RL
training, and the second is what model architecture
we should adopt to build a good simulator to be
used with MUST. In the following two sections, we
will detail our proposals to the above two problems.

3.2 RL with Multiple User Simulators

Given K user simulators denoted as Uy, Us, ...,
Uk which have different behaviors, we aim to train
a system agent S with these simulators by RL. The
simplest way is that we put these K user simula-
tors in the RL environment and pick a simulator
randomly with a uniform distribution to interact
with S when collecting each new dialogue and use
the obtained reward to update the system agent S
with policy gradient. It is not efficient nor opti-
mal because the system agents trained by different
user simulators have different convergence speeds
with RL. To allow the system agent to learn from
different user simulators efficiently by MUST, we
think it should sample the user simulators whose
corresponding system agents are easy to converge
fewer times and pay more attention to those user
simulators whose corresponding system agents are
harder to converge.

Therefore, motivated by the MAB problem, we
treat each user simulator as a bandit’s arm and mod-
ify the UCBI1 algorithm to calculate a distribution
D used to guide how to specify different user sim-
ulators in the RL training to train the system agent
S. This distribution D is designed to assign lower
weights to user simulators that the system agent S
already performs well and higher weights to those
that S performs not very well. The implementation
of MUST with the modified UCB1 algorithm is
presented in Algorithm 1. We use 7' to denote the
total number of dialogues that will be sampled in
the whole training process. In the first Tj dialogues,
we use a uniform distribution to sample these user
simulators to train S. After that, we let the system
agent S interact d times with each simulator U;
to obtain its success rate X ;j and use these K suc-

Algorithm 1: Implementing MUST with
the modified UCB1 algorithm

1 Input: Initiate the values of hyperparameters
T, Ty, e,d,s;

2 fort=0,..., 7y do

3 Sample a simulator Uy, j € {1...K}

with a uniform distribution;

4 Let the system agent .S interact with U

to have a new dialogue;

5 Use the reward obtained for the dialogue

to update S with a RL algorithm;

6 Let S interact d times with each simulator
Uj to calculate its success rate X i3
7 Calculate a baseline with these success rates
and a scalar s, b = min(Xy, ..., Xi) * s;
Initiate the distribution

o®

1

D ={dy,....dx},dy = =g’
Zj:l Xj—b
9 fort =T+ 1,...,7T do
10 if t%e! = 0 then
1 Sample a simulator Uy, j € {1...K}
from the distribution D;
12 Let the system agent S interact with

U; to have a new dialogue and use
the obtained reward to update S

13 else
14 forj=1,..., K do
15 Let S interact d times with the

simulator U to recalculate its
success rate X ;;

P v 2Int.
16 calculate 7; = X; + ,/ T,

17 Recalculate the baseline
by = min(Zy, ..., Tx) * s;
18 Calculate ©; = 1/(z; — b;);
19 Update the distribution:
D ={dy,....dg}, dj = —=2-—;
{ 1 K} k Z;il P

20 Output: The dialogue system S.

cess rates to initiate the distribution D (lines 2-8).
In the following steps, we specify different user
simulators to train S by the distribution D (lines
10-12). And we will evaluate the RL model .S every
e episodes and update the distribution D with the
new success rates (lines 14-19). The hyperparame-
ter of s is used to calculate a baseline and control
the smoothness of distribution D. If s is larger, D
is sharper.
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(a) The details of the first two-turn interactions between a system agent and our U-GPT.

hello! what can i help you? <eos_resp> [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food venetian pricerange
expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type] food area <eos pol> i am looking at a place to eat that
serves venetian food in the centre. <eos_utt> unfortunately, i do not see any restaurants that serve venetian in the centre of town. would you like to try a
different area or type of cuisine? <eos_resp> nooffer [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food
chinese pricerange expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type change] food <eos_pol> Do you

have any [value food] restaurants ? <eos_utt>

(b) An example of the model input for training U-GPT.

Figure 2: The overview of our U-GPT which consists of Natural Language Understanding (NLU), Goal Generator,
Dialog Policy Learning (POL), and Natural Language Generation (NLG) and uses the auto-regressive language
model GPT to understand the system inputs, generate the user actions and the user utterances given the dialogue
context and the user goals sequentially in an end-to-end manner. (a) gives a detailed description of the first two-turn
interactions between a system agent and our U-GPT. For training U-GPT, we need to convert the dialogue context
and all annotations to sequences of tokens. (b) presents the training example of the first two-turn dialogues in (a).

