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Abstract

Data pruning algorithms are commonly used to reduce the memory and computa-
tional cost of the optimization process. Recent empirical results (Guo, B. Zhao,
and Bai, 2022) reveal that random data pruning remains a strong baseline and
outperforms most existing data pruning methods in the high compression regime,
i.e. where a fraction of 30% or less of the data is kept. This regime has recently
attracted a lot of interest as a result of the role of data pruning in improving the
so-called neural scaling laws; see (Sorscher et al., 2022), where the authors showed
the need for high-quality data pruning algorithms in order to beat the sample power
law. In this work, we focus on score-based data pruning algorithms and show the-
oretically and empirically why such algorithms fail in the high compression regime.
We demonstrate “No Free Lunch" theorems for data pruning and discuss potential
solutions to these limitations.

1 Introduction

Coreset selection, also known as data pruning, refers to a collection of algorithms that aim to
efficiently select a subset from a given dataset. The goal of data pruning is to identify a small,
yet representative sample of the data that accurately reflects the characteristics and patterns of
the entire dataset. Coreset selection is often used in cases where the original dataset is too large
or complex to be processed efficiently by the available computational resources. By selecting a
coreset, practitioners can reduce the computational cost of their analyses and gain valuable insights
more quickly and efficiently. Data pruning has many interesting applications, notably, neural
architecture search (NAS), where models trained with a small fraction of the data serve as a proxy
to quickly estimate the performance of a given choice of hyper-parameters (Coleman et al., 2019).
Another application is continual (or incremental) learning in the context of online learning; To avoid
the forgetting problem, one keeps track of the most representative examples of past observations
(Aljundi et al., 2019).

Coreset selection is typically performed once during training, and the selected coreset remains fixed
until the end of training. This topic has been extensively studied in classical machine learning
and statistics (Welling, 2009; Chen, Welling, and Smola, 2012; Feldman, Faulkner, and Krause,
2011; Huggins, Campbell, and Broderick, 2016; Campbell and Broderick, 2019). Recently, many
approaches have been proposed to adapt to the challenges of the deep learning context. Exam-
ples include removing the redundant examples from the feature space perspective (see Sener and
Savarese, 2017 for an application for active learning), finding the hard examples, defined as the
ones for which the model is the least confident (Coleman et al., 2019), or the ones that contribute
the most to the error (Toneva et al., 2018), or the examples with highest expected gradient norm
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Figure 1: Logistic regression: Data distribution alteration due to pruning for different compression
ratios. Here we use GraNd as the pruning algorithm. Blue points correspond to Yi = 0, red points
correspond to Yi = 1. More details in Section 5.

(Paul, Ganguli, and Dziugaite, 2021). We refer the reader to Section 6 for a more comprehensive
literature review. Most of these methods use a score function that ranks examples based on their
“importance". Given a desired compression level r ∈ (0, 1) (the fraction of data kept after pruning),
the coreset is created by retaining only the most important examples based on the scores to meet
the required compression level. We refer to this type of data pruning algorithms as score-based
pruning algorithms (SBPA). A formal definition is provided in Section 2.

1.1 Connection to Neural Scaling Laws

Recently, a stream of empirical works have observed the emergence of power law scaling in different
machine learning applications (see e.g. Hestness et al., 2017; Kaplan et al., 2020; Rosenfeld et al.,
2020; Hernandez et al., 2021; Zhai et al., 2022; Hoffmann et al., 2022). More precisely, these
empirical results show that the performance of the model (e.g. the test error) scales as a power
law with either the model size, training dataset size, or compute (FLOPs). In Sorscher et al., 2022,
the authors showed that data pruning can improve the power law scaling of the dataset size. The
high compression regime (small r) is of major interest in this case since it exhibits super-polynomial
scaling laws on different tasks. However, as the authors concluded, improving the power law scaling
requires high-quality data pruning algorithms, and it is still unclear what properties such algorithms
should satisfy. Besides scaling laws, small values of r are of particular interest for tasks such as
hyper-parameters selection, where the practitioner wants to select a hyper-parameter from a grid
rapidly. In this case, the smaller the value of r, the better.

In this work, we argue that score-based data pruning is generally not suited for the high compression
regime (starting from r ≤ 30%) and, therefore, cannot be used to beat the power law scaling.
In this regime, it has been observed (see e.g. Guo, B. Zhao, and Bai, 2022) that most SBPA
algorithms underperform random pruning (randomly selected subset)1. To understand why this
occurs, we analyze the asymptotic behavior of SBPA algorithms and identify some of their properties,
particularly in the high compression level regime. To the best of our knowledge, no rigorous
explanation for this phenomenon has been reported in the literature. Our work provides the first
theoretical explanation for this behavior and offers insights on how to address it in practice.

Intuitively, SBPA algorithms induce a distribution shift that affects the training objective.
This can, for example, lead to the emergence of new local minima where performance
deteriorates significantly. To give a sense of this intuition, we use a toy example in
Fig. 1 to illustrate the change in data distribution as the compression level r decreases,
where we have used GraNd (Paul, Ganguli, and Dziugaite, 2021) to prune the dataset.

1This was also observed in Sorscher et al., 2022.
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Figure 2: Logistic regression: (Left) The
loss landscape transformation due to pruning.
(Right) The evolution of the performance gap
as the data budget m := r × n increases (aver-
age over ten runs). Top figures illustrate the per-
formance of GraNd, bottom figures illustrate the
performance of GraNd calibrated with our exact
protocol: we use 90% of the data budget for the
signal, i.e. points selected by GraNd, and 10% of
the data budget for calibration through random
exploration. See Sections 4 and 5 for more details.

We also report the change in the loss landscape
in Fig. 2 as the compression level decreases and
the resulting scaling laws. The results show
that such a pruning algorithm cannot be used
to improve the scaling laws since the perfor-
mance drops significantly in the high compres-
sion regime and does not tend to significantly
decrease with sample size.

Motivated by these empirical observations, we
aim to understand the behaviour of SBPA al-
gorithms in the high compression regime. In
Section 3, we analyze the impact of pruning
of SBPA algorithms on the loss function in de-
tail and link this distribution shift to a notion
of consistency. We prove several results show-
ing the limitations of SBPA algorithms in the
high compression regime, which explains some
of the empirical results reported in Fig. 2. We
also propose calibration protocols, that build
on random exploration to address this deterio-
ration in the high compression regime (Fig. 2).

1.2 Contributions

Our contributions are as follows:

• We propose a novel formalism to characterize the asymptotic properties of data pruning
algorithms in the abundant data regime.

• We introduce Score-Based Pruning Algorithms (SBPA), a class of algorithms that encom-
passes a wide range of popular approaches. By employing our formalism, we analyze SBPA
algorithms and identify a phenomenon of distribution shift, which provably impacts gener-
alization error.

• We demonstrate No-Free-Lunch results that characterize when and why score-based pruning
algorithms perform worse than random pruning. Specifically, we prove that SBPA are unsuit-
able for high compression scenarios due to a significant drop in performance. Consequently,
SBPA cannot improve scaling laws without appropriate adaptation.

• Leveraging our theoretical insights, solutions can be designed to address these limitations.
As an illustration, we introduce a simple calibration protocol to correct the distribution
shift by adding noise to the pruning process. Theoretical and empirical results support
the effectiveness of this method on toy datasets and show promising results on image task
limitations.2

2It is important to note that the calibration protocol serves as an example to stimulate further research. We do
not claim that this method systematically allows to outperform random pruning nor to beat the neural scaling laws.
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Notation. In all of the paper, if Z is a finite set, we denote by |Z| its cardinal number, i.e. the
number of elements in Z. We denote ⌊x⌋ the largest integer smaller than or equal to x for x ∈ R.
For some euclidean space E , we denote by d the euclidean distance and for some set B ⊂ E and
e ∈ E , we define the distance d(e,B) = infb∈B d(e, b). Finally, for two integers n1 < n2, [n1 : n2]
refers to the set {n1, n1 + 1, . . . , n2}.

2 Learning with data pruning

2.1 Setup

Consider a supervised learning task where the inputs and outputs are respectively in X ⊂ Rdx and
Y ⊂ Rdy , both assumed to be compact3. We denote by D = X ×Y the data space. We assume that
there exists µ, an atomless probability distribution on D from which input/output pairs Z = (X,Y )
are drawn independently at random. We call such µ a data generating process. We will assume
that X is continuous while Y can be either continuous (regression) or discrete (classification). We
are given a family of models

Mθ = {yout(·;w) : X → Y | w ∈ Wθ}, (1)

parameterised by the parameter space Wθ, a compact subspace of Rdθ , where θ ∈ Θ is a fixed
hyper-parameter. For instance, Mθ could be a family of neural networks of a given architecture,
with weights w, and where the architecture is given by θ. We will assume that yout is continuous
on X × Wθ

4. For a given continuous loss function ℓ : Y × Y → R, the aim of the learning procedure
is to find a model that minimizes the generalization error, defined by

L(w) def= Eµ ℓ
(
yout(X;w), Y

)
. (2)

We are given a dataset Dn composed of n ≥ 1 input/output pairs (xi, yi), iid sampled from the data
generating process µ. To obtain an approximate minimizer of the generalization error (Eq. (2)),
we perform an empirical risk minimization, solving the problem

min
w∈Wθ

Ln(w) def= 1
n

n∑
i=1

ℓ
(
yout(xi;w), yi

)
. (3)

The minimization problem (3) is typically solved using a numerical approach, often gradient-based,
such as Stochastic Gradient Descent (Robbins and Monro, 1951), Adam (Kingma and Ba, 2014),
etc. We refer to this procedure as the training algorithm. We assume that the training algorithm
is exact, i.e. it will indeed return a minimizing parameter w∗

n ∈ argminw∈Wθ
Ln(w). The numerical

complexity of the training algorithms grows with the sample size n, typically linearly or worse.
When n is large, it is appealing to extract a representative subset of Dn and perform the training
with this subset, which would reduce the computational cost of training. This process is referred
to as data pruning. However, in order to preserve the performance, the subset should retain
essential information from the original (full) dataset. This is the primary objective of data pruning
algorithms. We begin by formally defining such algorithms.

3We further require that the set X has no isolated points. This technical assumption is required to avoid dealing
with unnecessary complications in the proofs.

4This is generally satisfied for a large class of models, including neural networks.
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Notation. We denote the set of all finite subsets of D by C, i.e. C = ∪n≥1{{z1, z2, . . . , zn}, z1 ̸=
z2 ̸= . . . ̸= zn ∈ D}. We call C the finite power set of D.

Definition 1 (Data Pruning Algorithm) We say that a function A : C × (0, 1] → C is a data
pruning algorithm if for all Z ∈ C, r ∈ (0, 1], such that r|Z| is an integer 5, we have the following

• A(Z, r) ⊂ Z

• |A(Z, r)| = r|Z|

where |.| refers to the cardinal number. The number r is called the compression level and refers to
the fraction of the data kept after pruning.

Among the simplest pruning algorithms, we will pay special attention to Random pruning, which
selects uniformly at random a fraction of the elements of Z to meet some desired compression level
r.

2.2 Valid and Consistent pruning algorithms

Given a pruning algorithm A and a compression level r, a subset of the training set is selected and
the model is trained by minimizing the empirical loss on the subset. More precisely, the training
algorithm finds a parameter wA,r

n ∈ argminw∈Wθ
LA,r

n (w) where

LA,r
n (w) def= 1

|A(Dn, r)|
∑

(x,y)∈A(Dn,r)
ℓ
(
yout(x;w), y

)
.

This usually requires only a fraction r of the original energy/time6 cost or better, given the linear
complexity of the training algorithm with respect to the data size. In this work, we evaluate the
quality of a pruning algorithm by considering the performance gap it induces, i.e. the excess risk
of the selected model

gapA,r
n = L(wA,r

n ) − min
w∈Wθ

L(w). (4)

In particular, we are interested in the abundant data regime: we aim to understand the asymptotic
behavior of the performance gap as the sample size n grows to infinity. We define the notion of
valid pruning algorithms as follows.

Definition 2 (Valid pruning algorithm) For a parameter space Wθ, a pruning algorithm A is
valid at a compression level r ∈ (0, 1] if limn→∞ gapA,r

n = 0 almost surely. The algorithm is said to
be valid if it is valid at any compression level r ∈ (0, 1].

We argue that a valid data pruning algorithm for a given generating process µ and a family of
models Mθ should see its performance gap converge to zero almost surely. Otherwise, it would mean
that with positive probability, the pruning algorithm induces a deterioration of the out-of-sample
performance that does not vanish even when an arbitrarily large amount of data is available. This
deterioration would not exist without pruning or if random pruning was used instead (Corollary 1).
This means that with positive probability, a non-valid pruning algorithm will underperform random
pruning in the abundant data regime. It the next result, we show that a sufficient and necessary
condition for a pruning algorithm to be valid at compression level r is that wA,r

n should approach
the set of minimizers of the original generalization loss function as n increases.

5We make this assumption to simplify the notations. One can take the integer part of rn instead.
6Here the original cost refers to the training cost of the model with the full dataset.
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Proposition 1 (Characterization of valid pruning algorithms) A pruning algorithm A is
valid at a compression level r ∈ (0, 1] if and only if

d
(
wA,r

n ,W∗
θ (µ)

)
→ 0 a.s.

where W∗
θ (µ) = argminw∈Wθ

L(w) ⊂ Wθ and d
(
wA,r

n ,W∗
θ (µ)

)
denotes the euclidean distance from

the point wA,r
n to the set W∗

θ (µ).

With this characterization in mind, the following proposition provides a key tool to analyze the
performance of pruning algorithms. Under some conditions, it allows us to describe the asymptotic
performance of any pruning algorithm via some properties of a probability measure.

