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ABSTRACT

Electroencephalography (EEG)-based brain-computer interfaces facilitate direct
communication with a computer, enabling promising applications in human-
computer interactions. However, their utility is currently limited because EEG
decoding often suffers from poor generalization due to distribution shifts across
domains (e.g., subjects). Learning robust representations that capture underly-
ing task-relevant information would mitigate these shifts and improve generaliza-
tion. One promising approach is to exploit the underlying hierarchical structure
in EEG, as recent studies suggest that hierarchical cognitive processes, such as vi-
sual processing, can be encoded in EEG. While many decoding methods still rely
on Euclidean embeddings, recent work has begun exploring hyperbolic geometry
for EEG. Hyperbolic spaces, regarded as the continuous analogue of tree struc-
tures, provide a natural geometry for representing hierarchical data. In this study,
we first empirically demonstrate that EEG data exhibit hyperbolicity and show
that hyperbolic embeddings improve generalization. Motivated by these findings,
we propose HEEGNet, a hybrid hyperbolic network architecture to capture the
hierarchical structure in EEG and learn domain-invariant hyperbolic embeddings.
To this end, HEEGNet combines both Euclidean and hyperbolic encoders and em-
ploys a novel coarse-to-fine domain adaptation strategy. Extensive experiments on
multiple public EEG datasets, covering visual evoked potentials, emotion recog-
nition, and intracranial EEG, demonstrate that HEEGNet achieves state-of-the-art
performance.

1 INTRODUCTION

Electroencephalography (EEG) measures multi-channel electric brain activity (Niedermeyer &
da Silva, 2005) and can reveal cognitive processes (Bell & Cuevas, 2012) and emotion states
(Suhaimi et al., 2020). EEG-based brain-computer interfaces (BCI) aim to extract meaningful
patterns for applications such as attention monitoring (Lee et al., 2015) and emotion recognition
(Suhaimi et al., 2020). However, they currently suffer from poor generalization due to distribution
shifts across sessions and subjects (Fairclough & Lotte, 2020).

In EEG-based neurotechnology, distribution shifts have traditionally been mitigated by collecting
labeled calibration data and training domain-specific models (Lotte et al., 2018), which limits its
utility and scalability (Wei et al., 2022). As an alternative, domain adaptation (DA) methods aim
to learn a model from source domains that performs well on different (but related) target domains
(Ben-David et al., 2010). In EEG, DA primarily addresses cross-session and cross-subject transfer
learning problems (Wu et al., 2020). Since target domain data is typically unavailable during training
and source domain data is not always available for privacy reasons, model adaptation is often treated
in the context of multi-source multi-target source-free unsupervised domain adaptation (SFUDA)
(Li et al., 2023). However, existing DA methods do not always work reliably, especially when the
distribution shift between domains is large.

Learning robust representations that capture underlying task-relevant information better could re-
duce distribution shifts and thereby improve generalization in domain adaptation (Bengio et al.,
2013; Zhao et al., 2019). One promising approach to achieve such robustness is to exploit the under-
lying hierarchical structure in EEG data. Indeed, recent studies suggest that the brain’s hierarchical
cognitive processes, such as visual processing and emotion regulation, can be encoded in both in-
tracranial EEG (Vlcek et al., 2020) and stimulus-evoked scalp EEG (Turner et al., 2023; Sun et al.,
2023). While Euclidean embeddings currently dominate EEG decoding approaches, such embed-
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Figure 1: Framework Overview. (a) A comparison illustrating that hyperbolic space, with its
negative curvature, is better suited for embedding hierarchical data than flat Euclidean space. (b)
The HEEGNet architecture, which employs a coarse-to-fine domain adaptation strategy, DSMDBN
(proposed). The first stage of DSMDBN aligns domain-specific moment statistics. (c) Top-down
view in hyperbolic space: the second stage of DSMDBN aligns each source domain distribution
to a standard hyperbolic Gaussian distribution by minimizing the Hyperbolic Horospherical Sliced-
Wasserstein (HHSW) discrepancy.

dings are not well-suited to capture the exponential expansion of possible system states described
by a hierarchical tree-like process (Peng et al., 2021). Intuitively, this is because, since the space
is flat, the circumference and area of a circle grow only linearly and quadratically with the radius,
respectively, leading to a mismatch with the underlying data geometry (Fig. 1a). In contrast, in
hyperbolic spaces (Fig. 1a) with negative curvature, such quantities grow exponentially with the ra-
dius, thereby naturally approximating the exponential expansion of hierarchical processes (Krioukov
et al., 2010). Leveraging this representational advantage, hyperbolic embeddings have outperformed
Euclidean approaches across various tasks with hierarchical data in computer vision (CV) and natu-
ral language processing (NLP) (Ganea et al., 2018; Mettes et al., 2024).

In this study, we argue that hyperbolic spaces are often more appropriate for learning EEG embed-
dings. To this end, we first conduct a pilot study using the well-established EEGNet architecture
(Lawhern et al., 2018) to generate EEG embeddings. We quantify the degree of hierarchical struc-
ture in these embeddings and confirm their hyperbolicity. We then modify EEGNet by replacing
its multinomial logistic regression (MLR) with a hyperbolic variant, demonstrating that hyperbolic
embeddings improve generalization over Euclidean ones. Motivated by the potential of the hy-
perbolic embeddings, we propose HEEGNet, a hybrid hyperbolic network architecture designed
to capture the hierarchical structure of EEG data and learn domain-invariant hyperbolic EEG em-
beddings. HEEGNet (Fig. 3) integrates both Euclidean and hyperbolic encoders: the Euclidean
encoders extract meaningful spectral–spatial–temporal EEG features and project them into hyper-
bolic space, with the hyperbolic encoders further refining these representations to capture hierar-
chical relationships more effectively. The hybrid nature of HEEGNet enables Euclidean encoders
to leverage well-established signal processing principles and extract meaningful neurophysiolog-
ical features from EEG signals, while the hyperbolic encoding helps to preserve the hierarchical
structure in hyperbolic space. To address distribution shifts across domains, HEEGNet employs a
novel coarse-to-fine domain alignment strategy. This strategy extends moment alignment, which is
the current state-of-the-art (SotA) approach in EEG cross-domain generalization (Roy et al., 2022;
Bakas et al., 2025) but whose performance often degrades under large distribution shifts (Li et al.,
2025; Rodrigues et al., 2018). Specifically, we propose domain-specific moment-then-distribution
batch normalization (DSMDBN, Sec. 3.1), which first explicitly aligns the domain-specific first- and
second-order moments (Fig. 1b) using recently developed Riemannian batch normalization methods
(Chen et al., 2025a;b). In the second stage (Fig. 1c), the aligned EEG embeddings are further
matched at the distribution level by minimizing the Hyperbolic Horospherical Sliced-Wasserstein
discrepancy (Bonet et al., 2023) between each source domain and a standard hyperbolic Gaussian.
DSMDBN transforms domain-specific inputs into domain-invariant outputs, enabling the extension
to multi-source multi-target SFUDA scenarios. We demonstrate that HEEGNet obtains SotA per-
formance on public EEG datasets encoding hierarchy, including visual evoked potentials, emotion
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recognition, and intracranial EEG. Additionally, we further validate its performance on public EEG
motor imagery datasets, which are not reported to encode hierarchical information.