3.3 Modeling User Simulator with GPT

In this section, we illustrate how our U-GPT mod-
els the user simulator based on GPT. And We will
demonstrate that it is a better choice if we want to
train a single user simulator or add a new simulator
into MUST in later experiments (Section 4.4.2).

User Simulator. If we treat a user simulator as
a dialog agent, we can use the same framework as
the dialog system to build it. However, their roles
are different. The user agent has a goal describ-
ing a target entity (e.g., a restaurant at a specific
location), and should express its goal completely
in an organized way by interacting with the system
(Takanobu et al., 2020). For the system agent, it
does not know the user’s goal at the beginning and
should gradually understand the user’s utterances,
query the database to find entities, and provide use-
ful information to see if accomplishing the user’s
task. Since only the system can access the database,
the user does not know if its goal can be satisfied.
Once the database result returned by the system
agent is empty, the user agent should learn to com-
promise and change its goal. Therefore, the user
agent has another module called Goal Generator

(Kreyssig et al., 2018), which is responsible for
initiating a goal or generating a new goal.

As Figure 2(a) shown, our U-GPT consists of
four modules, which are Natural Language Under-
standing (NLU), Goal Generator, Dialog Policy
Learning (POL), and Natural Language Genera-
tion (NLG). Dialogues consist of multiple turns.
In the first turn ¢ = 0, U-GPT (1) first outputs
its NLU results Ny by understanding the system
input Sy, and (3) decide its actions Ay which is
a list of pairs: (action_type, slot_name) based on
(2) its initial goal G and {Sy, No}. U-GPT then
(4) conditions on {Sy, Ny, Go, Ap} to generate the
delexicalized utterance Uy. The generated place-
holders in Uy will be filled using the corresponding
slot values in the goal Gg. When the conversa-
tion proceeds to turn ¢, U-GPT (1) generates the
NLU results Ny based on all of previous dialogue
history and generated outputs {Cy, ..., Ci_1, S;},
here C; = [S;, N;, G;, A;, U;]. If there has "no-
offer" intent in /V; representing that no entities
could satisfy current constraints, then (2) Goal Gen-
erator should generate a new goal GG;. Then U-
GPT will continue to (3) generate the user acts A,



and (4) generate delexicalized utterance U, condi-
tioned on {Cy, ..., Ci_1,St, Ny, Gi } sequentially.
We should notice that the user utterances occurred
in the history context should be lexicalized because
they contain important information.

Figure 2(b) shows an example of training se-
quence which consists of the concatenation x =
[Co, C4]. In order to leverage GPT, we need to
convert the generated outputs { N;, G;, A;,U;} to
sequences of tokens resembling a text. And we in-
troduce delimiter tokens <eos_resp>, <eos_nlu>,
<eos_goal>, <eos_pol>, <eos_utt> to signal the
ending of sequence representations of different
modules. For the NLU results N;, we use five
categories: “inform”, “request”, “book inform”,
“select”, “recommend” same as Shi et al. (2019) to
represent them. And we also introduce five tokens
[eos_constraint], [eos_book], [eos_recommend],
[eos_select], [eos_request] to record different in-
formation. All of these tokens and the intents of
user actions will be added to the vocabulary of GPT
as additional special tokens. For training U-GPT,
we use the same training objective as GPT which
is to maximize the following likelihood:

L(U) = Zlog P(ui]u,-_k, ceey Ug—15 @),

v Ui € {S()a N07 GOv AOa U07 seey Ata Ut}v

where k is the size of the context window, and the
conditional probability P is parameterized with ©.

4 Experiments

Our experiments can be divided into two parts. In
the first part, we train a system agent S-MUST with
the proposed MUST and compare its performance
with other system agents trained by a single sim-
ulator to prove that we can obtain a better system
agent with MUST. In the second part, we will prove
that our GPT-based user simulator can outperform
previous RNN-based simulators through direct and
indirect evaluations.

4.1 Baselines

There are six user simulators provided by Shi et al.
(2019), which are Agenda-Template (U-AgenT),
Agenda-Retrieval (U-AgenR), Agenda-Generation
(U-AgenG), RNN-Template (U-RNNT), RNN-
Retrieval (U-RNNR), RNN-End2End (U-RNN) 2
trained with different dialog planning and genera-
tion methods.

"Here we rename these six simulators for clarifying the
role of agents.

U-AgenT, U-AgenR, U-AgenG. The DM man-
ager modules of U-AgenT, U-AgenR, and U-
AgenG are rule-based methods. For the NLG mod-
ule, these three simulators are respectively using
the template, retrieval, and generation methods.