Proposition 2 Let A be a pruning algorithm and r ∈ (0, 1] a compression level. Assume that there
exists a probability measure νr on D such that

∀w ∈ Wθ, LA,r
n (w) → Eνrℓ(yout(X;w), Y ) a.s. (5)

Then, denoting W∗
θ (νr) = argminw∈Wθ

Eνrℓ(yout(X;w), Y ) ⊂ Wθ, we have that

d
(
wA,r

n ,W∗
θ (νr)

)
→ 0 a.s.

Condition Eq. (5) assumes the existence of a limiting probability measure νr that represents the
distribution of the pruned dataset in the limit of infinite sample size. In Section 3, for a large family
of pruning algorithms called score-based pruning algorithms (a formal definition will be introduced
later), we will demonstrate the existence of such limiting probability measure and derive its exact
expression.

Let us now derive two important corollaries; the first gives a sufficient condition for an algorithm
to be valid, and the second a necessary condition. From Proposition 1 and Proposition 2, we can
deduce that a sufficient condition for an algorithm to be valid is that νr = µ satisfies equation (5).
We say that such a pruning algorithm is consistent.

Definition 3 (Consistent Pruning Algorithms) We say that a pruning algorithm A is consis-
tent at compression level r ∈ (0, 1] if and only if it satisfies

∀w ∈ Wθ, LA,r
n (w) → Eµ[ℓ(yout(x,w), y)] = L(w) a.s. (6)

We say that A is consistent if it is consistent at any compression level r ∈ (0, 1].

Corollary 1 A consistent pruning algorithm A at a compression level r ∈ (0, 1] is also valid at
compression level r.

A simple application of the law of large numbers implies that Random pruning is consistent and
hence valid for any generating process and learning task satisfying our general assumptions.

We bring to the reader’s attention that consistency is itself a property of practical interest. Indeed,
it not only ensures that the generalization gap of the learned model vanishes, but it also allows
the practitioner to accurately estimate the generalization error of their trained model from the
selected subset. For instance, consider the case where the practitioner is interested in K hyper-
parameter values θ1, ..., θK ; these can be different neural network architectures (depth, width, etc.).
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Using a pruning algorithm A, they obtain a trained model wA,r
n (θk) for each hyper-parameter θk,

with corresponding estimated generalization error LA,r
n

(
wA,r

n (θk)
)
. Hence, the consistency prop-

erty would allow the practitioner to select the best hyper-parameter value based on the empirical
loss computed with the set of retained points (or a random subset of which used for validation).
From Proposition 1 and Proposition 2, we can also deduce a necessary condition for an algorithm
satisfying (5) to be valid:

Corollary 2 Let A be any pruning algorithm and r ∈ (0, 1], and assume that (5) holds for a given
probability measure νr on D. If A is valid, then W∗

θ (νr) ∩ W∗
θ (µ) ̸= ∅; or, equivalently,

min
w∈W∗

θ
(νr)

L(w) = min
w∈W

L(w).

Corollary 2 will be a key ingredient in the proofs on the non-validity of a given pruning algorithm.
Specifically, for all the non-validity results stated in this paper, we prove that W∗

θ (νr)∩W∗
θ (µ) = ∅.

In other words, none of the minimizers of the original problem is a minimizer of the pruned one,
and vice-versa.

3 Score-Based Pruning Algorithms and their limitations

3.1 Score-based Pruning algorithms

A standard approach to define a pruning algorithm is to assign to each sample zi = (xi, yi) a score
gi = g(zi) according to some score function g, where g is a mapping from D to R. g is also called the
pruning criterion. The score function g captures the practitioner’s prior knowledge of the relative
importance of each sample. This function can be defined using a teacher model that has already
been trained, for example. In this work, we use the convention that the lower the score, the more
relevant the example. One could of course adopt the opposite convention by considering −g instead
of g in the following. We now formally define this category of pruning algorithms, which we call
score-based pruning algorithms.

Definition 4 (Score-based Pruning Algorithm (SBPA)) Let A be a data pruning algorithm.
We say that A is a score-based pruning algorithm (SBPA) if there exists a function g : D → R such
that for all Z ∈ C, r ∈ (0, 1), we have that A(Z, r) = {z ∈ Z, s.t. g(z) ≤ gr|Z|}, where gr|Z| is
(r|Z|)th order statistic of the sequence (g(z))z∈Z (first order statistic being the smallest value). The
function g is called the score function.

A significant number of existing data pruning algorithms are score-based (for example Paul, Gan-
guli, and Dziugaite, 2021; Coleman et al., 2020; Ducoffe and Precioso, 2018; Sorscher et al., 2022),
among which the recent approaches for modern machine learning. One of the key benefits of these
methods is that the scores are computed independently; these methods are hence parallelizable, and
their complexity scales linearly with the data size (up to log terms). These methods are tailored
for the abundant data regime, which explains their recent gain in popularity.

Naturally, the result of such a procedure highly depends on the choice of the score function g, and
different choices of g might yield completely different subsets. The choice of the score function
in Definition 4 is not restricted, and there are many scenarios in which the selection of the score
function g may be problematic. For example, if g has discontinuity points, this can lead to in-
stability in the pruning procedure, as close data points may have very different scores. Another
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problematic scenario is when g assigns the same score to a large number of data points. To avoid
such unnecessary complications, we define adapted pruning criteria as follows:

Definition 5 (Adapted score function) Let g be a score function corresponding to some prun-
ing algorithm A. We say that g is an adapted score function if g is continuous and for any
c ∈ g(D) := {g(z), z ∈ D}, we have λ(g−1({c})) = 0, where λ is the Lebesgue measure on D.

In the rest of the section, we will examine the properties of SBPA algorithms with an adapted score
function.

3.2 Asymptotic behavior of SBPA

Asymptotically, SBPA algorithms have a simple behavior that mimics rejection algorithms. We
describe this in the following result.

Proposition 3 (Asymptotic behavior of SBPA) Let A be a SBPA algorithm and let g be its
corresponding adapted score function. Consider a compression level r ∈ (0, 1). Denote by qr the
rth quantile of the random variable g(Z) where Z ∼ µ. Denote Ar = {z ∈ D | g(z) ≤ qr}. Almost
surely, the empirical measure of the retained data samples converges weakly to νr = 1

rµ|Ar
, where

µ|Ar
is the restriction of µ to the set Ar. In particular, we have that

∀w ∈ Wθ, LA,r
n (w) → Eνrℓ(yout(X;w), Y ) a.s.

The result of Proposition 3 implies that in the abundant data regime, a SBPA algorithm A acts
similarly to a deterministic rejection algorithm, where the samples are retained if they fall in Ar, and
removed otherwise. The first consequence is that a SBPA algorithm A is consistent at compression
level r if and only if

∀w ∈ Wθ, E 1
r

µ|Ar
ℓ(yout(X;w), Y ) = Eµℓ(yout(X;w), Y ), (7)

The second consequence is that SBPA algorithms ignore entire regions of the data space, even when
we have access to unlimited data, i.e. n → ∞. Moreover, the ignored region can be made arbitrarily
large for small enough compression levels. Therefore, we expect that the generalization performance
will be affected and that the drop in performance will be amplified with smaller compression levels,
regardless of the sample size n. This hypothesis is empirically validated (see Guo, B. Zhao, and
Bai, 2022 and Section 5).

In the rest of the section, we investigate the fundamental limitations of SBPA in terms of consistency
and validity; we will show that under mild assumptions, for any SBPA algorithm with an adapted
score function, there exist compression levels r for which the algorithm is neither consistent nor
valid. Due to the prevalence of classification problems in modern machine learning, we focus on the
binary classification setting and give specialized results in Section 3.3. In Section 3.4, we provide a
different type of non-validity results for more general problems.

3.3 Binary classification problems

In this section, we focus our attention on binary classification problems. The predictions and labels
are in Y = [0, 1]. Denote PB the set of probability distributions on X × {0, 1}, such that the
marginal distribution on the input space X is continuous (absolutely continuous with respect to
the Lebesgue measure on X ) and for which

pπ : x 7→ Pπ(Y = 1|X = x)
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is upper semi-continuous for any π ∈ PB. We further assume that:

(i) the loss is non-negative and that ℓ(y, y′) = 0 if and only if y = y′.

(ii) For q ∈ [0, 1], y 7→ qℓ(y, 1) + (1 − q)ℓ(y, 0) has a unique minimizer, denoted y∗
q ∈ [0, 1], that

is increasing with q.

These two assumptions are generally satisfied in practice for the usual loss functions, such as the
ℓ1, ℓ2, Exponential or Cross-Entropy losses, with the notable exception of the Hinge loss for which
(ii) does not hold.

Under mild conditions that are generally satisfied in practice, we show that no SBPA algorithm is
consistent. We first define a notion of universal approximation.

Definition 6 (Universal approximation) A family of continuous functions Ψ has the universal
approximation property if for any continuous function f : X → Y and ϵ > 0, there exists ψ ∈ Ψ
such that

maxx∈X |f(x) − ψ(x)| ≤ ϵ

The next proposition shows that if the set of all models considered ∪θ∈ΘMθ has the universal
approximation property, then no SBPA algorithm is consistent.

Theorem 1 Consider any generating process for binary classification µ ∈ PB. Let A be any SBPA
algorithm with an adapted score function. If ∪θMθ has the universal approximation property and
the loss satisfies assumption (i), then there exist hyper-parameters θ ∈ Θ for which the algorithm
is not consistent.

Even though consistency is an important property, a pruning algorithm can still be valid without
being consistent. In this classification setting, we can further show that SBPA algorithms also have
strong limitations in terms of validity.

Theorem 2 Consider any generating process for binary classification µ ∈ PB. Let A be a SBPA
with an adapted score function g that depends on the labels7. If ∪θMθ has the universal approx-
imation property and the loss satisfies assumptions (i) and (ii), then there exist hyper-parameters
θ1, θ2 ∈ Θ and r0 ∈ (0, 1) such that the algorithm is not valid for r ≤ r0 for any hyper-parameter θ
such that Wθ1 ∪ Wθ2 ⊂ Wθ.

This theorem sheds light on a strong limitation of SBPA algorithms for which the score function
depends on the labels: it states that any solution of the pruned program will induce a generalization
error strictly larger than with random pruning in the abundant data regime. The proof builds on
Corollary 2; we show that for such hyper-parameters θ, the minimizers of the pruned problem and
the ones of the original (full data) problem do not intersect, i.e.

W∗
θ (νr) ∩ W∗

θ (µ) = ∅.

SBPA algorithms usually depend on the labels (Paul, Ganguli, and Dziugaite, 2021; Coleman et al.,
2020; Ducoffe and Precioso, 2018) and Theorem 2 applies. In Sorscher et al., 2022, the authors also
propose to use a SBPA that does not depend on the labels. For such algorithms, the acceptance

7The score function g depends on the labels if there exists an input x in the support of the distribution of the
input X and for which g(x, 0) ̸= g(x, 1) and P(Y = 1 | X = x) ∈ (0, 1) (both labels can happen at input x)
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region Ar is characterized by a corresponding input acceptance region Xr. SBPA independent of
the labels have a key benefit; the conditional distribution of the output is not altered given that
the input is in Xr. Contrary to the algorithms depending on the labels, the performance will not
necessarily be degraded for any generating distribution given that the family of models is rich
enough. It remains that the pruned data give no information outside of Xr, and yout can take
any value in X \ Xr without impacting the pruned loss. Hence, these algorithms can create new
local/global minima with poor generalization performance. Besides, the non-consistency results of
this section and the No-Free-Lunch result presented in Section 3.4 do apply for SBPA independent
of the labels. For these reasons, we believe that calibration methods (see Section 4) should also be
employed for SBPA independent of the labels, especially with small compression ratios.

Applications: neural networks

To exemplify the utility of Theorem 1 and Theorem 2, we leverage the existing literature on the
universal approximation properties of neural networks to derive the important corollaries stated
below

Definition 7 For an activation function σ, a real number R > 0, and integers H,K ≥ 1, we
denote by FFNNσ

H,K(R) the set of fully-connected feed-forward neural networks with H hidden
layers, each with K neurons with all weights and biases in [−R,R].

Corollary 3 (Wide neural networks) Let σ be any continuous non-polynomial function that is
continuously differentiable at (at least) one point, with a nonzero derivative at that point. Consider
any generating process µ ∈ PB. For any SBPA with adapted score function, there exists a radius
R0 and a width K0 such that the algorithm is not consistent on FFNNσ

H,K(R) for any K ≥ K0
and R ≥ R0. Besides, if the score function depends on the labels, then it is also not valid on
FFNNσ

H,K(R) for any K ≥ K ′
0 and R ≥ R′

0.

Corollary 4 (Deep neural networks) Consider a width K ≥ dx + 2. Let σ be any continuous
non-polynomial function that is continuously differentiable at (at least) one point, with a nonzero
derivative at that point. Consider any generating process µ ∈ PB. For any SBPA with an adapted
score function, there exists a radius R0 and a number of hidden layers H0 such that the algorithm
is not consistent on FFNNσ

H,K(R) for any H ≥ H0 and R ≥ R0. Besides, if the score function
depends on the labels, then it is also not valid on FFNNσ

H,K(R) for any H ≥ H ′
0 and R ≥ R′

0

A similar result for convolutional architectures is provided in Appendix C. To summarize, these
corollaries show that for large enough neural network architectures, any SBPA is non-consistent.
Besides, for large enough neural network architectures, any SBPA that depends on the label is
non-valid, and hence a performance gap should be expected even in the abundant data regime.

3.4 General problems

In the previous section, we leveraged the universal approximation property and proved non-validity
and non-consistency results that hold for any data-generating process. In this section, we show a
different No-free-Lunch result in the general setting presented in Section 2. This result does not
require the universal approximation property. More precisely, we show that under mild assumptions,
given any SBPA algorithm, we can always find a data distribution µ such that the algorithm is not
valid (Definition 2). Since random pruning is valid for any generating process, this means that there
exist data distributions for which the SBPA algorithm provably underperforms random pruning in
the abundant data regime.