2 PRELIMINARIES

2.1 RELATED WORK

Brain hierarchy. The human brain is a complex network that supports various hierarchical cogni-
tive processes. For example, in visual processing, lower cortical areas detect basic features, which
higher cortical areas progressively refine into global representations (Hochstein & Ahissar, 2002).
Similarly, in emotion regulation, subcortical areas generate primal urges, which are refined by the
limbic system with experience, and the neocortex finally regulates them into complex thoughts and
feelings (Panksepp, 2011). To study hierarchical brain dynamics, researchers have widely used in-
tracranial EEG, which captures neuronal population activity with high spatial and temporal resolu-
tion (Lachaux et al., 2003). As for scalp EEG, Collins et al. (2018) observed distinct EEG responses
to varied stimulus frequencies reflecting different visual processing levels. Sun et al. (2023) showed
the hierarchical emotion ambiguity processing with distinct EEG patterns.

Hyperbolic neural networks. Hyperbolic neural networks, which perform neural network oper-
ations in hyperbolic space, have been widely explored in NLP and CV (Peng et al., 2021; Ganea
et al., 2018). In the EEG literature, Chang et al. (2025) performed contrastive pretraining for emo-
tion recognition in hyperbolic space. In contrast, our work introduces a hybrid hyperbolic network
architecture and a domain adaptation strategy (DSMDBN), leveraging hyperbolic geometry to ad-
vance both representation learning and cross-domain generalization.

Domain Adaptation in EEG. Among the DA techniques applied to EEG, moments alignment that
align the first and second-order moments either in input (He & Wu, 2019; Gnassounou et al., 2024)
or in latent space (Kobler et al., 2022; Bakas et al., 2025) are considered as SotA (Roy et al., 2022;
Bakas et al., 2025). Such heuristic alignments are not guaranteed to improve generalization (positive
transfer), but tend to improve accuracy under mild distribution shifts (Yair et al., 2019). Theoret-
ically, DA was studied as an upper bound analysis of target risk (Ben-David et al., 2010), using
discrepancy terms (such as integral probability metrics (Redko et al., 2019) or f-divergences (Acuna
et al., 2021)) between the source and target distributions, suggesting alignment of the feature dis-
tributions as a potential solution (Ganin et al., 2016). Inspired by this, the proposed DSMDBN
(Fig. 1c) extends moment alignment further with feature distribution alignment.

2.2 MULTI-SOURCE MULTI-TARGET SFUDA

Let X denote the input space, Y the label space, and D the set of domain identifiers, where random
variables x, y, and d represent features, labels, and domains, respectively. In the multi-source multi-
target SFUDA setting, given M labeled source domain datasets S = {(xi, yi, di) | xi ∈ X , yi ∈
Y, di ∈ Ds}Ls

i=1 and N unlabeled target domain datasets T = {(xi, di) | xi ∈ X , di ∈ Dt}Lt
i=1, Ls

and Lt denote the sizes of source domains and target domains, and yi and di indicate the associated
label and domain of sample i. We assume that all source and target domains share the same feature
and label spaces. The goal is to learn a model h from S that generalizes to unseen, unlabeled T via
SFUDA, where only the trained model is available.

2.3 HYPERBOLIC GEOMETRY

The hyperbolic space is a Riemannian manifold of constant negative curvature K < 0. Among its
five equivalent models (Cannon et al., 1997), we focus on the Lorentz model due to its numerical
stability (Mishne et al., 2023). The n-dimensional Lorentz model is LnK := {p ∈ Rn+1 | ⟨p, p⟩L =
1
K , pt > 0} with the Lorentz inner product ⟨p, p⟩L = ⟨ps, ps⟩ − p2t . Following Ratcliffe (2006),
we denote the first dimension t as the time component and the remaining dimensions s as the space
component (i.e., p ∈ LnK = [pt, p

⊤
s ]

⊤). The geodesic distance, defined as the shortest distance
between any two points, is defined as:

dL(p, q) =
1√
−K cosh−1

(
K ⟨p, q⟩L

)
(1)
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Under this distance, it is possible to introduce mean and variance operations into the Lorentz man-
ifold. Specifically, for a set of points P = {pi ∈ LnK}i≤M , the weighted Fréchet mean wFMη on
Riemannian manifolds is defined as the minimizer of the squared distances weighted by ηi:

µ = wFMη

(
{pi ∈ LnK}Mi=1

)
= arg min

q∈Ln
K

M∑
i=1

ηi d
2
L(q, pi), (2)

If the weights ηi are uniform, the weighted Fréchet mean reduces to the standard Fréchet mean, and
the Fréchet variance ν2 is defined as the attained value at the Fréchet mean.

For each point p ∈ LnK , there corresponds a tangent space TpLnK = {v ∈ Rn+1|⟨p, v⟩L = 0}. To
project points between the manifold pi ∈ LnK and the tangent space vi ∈ TpLnK at p ∈ LnK , the
exponential map expKp : TpLnK → LnK and the logarithmic map logKp : LnK → TpLnK can be used to
transport points vi ∈ TpLnK from the tangent space at p to the tangent space at q, parallel transport
PTp→q(v) ∈ LnK operation can be performed (see App. C.1 for their closed-form expressions).

Recently, Chen et al. (2025b, Sec. 5.5) show that Lorentz model admits a gyrovector structure (Chen
et al., 2025b, Def. 4), which extends the vector addition and scalar multiplication into manifolds.
Specifically, the Lorentz gyroaddition, gyromultiplication, and gyroinverse are

p⊕L
K q = Exp0

(
PT0→p (Log0(q))

)
, ∀p, q ∈ LnK , (3)

t⊙L
K p = Exp0 (tLog0(p)) , ∀t ∈ R, ∀p ∈ LnK , (4)

⊖L
Kp = −1⊙L

K p =

[
pt
−ps

]
,∀p ∈ LnK , (5)

where 0 =
[√
−1/K, 0, . . . , 0

]⊤
is the origin over the Lorentz model. It is also the identity element:

0⊕L
K q = q,∀q ∈ LnK . Eqs. (3) and (4) admit closed-form expressions, as shown in App. C.2.

2.3.1 HYPERBOLIC OPERATIONS.

Hyperbolic neural networks. We define the hyperbolic neural networks used in this work within
the Lorentz model following Bdeir et al. (2024). App. B.1 provides a brief review of gyrovec-
tor spaces, which generalize vector structures to manifolds, serving as foundations to build neural
networks in hyperbolic space. The Lorentz convolutional layer (App. C.6) is defined as a matrix
multiplication between a linearized kernel and a concatenation of the values in its receptive field.
The Lorentz ELU (App. C.3) activation applies the activation function to the space components and
concatenates them with the time component. The average pooling layer is implemented by comput-
ing the Lorentzian weighted mean of all hyperbolic features within the receptive field. Analogous to
the Euclidean MLR classifier, the Lorentz MLR (App. C.7) also utilizes the distance from instances
to hyperplanes to describe the class regions.

δ-hyperbolicity. Khrulkov et al. (2020) introduced δ-hyperbolicity as a measure of the degree of
tree-like structure inherent in embeddings. The idea is to find the smallest value of δ for which the
triangle inequality holds via the Gromov product (mathematical formulation in App. C.8). In this
formulation, the definition of a hyperbolic space in terms of the Gromov product can be interpreted
as stating that the metric relations between any four points are the same as they would be in a tree,
up to an additive constant δ. The lower δ ≥ 0 is, the closer the embedding is to hyperbolic space.