U-RNNT, U-RNNR, U-RNN. The DM manager
modules of U-RNNT, U-RNNR use Sequicity (Lei
et al., 2018) as its backbone which is an RNN-
based seq2seq model with copy mechanism. For
the NLG module, they are using the template, re-
trieval methods respectively. U-RNN uses Sequic-
ity as its backbone in an end-to-end manner.

These user simulators will be used to train the
system agent S-MUST by our proposed MUST
with the modified UCB1 algorithm. Any system
agent trained by a single user simulator should be
the baseline of S-MUST. Because our U-GPT is
an end-to-end model based on GPT, we will use
U-RNN as the baseline of U-GPT.

4.2 Dataset and Evaluation Measures

MultiWwOZ Restaurant Domain Dataset. The
original task in MultiwOZ (Budzianowski et al.,
2018) was to model the system response. Shi et al.
(2019) annotate the user intents and the user-side
dialog acts in the restaurant domain of MultiwOZ
to build user simulators, which has a total of 1,310
dialogues.

Simulated Agenda Dataset. We simulated 2,000
dialogues from each rule-based simulator U-AgenT,
U-AgenR, U-AgenG, and their corresponding sys-
tem agents respectively, and processed these dia-
logues to have the same annotation format as the
MultiWOZ restaurant domain dataset.

Evaluation Measures. For evaluations on dia-
logue systems, we report the average success rate
of them interacting with different user simulators.
The success rate between a pair of a user simula-
tor and a system agent is calculated by sampling
200 dialogues between them in later experiments.
To evaluate user simulators, we adopt both indi-
rect evaluations and direct evaluations as in Shi
et al. (2019). In fact, we can also evaluate a user
simulator indirectly using the average success rate
of the system agent trained by this simulator. It
is called cross-model evaluation (Schatzmann and
Young, 2009) which assumes a strategy learned
with a good user model still performs well when
tested on poor user models. It can indirectly evalu-
ate the behavior diversity generated by user simula-



System\User[U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTs;, U-GPTi, [Avg. T[Std. 1

S-AgenT 97.5 54.0 72.5 98.5 92.5 71.0 78.0 89.0 82.4 14.1
S-AgenR 96.0 90.0 97.5 98.5 97.5 82.0 80.5 96.0 92.3 6.8
S-AgenG 79.0 78.5 95.0 98.5 96.5 81.5 79.0 91.0 87.4 8.2
S-RNNT 30.5 23.0 355 99.0 97.5 84.0 75.5 66.0 63.9 28.5
S-RNNR 30.0 23.0 30.0 96.5 93.5 70.5 68.5 56.0 58.5 26.9
S-RNN 20.0 235 20.0 73.0 63.0 71.0 56.5 45.0 47.3 222
S-GPTsL 60.5 51.5 59.5 97.0 94.0 92.0 82.0 84.5 71.6 16.7
S-GPTry, 97.5 83.5 97.5 94.5 94.0 82.5 80.5 96.5 90.8 6.8
S-MUST 97.5 89.5 96.5 97.0 97.5 90.0 82.5 96.0 93.3 5.1

Table 1: Success rates of the system agents tested against various user simulators. Each column represents one user
simulator, each row represents one RL system trained with a specific simulator, e.g. S-AgenT means the RL system
trained with U-AgenT. Each entry shows the success rate of 200 dialogues obtained by having the user simulator

interact with the system agent.

tors. For direct evaluations, we adopt six evaluation
measures for the automatic evaluation: average ut-
terance length, vocabulary size, Dist-1, Dist-2 (Li
et al., 2016) and Entropy (Zhang et al., 2018). We
also ask human users to rate the simulated dia-
logues® to assess the user simulators directly. We
use five same metrics as (Shi et al., 2019) which
are Fluency, Coherence, Goal Adherence, Diver-
sity, and an Overall quality to assess the behaviors
of user simulators from multiple aspects.

4.3 Implementations

U-GPTjr,. A simple method to utilize multiple
user simulators is learning a new simulator with dia-
logue sessions collected from these user simulators
and training the system agent with this new simu-
lator by Imitation Learning (IL). U-GPTryy, is first
pre-trained on the simulated agenda dataset which
has a total of 6,000 dialogues. Then we sample
1,400 dialogues from the simulated agenda dataset
and merge them with 1,310 MultiWOZ restaurant
domain dialogues to continue to fine-tune our U-
GPT. We denote the system agent trained by U-
GPT1yy, as S-GPTyy, and use it as another baseline
of S-MUST.