10
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𝑧2 𝑧1

𝑤

𝑆𝑒𝑙𝑒𝑐𝑡 𝑧1𝑎𝑛𝑑 𝑧2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔 𝑧1 < 𝑔(𝑧2)

𝑃𝑢𝑡 𝑡ℎ𝑒 𝑏𝑢𝑙𝑘 𝑜𝑓 𝜇 𝑎𝑟𝑜𝑢𝑛𝑑 𝑧2

𝑃𝑢𝑡 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝜇 𝑎𝑟𝑜𝑢𝑛𝑑 𝑧1

Figure 3: Graphical sketch of the proof of Theorem 3. The surface represents the loss function
f(z, w) = ℓ(yout(x), y) in 2D, where z = (x, y).

For K ∈ N∗, let PK
C denote the set of generating processes for K-classes classification problems, for

which the input X is a continuous random variable8, and the output Y can take one of K values in
Y (the same set of values for all π ∈ PK

C ). Similarly, denote PR, the set of generating processes for
regression problems for which both the input and output distributions are continuous. Let P be
any set of generating processes introduced previously for regression or classification (either P = PK

C

for some K, or P = PR). In the next theorem, we show that under minimal conditions, there exists
a data generating process for which the algorithms is not valid.

Theorem 3 Let A be a SBPA with an adapted score function. For any hyper-parameter θ ∈ Θ, if
there exist (x1, y1), (x2, y2) ∈ D such that

argminw∈Wθ
ℓ(yout(x1;w), y1) ∩ argminw∈Wθ

ℓ(yout(x2;w), y2) = ∅, (H1)

then there exists r0 ∈ (0, 1) and a generating process µ ∈ P for which the algorithm is not valid for
r ≤ r0.

The rigorous proof of Theorem 3 requires careful manipulations of different quantities, but the
intuition is rather simple. Fig. 3 illustrates the main idea of the proof. We construct a distribution
µ with the majority of the probability mass concentrated around a point where the value of g
is not minimal. Consequently, for sufficiently small r, the distribution of the retained samples
will significantly differ from the original distribution. This shift in data distributions causes the
algorithm to be non-valid. We see in the next section how we can solve this issue via randomization.
Finally, notice that Eq. (H1) is generally satisfied in practice since usually for two different examples
(x1, y1) and (x2, y2) in the datasets, the global minimizers of ℓ(yout(x1;w), y1) and ℓ(yout(x2;w), y2)
are different.

8In the sense that the marginal of the input is dominated by the Lebesgue measure
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Figure 4: An illustration of how the calibration protocols modify SBPA algorithms.

4 Solving non-consistency via randomization

We have seen in Section 3 that SBPA algorithms inherently transform the data distribution by
asymptotically rejecting all samples in D \ Ar. These algorithms are prone to inconsistency; the
transformation of the data distribution translates to a distortion of the loss landscape, poten-
tially leading to a deterioration of the generalization error. This effect is exacerbated for smaller
compression ratios r as the acceptance region becomes arbitrarily small and concentrated.

With this in mind, one can design practical solutions to mitigate the problem. For illustration,
we propose to resort to a Calibration Protocol to retain information from the previously discarded
region D \Ar. The calibration protocols can be thought of as wrapper modules that can be applied
on top of any SBPA algorithm to solve the consistency issue through randomization (see Fig. 4 for
a graphical illustration). Specifically, we split the data budget rn into two parts: the first part,
allocated for the signal, leverages the knowledge from the SBPA and its score function g. The second
part, allocated for exploration, accounts for the discarded region and consists of a subset of the
rejected points, selected uniformly at random. In other words, we write r = rsignal + rexploration.
With standard SBPA procedures, rexploration = 0. We define α = rsignal

r the proportion of signal in
the overall budget. Accordingly, the set of retained points can be expressed as

Ā(Dn, r, α) = Ās(Dn, r, α) ∪ Āe(Dn, r, α),

where Ā denotes the calibrated version of A, and the indices ‘s’ and ‘e’ refer to signal and exploration
respectively. In this work, we consider the simplest approach. The “signal subset" is composed of
the αrn points with the highest importance according to g, i.e. Ās(Dn, r, α) = A(Dn, rα). The
“exploration subset", Āe(Dn, r, α) is composed on average of (1 − α)rn points selected uniformly
at random from the remaining samples Dn \ A(Dn, rα), each sample being retained with proba-
bility pe = (1−α)r

1−αr , independently. The calibrated loss is then defined as a weighted sum of the
contributions of the signal and exploration budgets,

LĀ,r,α
n (w) = 1

n

γs

∑
z∈Ās(Dn,r,α)

f(z;w) + γe

∑
z∈Āe(Dn,r,α)

f(z;w)

 (8)

where f(z;w) = ℓ(yout(x), y) for z = (x, y) ∈ D and w ∈ Wθ. The weights γs and γe are chosen
so that the calibrated procedure is consistent; they are inversely proportional to the probability of
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acceptance within each region:

γs = 1

γe = 1 − αr

(1 − α)r

Proposition 4 hereafter states that any SBPA calibrated with this procedure is made consistent as
long as a non-zero budget is allocated to exploration. For this reason, we refer to this method as
the Exact Calibration protocol (EC). The proof builds on an adapted version of the law of large
numbers for sequences of dependent variables which we prove in the Appendix (Theorem 7).

Proposition 4 (Consistency of Exact Calibration+SBPA) Let A be a SBPA algorithm. Using
the Exact Calibration protocol with signal proportion α, the calibrated algorithm Ā is consistent if
1 − α > 0, i.e. the exploration budget is not null. Besides, under the same assumption 1 − α > 0,
the calibrated loss is an unbiased estimator of the generalization loss at any finite sample size n > 0,

∀w ∈ Wθ, ∀r ∈ (0, 1), ELĀ,r,α
n (w) = L(w).

The proposed EC protocol offers a simple yet effective approach to address the challenges of non-
consistency and non-validity. It can be seamlessly applied in conjunction with any SBPA. The core
concept revolves around the implementation of soft-pruning: any data point is assigned a non-zero
selection probability. Samples with lower scores are given a higher acceptance rate. The contribu-
tion of each accepted data point to the loss is then weighted accordingly. The EC protocol embodies
one specific implementation of soft-pruning, offering the advantage of a single interpretable tuning
parameter, the signal proportion α ∈ [0, 1]. By setting α to 1 or 0, one can recover the SBPA and
Random pruning as extreme cases.

Proposition 4 states that any SBPA calibrated with EC is made consistent and valid as long as
some budget is allocated to exploration. This is empirically validated in Section 5 where we show
promising results on a Toy example (Logistic regression) and other image tasks. However, the exact
calibration protocol does not systematically allow to outperform random pruning.

Besides, it is worth noting that different implementations of the same general recipe can be con-
sidered. It is reasonable to expect that more tailored protocols can be designed to suit specific
pruning algorithms and problems. Nevertheless, addressing these questions falls outside the scope
of the present work which focus is to provide a framework to analyse data pruning algorithms, as
well as to identify and understand their fundamental limitations. We propose the EC protocol to
illustrate how this understanding allows to design simple yet efficient solutions to address these
limitations.

13



Under review as submission to TMLR

Figure 5: Data distribution alteration due to pruning in the logistic regression setting. Here we
use GraNd as the pruning algorithm. Blue points correspond to Yi = 0, red points correspond to
Yi = 1.

5 Experiments

5.1 Logistic regression:

Figure 6: Evolution of the performance
gap as the data budget m = rn in-
creases (average over 10 runs).

We illustrate the main results of this work on a logistic re-
gression task. We consider the following data-generating
process

Xi ∼ U
(
[−2.5, 2.5]dx

)
Yi | Xi ∼ B

( 1
1 + e−wT

0 Xi

)
,

where w0 = (1, ..., 1) ∈ Rdx , U and B are respectively the
uniform and Bernoulli distributions. The class of models
is given by

M =
{
yout(·;w) : x 7→ 1

1 + e−wT Xi
| w ∈ W

}
,

where W = [−10, 10]dx . We train the models using
stochastic gradient descent with the cross entropy loss. For performance analysis, we take dx = 20
and n = 106. For the sake of visualization, we take dx = 1 when we plot the loss landscapes (so
that the parameter w is univariate) and dx = 2 when we plot the data distributions.

We use GraNd (Paul, Ganguli, and Dziugaite, 2021) as a pruning algorithm in a teacher-student
setting. For simplicity, we use the optimal model to compute the scores, i.e.

g(Xi, Yi) = −∥∇wℓ(yout(Xi, w0), Yi)∥2,

which is proportional to −(yout(Xi;w0) − Yi)2. Notice that in this setting, GraNd and EL2N (Paul,
Ganguli, and Dziugaite, 2021) are equivalent. 9 We bring to the reader’s attention that r = 1
corresponds to Random pruning.

Distribution shift and performance degradation: In Section 3, we have seen that the pruning
algorithm induces a shift in the data distribution (Fig. 5). This alteration is most pronounced

9This is different from the original version of GraNd , here, we have access to the true generating process, which
is not the case in practice.
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Figure 8: Pruned data distribution for GraNd calibrated with exact protocol with α = 90%. The
top figures represent the ’signal’ points. The bottom figures represent the ’exploration’ points. Blue
markers correspond to Yi = 0, and red markers correspond to Yi = 1.

when r is small; For r = 20%, the bottom-left part of the space is populated by Y = 1 and the
top-right by Y = 0. Notice that it was the opposite in the original dataset (r = 1). This translates
into a distortion of the loss landscape and the optimal parameters wA,r

n of the pruned empirical
loss becomes different from w0 = 1. Hence, even when a large amount of data is available, the
performance gap does not vanish (Fig. 6).

Figure 7: Evolution of the performance
gap with calibrated GraNd as the data
budget m = rn increases (average over
10 runs).

Calibration with the exact protocol: To solve the
distribution shift, we resort to the exact protocol with α =
90%. In other words, 10% of the budget is allocated to
exploration. The signal points (top images in Fig. 8) are
balanced with the exploration points (bottom images in
Fig. 8). Even though there are nine times fewer of them,
the importance weights allow to correct the distribution
shift, as depicted in Fig. 2 (Introduction): the empirical
losses overlap for all values of r, even for small values for
which the predominant labels are swapped (for example
r = 20%). Hence, the performance gap vanishes when
enough data is available at any compression ratio (Fig. 7).

Impact of the quality of the pruning algorithm:
The calibration protocols allow the performance gap to
eventually vanish if enough data is provided. However, from a practical point of view, a natural
further requirement is that the pruning method should be better than Random, in the sense that for a
given finite budget rn, the error with the pruning algorithm should be lower than the one of Random.
We argue that this mostly decided by the quality of the original SBPA and its score function. Let us
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take a closer look at what happens in the logistic regression case. For a given Xi, denote Ỹi the most
probable label for the input, i.e. Ỹi = 1 if yout(Xi, w0) > 1/2, and Ỹi = 0 otherwise. As explained,
in this setting, GraNd is equivalent to using the score function g(Zi) = −|Yi − yout(Xi;w0)|. For a
given value of r, consider qr the rth quantile of g(Z). Notice that g(Z) ≤ qr if and only if(∣∣∣∣yout(Xi;w0) − 1

2

∣∣∣∣ ≤ qr + 1
2

)
︸ ︷︷ ︸

Condition 1

or
(∣∣∣∣yout(Xi;w0) − 1

2

∣∣∣∣ > ∣∣∣∣qr + 1
2

∣∣∣∣ and Yi ̸= Ỹi

)
︸ ︷︷ ︸

Condition 2

Therefore, the signal acceptance region is the union of two disjoint sets. The first set is composed
of all samples that are close to the decision boundary, i.e. samples for which the true conditional
probability yout(Xi;w0) is close to 1/2. The second set is composed of samples that are further away
from the decision boundary, but the realized labels need to be the least probable ones (Yi ̸= Ỹi).
These two subsets are visible in Fig. 5 for r = 70% and even more for r = 50%. The signal points
(top figures) can be divided into two sets:

1. the set of points close to the boundary line y = −x, where the colors match the original
configurations (mostly blue points under the line, red points over the line)

2. the set of points far away from the boundary line, for which the colors are swapped (only
red under the line, blue over the line).

Figure 9: Evolution of the performance
gap for a small value r = 0.1 for GraNd
and its calibrated version with α =
90%.

Hence, the signal subset corresponding to Condition 1
gives valuable insights; it provides finer-grained visibility
in the critical region. However, the second subset is un-
productive, as it only retains points that are not represen-
tative of their region. Calibration allows mitigating the
effect of the second subset while preserving the benefits of
the first subset; in Fig. 7, we can see that the calibrated
GraNd outperforms random pruning (which corresponds
to the r = 1 curve), requiring on average two to three
times fewer data to achieve the same generalization error.
However, as r becomes lower, qr will eventually fall under
−1/2, and the first subset becomes empty (for example,
r = 0.2 in Fig. 8). Therefore, when r becomes small,
GraNd does not bring valuable information anymore (for
this particular setting). In Fig. 9, we compare GraNd and
Calibrated GraNd (with the exact protocol) to Random with r = 10%. We can see that thanks to the
calibration protocol, the performance gap will indeed vanish if enough data is available. However,
Random pruning outperforms both versions of GraNd at this compression level. This underlines the
fact that for high compression levels, (problem-specific) high-quality pruning algorithms and score
functions are required. Given the difficulty of the task, we believe that in the high compression
regime (r ≤ 10% here), one should allocate a larger budget to random exploration (take smaller
values of α).
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5.2 Scaling laws with neural networks
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Figure 10: Test error on a 3-layers MLP (de-
tails are provided in Appendix D) on differ-
ent pruned datasets for compression levels r ∈
{0.1, 0.2, 0.4, 0.8, 1} where the pruning procedure
is performed with Random pruning or GraNd. The
case r = 1 corresponds to no pruning. In all the
experiments, the network is trained until conver-
gence.