Hyperbolic horospherical sliced-Wasserstein discrepancy. The sliced-Wasserstein distance
(SWD) is a popular proxy for the Wasserstein distance for comparing probability distributions and
has been extensively applied in optimal transport (Lee et al., 2019). Analogous to the Euclidean
SWD, (Bonet et al., 2023) defined the hyperbolic sliced-Wasserstein distance by projecting dis-
tributions onto horospheres, denoted as Hyperbolic horospherical sliced-Wasserstein discrepancy
(HHSW), where distances between the projections of two points belonging to a geodesic with the
same direction are conserved. For probability measures µ, ν ∈ Pp(Ld) in the Lorentz model, with
p ≥ 1, the p-th power of the HHSW is defined as:

HHSWp
p(µ, ν) =

∫
T0̄Ld∩Sd

W p
p

(
Bv#µ,B

v
#ν

)
dλ(v) (6)
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where T0̄Ld ∩ Sd is the set of unit tangent vectors at the origin 0̄, W p
p is the p-th power of the 1D

p-Wasserstein distance, Bv#µ denotes the horospherical projection of µ along direction v, and dλ(v)
is the uniform measure over these directions.

3 METHODS

3.1 DOMAIN-SPECIFIC MOMENT-THEN-DISTRIBUTION BATCH NORMALIZATION

Hyperbolic batch normalization. Batch normalization (BN) (Ioffe & Szegedy, 2015) is a widely
used training technique in deep learning as BN layers speed up convergence and improve general-
ization. Chen et al. (2025a;b) extended the Euclidean BN into the hyperbolic space by gyrovector
structure. The centering and scaling in the Euclidean BN correspond to Lorentz gyroaddition, gy-
roinverse, and gyromultiplication. Given a batch of activations P = {pi ∈ LnK}i≤M , the core
operations of hyperbolic batch normalization (HBN) are

HBN(pi) =
γ√
ν2 + ϵ

⊙︸ ︷︷ ︸
Scaling

(
⊖µ⊕ pi︸ ︷︷ ︸
Centering

)
∀i ≤M, (7)

where µ and ν2 are Fréchet mean and Fréchet variance, γ ∈ R is the scaling parameter, and ϵ is a
small value for numerical stability.

Domain-specific momentum batch normalization for EEG. Chang et al. (2019) introduced
domain-specific batch normalization, which employs multiple parallel BN layers that process obser-
vations based on their corresponding domains to mitigate domain shift. However, in EEG scenarios,
where small dataset sizes can make batch statistics unreliable for normalization (Yong et al., 2020).
To address this, Kobler et al. (2022) proposed Domain-Specific Momentum Batch Normalization to
track domain-specific momentum-based running estimates of the first- and second-order moments.
It keeps two separate sets of running estimates, the training estimates are updated using a momen-
tum parameter ηtrain(k) that follows a clamped exponential decay schedule at training step k, while
a fixed momentum parameter ηtest is used during testing.

Domain-specific moment-then-distribution batch normalization. While Kobler et al. (2022)
achieved SotA performance, such moment alignment is not guaranteed to improve generalization
(achieve positive transfer) and often struggles under large distribution shifts (Li et al., 2025; Ro-
drigues et al., 2018). On the other hand, feature distribution alignment offers theoretical guarantees,
but can be challenging to achieve in practice, as the feature distributions may be too distant for effec-
tive learning (Chang et al., 2019). Thus, we propose a two-stage DSMDBN strategy by extending
moment alignment in (Kobler et al., 2022) to incorporate the alignment of domain-specific feature
distributions in hyperbolic space.

Formally, in our setting we assume that minibatches Bk, that form the union of NBk
≤ |D| domain-

specific minibatches Bdk, are drawn from distinct domains d ∈ DBk
⊆ D. Each Bdk contains M

NBk

i.i.d. observations xi, i = 1, . . . ,M/NBk
. In the first stage, DSMDBN(1) (algorithm 1) explicitly

aligns the domain-specific running first- and second-order moments by centering and scaling them
with ν2ϕ, which can be expressed as:

p̃i = DSMDBN(1)(pi) = HBNd(i)
(
pi; ηtest, ηtrain(k)

)
. ∀pi ∈ Bdk, ∀d ∈ DBk

(8)
DSMDBN(2) (algorithm 2), moment-aligned domain-specific EEG embeddings are then further (im-
plicitly) aligned by matching them to samples from a standard hyperbolic Gaussian N (0, 1). This
matching is achieved by minimizing the HHSW (Eq. (6)) as a loss term

DSMDBN(2)(pi) = HHSWd(i)(p̃i) , ∀pi ∈ Bdk, ∀d ∈ DBk
. (9)

This implicit alignment guides the feature extractor toward learning robust, domain-invariant repre-
sentations by matching source distributions to a standard Gaussian, thereby addressing distribution
shifts that moment alignment alone often fails to mitigate. At test-time, HEEGNet applies only
moment alignment, as source data are typically sufficiently diverse to capture the task-relevant vari-
ability in EEG (Rodrigues et al., 2018; Mellot et al., 2023). Learning a Gaussian-aligned feature
space from the sources is sufficient for the extractor to produce normalized target-domain features
after moment alignment, enabling the application of domain matching in the SFUDA scenarios.
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3.2 HEEGNET

Following Kobler et al. (2022), we constrain the hypothesis class H to functions h : X × D → Y
that can be decomposed into a composition of a shared feature extractor fθ : X → LnK , a domain-
specific alignment module mϕ : LnK × D → LnK , and a shared classifier gψ : LnK → Y with
parameters Θ = {θ, ϕ, ψ}. We parametrize h = gψ ◦ mϕ ◦ fθ as a neural network and learn the
entire model in an end-to-end fashion, which we denote as HEEGNet (details in App. D.2).

The HEEGNet is designed as a hybrid model, combining Euclidean encoders with hyperbolic neural
networks. Most existing hyperbolic models adopt a hybrid approach, first generating hierarchical
embeddings in Euclidean space and then mapping them to hyperbolic space, leveraging the strong
feature extraction capabilities of well-established Euclidean encoders (Peng et al., 2021). This hy-
brid design is particularly well-suited for EEG data. Studies suggest that EEG signals contain hier-
archical information across temporal (Damera et al., 2020), spectral (Sun et al., 2023), and spatial
(Tonoyan et al., 2017) dimensions. Euclidean encoders, such as convolutional networks, naturally
align with this organization, making them effective for extracting hierarchical and neurophysiolog-
ically meaningful features directly from raw EEG signals (Lawhern et al., 2018). However, such
operations do not preserve physical properties in hyperbolic space, where dimensions are intrinsi-
cally coupled (see App. F for fully hyperbolic experiments).

In a nutshell, the feature extractor fθ consists of three Euclidean convolutional layers along with
standard components (e.g., BN and pooling), a projection layer ProjX, and a hyperbolic convolu-
tional layer (Fig. 3). We sequentially adopt the three convolutional layers from EEGNet (Lawhern
et al., 2018): temporal convolution to learn frequency-specific filters, depthwise spatial convolu-
tion to capture electrode-wise patterns, and a second depthwise temporal convolution to summarize
information across time. These well-established operations provide spectral-spatial-temporal fea-
ture maps with meaningful neurophysiologically properties. The ProjX layer projects the Euclidean
feature maps into hyperbolic space LnK , after which a hyperbolic convolutional layer performs point-
wise convolution to optimally combine these feature maps. The alignment module mϕ applies the
first stage of the proposed DSMDBN (Eq. (8)) to explicitly align domain-specific moments in hyper-
bolic space, followed by hyperbolic ELU and pooling (Eq. (21)) for dimension reduction. Finally,
the classifier gψ is parametrized as a hyperbolic MLR (HMLR) layer).