U-GPTs,*. Itis also pre-trained on the simulated
agenda dataset and fine-tuned on the 1,310 Multi-
WOZ restaurant domain dataset with our U-GPT.

S-MUST. Six user simulators provided by Shi
et al. (2019) have very different behaviors accord-
ing to the reported experimental results, therefore
they become a good choice to implement MUST.
Because the system agents trained by U-AgenG, U-
RNNR, U-RNN have no advantages over U-AgenT,

3The system agent for simulating dialogues is a third-party
system provided by (Shi et al., 2019) which was built based

on hand-crafted rules.
4SL is short for Supervised Learning.

U-AgenR, U-RNNT, we decide to use U-AgenT, U-
AgenR, U-RNNT, and U-GPTgy, to train S-MUST.
All system agents trained by user simulators with
RL have the same architecture described in Shi
et al. (2019). The RL algorithm and the reward
used are also the same for a fair comparison.

U-GPTg1-rnn°.  Because the implementation of
U-RNN mainly consists of NLU and NLG, we
remove the POL module from U-GPT and use the
same annotated data as U-RNN to fine-tune it to
compare our U-GPT with the RNN-based methods
fairly. And we name it as U-GPTgp-rnN.-

[User Simulators[NLU] DM | NLG ]
U-AgenT RNN | Agenda Template
U-AgenR RNN | Agenda Retrieval
U-AgenG RNN | Agenda Generation
U-RNNT RNN Template
U-RNNR RNN Retrieval
U-RNN RNN (NLU + NLG)
U-GPTsp-rNN Transformer (NLU + NLG)
U-GPTsy, Transformer (NLU + POL + NLG)
U-GPTiL Transformer (NLU + POL + NLG)

Table 2: The architectures of all user simulators.

We give an overview (Table 2) of the architec-
tures of all user simulators that occurred in this
paper to illustrate the differences between them.
The dialogue management (DM) module contains
two sub-modules, the DST and POL modules.

4.4 Results and Analysis

4.4.1 Evaluations on Dialogue Systems

The last column and the second last column in
Table 1 show that S-MUST achieves the highest av-
erage success rate (93.3) interacting with eight user
simulators and these eight success rates have the

SWe provide the implementation details of all user simula-
tors that are based on U-GPT in appendix A.1.
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Figure 3: The analysis of training S-MUST with four good user simulators of U-AgenT, U-AgenR, U-RNNT,
U-GPTgy, by the modified UCBI1 algorithm and the uniform distribution. (a) shows the learning curves of S-MUST
in the RL training. In the first 120,000 episodes in both situations, we use the uniform distribution to sample these
simulators. (b) gives an overview of the proportion of each user simulator that has been sampled by the modified
UCBI algorithm in the last 80,000 episodes. We further analyze the performance of S-MUST interacting with each
user simulator in the RL training and the details are shown in (c)-(f).

smallest standard deviation. Moreover, S-MUST
improves over S-GPTyy, by 2.5 points in the aver-
age success rate. We also give an analysis about
our training strategy. From Figure 3(a), we can see
that training S-MUST with U-AgenT, U-AgenR, U-
RNNT, U-GPTgy, by the modified UCB1 algorithm
converges faster than by the uniform distribution.
To understand this result, we further plot the per-
formance of S-MUST interacting with each user
simulator in the RL training shown in Figure 3(c)-
(f) and find that S-MUST trained by the user simu-
lator U-AgenR converges last. Combining Figure
3(b) which shows us the proportion of each user
simulator that has been sampled by the modified
UCBI1 algorithm in the last 80,000 episodes of RL,
we know that the modified UCB1 algorithm would
sample the user simulator whose corresponding
system agent is harder to converge more times and
this could help the system agent converges faster.
The overall experimental results prove that the pro-
posed MUST is powerful and versatile to cope with
a variety of user simulators to train a system agent
effectively by the modified UCB1 algorithm.

4.4.2 Evaluations on User Simulators

For the indirect evaluation of user simulators, we
use the average success rates of the system agents
trained by them. The average success rates are cal-

System Avg. 1| Std. |
S-RNN 473 | 22.2
S-GPTsr-rnn | 67.1 | 24.1

Table 3: The cross-model evaluation results of user
simulators. We put the detailed results in the table 7.