The distribution shift is the primary cause of
the observed alteration in the loss function, re-
sulting in the emergence of new minima. Gra-
dient descent could potentially converge to a
bad minimum, in which case the performance
is significantly affected. To illustrate this intu-
ition, we report in Fig. 10 the observed scaling
laws for three different synthetic datasets. Let
Ntrain = 106, Ntest = 3 · 104, d = 1000, and
m = 100. The datasets are generated as fol-
lows:

1. Linear dataset: we first generate a random
vector W ∼ N (0, d−1 Id). Then, we generate
Ntrain training samples and Ntest test samples
with the rule y = 1{W ⊤x>0}, where x ∈ Rd is
simulated from N (0, Id).

2. NonLinear dataset (Non-linearity): we
first generate a random matrix Win ∼
N (0, d−1 Id×m) ∈ Rd×m and a random vector
Wout ∼ N (0,m−1 Im). The samples are then
generated with the rule y = 1{Wout⊤ϕ(W ⊤

inx)},
where x ∈ Rd is simulated from N (0, Id), and ϕ
is the ReLU activation function. 10

3. NonLinear+Noisy dataset: we first generate a random vector W ∼ N (0, d−1 Id). Then, we
generate Ntrain training samples and Ntest test samples with the rule y = 1{sin(W ⊤x+0.3ϵ)>0}, where
x ∈ Rd is simulated from N (0, Id) and ϵ is simulated from N (0, 1) and ‘sin’ refers to the sine
function.

In Fig. 10, we compare the test error of an 3-layers MLP trained on different subsets generated with
either Random pruning, or GraNd. As expected, with random pruning, the results are consistent
regardless of the compression level r as long as the subset size is the same. With GraNd however, the
results depend on the difficulty of the dataset. For the linear dataset, it appears that we can indeed
beat the power law scaling, provided that we have access to enough data. In contrast, GraNd seems
to perform poorly on the nonlinear and noisy datasets in the high compression regime. This is due to
the emergence of new local (bad) minima as r decreases as evidenced in Fig. 1. Calibrated with the
exact protocol, GraNd becomes valid: we can see that at any compression rate, the error converges
to its minimum, which was not the case for r ≤ 20%. Whether calibration protocols can allow
data pruning algorithms to beat the power law scaling remains however an open question: further
research is needed in this direction. It is also worth noting that for the Nonlinear datasets, the
scaling law pattern exhibits multi-phase behavior. For instance, for the Nonlinear+Noisy dataset,
we can (visually) identify two phases, each one of which follows a different power law scaling pattern.

10The ReLU activation function is given by ϕ(z) = max(z, 0) for z ∈ R. Here, we abuse the notation a bit and
write ϕ(z) = (ϕ(z1), . . . , ϕ(zm)) for z = (z1, . . . , zm) ∈ Rm.
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5.3 Image recognition

Through our theoretical analysis, we have concluded that SBPA algorithms are generally non-
consistent. This effect is most pronounced when the compression level r is small. In this case,
the loss landscape can be significantly altered due to the change in the data distribution caused
by the pruning procedure. Given a SBPA algorithm, we argue that this alteration in distribution
will inevitably affect the performance of the model trained on the pruned subset, and for small r,
Random pruning becomes more effective than the SBPA algorithm.

In the following, we empirically investigate this behaviour. We evaluate the performance of different
SBPA algorithms from the literature and confirm our theoretical predictions with empirical evidence.
We consider the following SBPA algorithms:

• GraNd (Paul, Ganguli, and Dziugaite, 2021): with this method, given a datapoint z = (x, y),
the score function g is given by g(z) = −Ewt∥∇wℓ(yout(x,wt), y)∥2, where yout is the model
output and wt are the model parameters (e.g. the weights in a neural network) at training
step t, and where the expectation is taken with respect to random initialization. GraNd
selects datapoints with the highest average gradient norm (w.r.t to initialization).

• Uncertainty (Coleman et al., 2020): in this method, the score function is designed to
capture the uncertainty of the model in assigning a classification label to a given datapoint11.
Different metrics can be used to measure this assignment uncertainty. We focus here on the
entropy approach in which case the score function g is given by g(z) = ∑C

i=1 pi(x) log(pi(x))
where pi(x) is the model output probability that x belongs to class i. For instance, in the
context of neural networks, we have (pi(x))1≤i≤C = Softmax(yout(x,wt)), where t is the
training step where data pruning is performed.

• DeepFool (Ducoffe and Precioso, 2018): this method is rooted in the idea that in a clas-
sification problem, data points that are nearest to the decision boundary are, in principle,
the most valuable for the training process. While a closed-form expression of the margin is
typically not available, the authors use a heuristic from the literature on adversarial attacks
to estimate the distance to the boundary. Specifically, given a datapoint z = (x, y), pertur-
bations are added to the input x until the model assigns the perturbed input to a different
class. The amount of perturbation required to change the label for each datapoint defines
the score function in this case (see (Ducoffe and Precioso, 2018) for more details).

We illustrate the limitations of the SBPA algorithms above for small r, and show that random pruning
remains a strong baseline in this case. We further evaluate the performance of our calibration
protocols and show that the signal parameter α can be tuned so that the calibrated SBPA algorithms
outperform random pruning for small r. We conduct our experiments using the following setup:

• Datasets and architectures. Our framework is not constrained by the type of the learn-
ing task or the model. However, for our empirical evaluations, we focus on classification
tasks with neural network models. We consider two image datasets: CIFAR10 with ResNet18
and CIFAR100 with ResNet34. More datasets and neural architectures are available in our
code, which is based on that of Guo, B. Zhao, and Bai, 2022. The code to reproduce all
our experiments will be soon open-sourced.

11Uncertainty is specifically designed to be used for classification tasks. This means that it is not well-suited for
other types of tasks, such as regression.
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• Training. We train all models using SGD with a decaying learning rate schedule that was
empirically selected following a grid search. This learning rate schedule was also used in
Guo, B. Zhao, and Bai, 2022. More details are provided in Appendix D.

• Selection epoch. The selection of the coreset can be performed at differnt training stages.
We consider data pruning at two different training epochs: 1, and 5. We found that going
beyond epoch 5 (e.g., using a selection epoch of 10) has minimal impact on the performance
as compared to using a selection epoch of 5.

• Pruning methods. We consider the following data pruning methods: Random, GraNd,
DeepFool, Uncertainty. In addition, we consider the pruning methods resulting from
applying the proposed exact calibration protocol to a given SBPA algorithm. We use the
notation SBPA-CP1 to refer to the resulting method. For instance, DeepFool-CP1 refers to
the method resulting from applying (EC) to DeepFool.

(a) ResNet18 on CIFAR10 (b) ResNet34 on CIFAR100

Figure 11: Test accuracy for different pruning methods, fractions r, signal parameters α, and
selection epochs (se = 1 or 5). Confidence intervals based on 3 runs are shown.

Poor performance of SBPA in the high compression regime: Fig. 11 shows the results of the
data pruning methods described above with ResNet18 on CIFAR10 and ResNet34 on CIFAR100. As
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expected, we observe a consistent decline in the performance of the trained model when the com-
pression ratio r is small, typically in the region r < 0.3. More importantly, we observe that SBPA
methods (GraNd, DeepFool, Uncertaintyin orange) perform consistently worse than Random prun-
ing (in green), confirming our hypothesis. We also observe that amongst the three SBPA methods,
DeepFool is generally the best in the region of interest of r and competes with random pruning when
the subset selection is performed at training epoch 1. We noticed that in that setting DeepFool is
close to random pruning.

Effect of the calibration protocol Our proposed calibration protocol aim to correct the bias by
injecting some randomness in the selection process and keeping (on average) only a fraction α of the
SBPA method. We notice that the calibration protocol applied to different SBPA consistently boosts
the performance in the high compression regime, as can be observed in Fig. 11. Fig. 12 shows
that the calibrated SBPA perform better than Random pruning for specific choices of α. However,
the difference is not always significant. Besides, finding the optimal proportion of signal α can be
difficult in practice.

(a) ResNet18 on CIFAR10 (b) ResNet34 on CIFAR100

Figure 12: Test accuracy for different pruning methods, fractions r, and selection epochs (se = 1
or 5). Best α used for calibration.
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6 Related work

As we mentioned in the introduction. The topic of coreset selection has been extensively studied in
classical machine learning and statistics (Welling, 2009; Chen, Welling, and Smola, 2012; Feldman,
Faulkner, and Krause, 2011; Huggins, Campbell, and Broderick, 2016; Campbell and Broderick,
2019). These classical approaches were either model-independent or designed for simple models
(e.g. linear models). The recent advances in deep learning has motivated the need for new adapted
methods for these deep models. Many approaches have been proposed to adapt to the challenges
of the deep learning context. We will cover existing methods that are part of our framework (SBPA
algorithms) and others that fall under different frameworks (non-SBPA algorithms).

6.1 Score-based methods

These can generally be categorized into four groups:

1. Geometry based methods: these methods are based on some geometric measure in the
feature space. The idea is to remove redundant examples in this feature space (examples
that similar representations). Examples include Herding ((Chen, Welling, and Smola, 2012))
which aims to greedily select examples by ensuring that the centers of the coreset and that
of the full dataset are close. A similar idea based on the K-centroids of the input data was
used in (Sener and Savarese, 2017; Agarwal et al., 2020; Sinha et al., 2020).

2. Uncertainty based methods: the aim of such methods is to find the most “difficult" examples,
defined as the ones for which the model is the least confident. Different uncertainty measures
can be used for this purpose, see (Coleman et al., 2019) for more details.

3. Error based methods: the goal is to find the most significant examples defined as the ones
that contribute the most to the loss. In Paul, Ganguli, and Dziugaite, 2021, the authors
consider the second norm of the gradient as a proxy to find such examples. Indeed, examples
with the highest gradient norm tends to affect the loss more significantly (a first order Taylor
expansion of the loss function can explain the intuition behind this proxy). This can be
thought of as a relaxation of a Lipschitz-constant based pruning algorithm that was recently
introduced in Ayed and Hayou, 2022. Another method consider keeping the most forgettable
examples defined as those that change the most often from being well classified to being
mis-classified during the course of the training (Toneva et al., 2018). Other methods in this
direction consider a score function based on the relative contribution of each example to
the total loss over all training examples (see Bachem, Lucic, and Krause, 2015; Munteanu
et al., 2018).

4. Decision boundary based: although this can be encapsulated in uncertainty-based methods,
the idea behind these methods is more specific. The aim is to find the examples near the
decision boundary, the points for which the prediction has the highest variation (e.g. with
respect to the input space, Ducoffe and Precioso, 2018; Margatina et al., 2021).

6.2 Non-SBPA methods

Other methods in the literature select the coreset based on other desirable properties. For instance,
one could argue that preserving the gradient is an important feature to have in the coreset as
it would lead to similar minima (Killamsetty, Durga, et al., 2021; Mirzasoleiman, Bilmes, and
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Leskovec, 2020). Other work considered the problem of corset selection as a two-stage optimization
problem where the subset selection can be seen also as an optimization problem (Killamsetty,
Sivasubramanian, et al., 2021; Killamsetty, X. Zhao, et al., 2021). Other methods consider conisder
the likelihood and its connection with submodular functions in order to select the subset (Kaushal
et al., 2021; Kothawade et al., 2021).

It is worth noting that there exist other approaches to data pruning that involve synthesizing a new
dataset with smaller size that preserves certain desired properties, often through the brute-force
construction of samples that may not necessarily represent the original data. These methods are
known as data distillation methods (see e.g. Wang et al., 2018; B. Zhao, Mopuri, and Bilen, 2021; B.
Zhao and Bilen, 2021) However, these methods have significant limitations, including the difficulty
of interpreting the synthesized samples and the significant computational cost. The interpretability
issue is particularly a these approaches to use in real-world applications, particularly in high-stakes
fields such as medicine and financial engineering.

7 Limitations

Our framework provides insights in the case where both n and rn are large. We discuss below the
cases where this framework is not applicable. We call these cases extreme scenarios.

Extreme scenario 1: small n. Our asymptotic analysis can provide insights when a sufficient
number of samples are available. In the scarce data regime (small n), our theoretical results may
not accurately reflect the impact of pruning on the loss function. It is worth noting, however, that
this case is generally not of practical interest as there is no benefit to data pruning when the sample
size is small.

Extreme scenario 2: large n with r = Θ(n−1)). In this case, the “effective" sample size
after pruning is r, n = Θ(1). Therefore, we cannot glean useful information from the asymptotic
behavior of LA,r

n in this case. It is also worth noting that the variance of LA,r
n does not vanish in

the limit n → ∞, r → 0 with rn = γ fixed, and therefore the empirical mean does not converge to
the asymptotic mean.
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A Proofs

A.1 Proofs of Section 2

Propositions 1 and 2 are built on the following lemma.

Lemma 1 Let π be a distribution on D and (wn)n a sequence of parameters in Wθ satisfying

Eπℓ(yout(X;wn), Y ) → min
w∈Wθ

Eπℓ(yout(X;w), Y ).

Then, it comes that
d(wn,W∗

θ (π)) → 0.

Proof: Denote Lπ the function from Wθ to R defined by

Lπ(w) = Eπℓ(yout(X;w), Y ).

Notice that under our assumptions, the dominated convergence theorem gives that Lπ is continuous.
This lemma is a simple consequence of the continuity of Lπ and the compacity of Wθ. Consider a
sequence (wn) such that

Lπ(wn) → min
w∈Wθ

Lπ(w).

We can prove the lemma by contradiction. Consider ϵ > 0 and assume that there exists infinitely
many indices nk for which d

(
wnk

,W∗
θ (π)

)
> ϵ. Since Wθ is compact, we can assume that wnk

is
convergent (by considering a subsequence of which if needed), denote w∞ ∈ Wθ its limit. The
continuity of d then gives that d

(
w∞,W∗

θ (π)
)

≥ ϵ, and in particular

w∞ ̸∈ W∗
θ (π) = argminw∈Wθ

Lπ(w).