4 EXPERIMENTS

In this study, we consider three EEG modalities that have been reported to encode hierarchical struc-
tures: visual- and emotion-stimuli scalp EEG, and intracranial EEG (Turner et al., 2023; Sun et al.,
2023; Sonkusare et al., 2020). Corresponding EEG-based BCI applications include steady-state
visually evoked potentials (SSVEP), code-modulated visually evoked potentials (CVEP), emotion
recognition, and intracranial EEG. While all applications hold significant potential for rehabilitation
and healthcare (Al-Nafjan et al., 2017; Guo et al., 2022; Elsner et al., 2018), their practical utility
remains limited due to poor generalization across domains. We conduct a pilot study to evaluate hy-
perbolic embeddings and perform comprehensive experiments to assess the proposed HEEGNet. We
further evaluate HEEGNet on public motor imagery datasets that are not being reported to encode
hierarchical information.

Visually evoked potentials (VEP): Nakanishi (9 subjects/1 session/12 classes) (Nakanishi et al.,
2015), Wang (34/1/40) (Wang et al., 2016), CBVEP40 (12/1/4) (Castillos et al., 2023), and CB-
VEP100 (12/1/4) (Castillos et al., 2023). We used MOABB (Chevallier et al., 2024) to pre-process
the data and extract labeled epochs. Following Pan et al. (2022b), EEG signals were resampled to
256 Hz, bandpass filtered between 1-50 Hz, and segmented each trial into 1- or 2-second segments.

Emotion recognition: Seed (15/3/3) (Duan et al., 2013) and Faced (123/1/9) (Chen et al., 2023b).
We used the public available pre-processed data. For Seed, EEG signals were resampled to 200 Hz
and bandpass filtered between 0–75 Hz; for Faced, a 0.05–47 Hz bandpass filter was applied.

Intracranial EEG: Boran (9/2-7/2) (Boran et al., 2020). We use MNE-python (Gramfort et al.,
2014) to pre-process data and extract labeled epochs. Following Frauscher et al. (2018), EEG signals
were resampled to 1000 Hz, bandpass filtered between 0.3-70 Hz.
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Evaluation. We consider cross-domain adaptation within each dataset. We treat sessions as do-
mains, and use either a leave-one-group-out (source domain number≤10) or a 10-fold leave-groups-
out cross-validation scheme to fit and evaluate models. For the intracranial EEG dataset, due to the
different number of electrodes across subjects, we consider the cross-session adaptation setting. We
fit and evaluate models independently for each subject, treating the session as the grouping variable.
For other datasets, we consider the cross-subject adaptation and treat the subject as the grouping
variable. We use either the standard Adam optimizer (Kingma & Ba, 2014) for Euclidean frame-
works or the Riemannian Adam optimizer (Bécigneul & Ganea, 2018) for geometric frameworks,
both with default hyperparameters in PyTorch. We split the source domain data into training and val-
idation sets (80% / 20% splits, randomized and stratified by domain and label) and iterated through
the training set for 100 epochs. Early stopping was fit with a single stratified (domain and labels)
inner train/validation split.

4.1 PILOT STUDY.

We select five datasets as representatives to motivate the use of hyperbolic embeddings. All exper-
iments are conducted under the cross-domain setting and follow the evaluation scheme described
above. We begin by training and evaluating EEGNet on cross-domain tasks. Following Krioukov
et al. (2010), we then use the target domain raw EEG data and the trained EEGNet to generate em-
beddings of the intermediate layer (after first two convolutional layers), and the classification space
to quantify their degree of inherent tree-likeness using δ-hyperbolicity respectively (Eq. (27)). Fol-
lowing Khrulkov et al. (2020), we report the scale-invariant metric δrel ∈ [0, 1], where the lower
δrel is the higher the hyperbolicity of the embeddings. We then modify EEGNet by replacing its
MLR with its hyperbolic variant, HMLR, and repeat the training and evaluation procedure.

Tab. 1 indicates that all dataset both raw EEG data and EEGNet generated embeddings exhibit hi-
erarchical structures, confirming the suitability of hyperbolic geometry for capturing the underlying
information. Furthermore, replacing the Euclidean MLR layer in EEGNet with its hyperbolic coun-
terpart consistently enhances performance across all datasets (Tab. 2), suggesting that hyperbolic
geometry captures more robust representations across domains and improves generalization. t-SNE
visualizations Fig. 2a, b for the identical subject and session show that under the same encoder struc-
ture, hyperbolic representations enhance class separability. These findings strongly motivate the use
of hyperbolic embeddings in cross-domain generalization.

Table 1: Pilot Study: δrel of datasets. The lower the δrel, the closer the dataset to hyperbolic space.
The number of domains in each dataset is indicated by n.

Visual Emotion Intracranial

Dataset Nakanishi Wang Seed Faced Boran
Metric (n=9) (n=34) (n=45) (n=123) (n=37)

Raw δrel 0.244± 0.064 0.219± 0.053 0.052± 0.026 0.103± 0.077 0.157± 0.045

Intermediate δrel 0.263± 0.036 0.240± 0.045 0.061± 0.026 0.111± 0.050 0.141± 0.041

Classification space δrel 0.306± 0.027 0.333± 0.039 0.072± 0.025 0.132± 0.047 0.017± 0.048

4.2 MAIN EXPERIMENTS

Baseline models. We included six deep learning architectures EEGNet (Lawhern et al., 2018),
EEGConformer (Song et al., 2022), ATCNet (Altaheri et al., 2022), TSLANet (Eldele et al., 2024),
SchirrmeisterNet (Schirrmeister et al., 2017), and FBCNet (Mane et al., 2021) that proposed or
extensively used for general EEG decoding. We consider four deep learning architectures specifi-
cally designed for VEP: EEGInception (Santamaria-Vazquez et al., 2020), DDGCNN (Zhang et al.,
2024), SSVEPNet (Pan et al., 2022a), SSVEPFormer (Chen et al., 2023a); and two deep learning
architectures for emotion recognition: EmT (Ding et al., 2025), TSception (Ding et al., 2022). We
further considered two foundation models: LaBraM (Jiang et al., 2024) and CBraMod (Wang et al.,
2024a) in evaluation. We use the implementation provided in the public available repositories for
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Table 2: Pilot Study: comparison of Euclidean / Hyperbolic MLR. The averages of test-set scores
are shown above using balanced accuracy (the score and the standard deviation are shown for each
dataset). The number of domains in each dataset is indicated by n. Permutation-paired t-tests were
used to identify significant differences between EEGNet+HMLR (Hyperbolic) and EEGNet (1e4
permutations). Significant differences are highlighted using dots: •p ≤ 0.05, •p ≤ 0.01, •p ≤ 0.001.

Visual Emotion Intracranial

Dataset Nakanishi Wang Seed Faced Boran
Model (n = 9) (n = 34) (n = 45) (n = 123) (n = 37)

EEGNet 57.2± 19.8 • 37.4± 12.9 • 74.5± 19.8 24.8± 13.7 • 55.4± 9.1

EEGNet + HMLR 60.8± 20.7 39.2± 13.8 75.1± 20.0 38.8± 12.4 57.4± 8.7

all architectures, stick to all hyperparameters as provided, and use the standard cross-entropy loss as
training objective.