User Simulators[Utt T Vocab T DIST-1 T DIST-2 T ENT-4 1

U-RNN 1095 205 117% 3.14%  4.98
U-GPTsp-rnn [14.00 262 1.13% 3.53%  5.62

Table 4: Automatic evaluation metrics of user simulators
include average utterance length (Utt), vocabulary size
(Vocab), distinct-n (DIST-n) and entropy (ENT-n).

culated by letting each RL system interact with all
eight user simulators that same as the eight user
simulators used in Table 1. Table 3 shows the cross-
model evaluation results. We can see that the aver-
age success rate of S-GPTgy-grnN far exceeds that
of S-RNN. This represents that our U-GPT can per-
form more various behaviors than U-RNN to help
the system agent explore the dialogue states.

The automatic evaluation results in Table 4 and
the language diversity score (Hu.Div in Table 5)
evaluated by humans directly tell us that the dia-
logues generated by our U-GPT are more diverse
than by U-RNN in the level of language. And the
remaining metrics in Table 5 tell us that our U-GPT



User Simulators[Hu.Fl 1 Hu.Co 1 Hu.Go 1 Hu.Div T Hu.All 1

U-RNN 280 230  2.86 2.74 2.30

U-GPTsp-rnn | 410 404 4.30 3.70 4.00

Table 5: Human evaluation results of user simulators.
The metrics include sentence fluency (Hu.Fl), coherence
(Hu.Co), goal adherence (Hu.Go), language diversity
(Hu.Div) and an overall score (Hu.All).

can generate more fluent dialogues and is more like
a real human that could express its goal completely.
We give some examples in the appendix D.1.

4.5 Discussion

We also compare our U-GPTgp-gny with U-
RNNT and U-RNNR in the appendix B. Our U-
GPTgsL-rNN can generate more diverse language
and more various behaviors than U-RNNT accord-
ing to the cross-model evaluation and automatic
evaluation. However, U-RNNT performs better
than our U-GPTgr-gnn in the overall performance
according to the human evaluation. We think it
is because the NLG module of U-RNNT is the
template-based method and the generated dialogues
from them are easy for the third-party system to
interact with. The user utterances generated by U-
RNNR are retrieved from a corpus that is written
by real humans. We think that the dialogues are
written by humans usually have higher language
diversity than the dialogues generated by models.
Even though the dialogues generated by U-RNNR
are more diverse, the dialogues generated by our
U-GPTgr,-rnN are more fluent and coherent. Also,
the cross-model evaluation results show that U-
GPTsr-rNN can help to learn a more robust system
agent than U-RNNR, but the Hu.All score in the
human evaluation gives an opposite result. The gap
between cross-model evaluation metrics, automatic
metrics, and real human evaluation represents that
the evaluation of the user simulators is challenging.

5 Related Work

The ABUS (Schatzmann et al., 2007; Schatzmann
and Young, 2009) represents the user state as a
stack of user actions, called the agenda. The mech-
anism that generates the user response and updates
the agenda does not require any data, though it can
be improved using data. (Asri et al., 2016) mod-
eled user simulation as a sequence-to-sequence task
and user behavior is learned entirely from data but
ignores the goal changes. (Kreyssig et al., 2018)
introduces a Neural User Simulator (NUS) consist-

ing of a goal generator that generates its own goal
and possibly changes it during a dialogue, a feature
extractor, and a neural network-based sequence-
to-sequence model (Sutskever et al., 2014). Even
though these simulators can generate successful
conversations, they lack the necessary mechanisms
to produce diverse responses. (Gur et al., 2018) de-
velop a hierarchical seq2seq user simulator (HUS)
to allow the model to capture undiscovered parts of
the user goal without an explicit DST module and
several variants by utilizing a latent variable model
to inject random variations into user responses to
generate diverse user responses.

A work similar to us in building the user simu-
lator is (Mohapatra et al., 2021). It uses GPT-2 to
build a user bot and uses the data collected from
this user bot and an agent bot to achieve improve-
ments in both low-resource settings as well as in
the overall task performance of the agent bot. How-
ever, their user simulator mainly consists of Re-
sponse Generator and Response Selector modules
in a different way from us and Response Genera-
tor generates the response conditioned on the goal
instruction expressed in a natural language, not a
structured goal expressed in slot types, slots, and
values. (Shi et al., 2019) implements six user simu-
lators in both the ABUS and the RNN-based User
Simulators and presents a comprehensive evalua-
tion framework for user simulator study. These six
simulators have very different behaviors, however,
they do not use them together to train a more robust
system agent. Our framework is the first work to
consider training the system agent with different
user simulators.