But since Lπ is continuous, the initial assumption on (wn) translates to

min
w∈Wθ

Lπ(w) = lim
k

Lπ(wnk
) = Lπ(w∞),

concluding the proof. □

Proposition 1. A pruning algorithm A is valid at a compression ratio r ∈ (0, 1] if and only if

d
(
wA,r

n ,W∗
θ (µ)

)
→ 0 a.s.

where W∗
θ (µ) = argminw∈Wθ

L(w) ⊂ Wθ and d
(
wA,r

n ,W∗
θ (µ)

)
denotes the euclidean distance from

the point wA,r
n to the set W∗

θ (µ).

Proof: This proposition is a direct consequence of Lemma 1. Consider a valid pruning algorithm
A, a compression ratio r and a sequence of observations (Xk, Yk) such that

L(wA,r
n ) → min

w∈Wθ

L(w).

We can apply Lemma 1 on the sequence (wA,r
n ) with the distribution π = µ to get the result. □
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Proposition 2. Let A be a pruning algorithm and r ∈ (0, 1] a compression ratio. Assume that
there exists a probability measure νr on D such that

∀w ∈ Wθ, LA,r
n (w) → Eνrℓ(yout(X;w), Y ) a.s. (5)

Then, denoting W∗
θ (νr) = argminw∈Wθ

Eνrℓ(yout(X;w), Y ) ⊂ Wθ, we have that

d
(
wA,r

n ,W∗
θ (νr)

)
→ 0 a.s.

Proof: Leveraging Lemma 1, it is enough to prove that

Eνrℓ(yout(X;wA,r
n ), Y ) − min

w∈Wθ

Eνrℓ(yout(X;w), Y ) → 0 a.s.

To simplify the notations, we introduce the function f from D × Wθ to R defined by

f(z, w) = ℓ(yout(x;w), y),

where z = (x, y). Since Wθ is compact, we can find w∗ ∈ Wθ such that Eνr [f(z, w∗)] =
minw Eνr [f(z, w)]. It comes that

0 ≤ Eνr [f(z, wA,r
n )] − Eνr [f(z, w∗)]

≤ Eνr [f(z, wA,r
n )] − 1

rn

∑
z∈A(Dn,r)

f(z, wA,r
n )

+ 1
rn

∑
z∈A(Dn,r)

f(z, wA,r
n ) − 1

rn

∑
z∈A(Dn,r)

f(z, w∗)

+ 1
rn

∑
z∈A(Dn,r)

f(z, w∗) − Eνr [f(z, w∗)]

The last term converges to zero almost surely by assumption. By definition of wA,r
n , the middle

term is non-positive. It remains to show that the first term also converges to zero. With this, we
can conclude that limn Eνr [f(z, wA,r

n )] − Eνr [f(z, w∗)] = 0

To prove that the first term converges to zero, we use the classical result that if every subsequence
of a sequence (un) has a further subsequence that converges to u, then the sequence (un) converges
to u. Denote

un = Eνr [f(z, wA,r
n )] − 1

rn

∑
z∈A(Dn,r)

f(z, wA,r
n ).

By compacity of Wθ, from any subsequence of (un) we can extract a further subsequence with indices
denoted (nk) such that w∗

nk
converges to some w∞ ∈ Wθ. We will show that (unk

) converges to 0.
Let ϵ > 0, since f is continuous on the compact set D × Wθ, it is uniformly continuous. Therefore,
almost surely, for k large enough,

sup
z

|f(z, w∗
nk

) − f(z, w∞)| ≤ ϵ.

Denoting
vn = Eνr [f(z, w∞)] − 1

rn

∑
z∈A(Dn,r)

f(z, w∞),
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the triangular inequality then gives that, almost surely, for k large enough

|unk
− vnk

| ≤ 2ϵ.

By assumption, the sequence vnk
converges to zero almost surely, which concludes the proof. □

We now prove Corollary 2, since Corollary 1 is a straightforward application of Proposition 2.

Corollary 2. Let A be any pruning algorithm and r ∈ (0, 1], and assume that (5) holds for a given
probability measure νr on D. If A is valid, then W∗

θ (νr) ∩ W∗
θ (µ) ̸= ∅; or, equivalently,

min
w∈W∗

θ
(νr)

L(w) = min
w∈W

L(w).

Proof: This proposition is a direct consequence of Proposition 2 that states that

d(wA,r
n ,W∗

θ (νr)) → 0 a.s.

Since the L is continuous on the compact Wθ, it is uniformly continuous. Hence, for any ϵ > 0, we
can find η > 0 such that if d(w,w′) ≤ η, then |L(w) − L(w′)| ≤ ϵ for any parameters w,w′ ∈ Wθ.
Hence, for n large enough, d(wA,r

n ,W∗
θ (νr)) ≤ η, leading to

L(wA,r
n ) ≥ min

w∈W∗
θ

(r)
L(w) − ϵ.

Since the algorithm is valid, we know that L(wA,r
n ) converges to minw∈Wθ

L(w) almost surely.
Therefore, for any ϵ > 0,

min
w∈Wθ

L(w) ≥ min
w∈W∗

θ
(r)

L(w) − ϵ.

which concludes the proof. □

A.2 Proof of Proposition 3

Proposition 3. [Asymptotic behavior of SBPA]
Let A be a SBPA algorithm and let g be its corresponding score function. Assume that g is adapted,
and consider a compression ratio r ∈ (0, 1). Denote by qr the rth quantile of the random variable
g(Z) where Z ∼ µ. Denote Ar = {z ∈ D | g(z) ≤ qr}. Almost surely, the empirical measure of the
retained data samples converges weakly to νr = 1

rµ|Ar
, where µ|Ar

is the restriction of µ to the set
Ar. In particular, we have that

∀w ∈ Wθ, LA,r
n (w) → Eνrℓ(yout(X;w), Y ) a.s.

Proof: Consider F the set of functions f : D → [−1, 1] that are continuous. We will show that

sup
f∈F

∣∣∣∣∣∣ 1
|A(Dn, r)|

∑
z∈A(Dn,r)

f(z) − 1
r

∫
Ar

f(z)µ(z)dz

∣∣∣∣∣∣ → 0 a.s. (9)

To simplify the notations, and since |A(Dn,r)|
rn converges to 1, we will assume that rn is an integer.

Denote qr
n the (rn)th ordered statistic of

(
g(zi)

)
i=1,...,n

, and qr the rth quantile of the random
variable g(Z) where Z ∼ µ.
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We can upper bound the left hand side in equation (9) by the sum of two random terms An and
Bn defined by

Bn = 1
r

sup
f∈F

∣∣∣∣∣∣ 1n
∑

z∈Dn

f(z)Ig(z)≤qr
n

− 1
n

∑
z∈Dn

f(z)Ig(z)≤qr

∣∣∣∣∣∣
Cn = 1

r
sup
f∈F

∣∣∣∣∣∣ 1n
∑

z∈Dn

f(z)Ig(z)≤qr −
∫
f(z)Ig(z)≤qrµ(z)dz

∣∣∣∣∣∣
To conclude the proof, we will show that both terms converge to zero almost surely.

For any f ∈ F , denoting Gn the empirical cumulative density function (cdf) of (g(zi)) and G the
cdf of g(Z), we have that∣∣∣∣∣∣ 1n

∑
z∈Dn

f(z)Ig(z)≤qr
n

− 1
n

∑
z∈Dn

f(z)Ig(z)≤qr

∣∣∣∣∣∣ ≤ 1
n

∑
z∈Dn

|f(z)| ×
∣∣∣Ig(z)≤qr

n
− Ig(z)≤qr

∣∣∣
≤ 1

n

∑
z∈Dn

∣∣∣Ig(z)≤qr
n

− Ig(z)≤qr

∣∣∣
≤ |Gn(qr

n) −Gn(qr)|

=
∣∣∣∣1r −Gn(qr)

∣∣∣∣
= |G(qr) −Gn(qr)| .

Therefore, Bn ≤ supt∈R|G(t) − Gn(t)| which converges to zero almost surely by the Glivenko-
Cantelli theorem.

Similarly, the general Glivenko-Cantelli theorem for metric spaces (Varadarajan, 1958) gives that
almost surely,

sup
f∈F

∣∣∣∣∣∣ 1n
∑

z∈Dn

f(z) −
∫
f(z)µ(z)dz

∣∣∣∣∣∣ → 0.

Consider k ≥ 1. Since g is continuous and D is compact, the sets Ar(1−1/k) and Ar = D \ Ar are
disjoint and closed subsets. Using Urysohn’s lemma (Theorem 8 in the Appendix), we can find
fk ∈ F such that fk(z) = 1 if z ∈ Ar(1−1/k) and fk(z) = 0 if z ∈ Ar. Consider f ∈ F , it comes that∣∣∣∣∣∣ 1n

∑
z∈Dn

f(z)Ig(z)≤qr −
∫
f(z)Ig(z)≤qrµ(z)dz

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ 1n
∑

z∈Dn

f × fk(z) −
∫
f × fk(z)µ(z)dz

∣∣∣∣∣∣
+ 1

n

∑
z∈Dn

Iqr(1−1/k)≤g(z)≤qr

+
∫

Iqr(1−1/k)≤g(z)≤qrµ(z)dz

Hence, noticing that f × fk ∈ F , we find that

Cn ≤ supf∈F

∣∣∣∣∣∣ 1n
∑

z∈Dn

f(z) −
∫
f(z)µ(z)dz

∣∣∣∣∣∣+ |Gn(qr) −Gn(qr(1−1/k))| + r

k
.

We can conclude the proof by noticing that |Gn(qr) − Gn(qr(1−1/k))| converges to r
k and taking

k → ∞. □
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A.3 Proof of Theorem 1

In order to prove the theorem, we will need a few technical results that we state and prove first.

Lemma 2 Consider a set of continuous functions M from X to Y. Consider ψ0 a function in the
closure of M for the ℓ∞ norm. Then for any ϵ > 0, there exists ψ ∈ M such that

supx,y∈D∥ℓ(ψ(x), y) − ℓ(ψ0(x), y)∥ ≤ ϵ

Proof: Since the loss ℓ is continuous on the compact Y × Y, it is uniformly continuous. We can
therefore find η > 0 such that for any y0, y, y

′ ∈ Y, if ∥y − y′∥ ≤ η then ∥ℓ(y0, y) − ℓ(y0, y
′)∥ ≤ ϵ.

We conclude the proof using by selecting any ψ ∈ M that is at a distance not larger than η from
ψ0 for the ℓ∞ norm. □

Lemma 3 Consider a SBPA A. Let M be a set of continuous functions from X to Y. Consider
r ∈ (0, 1) and assume that A is consistent on M at level r, i.e.

∀ψ ∈ M,
1

|A(D, r)|
∑

(x,y)∈A(D,r)
ℓ(ψ(x), y) → Eµℓ(ψ(X), Y ) a.s.

Let ψ∞ be any measurable function from X to Y. If there exists a sequence of elements of M that
converges point-wise to ψ∞, then

E 1
r

µ|Ar
ℓ(ψ∞(X), Y ) = Eµℓ(ψ∞(X), Y ). (10)

In particular, if M has the universal approximation property, then (10) holds for any continuous
function.

Proof: Le (ψk)k be a sequence of functions in M that converges point-wise to ψ∞. Consider
k ≥ 0, since A is consistent and that ψk is continuous and bounded, Proposition 3 gives that

E 1
r

µ|Ar
ℓ (ψk(X), Y ) = Eµℓ (ψk(X), Y ) .

Since ℓ is bounded, we can apply the dominated convergence theorem to both sides of the equation
to get the final result. □

Proposition 5 Let A be any SBPA with an adapted score function g satisfying

∃g̃ : X → R+, g(x, y) = g̃(x) a.s.

Assume that there exists two continuous functions f1 and f2 such that

Eµℓ(f1(X), Y ) ̸= Eµℓ(f2(X), Y ).

If ∪θMθ has the universal approximation property, then there exist hyper-parameters θ ∈ Θ for
which the algorithm is not consistent.
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Proof: Consider a compression ratio r ∈ (0, 1). We will prove the result by means of contradiction.
Assume that the SBPA is consistent on ∪θMθ. From the universal approximation property and
Lemma 3, we get that

1
r
Eµ|Ar

ℓ (f1(X), Y ) = Eµℓ (f1(X), Y ) ,

from which we deduce that

Eµ

[
ℓ (f1(X), Y ) I(Z ∈ Ar)

]
= r Eµℓ (f1(X), Y ) (11)

Eµ

[
ℓ (f1(X), Y ) I(Z ∈ D \Ar)

]
= (1 − r) Eµℓ (f1(X), Y ) (12)

and similarly for f2.

Notice that since the score function g does not depend on Y , there exists Xr ⊂ X such that
Ar = Xr × Y. Consider the function defined by

f : x 7→ f1(x)I(x ∈ Xr) + f2(x) (1 − I(x ∈ Xr)) ,

we will show that

i) 1
rEµ|Ar

ℓ (f(X), Y ) ̸= Eµℓ (f(X), Y )

ii) There exists a sequence of elements in ∪θMθ that converges point-wise almost everywhere
to f

The conjunction of these two points contradicts Lemma 3, which would conclude the proof.

The first point is obtained through simple derivations, evaluating both sides of the equation i).

1
r
Eµ|Ar

ℓ (f(X), Y ) = 1
r
Eµℓ (f(X), Y ) I(Z ∈ Xr × Y)

= 1
r
Eµℓ (f(X), Y ) I(X ∈ Xr)

= 1
r
Eµℓ (f1(X), Y ) I(X ∈ Xr)

= 1
r
Eµℓ (f1(X), Y ) I(Z ∈ Ar)

= Eµℓ (f1(X), Y ) ,

where we successively used the definition of f and equation (11). Now, using the definition of f ,
we get that

Eµℓ (f(X), Y ) = Eµℓ (f1(X), Y ) I(X ∈ Xr) + Eµℓ (f2(X), Y ) (1 − I(X ∈ Xr))
= Eµℓ (f1(X), Y ) I(Z ∈ Ar) + Eµℓ (f2(X), Y ) I(Z ∈ D \Ar)
= rEµℓ (f1(X), Y ) + (1 − r)Eµℓ (f2(X), Y ) .