SFUDA baselines. We consider two SFUDA baselines: Euclidean alignment (EA) (He & Wu,
2019), and spatio-temporal Monge alignment (STMA) (Gnassounou et al., 2024). These alignment
methods are model-agnostic techniques that are applied to the EEG data in the input space before a
model is fitted. For example, EA aligns the EEG trials covariance matrix directly in the input space.
Therefore, we combine them with different models (e.g., EEGNet + EA) in our evaluation.

HEEGNet. We parametrize h = gψ ◦ mϕ ◦ fθ as a neural network and learn the entire model in
an end-to-end fashion, and use the standard cross-entropy loss with HHSW (Eq. (9)) as the training
objective. The HHSW loss weight is a hyperparameter to be tuned, we set it to 0.01 for emotion and
0.5 for other datasets in our experiments. Following Bdeir et al. (2024), we set the curvature to -1
by default and implemented the norm normalization to assure numerical stabilization for training.
Computational cost for hyperbolic operation is briefly discussed in App. D.4. During source-free
target domain adaptation, HEEGNet keeps the fitted source feature extractor fθ and linear classi-
fier gψ fixed and estimates domain-specific first- and second-order statistics by solving Eq. (2) for
moments alignment mϕ.

Tab. 3 summarizes the results across all three EEG modalities, presenting the grand average
scores with general EEG decoding baseline methods. Extended results for VEP-specific, emotion
recognition-specific and foundation models, as well as per-dataset results, are provided in Sup-
plementary Tab. 8 and Tab. 9. At the overall grand average level, HEEGNet (DSMDBN) outper-
forms all baseline methods. While input space alignment methods like EA and STMA improved
cross-domain generalization, a gap still remains compared to our proposed two-stage alignment
DSMDBN. A visualization of the two stages of DSMDBN is shown in Fig. 2c, d. Interestingly,
HEEGNet (DSMDBN+EA), the integration of DSMDBN with the input space alignment method
EA, achieves superior performance. We conduct an ablation study to systematically investigate the
effects of different alignment strategies within the HEEGNet architecture.

Figure 2: t-SNE visualizations of classification space for Nakanishi (subject 4, session1). Each
color denotes a distinct class. (a) EEGNet, (b) EEGNet with HMLR, (c) DSMDBN stage 1, and
(d) DSMDBN stage 2. The plots illustrate how hyperbolic embedding and our proposed two-stage
alignment progressively enhance class separability.

Ablation study. Tab. 4 summarizes the effectiveness of three different alignment methods, input
alignment (EA), moment alignment, and distribution alignment, within the HEEGNet architecture.
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Table 3: Main experiment results. Grand average of test-set scores across three EEG modali-
ties (balanced accuracy (%); higher is better; mean ± std) Permutation-paired t-tests were used to
identify significant differences between HEEGNet (DSMDBN+EA) and baseline methods (1e4 per-
mutations, 18 tests, t-max correction). Significance markers: •p ≤ 0.05, •p ≤ 0.01, •p ≤ 0.001.

VEP Emotion Intracranial Overall
Model SFUDA (n=67) (n=168) (n=37) (n=272)

EEGNet w/o 35.7±15.5 • 38.1±27.0 • 55.4±9.1 • 39.9±23.6 •
EA 55.8±20.8 • 73.8±22.3 • 59.1±11.2 • 67.4±22.3 •
STMA 30.3±8.9 • 70.7±20.5 • 51.2±5.9 • 58.1±24.0 •

EEGConformer w/o 29.1±9.1 • 83.2±16.9 • 55.5±7.0 • 66.1±27.2 •
EA 46.1±23.1• 82.8±16.8 • 61.7±13.1 • 70.9±24.1 •
STMA 27.8±7.0 • 78.2±15.9 • 53.1±5.2 • 62.4±25.2 •

ATCNet w/o 33.3±15.4 • 17.5±11.7 • 57.5±9.0 • 26.9±18.5 •
EA 52.2±21.4• 54.1±15.5 • 57.1±9.0 • 54.0±16.5 •
STMA 39.4±15.6 • 56.4±16.3 • 54.2±5.7 • 51.9±16.7 •

TSLANet w/o 24.4±14.1 • 35.5±12.9 • 55.1±9.3 • 35.5±15.7 •
EA 37.3±28.1 • 44.8±18.1 • 54.9±10.4 • 44.3±20.8 •
STMA 20.5±5.4 • 49.6±15.1 • 54.1±6.2 • 43.0±17.9 •

SchirrmeisterNet w/o 40.2±27.5 • 51.9±22.4 • 56.9±7.7 • 49.7±23.1 •
EA 35.7±24.7 • 79.0±16.4 • 65.0±10.2 66.5±25.7 •
STMA 33.1±16.8 • 64.2±16.7 • 53.9±5.5 • 55.2±20.4 •

FBCNet w/o 22.8±8.0 • 28.5±19.5 • 61.1±10.6 • 31.6±20.2 •
EA 38.8±28.4 • 51.3±20.7 • 61.3±11.0 • 49.6±22.9 •
STMA 21.6±5.4 • 33.0±20.9 • 53.0±6.8 • 32.9±19.2 •

HEEGNet (proposed) DSMDBN 79.6±19.8 82.8±16.6 58.4±9.6 78.7±18.6
DSMDBN+EA 77.4±12.6 86.7±12.5 66.7±12.5 81.7±14.4

We highlight three important observations. First, moment alignment in hyperbolic space is the pri-
mary driver of performance improvement. The absence of moment alignment consistently results
in a significant performance drop of at least 12.3% compared to the best-performing configuration.
Second, distribution alignment proves effective only when paired with moment alignment, validating
our proposed DSMDBN approach, which first aligns moments to facilitate subsequent distribution
alignment. Third, moment alignment in the latent space outperforms input space alignment, support-
ing the findings of Bakas et al. (2025) that alignment benefits from enhanced class discrimination in
the latent representation. Fourth, DSMDBN augmented with input alignment yields the best perfor-
mance, indicating that multistage alignment a promising strategy in cross-domain generalization.

Table 4: Ablation results. Grand average of all test-sets scores (balanced accuracy (%), higher is
better) relative to the combination of alignment in HEEGNet. Permutation-paired t-test values and
adjusted p-values indicate the effect strength (1e4 permutations, 7 tests, t-max correction).

Alignment Metrics

Moments Distribution Input mean (std) t-val (p-val)

✓ ✓ ✓ - -
✓ ✓ ✗ -3.0 (18.6) 3.6 (0.0003)
✓ ✗ ✓ -5.0 (15.6) 8.8 (0.0001)
✓ ✗ ✗ -5.0 (19.3) 5.5 (0.0001)
✗ ✓ ✗ -12.3 (23.1) 10.4 (0.0001)
✗ ✗ ✗ -12.9 (22.4) 11.7 (0.0001)
✗ ✓ ✓ -15.5 (21.4) 14.9 (0.0001)
✗ ✗ ✓ -15.5 (22.2) 16.0 (0.0001)
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4.3 MOTOR IMAGERY

We consider two publicly available motor imagery datasets. Pre-processing included resampling
EEG signals to 250 or 256 Hz, applying temporal filters to capture frequencies between 4 and 36 Hz,
and extracting 3-second epochs linked to specific class labels. In addition to Euclidean models, we
evaluate several manifold-based decoding approaches for motor imagery. These include Grassmann
manifold methods: GDLNet (Wang et al., 2024b) and GyroAtt-Gr (Wang et al., 2025); Symmetric
Positive Definite (SPD) manifold methods: TSMNet (Kobler et al., 2022), MAtt (Pan et al., 2022b),
and CSPNet (Ju & Guan, 2022); as well as Symmetric Positive Semi-Definite (SPSD) manifold
methods: GyroAtt-SPSD (Wang et al., 2025). The results, summarized in Tab. 5, indicate that our
proposed HEEGNet delivers competitive performance.