6 Conclusion

In this paper, we propose a framework named
MUST to improve the system agent by using dif-
ferent user simulators simultaneously and a new
method named U-GPT which leverages GPT to im-
prove the user simulator. we conduct automatic
evaluation, cross-evaluation, and human assess-
ments on them. The experiment results demon-
strate that our proposed MUST can significantly
improve the robustness of the system agent upon
the baseline methods and our U-GPT can generate
more diverse language and more various behaviors
than RNN-based user simulators to help the system
agent explore the dialogue states. In the future, we
plan to apply our proposed methods and training
techniques to multi-domain scenarios.
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A Implementation Details

A.1 Training user simulators

We implement our GPT-based user simulators with
DistilGPT2 (Sanh et al., 2020), a distilled version
of GPT-2 by HuggingFace’s Transformers (Wolf
et al., 2020). We select the best performing models
on validation set through hyperparameters search of
learning rate and batch size. The best models was
fine-tuned with batch size of 64 and the learning
rate of 5e-3 over the corresponding dataset. And
we use the greedy decoding strategy for U-GPT
generating word-tokens in the inference phrase.

A.2 Training the S-MUST

Parameters
T | 200,000
To | 120,000
e 2,000

200

s 0.75

Table 6: The hyperparameters used for training the S-
MUST.

The hyperparameters used in our modified UCB1
algorithm to train the S-MUST are listed in the
Table 6.

B The comparisons between U-RNNT,
U-RNNR and our U'GPTSL-RNN

We also compare our U-GPTg -gnn with U-RNNT
and U-RNNR.

Compared with U-RNNT, the cross-model eval-
uation results (Table 7), the automatic evaluation
results (Table 8) and the Hu.Div score in the hu-
man evaluation results (Table 9) show that our U-
GPTsL-rnN performs better. However, as Table
9 shown, U-RNNT performs better than our U-
GPTgsp-rnn in the overall performance according
to the human evaluation. We think it is because the
third-party system also has an impact on the gener-
ated dialogues and the NLG module of U-RNNT is
the template-based method which leads to that the
generated dialogues from U-RNNT are easy for the
third-party system to understand and interact with.

The automatic evaluation results (Table 8) and
the Hu.Div score in the human evaluation results
(Table 9) show that U-RNNR can generate more
diverse language than our U-GPTgr-gnn. We
think it is because the user utterances generated



System \User [U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTsi, U-GPTi [Avg. T[Std. 1

S-RNNT 30.5 23.0 355 99.0
S-RNNR 30.0 23.0 30.0 96.5
S-RNN 20.0 23.5 20.0 73.0
S-GPTsp-rnn | 36.5 38.0 42.0 95.5

97.5 84.0 75.5 66.0 63.9 28.5
93.5 70.5 68.5 56.0 58.5 26.7
63.0 71.0 56.5 45.0 473 22.2
94.0 89.0 80.5 61.0 67.1 24.1

Table 7: Cross study results. Each entry shows the success rate obtained by having the user simulator interacting

with the RL system for 200 times.

User Simulators[Utt 1 Vocab 1 DIST-1 1 DIST-2 1 ENT-4 1

U-RNNT 9.83 192  0.77% 151% 4.24
U-RNNR 11.06 346 245% 9.59%  6.59
U-GPTsp-rnN [14.00 262 1.13% 3.53%  5.62

Table 8: Automatic evaluation results of U-RNNT, U-
RNNR and U-GPTgr,-grnn. The metrics include average
utterance length (Utt), vocabulary size (Vocab), distinct-
n (DIST-n) and entropy (ENT-n).

User Simulators[Hu.Fl 1 Hu.Co 1 Hu.Go 1 Hu.Div T Hu.All 1

U-RNNT 460  4.68 4.96 3.34 4.70
U-RNNR 392  3.88 4.72 3.94 4.16
U-GPTsp-rnn | 410 4.04 4.30 3.70 4.00

Table 9: Human evaluation results of U-RNNT, U-
RNNR and U-GPTsp-grnn. The metrics include sen-
tence fluency (Hu.Fl), coherence (Hu.Co), goal adher-
ence (Hu.Go), language diversity (Hu.Div) and an over-
all score (Hu.All).

by U-RNNR are retrieved from a corpus that is
written by real humans and the sentences writ-
ten by humans are usually more diverse than the
sentences generated by generative models. Even
though the dialogues generated by U-RNNR are
more diverse, the dialogues generated by our U-
GPTgsi,-rnN are more fluent and coherent. Also,
the cross-model evaluation results (Table 7) show
that U-GPTsr-rNN can help to learn a more robust
system agent than U-RNNR, but the Hu.All score
in the human evaluation (Table 9) gives an opposite
result.