These derivations lead to
1
r
Eµ|Ar

ℓ (f(X), Y ) − Eµℓ (f(X), Y ) = (1 − r) [Eµℓ (f1(X), Y ) − Eµℓ (f2(X), Y )] ̸= 0,

by assumption on f1 and f2.
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For point ii), we will construct a sequence (ψk)k of functions in ∪θMθ that converges point-wise to
f almost everywhere, using the definition of the universal approximation property and Urysohn’s
lemma (Lemma 8 in the Appendix). Consider k ≥ 0 and denote ϵk = 1−r

k+1 . Denote qr and
qr+ϵk the rth and (r + ϵk)th quantile of the random variable g̃(X) where (X,Y ) ∼ µ. Denote
Xr = {x ∈ X | g̃(x) ≤ qr} and Br,k = {x ∈ X | g̃r(x) ≥ qr+ϵk}. Since g̃ is continuous and X is
compact, the two sets are closed. Besides, since the random variable g̃(X) is continuous (g is an
adapted score function), both sets are disjoint. Therefore, using Urysohn’s lemma (Lemma 8 in
the Appendix), we can chose a continuous function ϕk : X → [0, 1] such that ϕk(x) = 1 for x ∈ Xr

and ϕk(x) = 0 for x ∈ Br,k. Denote fk the function defined by

f̄k(x) = f1(x)ϕk(x) + f2(x)(1 − ϕk(x)).

Notice that (ϕk)k converges point-wise to I(· ∈ Xr), and therefore (f̄k)k converges point-wise to f .
Besides, since f̄k is continuous, and ∪θMθ has the universal approximation property, we can chose
ψk ∈ ∪θMθ such that

supx∈X |ψk(x) − f̄k(x)| ≤ ϵk.

Hence, for any input x ∈ X , we can upper-bound |ψk(x) − f(x)| by ϵk + |f̄k(x) − f(x)|, giving that
ψk converges pointwise to f and concluding the proof. □

We are now ready to prove the Theorem 1 that we state here for convenience.

Theorem 1. Let A be any SBPA algorithm with an adapted score function. If ∪θMθ has the
universal approximation property, then there exist hyper-parameters θ ∈ Θ for which the algorithm
is not consistent.

Proof: We will use the universal approximation theorem to construct a model for which the
algorithm is biased. Denote supp(µ) the support of the generating measure µ. We can assume that
there exists x ∈ X such that (x0, 0) ∈ supp(µ), (x0, 1) ∈ supp(µ), and g(x0, 1) ̸= g(x0, 0), otherwise
one can apply Proposition 5 to get the result. Denote y0 ∈ {0, 1} such that g(x0, y0) > g(x0, 1−y0).
Since g is continuous, we can find ϵ > 0, r0 ∈ (0, 1) such that

∀x ∈ B(x0, ϵ), g(x, y0) > qr0 > g(x, 1 − y0), (13)

where qr0 is the rth
0 quantile of g(Z) where Z ∼ µ.

Since (x0, 1 − y0) ∈ supp(µ), it comes that

∆ = 1 − r0
2(1 + r0)P

(
X ∈ B(x0, ϵ), Y = 1 − y0

)
ℓ(y0, 1 − y0) > 0.

By assumption, the distribution of X is dominated by the Lebesgue measure, we can therefore find
a positive ϵ′ < ϵ such that

P
(
X ∈ B(x0, ϵ) \ B(x0, ϵ

′)
)
<

∆
2 max ℓ .

The sets K1 = B(x0, ϵ
′) and K2 = X \ Bo(x0, ϵ) are closed and disjoint sets, Lemma 8 in Appendix

insures the existance of a continuous function h such that h(x) = y0 for x ∈ K1, and h(x) =
1 − y0 for x ∈ K2. We use Lemma 2 to construct ψ ∈ ∪θMθ such that for any x, y ∈ D,
|ℓ(ψ(x), y) − ℓ(h(x), y)| < ∆/2. Let f1(x, y) = ℓ(ψ(x), y) and f2(x, y) = ℓ(1 − y0, y). Denote
f = f1 − f2. Notice that if we assume that the algorithm is consistent on ∪θMθ, Lemma 3 gives
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that Ef(X,Y ) = 1
r0
Ef(X,Y )1g(X,Y )≤qr0 . We will prove the non-consistency result by means of

contradiction, showing that instead we have

Ef(X,Y ) < 1
r0
Ef(X,Y )1g(X,Y )≤qr0 . (14)

To do so, we start by noticing three simple results that are going to be used in the following
derivations

• ∀x ∈ K2, y ∈ Y, f(x, y) = 0.

• ∀x ∈ K1, f(x, y0) = −ℓ(1 − y0, y0) and f(x, 1 − y0) = ℓ(y0, 1 − y0)

• ∀x ∈ B(x0, ϵ) \ B(x0, ϵ
′), y ∈ Y, |f(x, y)| ≤ max ℓ

We start be upper bounding the left hand side of (14) as follows:

Ef(X,Y ) = Ef(X,Y )
[
1X∈K1 + 1X∈K2 + 1X∈B(x0,ϵ)\B(x0,ϵ′)

]
≤ P

(
X ∈ K1, Y = 1 − y0

)
ℓ(y0, 1 − y0)

− P
(
X ∈ K1, Y = y0

)
ℓ(1 − y0, y0)

+ P
(
X ∈ B(x0, ϵ) \ B(x0, ϵ

′)
)

max ℓ

< P
(
X ∈ K1, Y = 1 − y0

)
ℓ(y0, 1 − y0) + ∆

2
Using (13), we can lower bound the right hand side of (14) as follows:

1
r0
Ef(X,Y )1g(X,Y )≤qr0 = 1

r0
Ef(X,Y )

[
1X∈K1 + 1X∈K2 + 1X∈B(x0,ϵ)\B(x0,ϵ′)

]
1g(X,Y )≤qr0

≥ 1
r0
P
(
X ∈ K1, Y = 1 − y0

)
ℓ(y0, 1 − y0)

− 1
r0
P
(
X ∈ B(x0, ϵ) \ B(x0, ϵ

′)
)

max ℓ

>
1
r0

[
P
(
X ∈ K1, Y = 1 − y0

)
ℓ(y0, 1 − y0) − ∆

2
]

> Ef(X,Y )

+
[ 1
r0

− 1
]
P
(
X ∈ K1, Y = 1 − y0

)
ℓ(y0, 1 − y0)

− 1
2
[ 1
r0

+ 1
]
∆

> Ef(X,Y ),

where the last line comes from the definition of ∆. □

A.4 Proof of Theorem 2

Denote PB the set of probability distributions on X × {0, 1}, such that the marginal distribution
on the input space is continuous (absolutely continuous with respect to the Lebesgue measure on
X ) and for which

pπ : x 7→ Pπ(Y = 1|X = x)
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is upper semi-continuous. For a probability measure π ∈ PB, denote πX the marginal distribution
on the input. Denote γ the function from [0, 1] × [0, 1] to R defined by

γ(p, y) = pℓ(y, 0) + (1 − p)ℓ(y, 1).

Finally, denote F the set of continuous functions from X to [0, 1]. We recall the two assumptions
made on the loss:

(i) The loss is non-negative and that ℓ(y, y′) = 0 if and only if y = y′

(ii) For p ∈ [0, 1], y 7→ γ(p, y) = pℓ(y, 1) + (1 − p)ℓ(y, 0) has a unique minimizer, denoted
y∗

p ∈ [0, 1], that is increasing with p.

Lemma 4 Consider a loss ℓ that satisfies (ii). Then, for any p ∈ [0, 1] and δ > 0, there exists
ϵ > 0 such that for any y ∈ Y = [0, 1],

γ(p, y) − γ(p, y∗
p) ≤ ϵ =⇒ |y − y∗

p| ≤ δ.

Proof: Consider p ∈ [0, 1] and η > 0. Assume that for any ϵk = 1
k+1 there exists yk ∈ Y such

that |y − y∗
p| ≥ δ and

pℓ(yk, 1) + (1 − p)ℓ(yk, 0) − pℓ(y∗
p, 1) − (1 − p)ℓ(y∗

p, 0) ≤ ϵk

Since Y is compact, we can assume that the sequence (yk)k converges (taking, if needed, a sub-
sequence of the original one). Denote y∞ this limit. Since ℓ and | · | are continuous, it comes that
|y∞ − y∗

p| ≥ δ and

pℓ(y∞, 1) + (1 − p)ℓ(y∞, 0) − pℓ(y∗
p, 1) − (1 − p)ℓ(y∗

p, 0) = 0,

contradicting the assumption that y∗
p is unique. □

Lemma 5 If ψ is a measurable map from X to [0, 1], then there exists a sequence of continuous
functions fn ∈ F that converges point-wise to ψ (for the Lebesgue measure)

Proof: This result is a direct consequence of two technical results, the Lusin’s Theorem (Theo-
rem 5 in the appendix), and the continuous extension of functions from a compact set (Theorem 6
in the appendix). □

Lemma 6 For a distribution π ∈ PB. define ψ∗
π the function from X to [0, 1] by

∀x ∈ X , ψ∗
π(x) = y∗

pπ(x)

is measurable. Besides,
inff∈FEπℓ(f(X), Y ) = Eπℓ(ψ∗

π(X), Y )

Proof: The function from [0, 1] to [0, 1] defined by

p 7→ argminy∈[0,1]γ(p, y) = y∗
p,
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is well defined and increasing from assumption (ii) on the loss. It is, therefore, measurable. Since
pπ : x 7→ Pπ(Y = 1|X = x) is measurable, we get that ψ∗

π is measurable as the composition of two
measurable functions. For the second point, notice that by definition of ψ∗

π, for any f ∈ F ,

Eπℓ(f(X), Y ) = EπXEπ

[
ℓ(f(X), Y ) | X

]
≥ EπXEπ

[
ℓ(ψ∗

π(X), Y ) | X
]

≥ Eπℓ(ψ∗
π(X), Y ).

Using Lemma 5, we can take a sequence of continuous functions fn ∈ F that converge point-wise
to ψ∗

π. We can conclude using the dominated convergence theorem, leveraging that ℓ is bounded.
□

Lemma 7 Let A a SBPA with an adapted score function g that depends on the labels. Then there
exists a compression level r > 0 and ε > 0 such that for any f0 ∈ F , the two following statements
exclude each other

(i) Eνrℓ(f0(X), Y ) − inff∈F Eνrℓ(f(X), Y ) ≤ ε

(ii) Eµℓ(f0(X), Y ) − inff∈F Eµℓ(f(X), Y ) ≤ ε

Proof: Since g depends on the labels, we can find x0 ∈ X in the support of µX such that
pµ(x0) = Pµ(Y = 1 | X = x0) ∈ (0, 1) and g(x0, 0) ̸= g(x0, 1). Without loss of generality, we can
assume that g(x0, 0) < g(x0, 1). Take r ∈ (0, 1) such that

g(x0, 0) < qr < g(x0, 1)

By continuity of g, we can find a radius η > 0 such that for any x in the ball Bη(x0) of center x0
and radius η, we have that g(x, 0) < qr < g(x, 1). Besides, since pµ is upper semi-continuous, we
can assume that η is small enough to ensure that for any x ∈ Bη(x0),

pµ(x) < 1 + pµ(x0)
2 < 1. (15)

Therefore, recalling that νr = 1
rµ|Ar

• Pνr (X ∈ Bη(x0)) = 1
rPµ(X ∈ Bη(x0), Y = 0) > 0 and Pνr (Y = 1 | X ∈ Bη(x0)) = 0.

• Pµ(X ∈ Bη(x0)) > 0 and Pµ(Y = 1 | X ∈ Bη(x0)) > 0.

Denote ∆ = Pµ(X ∈ Bη(x0), Y = 1) > 0. Consider the subset V defined by

V = {x ∈ Bη(x0) s.t. pµ(x) ≥ ∆
2 }

We can derive a lower-bound on µX(V ) as follows:

∆ =
∫

x∈Bη(x0)
p(x)µX(dx)

=
∫

x∈Bη(x0)
p(x)1p(x)< ∆

2
µX(dx) +

∫
x∈Bη(x0)

p(x)1p(x)≥ ∆
2
µX(dx)

≤
∫

x∈Bη(x0)

∆
2 µ

X(dx) +
∫

x∈V
µX(dx)

≤ ∆
2 + µX(V ).
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The last inequality gives that µX(V ) ≥ ∆/2 > 0. Moreover, we can lower-bound νX
r (V ) using (15)

as follows:

νX
r (V ) = νr(V × {0})

= 1
r
µ(V × {0})

= 1
r

∫
x∈V

(1 − pµ(x))µX(dx)

≥ 1 − pµ(x0)
2r µX(V )

≥ 1 − pµ(x0)
4r ∆

> 0.

Therefore, assumptions i) and ii) on the loss give that ψ∗
νr

(x) = 0 and ψ∗
µ(x) ≥ y∗

∆
2
> 0 for any

x ∈ V . Using Lemma 4, take ϵ1 > 0 such that

ℓ(y, 0) ≤ ϵ1 =⇒ y ≤
y∗

∆
2

3 . (16)

In the following, we will show that there exists ϵ2 > 0 such that for any p ≥ ∆
2 ,

y ≤
y∗

∆
2

3 =⇒ γ(p, y) − γ(p, y∗
p) ≥ ϵ2 (17)

Otherwise, leveraging the compacity of the sets at hand, we can find two converging sequences

pk → p∞ ≥ ∆
2 and yk → y∞ ≤

y∗
∆
2
3 such that

γ(pk, yk) − min
y′

γ(pk, y
′) ≤ 1

k + 1 .