Table 5: Motor imagery per dataset results. Average of test-set scores (balanced accuracy (%);
higher is better; mean ± std).

Dataset

Manifold Model SFUDA BNCI2014001 BNCI2015001

Euclidean

ATCNet w/o 42.7 ± 16.4 60.2 ± 8.4
EEGConformer w/o 42.6 ± 16.7 60.1 ± 10.7
EEGNet w/o 43.6 ± 16.7 61.3 ± 8.8

EA 49.9 ± 16.9 72.5 ± 14.2
STMA 49.7 ± 16.9 69.9 ± 14.6

EEGInceptionMI w/o 39.7 ± 12.7 59.5 ± 9.2
ShallowNet w/o 42.2 ± 16.2 58.7 ± 5.8
LaBraM w/o 33.3 ± 16.6 70.8 ± 31.4
CBraMod w/o 30.6 ± 4.0 59.1 ± 8.1

Grassmann
GDLNet w/o 46.3 ± 5.1 63.3 ± 14.2
GyroAtt-Gr w/o 52.1 ± 14.2 75.3 ± 13.7

SPSD GyroAtt-SPSD w/o 51.7 ± 13.1 74.9 ± 12.6

SPD

MAtt w/o 45.3 ± 11.3 63.1 ± 10.1
CSPNet w/o 45.2 ± 9.3 64.2 ± 13.4
TSMNet w/o 43.0 ± 13.3 61.7 ± 11.4

EA 51.2 ± 15.1 72.5 ± 13.6
STMA 52.5 ± 16.4 70.1 ± 14.2
SPDDSBN 54.6 ± 16.1 74.3 ± 14.7

Hyperbolic HEEGNet DSMDBN+EA 54.1 ± 15.9 75.8 ± 13.0

5 DISCUSSIONS

In this work, we introduced HEEGNet, a hybrid hyperbolic network architecture designed to cap-
ture the hierarchical structure of EEG data and learn domain-invariant hyperbolic embeddings. Our
pilot study and empirical analyses indicate that EEG data exhibits hyperbolicity and that hyperbolic
embeddings improve generalization compared to Euclidean ones. By integrating both Euclidean
and hyperbolic encoders and employing a novel two-stage domain adaptation strategy (DSMDBN),
HEEGNet effectively aligns domain-specific moments and distributions in hyperbolic space. Ex-
periments on multiple EEG datasets, including visual evoked potentials, emotion recognition, and
intracranial EEG, demonstrate state-of-the-art performance.

Despite these strengths, HEEGNet relies on stable estimates of domain-specific statistics, which
become unreliable in online settings where data arrive sequentially. Like all hyperbolic neural net-
works, hyperbolic operations add additional computational cost. Future work will explore online
extensions of hyperbolic normalization and the development of more expressive encoders capable
of capturing hierarchical structure in EEG signals.
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REPRODUCIBILITY STATEMENT

We have made great efforts to ensure the reproducibility of our results. The primary components
necessary for replication are detailed throughout the main paper and supplementary materials.

Code Availability. Our proposed novel hybrid hyperbolic neural network architecture HEEG is
described in Section 3.2, the novel domain adaptation strategy is described in Section 3.1 . To
ensure the reproducibility of HEEGNet, we provide an anonymous link to the downloadable source
code below.

https://anonymous.4open.science/r/HEEGNet-F655

The provided code is designed to allow other researchers to replicate the methods and main results
described in the paper with minimal effort. In particular, it includes implementations of all the key
algorithms, model architectures, and evaluation procedures used in our experiments. To ensure ease
of use, the code is well-documented and structured to facilitate understanding and modification.
Instructions for setting up the environment, installing necessary dependencies, and running the code
are included in a detailed README file.

Data Availability and Processing Steps. All datasets used in our experiments are publicly avail-
able VEP, intracranial EEG and emotion recognition datasets. Our preprocessing and evaluation
schemes are detailed in Section 4.

All the public VEP datasets we used can be found in the link below.

https://moabb.neurotechx.com/docs/dataset_summary.html

All the public emotion recognition datasets we used can be found in links below.

SEED: https://bcmi.sjtu.edu.cn/home/seed/

Faced: https://www.synapse.org/Synapse:syn50614194/files/

The public intracranial and EEG datasets we used can be found in links below.

Boran: https://doi.gin.g-node.org/10.12751/g-node.d76994/

ETHICS STATEMENT

This research employs computational approaches exclusively on publicly available datasets, with no
involvement of human subjects or handling of sensitive data. We follow ICLR’s ethical guidelines
and declare no competing interests, prioritizing the responsible use of our findings and transparent
reporting to facilitate reproducibility.
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Raphaëlle N. Roy, Marcel F. Hinss, Ludovic Darmet, Simon Ladouce, Emilie S. Jahanpour, Bertille
Somon, Xiaoqi Xu, Nicolas Drougard, Frédéric Dehais, and Fabien Lotte. Retrospective on
the First Passive Brain-Computer Interface Competition on Cross-Session Workload Estimation.
Frontiers in Neuroergonomics, 3:838342, 2022. doi: 10.3389/fnrgo.2022.838342.

Eduardo Santamaria-Vazquez, Victor Martinez-Cagigal, Fernando Vaquerizo-Villar, and Roberto
Hornero. Eeg-inception: a novel deep convolutional neural network for assistive erp-based brain-
computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28
(12):2773–2782, 2020. doi: 10.1109/TNSRE.2020.3048106.

Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization.
Human brain mapping, 38(11):5391–5420, 2017. doi: doi.org/10.1002/hbm.23730.

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In Inter-
national Conference on Learning Representations, 2021.

Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolu-
tional transformer for eeg decoding and visualization. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 31:710–719, 2022. doi: 10.1109/TNSRE.2022.3230250.

Saurabh Sonkusare, Vinh T Nguyen, Rosalyn Moran, Johan van der Meer, Yudan Ren, Nikitas Kous-
sis, Sasha Dionisio, Michael Breakspear, and Christine Guo. Intracranial-eeg evidence for medial
temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex, 130:
32–48, 2020. doi: 10.1016/j.cortex.2020.05.018.

Nazmi Sofian Suhaimi, James Mountstephens, and Jason Teo. Eeg-based emotion recognition: a
state-of-the-art review of current trends and opportunities. Computational intelligence and neu-
roscience, 2020(1):8875426, 2020. doi: 10.1155/2020/8875426.

Sai Sun, Hongbo Yu, Rongjun Yu, and Shuo Wang. Functional connectivity between the amygdala
and prefrontal cortex underlies processing of emotion ambiguity. Translational psychiatry, 13(1):
334, 2023. doi: 10.1038/541398-023-02625-W.

Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,
Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot Mueller-Putz, Guido
Nolte, et al. Review of the BCI competition IV. Frontiers in Neuroscience, 6:55, 2012.

Yelena Tonoyan, Theerasak Chanwimalueang, Danilo P Mandic, and Marc M Van Hulle. Discrim-
ination of emotional states from scalp-and intracranial eeg using multiscale rényi entropy. PLoS
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A LARGE LANGUAGE MODEL USAGE STATEMENT

Large language models were partially used in this article to refine the contents.