C Comparision between our U-GPT and
the ABUS

U-GPTip-pgenr- Because building simulators us-
ing rule-based approaches is independent with the
data set, we collect 2,000 dialogues sampled from
interactions between U-AgenR and S-AgenR to
fine-tune our U-GPT for comparing with U-AgenT,
U-AgenR, U-AgenG. And we name this imitated
user simulator as U-GPTrr,-AgenRr-

We can see that the average success rate of S-
GPTi1-Agenr 18 higher than S-AgenT, S-AgenG at
least 4.9 points from Table 10. The automatic evalu-
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ation (Table 11) and the Hu.Div score in the human
evaluation of Table 12 represent that U-AgenR has
the highest language diversity. We think it is the rea-
son why the average success rate of S-GPTyp.-Agenr
is slightly lower than S-AgenR. It is easily under-
stood because U-GPTyp-pgenr 18 trained on the
simulated dialogues from U-AgenR using IL and
we know that it is more difficult to imitate when the
training data is more diverse. But the difference of
0.9 points between S-AgenR and S-GPTyp-Agenr
proves that our U-GPT has a good ability on learn-
ing from past experiences. The NLG module of
U-AgenR uses Retrieval method. If we ignore it,
U-GPTip-agenr Will have the highest language di-
versity. Therefore, we can claim that our U-GPT
can generate various user behaviors and diverse lan-
guage. Also, U-AgenT performs best in the over-
all performance on the human evaluation (Table
12). And the performance of our U-GPTy-Agenr
is much better than U-AgenG. We also give some
examples in the appendix D.2.

D Case Study

D.1 U-RNN vs U-GPTSL.RNN

We give two examples to show the superiority of
our U-GPT. Compared with U-GPTgy-gnn, U-
RNN is more likely to ignore the system response
to state its goal when interacting with the system
agent. As shown in Table 13, we highlight the user
utterances generated not well by U-RNN in red
color. U-RNN first ignore the request about the
“food” type asked by the system agent and give its
“book” information about the goal directly. And
then U-RNN repeats three times to state that the
restaurant it is looking for should be in the expen-
sive price range. As a result, the dialogue generated
by U-RNN fail as the user does not inform food
type and book time. For the same goal, our U-
GPTs-rNn completes its goal in four turns and
the generated dialogue are fluent and coherent.



System \User [U-AgenT U-AgenR U-AgenG U-RNNT U-RNNR U-RNN U-GPTsr, U-GPTIL[AVg. T[Std. 3

S-AgenT 97.5 54.0 72.5 98.5 92.5 71.0 78.0 89.0 824 | 14.1
S-AgenR 96.0 90.0 97.5 98.5 97.5 82.0 80.5 96.0 92.3 6.8
S-AgenG 79.0 78.5 95.0 98.5 96.5 81.5 79.0 91.0 87.4 8.2
S-GPTip-Agenr (ours)|  94.0 85.0 94.5 97.0 98.0 85.0 81.0 96.5 91.4 6.2

Table 10: Cross study results on U-GPT1y,-pgenr and the three ABUS. Each entry shows the success rate obtained
by having the user simulator interacting with the RL system for 200 times.

User Simulators[Utt 1 Vocab 1 DIST-1 1 DIST-2 1 ENT-4 1

U-AgenT 9.65 180 0.76% 1.61% 4.51
U-AgenR 11.61 383 2.24% 10.06% 7.05
U-AgenG 807 159 059% 1.17%  4.15
U-GPT1L-Agenr|9.70 298  1.15% 4.60%  5.47

Table 11: Automatic evaluation results of U-
GPTi1.-Agenr and the three ABUS. The metrics include
average utterance length (Utt), vocabulary size (Vocab),
distinct-n (DIST-n) and entropy (ENT-n).

User Simulators[Hu.Fl 1 Hu.Co 1 Hu.Go 1 Hu.Div 1 Hu.All 1

U-AgenT 4.60  4.60 4.96 3.58 4.48
U-AgenR 3.88  3.56 4.62 4.02 3.78
U-AgenG 340  3.36 4.26 3.40 3.54
U-GPTip-Agenr| 4.08  3.36 4.20 3.82 3.62

Table 12: Human evaluation results of U-GPTrr-AgenR
and the three ABUS. The metrics include sentence
fluency (Hu.Fl), coherence (Hu.Co), goal adherence
(Hu.Go), language diversity (Hu.Div) and an overall
score (Hu.All).