Since γ is uniformly continuous,
p 7→ min

y′
γ(p, y′)

is continuous. Taking the limit it comes that

γ(p∞, y∞) − min
y′

γ(p∞, y
′) = 0,

and consequently y∞ = y∗
p∞ . Since p∞ ≥ ∆

2 ,

y∞ = y∗
p∞ ≥ y∗

∆
2
>
y∗

∆
2

3
reaching a contradiction.

Now, take ϵ1 and ϵ2 satisfying (16) and (17) respectively. Put together, we have that for any p ≥ ∆
2 ,

γ(0, y) − γ(0, y∗
0) ≤ ϵ1 =⇒ γ(p, y) − γ(p, y∗

p) ≥ ϵ2.

Using the definition of V , it comes that for any function f0 and x ∈ V

γ(0, f0(x)) ≤ ϵ1 =⇒ γ(pµ(x), f0(x)) − γ(pµ(x), ψ∗
µ(x)) ≥ ϵ2 (18)
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Let ε = rmin(ϵ1, ϵ2)νX
r (V )

4 > 0. Consider f0 ∈ F satisfying

Eνrℓ(f0(X), Y ) − inf
f∈F

Eνrℓ(f(X), Y ) ≤ ε.

We will prove that
Eµℓ(f0(X), Y ) − inf

f∈F
Eµℓ(f(X), Y ) > ε

to conclude the proof. Denote Uf0 is the subset of V such that for any x ∈ Uf0 , γ(0, f0(x)) ≤ 2ε
νX

r (V ) .

We get that

ε ≥ Eνrℓ(f0(X), Y ) − inf
f∈F

Eνrℓ(f(X), Y )

≥
∫

X

[
γ(pνr (x), f0(x)) − γ(pνr (x), ψ∗

νr
(x))

]
νX

r (dx)

≥
∫

V
γ(0, f0(x))νX

r (dx)

≥ 2ε
νX

r (V )ν
X
r (V \ Uf0)

Hence we get that νX
r (Uf0) ≥ νX

r (V )
2 . Since 2ε

νX
r (V ) ≤ ϵ1, the right hand side of (18) holds. In other

words,
∀x ∈ Uf0 , γ(pµ(x), f0(x)) − γ(pµ(x), ψ∗

µ(x)) ≥ ϵ2,

from which we successively obtain

Eµℓ(f0(X), Y ) − inf
f∈F

Eµℓ(f(X), Y ) =
∫

X

[
γ(pµ(x), f0(x)) − γ(pµ(x), ψ∗

µ(x))
]
µX(dx)

≥
∫

U{′

[
γ(pµ(x), f0(x)) − γ(pµ(x), ψ∗

µ(x))
]
µX(dx)

≥ µX(Uf0)ϵ2
≥ µ(Uf0 × {0})ϵ2
= r ϵ2 ν

X
r (Uf0)

≥ rϵ2
νX

r (V )
2

> ε.

□

We can now ready to prove Theorem 2.

Theorem 2. Let A a SBPA with an adapted score function g that depends on the labels. If ∪θMθ

has the universal approximation property and the loss satisfies assumptions (i) and (ii), then there
exist two hyper-parameters θ1, θ2 ∈ Θ such that the algorithm is not valid on Wθ1 ∪ Wθ2.

Proof: Denote Θ̃ = Θ × Θ, and for θ̃ = (θ1, θ2) ∈ Θ̃, Wθ̃ = Wθ1 ∪ Wθ2 and Mθ̃ = Mθ1 ∪ Mθ2 .
We will leverage Proposition 1 and Lemma 7 show that there exist a compression ratio r ∈ (0, 1)
and a hyper-parameter θ̃ such that

min
w∈W∗

θ̃
(r)

L(w) > min
w∈Wθ̃

L(w)
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which would conclude the proof.

Using Lemma 7, we can find r and ϵ > 0 such that for any continuous function f0 ∈ F , the two
following propositions exclude each other:

(i) Eµℓ(f0(X), Y ) − inff∈F Eµℓ(f(X), Y ) ≤ ϵ

(ii) Eνrℓ(f0(X), Y ) − inff∈F Eνrℓ(f(X), Y ) ≤ ϵ

Since ∪Mθ has the universal approximation property, and that ψ∗
µ and ψ∗

νr
(defined as in Lemma 6)

are measurable, we consecutively use Lemma 5 and Lemma 2 to find θ̃ = (θ1, θ2) such that

1. There exists ψ1 ∈ Mθ1 such that Eµℓ(ψ1(X), Y ) − Eµℓ(ψ∗
µ(X), Y ) ≤ ϵ/2

2. There exists ψ2 ∈ Mθ2 such that Eνrℓ(ψ2(X), Y ) − Eνrℓ(ψ∗
νr

(X), Y ) ≤ ϵ/2

Take ψ1, ψ2 ∈ Mθ̃ two such functions. Consider any parameter w ∈ argminw∈W∗
θ̃

(r)L(w). By
definition, it comes that

Eνrℓ(yout(X;w), Y ) − Eνrℓ(ψ∗
νr

(X), Y ) ≤ Eνrℓ(ψ2, Y ) − Eνrℓ(ψ∗
νr

(X), Y )
≤ ϵ/2

Therefore, since Lemma 6 gives that inff∈F Eνrℓ(f(X), Y ) = Eνrℓ(ψ∗
νr

(X), Y ), we can conclude
that

Eµℓ(yout(X;w), Y ) − inf
f∈F

Eµℓ(f(X), Y ) > ϵ,

from which we deduce that

Eµℓ(yout(X;w), Y ) > inf
f∈F

Eµℓ(f(X), Y ) + ϵ

> Eµℓ(ψ1(X), Y ) + ϵ/2
≥ min

w′∈Wθ̃

L(w′) + ϵ/2,

which gives the desired result. □

A.5 Proof of the Corolaries 3 and 4

These two corollaries are a straightforward application of Theorem 1 and Theorem 2 as well as the
existing litterature on the universal approximation properties of Neural Networks: (Hornik, 1991)
and (Kidger and Lyons, 2020).

A.6 Proof of Theorem 3

For K ∈ N∗, denote PK
C the set of generating processes for K-classes classification problems, for

which the input X is a continuous random variable (the marginal of the input is dominated by the
Lebesgue measure), and the output Y can take one of K values in Y (the same for all π ∈ PK

C ).
Similarly, denote PR, the set of generating processes for regression problems for which both the
input and output distributions are continuous. Let P be any set of generating processes introduced
previously for regression or classification (either P = PK

C for some K, or P = PR).
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𝑤

𝑧
𝑧2 𝑧1

𝑤

𝑆𝑒𝑙𝑒𝑐𝑡 𝑧1𝑎𝑛𝑑 𝑧2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔 𝑧1 < 𝑔(𝑧2)

𝑃𝑢𝑡 𝑡ℎ𝑒 𝑏𝑢𝑙𝑘 𝑜𝑓 𝜇 𝑎𝑟𝑜𝑢𝑛𝑑 𝑧2

𝑃𝑢𝑡 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝜇 𝑎𝑟𝑜𝑢𝑛𝑑 𝑧1

Figure 13: Graphical sketch of the proof of Theorem 3. The surface represents the loss function
f(z, w) = ℓ(yout(x), y) in 2D, where z = (x, y).

Assume that there exist (x1, y1), (x2, y2) ∈ D such that

argminw∈Wθ
ℓ(yout(x1;w), y1) ∩ argminw∈Wθ

ℓ(yout(x2;w), y2) = ∅. (H1)

For any SBPA algorithm A with adapted criterion, we will show that there exists a generating
process µ ∈ P for which A is not valid. More precisely, we will show that there exists r0 ∈ (0, 1)
such that for any compression ratio r ≤ r0, there exists a generating process µ ∈ P for which A is
not valid. To do so, we leverage Corollary 2 and prove that for any r ≤ r0, there exists µ ∈ P, for
which W∗

θ (νr) ∩ W∗
θ (µ) ̸= ∅, i.e.

∃r0 ∈ (0, 1), ∀r ≤ r0,∃µ ∈ P s.t. ∀w∗
r ∈ W∗

θ (νr), Lµ(w∗
r) > min

w∈Wθ

Lµ(w) (19)

We bring to the reader’s attention that νr = 1
rµ|Ar

= νr(µ) depends on µ, and so does the acceptance
region Ar = Ar(µ).

The rigorous proof of Theorem 3 requires careful manipulations of different quantities, but the
idea is rather simple. Fig. 13 illustrates the main idea of the proof. We construct a distribution µ
with the majority of the probability mass concentrated around a point where the value of g is not
minimal.

We start by introducing further notations. For z = (x, y) ∈ D, and w ∈ Wθ, we denote by f
the function defined by f(z, w) = ℓ(yout(x), y). We will use the generic notation ℓ2 to refer to
the Euclidean norm on the appropriate space. We denote B(X, ρ) the ℓ2 ball with center X and
radius ρ. If X is a set, then B(X , ρ) = ⋃

X∈X
B(X, ρ). For S ⊂ D, we denote argminwf(S, w) =⋃

X∈S
argminwf(X,w).

Notice that f is continuous on D × Wθ. Besides, the set data generating processes P is i) convex
and ii) satisfies for all X0 ∈ D, δ > 0 and γ < 1, there exists a probability measure µ ∈ P such that

µ(B(X0, δ)) > γ,

These conditions play a central role in the construction of a generating process for which the pruning
algorithm is not valid. In fact, the non-validity proof applies to any set of generating processes
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satisfying conditions i) and ii). To ease the reading of the proof, we break it into multiple steps
that we list hereafter.

Steps of the proof:

1. For all z0 ∈ D, the set Wz0 = argminwf(z0, w) is compact (and non empty).

2. For all z0 ∈ D, δ > 0, there exists ρ0 > 0 such that for all ρ ≤ ρ0,

argminwf(B(z0, ρ), w) ⊂ B(Wz0 , δ)

3. Under assumption (H1), there exists z1, z2 ∈ D such that i) g(X1) < g(X2) and ii) Wz1 ∩
Wz2 = ∅

4. For z1, z2 as in 3, denote W1 = Wz1 and W2 = Wz2 . There exists δ, ρ0 > 0 such that for
any ρ ≤ ρ0 and w1 ∈ B(W1, δ), and w∗

2 ∈ W2

inf
z∈B(z2,ρ)

f(z, w1) > sup
z∈B(z2,ρ)

f(z, w∗
2)

5. For any r ∈ (0, 1), there exits a generating process µ ∈ P such that any minimizer
of the pruned program w∗

r ∈ W∗
θ (νr) necessarily satisfies w∗

r ∈ B(W1, δ) and such that
µ(B(z2, ρ)) ≥ 1 − 2r for a given ρ ≤ ρ0.

6. ∃r0 > 0 such that ∀r ≤ r0, ∃µ ∈ P such that Lµ(w∗
r) > minw∈Wθ

Lµ(w) for any w∗
r ∈ W∗

θ (νr)

Proof: Result 1: Let Wz0 = argminwf(z0, w) ⊂ Wθ. Since Wθ is compact and functions
fz0 : w 7→ f(z0, w) is continuous, it comes that Wz0 is well defined, non-empty and closed (as the
inverse image of a closed set). Hence it is compact.

Result 2: Let z0 ∈ D and δ > 0. We will prove the result by contradiction. Suppose that for any
ρ > 0, there exists w ∈ argminw′f(B(z0, ρ), w′) such that d(w,Wz0) ≥ δ.

It is well known that since f is continuous and that Wθ is compact, the function

z 7→ min
w∈Wθ

f(z, w),

is continuous. Therefore, for any k > 0, we can find ρk > 0 such that for any z ∈ B(z0, ρk),

| inf
w
f(z, w) − inf

w
f(z0, w)| < 1

k

For every k > 0, let wk, zk such that zk ∈ B(z0, ρk), wk ∈ argminwf(zk, w) and d(wk,Wz0) ≥ δ.
By definition, lim zk = z0. Since Wθ is compact, we can assume that wk converges to w∞ without
loss of generality (taking a sub-sequence of the original one). Now, notice that

|f(zk, wk) − inf
w
f(z0, w)| = | inf

w
f(zk, w) − inf

w
f(z0, w)| < 1/k,

therefore, since f is continuous, f(z0, w
∞) = infw f(z0, w) and so w∞ ∈ Wz0 , which contradicts the

fact that d(wk, w∞) ≥ δ for all k. Hence, we can find ρ > 0 such that for all argminwf(B(z0, ρ)) ⊂
B(Wz0 , δ).
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Result 3: Let z1, z2 as in (H1) such that g(z1) = g(z2). Since d is continuous, and W1 = Wz1 and
W2 = Wz2 are compact, d(W1 × W2) is also compact. Hence, there exists δ > 0 such that

min
w1∈W1, w2∈W2

d(w1, w2) ≥ δ.

Using the previous result, let ρ such that argminwf(B(z1, ρ), w) ⊂ B(W1, δ/2), The triangular
inequality yields argminwf(B(z1, ρ), w) ∩ W2 = ∅. Since g is adapted and B(z1, ρ) has strictly
positive Lebesgue measure, we can find z′

1 ∈ B(z1, ρ) such that g(z′
1) ̸= g(z1). Therefore, the points

z′
1, z2 satisfy the requirements.

Result 4: Since W1 is compact and fz2 is continuous, f(z2,W1) is compact, and since W1∩W2 = ∅,

min f(z2,W1) > f(z2, w
∗
2) = min

w∈Wθ

f(z2, w),

for any w∗
2 ∈ W2. Denote ∆ = min f(z2,W1) − minw f(z2, w) > 0.

Since f is continuous on the compact space D × Wθ, it is uniformly continuous. We can hence take
δ > 0 such that for z, z′ ∈ D and w,w′ ∈ Wθ such that

∥z − z′∥ ≤ δ, ∥w − w′∥ ≤ δ =⇒ |f(z, w) − f(z′, w′)| ≤ ∆/3.