B GYROVECTOR SPACES

B.1 GENERAL DEFINITION

This subsection briefly reviews the gyrovector space (Ungar, 2022), which generalizes the vector
structure into manifold. It has shown great success in building neural networks over different Rie-
mannian spaces, such as hyperbolic (Ganea et al., 2018; Chami et al., 2019; Shimizu et al., 2021),
symmetric positive definite (SPD) (Nguyen, 2022), and Grassmannian (Nguyen, 2022) manifold.

We start from the gyrogroup. Intuitively, gyrogroups are natural generalizations of groups. Unlike
groups, gyrogroups are non-associative but have gyroassociativity characterized by gyrations.
Definition B.1 (Gyrogroups (Ungar, 2022)). Given a nonempty set G with a binary operation ⊕ :
G×G→ G, (G,⊕) forms a gyrogroup if its binary operation satisfies the following axioms for any
p, q, z ∈ G :

(G1) There is at least one element e ∈ G called a left identity (or neutral element) such that e⊕p = p.

(G2) There is an element ⊖p ∈ G called a left inverse of p such that ⊖p⊕ p = e.

(G3) There is an automorphism gyr[p, q] : G→ G for each p, q ∈ G such that

p⊕ (q ⊕ z) = (p⊕ q)⊕ gyr[p, q]z (Left Gyroassociative Law).

The automorphism gyr[p, q] is called the gyroautomorphism, or the gyration of G generated by p, q.

(G4) Left reduction law: gyr[p, q] = gyr[p⊕ q, q].
Definition B.2 (Gyrocommutative Gyrogroups (Ungar, 2022)). A gyrogroup (G,⊕) is gyrocom-
mutative if it satisfies

p⊕ q = gyr[p, q](q ⊕ p) (Gyrocommutative Law).

Similarly, the gyrovector space generalizes the vector space,
Definition B.3 (Gyrovector Spaces (Chen et al., 2025b)). A gyrocommutative gyrogroup (G,⊕)
equipped with a scalar gyromultiplication ⊗ : R×G→ G is called a gyrovector space if it satisfies
the following axioms for s, t ∈ R and p, q, z ∈ G:

(V1) Identity Scalar Multiplication: 1⊗ p = p.

(V2) Scalar Distributive Law: (s+ t)⊗ p = s⊗ p⊕ t⊗ p.

(V3) Scalar Associative Law: (st)⊗ p = s⊗ (t⊗ p).
(V4) Gyroautomorphism: gyr[p, q](t⊗ z) = t⊗ gyr[p, q]z.

(V5) Identity Gyroautomorphism: gyr[s⊗ p, t⊗ p] = I, where I is the identity map.

The vector space, equipped with addition and scalar multiplication, forms the foundation of Eu-
clidean deep learning. Similarly, the gyrovector space, endowed with gyroaddition and scalar gyro-
multiplication, offers a powerful tool for designing neural networks over non-Euclidean manifolds.
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C LORENTZ OPERATIONS

C.1 RIEMANNIAN OPERATORS

The exponential map ExpKp : TpLnK → LnK and logarithmic map LogKp : TpLnK → LnK project
points between the manifold pi ∈ LnK and the tangent space vi ∈ TpLnK at point p ∈ LnK .

ExpKp (v) = cosh(α)p+ sinh(α)
v

α
, with α =

√
−K ∥v∥L, ∥v∥L =

√
⟨v, v⟩L (10)

LogKp (q) =
cosh−1(β)√
β2 − 1

· (q − βp), with β = K⟨p, q⟩L (11)

To transport points vi ∈ TpLnK from the tangent space at p to the tangent space at q, parallel transport
PTp→q(v) ∈ LnK can be used:

PTp→q(v) = v − K(q, v)K
1 +K(p, q)K

(p+ q) (12)

C.2 GYROVECTOR OPERATORS

The definitions in Eqs. (3) and (4) are direct generalizations of Euclidean vector operations. In
Euclidean space, vector addition and scalar multiplication can be understood geometrically as oper-
ations on rays emanating from the origin.

Let us first review Euclidean geometry. For Rn, we have

TpRn = TqRn = Rn, (13)
Logp(q) = q − p, (14)

Expp(v) = v + p (15)

PTp→q(v) = v, (16)

where p, q ∈ Rn and v ∈ TxRn

To compute the Euclidean vector addition p + q, one may regard q as the ray from 0 to q, parallel
translate this ray to the base point x, and then shoot it out from p. The above process can be
expressed as

x+ y = Expp
(
PT0→p(Log0(y))

)
. (17)

Similarly, Euclidean scalar multiplication corresponds to taking the ray from 0 to x, scaling its
length by t, and then shooting it out from the origin again:

t⊙ p = Exp0(tLog0(p)) = tp. (18)

Hence, the Lorentz gyroaddition and gyromultiplication extend this geometric intuition of Euclidean
linear operations to curved manifolds.

Expressions. Let p = [pt, ps]
⊤ and q = [qt, qs]

⊤ be points in LnK , where pt, qt ∈ R are the
time scalars, and ps, qs ∈ Rn are the spatial parts. Let t ∈ R be a real scalar. The following
reviews the closed-form expression of the Lorentz gyro operators, which are more efficient than the
Riemannian definitions Eqs. (3) and (4) (Chen et al., 2025b, Sec. 6.1). The Lorentz gyroaddition
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and gyromultiplication have the closed-form solution:

Gyroaddition: p⊕M
K q =



p, q = 0,

q, p = 0,
1− D−KN

|K|

D +KN
2(Asps +Aqqs)

D +KN

 , Others.

(19)

Gyromultiplication: t⊗M
K p =


0, t = 0 ∨ p = 0,

1√
|K|

cosh
(
t cosh−1(

√
|K|pt)

)
sinh

(
t cosh−1(

√
|K|pt)

)
∥ps∥ ps

 , t ̸= 0,
(20)

where As = ab2 − 2Kbspq −Kanq and Aq = b(a2 +Knp) with the following:

a = 1 +
√
|K|pt, b = 1 +

√
|K|qt, np = ∥ps∥2, nq = ∥qs∥2, spq = ⟨ps, qs⟩,

D = a2b2 − 2Kabspq +K2npnq, N = a2nq + 2abspq + b2np.

C.3 LORENTZ NON-LINEAR ACTIVATION

The Lorentz ELU activation applies the activation function to the space components and concate-
nates them with the time component:

Cactivated =

[√
∥ELU(ps)∥2 − 1/K

ELU(ps)

]
. (21)

C.4 LORENTZ CONCATENATION

Given a set of hyperbolic points {pi ∈ LnK}Ni=1, the Lorentz direct concatenation is defined as:

y = HCat({pi}Ni=1) =


√√√√ N∑

i=1

p2it +
N − 1

K
, pT1s, . . . , p

T
Ns

T , (22)

where y ∈ LnNK ⊂ RnN+1.

C.5 LORENTZ FULLY-CONNECTED LAYER

Let p ∈ LnK denote the input vector and W ∈ Rm×n+1, v ∈ Rn+1 the weight parameters, the
Lorentz fully-connected layer (LFC) is defined as:

y = LFC(p) =
[√
∥ψ(Wp+ b)∥2 − 1/K

ψ(Wp+ b)

]
(23)

ϕ(Wp, v) = λσ(vT p+ b′)
Wψ(p) + b

∥Wψ(p) + b∥ (24)

where λ > 0 denotes a trainable scaling factor, b ∈ Rn is the bias vector, and ψ and σ represent the
activation and sigmoid functions, respectively.