D.2 U-AgenR vs U-GPTyp-pgenr

The NLG module of U-AgenR uses Retrieval
method. As shown in Table 14, U-AgenR first
wants to find a moderate restaurant. However, the
retrieved template is not proper as the beginning of
the conversation. And there has no constraint about
the location of the restaurant, but U-AgenR uses
the word “dontcare” to fill the retrieved template
directly which leads to an influent user utterance.
Then U-AgenR is satisfied with the recommenda-
tion of the system agent and decides to book a table
on Tuesday. Also the retrieved template used to
convey this user action is so weird. To this end,
even though U-AgenR can complete its goal, but
the fluency and coherence of the generated dia-
logue is poor. The dialogue generated by our U-
GPT11-Agenr are more fluent and coherent.
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{’id’: °SNG02148.json’, ’info’: {’food’: ’indian’, ’pricerange’: ’expensive’, 'area’: "west’},

Goal "book’: {’time’: *18:00°, *day’: tuesday’, *people’: "8’ }}
Agent |Sentence Agent Sentence
I would like to find an expensive restaurant I am looking for an expensive place to dine.
U-RNN in the west part of town. U-GPTsr-rn i want it to l%e on the west side of town.
System |Do you have a preference on the food? System Do you have a preference on the food?
U-RNN|I would like to book a table for 8 people on tuesday. U-GPTsr-rnn | Yes, I would prefer indian food if necessary.
T . L . Tandoori palace is an indian restaurant on the
andoori palace is a indian restaurant on the west side ide of © ICs in the expensive
System |of town. It’s in the expensive price range. System west side o IOW}? ; hi 1p I
Is there anything else I can help you with? Erlce range. 1s there anything else  can
elp you with?
U-RNN | That is the restaurant to be in the expensive price range. |U-GPTsr-rnn Yes, that sounds good. could you reserve a
) ) ' table for 8 at 18:00 on tuesday?
Cocum is a indian restaurant on the west side of town. .
e . - I have booked the reservation for you.
System |It’s in the expensive price range. System And you reference number is ABC
Is there anything else I can help you with? ’
U-RNN | That is the restaurant to be in the expensive price range. |U-GPTsr-rnN t(l}lgerﬁ?;gﬁtfl()sraﬁ)hrllllellgé needing today.
Rice boat is a indian restaurant on the west side of town.
System |It’s in the expensive price range.
Is there anything else I can help you with?
U-RNN | That is the restaurant to be in the expensive price range.
Mabharajah tandoori restaurant is an indian restaurant on
System the west side of town. It’s in the expensive price range.
Is there anything else I can help you with?
U-RNN | That is all i needed. Thank you for your help.
Table 13: An example of dialogue session comparison between U-RNN and U-GPTgy,-grnnN-
Goal {*id’: ’SSNGO179.json’, ’info’: {’food’: *turkish’, ’pricerange’: *'moderate’},
’book’: {’people’: ’7°, *day’: ’tuesday’, ‘time’: *12:30°}}
Agent |Sentence Agent Sentence
I am looking for a moderately priced
U-AgenR | A moderate restaurant please U-GPTiL-AgenR restaurant. g yP
System |Do you have a preference on the food and area? |System Do you have a preference on the food and area?
I would like some good turkish food . I am looking for an inexpensive turkish
U-AgenR| | ar the dontcare ogf town would be great. U-GPTw-AgenR | o taurant. ¢ ’
Anatolia is a turkish restaurant on the centre side Anatolia is a turkish restaurant on the centre side
System |of town. It’s in the moderate price range. System of town. It’s in the moderate price range.
Is there anything else I can help you with? Is there anything else I can help you with?
U-AgenR | On tuesday please U-GPTiL-Agenr g:te;te 1\;12(;)8 7 of us and we would like to
Syst Could you please tell me how many people and Syst Could you please tell me what day you would
YSIM | what time you would like for the reservation? ystem like for the reservation?
U-AgenR :)P/;)I..lld like a reservation at 12:30 for a party U-GPTip-agenr | On tuesday please
Syst I have booked the reservation for you. Svst T have booked the reservation for you.
ystem 1 And you reference number is ABC. ystem And you reference number is ABC.
U-AgenR |Wonderful , thanks . That s all i need . U-GPT1L-Agenr | Thank you for your help, good day.

Table 14: An example of dialogue session comparison between U-AgenR and U-GPT1y,-AgenR-
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