Using Result 2, we can find ρ0 > 0 such that for all ρ ≤ ρ0,

argminwf(B(z1, ρ), w) ⊂ argminwf(B(z1, ρ0), w) ⊂ B(W1, δ)

We can assume without loss of generality that ρ0 ≤ 2δ. Let w1 ∈ B(W1, δ). For any w∗
2 ∈ W2, we

conclude that

min
z∈B(z2,ρ)

f(z, w1) ≥ min f(z2,W1) − ∆/3 > f(z2, w
∗
2) + ∆/3 ≥ sup

z∈B(z2,ρ)
f(z, w∗

2).

Result 5: Let ρ0 defined previously, k > 1 and r ∈ (0, 1). Using the uniform continuity of f , we
construct 0 < ρk ≤ ρ0 such that

∀w ∈ P,∀z, z′ ∈ D, d(z, z′) ≤ ρk =⇒ |f(z, w) − f(z′, w)| ≤ 1/k.

Consider µk ∈ P such that µk
(
B(z1, ρk)

)
≥ r and µk

(
B(z2, ρk)

)
≥ 1 − r − r/k. Let νk

r = νr(µk). It
comes that νk

r (B(z1, ρk)) ≥ 1 − 1
k . Using a proof by contradiction, we will show that there exists

k > 1 such that
argminwEνk

r
f(z, w) ⊂ B(W1, δ).

Suppose that the result doesn’t hold, we can define a sequence of minimizers wk such that wk ∈
argminwEνk

r
f(z, w) and d(wk,W1) > δ. Denote M = supz,w f(z, w). Take any w∗

1 ∈ W1,

Eνk
r
f(z, wk) ≤ Eνk

r
f(z, w∗

1) (20)

≤
(
f(z1, w

∗
1) + 1

k

)
νk(B(z1, ρk)) +M

(
1 − νk(B(z1, ρk))

)
(21)

≤
(
f(z1, w

∗
1) + 1

k

)
+ M

k
(22)

≤
(

min
w
f(z1, w) + 1

k

)
+ M

k
(23)
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Similarly, we have that

Eνk
r
f(z, wk) ≥

(
f(z1, wk) − 1

k

)
νk(B(z1, ρk)) (24)

≥
(
f(z1, wk) − 1

k

)
(1 − 1/k) (25)

≥
(

min
w
f(z1, w) − 1

k

)
(1 − 1/k). (26)

Putting the two inequalities together, we find(
min

w
f(z1, w) − 1

k

)
(1 − 1/k) ≤

(
f(z1, wk) − 1

k

)
(1 − 1/k) ≤

(
min

w
f(z1, w) + 1

k

)
+ M

k

Since Wθ is compact, we can assume that limk w
k = w∞ ∈ Wθ (taking a sub-sequence of the

original one). And since fz1 is continuous, we can deduce that f(z1, w
∞) = minw f(z1, w), which

contradict the fact that d(wk, w∞) > δ for all k.

Result 6: Let r ∈ (0, 1) and δ, ρ0, ρ, µ as in the previous results. Let wr ∈ W∗
θ (νr) From Result 5,

we have that wr ∈ B(W1, δ). For w∗
2 ∈ W2, Result 5 implies that

minz∈B(z2,ρ) f(z, wr) − supz∈B(z2,ρ) f(z, w∗
2)

≥ minz∈B(z2,ρ0) f(z, wr) − supz∈B(z2,ρ0) f(z, w∗
2) = ∆

> 0

Therefore,

Eµf(z, wr) ≥ min
z∈B(z2,ρ0)

f(z, w1) × µ(B(z2, ρ
r)) (27)

≥
(

sup
z∈B(z2,ρ0)

f(z, w∗
2) + ∆

)
µ(B(z2, ρ)) (28)

≥ Eµf(z, w∗
2) + ∆(1 − 2r) − 2rM (29)

≥ min
w

Eµf(z, w) + ∆(1 − 2r) − 2rM. (30)

Therefore,
Lµ(wr) − min

w∈Wθ

Lµ(w) ≥ ∆(1 − 2r) − 2rM,

which is strictly positive for r < ∆
2(M+∆) = r0 □

A.7 Proof of Proposition 4

Proposition 4. [Consistency of Exact Calibration+SBPA]
Let A be a SBPA algorithm. Using the Exact Calibration protocol with signal proportion α, the cali-
brated algorithm Ā is consistent if 1−α > 0, i.e. the exploration budget is not null. Besides, under
the same assumption 1 − α > 0, the calibrated loss is an unbiased estimator of the generalization
loss at any finite sample size n > 0,

∀w ∈ Wθ, ∀r ∈ (0, 1), ELĀ,r,α
n (w) = L(w).
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Proof: Consider α < 1. Let f(zi, w) = ℓ(yout(xi, w), yi), and pe = (1−α)r
1−αr . For i ∈ {1, ..., n},

consider the independent Bernoulli random variables bi ∼ B(pe). Notice that

LĀ,r,α
n (w) = 1

n

n∑
i=1

(
1zi∈A(Dn,αr) + bi

ps
1zi ̸∈A(Dn,αr)

)
f(zi, w),

which gives

ELĀ,r,α
n (w) = EDn E

[
LĀ,r,α

n (w) | Dn

]
= EDnLn(w) = L(w).

Define the random variables

Yn,i =
(
1zi∈A(Dn,αr) + bi

ps
1zi ̸∈A(Dn,αr) − 1

)
f(zi, w),

Let Fn,i = σ({Yn,j , j ̸= i}) be the σ-algebra generated by the random variables {Yn,j , j ̸= i}. Let
us now show that the conditions of Theorem 7 hold with this choice of Yn,i.

• Let n ≥ 1 and i ∈ {1, . . . , n}. Similarly to the previous computation, we get that E[Yn,i |
Fn,i] = 0.

• Using the compactness assumption on the space Wθ and D, we trivially have that
supi,n EY 4

n,i < ∞.

• Trivially, for each n ≥ 1, the variables {Yn,i}1≤i≤n are identically distributed.

Using Theorem 7 and the standard strong law of large numbers, we have that n−1∑n
i=1 Yn,i → 0

almost surely, and n−1∑n
i=1 f(zi, w) → Eµf(z, w) almost surely, which concludes the proof for the

consistency.

□

B Technical results

Theorem 4 (Universal Approximation Theorem, (Hornik, 1991)) Let C(X,Y ) denote the
set of continuous functions from X to Y . Let ϕ ∈ C(R,R). Then, ϕ is not polynomial if and only if
for every n,m ∈ N, compact K ⊂ Rn, f ∈ C(K,Rm), ϵ > 0, there exist k ∈ N, A ∈ Rk×n, b ∈ Rk,
C ∈ Rm×k such that

sup
x∈K

∥f(x) − yout(x)∥ ≤ ϵ,

where yout(x) = C⊤σ(Ax+ b).

Lemma 8 (Urysohn’s lemma, (Arkhangel’skǐı, 2001)) For any two disjoint closed sets A
and B of a topological space X, there exists a real-valued function f , continuous at all points,
taking the value 0 at all points of A, the value 1 at all points of B. Moreover, for all x ∈ X,
0 ≤ f(x) ≤ 1.

Theorem 5 (Lusin’s Theorem) If X is a topological measure space endowed with a regular mea-
sure µ, if Y is second-countable and ψ : X → Y is measurable, then for every ϵ > 0 there exists a
compact set K ⊂ X such that µ(X \K) < ϵ and the restriction of ψ to K is continuous.
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Theorem 6 (Continuous extension of functions from a compact, (Deimling, 2010))
Let A ⊂ Rd be compact and f : A → R be a continuous function. Then there exists a continuous
extension f̃ : Rd → R such that f(x) = f̃(x) for all x ∈ A.

B.1 A generalized Law of Large Numbers

There are many extensions of the strong law of large numbers to the case where the random variables
have some form of dependence. We prove a strong law of large numbers for specific sequences of
arrays that satisfy a conditional zero-mean property.

Theorem 7 Let {Yn,i, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of random variables satisfying the
following conditions:

• For all n ≥ 1 and i ∈ [n], E[Yn,i | Fn,i] = 0, where Fn,i = σ({Yn,j , j ̸= i}), i.e. the σ-algebra
generated by all the random variables in row n other than Yn,i.

• For all n ≥ 1, the random variables (Yn,i)1≤i≤n are identically distributed (but not neces-
sarily independent).

• supn,i EY 4
n,i < ∞.

Then, we have that
1
n

n∑
i=1

Yn,i → 0, a.s.

Proof: The proof uses similar techniques to the standard proof of the strong law of large numbers,
with some key differences, notably in the use of the Chebychev inequality to upper-bound the fourth
moment of the mean. Let Sn = ∑n

i=1 Yn,i. We want to show that P(limn→∞ Sn/n = 0) = 1. This
is equivalent to showing that for all ϵ > 0, P(Sn > nϵ for infinitely many n) = 0. This event is
nothing but the limsup of the events An = {Sn > nϵ}. Hence, we can use Borel-Cantelli to conclude
if we can show that ∑n P(An) < ∞.
Let ϵ > 0. Using Chebychev inequality with degree 4, we have that P(An) ≤ (ϵ n)−4ES4

n. It
remains to bound ES4

n to conclude. We have that ES4
n = E

∑
1≤i,j,k,l≤n Yn,iYn,jYn,kYn,l. Using

the first condition (zero-mean conditional distribution), all the terms of the form Yn,iYn,jYn,kYn,l,
Y 2

n,iYn,jYn,k, and Y 3
n,iYn,l for i ̸= j ̸= k ̸= l vanish and we end up with ES4

n = nEY 4
n,1 + 3n(n −

1)EY 2
n,1Y

2
n,2, where we have used the fact that the number of terms of the form Y 2

n,iY
2

n,j in the sum
is given by

(n
2
)

×
(4

2
)

= n(n−1)
2 × 6 = 3n(n− 1). Using the last condition of the fourth moment, we

obtain that there exists a constant M > 0 such that ES4
n < C n2. Using Chebychev inequality, we

get that P(An) ≤ ϵ−4 n−2, and thus ∑n P(An) < ∞. We conclude using the Borel-Cantelli lemma.
□

C Additional Theoretical Results

Convolutional neural networks: For an activation function σ, a real number R > 0, and integers
J ≥ 1 and s ≥ 2 denote CNNσ

J,s(R) the set of convolutional neural networks with J filters of length
s, with all weights and biases in [−R,R]. More precisely, for a filter mask w = (w0, .., ws−1), and a
vector x ∈ Rd, the results of the convolution of w and x, denoted w ∗ x is a vector in Rd+s defined
by (w ∗ x)i =

i∑
k=i−s+1

wi−kxk. A network from CNNσ
J (R) is then defined recursively for x ∈ X :
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• h(0)(x) = x

• For j ∈ [1 : J ], h(j)(x) = σ
(
w(j) ∗ h(j−1)(x) + b(j)), where the filters and biases w(j) and b(j)

are in [−R,R]

• yout(x) = cTh(J)(x), where the vector c has entries in [−R,R]

Corollary 5 (Convolutional Neural Networks (Zhou, 2020)) Let σ be the ReLU activation
function. Consider a filter length s ∈ [2, dx]. For any SBPA with adapted score function, there exists
a number of filters J0 and a radius R0 such that the algorithm is not consistent on CNNσ

J,s(R), for
any J ≥ J0 and R ≥ R0. Besides, if the algorithm depends on the labels, then it is also not valid
on CNNσ

J,s(R), for any J ≥ J ′
0 and R ≥ R′

0.

D Experimental details

Dataset CIFAR10 CIFAR100
Architecture ResNet18 ResNet34
Methods GraNd(10),

Uncertainty,
DeepFool

GraNd(10),
Uncertainty,

DeepFool
Selection LR 0.1 0.1
Training LR 0.1 0.1
Selection Epochs 1, 5 1, 5
Nb of exps 3 3
Training Epochs 160 160
Optimizer SGD SGD
Batch Size 128 128

The table above contains the different hyper-parameter we used to run the experiments. GraNd(10)
refers to using the GraNd method with 10 different seeds (averaging over 10 different initializations).
Selection LR refers to the learning rate used for the coreset selection. The training LR follwos a
cosine annealing schedule given by the following:

ηt = ηmin + 1
2(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax
π

))
,

where Tcur is the current epoch, Tmax is the total number of epochs, and ηmax = 0.1 and ηmin =
10−4. These are the same hyper-parameter choices used by Guo, B. Zhao, and Bai, 2022.

D.1 MLP for Scaling laws experiments

We consider an MLP given by

y1(x) = ϕ(W1xin + b1),
y2(x) = ϕ(W2y1(x) + b2),

yout(x) = Wouty2(x) + bout,

where xin ∈ R1000 is the input, W1 ∈ R128×1000,W2 ∈ R128×128,Wout ∈ R2×128 are the weight
matrices and b1, b2, bout are the bias vectors.

44


	Introduction
	Connection to Neural Scaling Laws
	Contributions

	Learning with data pruning
	Setup
	Valid and Consistent pruning algorithms

	Score-Based Pruning Algorithms and their limitations
	Score-based Pruning algorithms
	Asymptotic behavior of SBPA
	Binary classification problems
	General problems

	Solving non-consistency via randomization
	Experiments
	Logistic regression:
	Scaling laws with neural networks
	Image recognition

	Related work
	Score-based methods
	Non-SBPA methods

	Limitations
	Acknowledgement
	Proofs
	Proofs of sec:setup
	Proof of prop:asympbehavior
	Proof of prop:densefamilyconsistent
	Proof of prop:densefamilyvalid
	Proof of the Corolaries 3 and 4
	Proof of thm:mainthm
	Proof of prop:exactcalibration

	Technical results
	A generalized Law of Large Numbers

	Additional Theoretical Results
	Experimental details
	MLP for Scaling laws experiments