C.6 LORENTZ CONVOLUTIONAL LAYER

Given a hyperbolic input feature map p = {ph,w ∈ LnK}H,Wh,w=1 as an ordered set of n-dimensional
hyperbolic feature vectors, the features within the receptive field of the kernel K ∈ Rm×n×H̄×W̄ are
{ph′+δh̃, w

′+δw̃
∈ LnK}H̃,W̃h̃,w̃=1

, where (h′, w′) denotes the starting position and δ is the stride param-

eter. The Lorentz convolutional layer is defined as LFC
(
HCAT

(
{ph′+δh̃, w

′+δw̃
∈ LnK}H̃,W̃h̃,w̃=1

))
,

where HCAT and LFC, denote hyperbolic concatenation and a Lorentz fully-connected layer per-
forming the affine transformation and parameterizing the kernel and bias.
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C.7 LORENTZ MULTINOMIAL LOGISTIC REGRESSION

Similar to the Euclidean MLR, the Lorentz MLR performs classification by measuring distances to
decision hyperplanes. The output logit for class c is computed from the hyperbolic distance between
p and its corresponding hyperplane. For a hyperbolic input point p ∈ LnK and C possible classes,
each class c ∈ {1, . . . , C} is associated with a decision hyperplane parameterized by ac ∈ R and
zc ∈ Rn.

vzc,ac(p) =
1√
−K sign(αc)βc

∣∣∣∣sinh−1

(√
−Kαc

βc

)∣∣∣∣ , (25)

where

αc = cosh(
√
−Kac)⟨zc, ps⟩ − sinh(

√
−Kac)∥zc∥pt,

βc =

√
∥ cosh(

√
−Kac)zc∥2 − (sinh(

√
−Kac)∥zc∥)2.

C.8 δ-HYPERBOLICITY

Khrulkov et al. (2020) introduced δ-hyperbolicity as a measure of the degree of tree-like structure
inherent in embeddings. The idea is to find the smallest value of δ for which the triangle inequality
holds via the Gromov product. In this formulation, the definition of a hyperbolic space in terms of
the Gromov product can be seen as the metric relations between any four points are the same as they
would be in a tree, up to an additive constant δ. Formally, given the Lorentz model LnK with distance
dL, the Gromov product of z, q ∈ LnK with respect to p ∈ LnK as:

(p, q)z =
1

2

(
dL(p, z) + dL(q, z)− dL(p, q)

)
. (26)

The Lorentz model is said to be δ-hyperbolic for some δ ≥ 0 if it satisfies the four-point condition,
which states that for any p, q, z, w ∈ LnK :

(p, q)w ≥ min{(p, z)w, (q, z)w} − δ. (27)

The metric relations between any four points are the same as they would be in a tree, up to the
additive constant δ. The lower δ ≥ 0 is, the higher the hyperbolicity of the embedding.
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D HEEGNET DETAILS

D.1 ALGORITHM

Algorithm 1 Hyperbolic domain-specific momentum batch normalization (HDSMBN)

Input:
batch Bk = {pi ∈ LnK , d(i) ∈ DBk

}Mi=1 at training step k, d(i) indicates the associated domain d
domain-specific running mean µ̃dk−1(µ̃

d
0 = 0) and varianceν̃2dk−1(ν̃

2d
0 = 1) for training

domain-specific running mean µ̂dk−1(µ̂
d
0 = 0) and varianceν̂2dk−1(ν̂

2d
0 = 1) for testing

momentum for training and testing ηtrain(k), ηtest ∈ [0, 1], learnable parameter ν2ϕ
Output: normalized batch {p̃i} = HBNd(i) (pi)

if training then then
Compute domain-specific batch mean µdk and variance ν2dk ▷ using Eq. (2)
µ̃dk = wFMηtrain(k)

(µ̃dk−1, µ
d
k) ▷ update running mean using Eq. (2)

ν̃2
d
k = (1− ηtrain(k)) ν̃2dk−1 + ηtrain(k) ν

2d
k

µ̂dk = wFMηtest(µ̂
d
k−1, µ

d
k) ▷ update running mean using Eq. (2)

ν̂2
d
k = (1− ηtest) ν̂2dk−1 + ηtest ν

2d
k

end if
(µdk, ν

2d
k)← (µ̃dk, ν̃

2d
k) if training else (µ̂dk, ν̂

2d
k)

p̃i =
ν2
ϕ√

ν2d
k+ϵ

(
⊖ µdk ⊕ pi

)
▷ use Eq. (7) to recentering and rescale each domain

Algorithm 2 Horospherical Hyperbolic Sliced-Wasserstein loss (HHSW)

Input:
batch B = {p̃i ∈ LnK , d(i) ∈ DB}Mi=1, d(i) indicates the associated domain d
number of slices S = 1000, exponent p = 2

Output: scalar loss Lswd

Initialize Lswd ← 0
for each domain d ∈ DBk

do
Extract domain-specific samples Pd = {pi | d(i) = d}
Sample Gaussian noise Zd ∼ N (0, I) with shape shape(Pd)
Normalize: Zd ← Zd

∥Zd∥2+ϵ

Map to hyperbolic manifold: Qd ← expK0 (Zd)
Compute domain loss: ℓd ← HHSWp

p(Pd, Qd) ▷ Eq. (6)
Lswd ← Lswd + ℓd

end for
return Lswd
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D.2 MODEL ARCHITECTURE

Table 6: HEEGNet architecture details. P : electrodes; T : temporal samples; C: classes.

Layer Output (dim) Parameter (dim) Operation Space

Input: 1× P × T

TempConv 8× P × T 8× 1× 1× 64 convolution Euclidean
BN 8× P × T 8 batch norm Euclidean
SpatConv 16× 1× T 16× 8× P × 1 depthwise conv Euclidean
BN 16× 1× T 16 batch norm Euclidean
Activation 16× 1× T – ELU Euclidean
AvgPool 16× 1× ⌊T/4⌋ – pooling Euclidean
Dropout 16× 1× ⌊T/4⌋ – dropout=0.25 Euclidean
DepthConv 16× 1× ⌊T/4⌋ 16× 1× 1× 16 depthwise conv Euclidean
ProjX 17× ⌊T/4⌋ – projection Euclidean
PointConv 17× ⌊T/4⌋ – pointwise conv Hyperbolic
DSMDBN(1) 17× ⌊T/4⌋ – DSMDBN Hyperbolic
Activation 17× ⌊T/4⌋ – ELU Hyperbolic
AvgPool 17× ⌊T/32⌋ – pooling Hyperbolic
Flatten 16 · ⌊T/32⌋+ 1 – flatten Hyperbolic
MLR C (16 · ⌊T/32⌋+ 1)× C - Hyperbolic
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Figure 3: HEEGNet architecture.

D.3 SOFTWARE AND HARDWARE

We used publicly available Python code for baseline methods and implemented custom methods us-
ing the packages torch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), geoopt (Kochurov
et al., 2020). We conducted all experiments on standard computation PCs with 32-core CPUs, 128
GB of RAM, and a single GPU.
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D.4 COMPUTATIONAL COST

Hyperbolic neural networks remain in their early development stage and introduce additional com-
putational cost, because of the need for exponential and logarithmic mappings. To evaluate the
practical computational cost and the efficiency of our implementations, we compared the per-epoch
runtimes of four models: the original EEGNet, HEEGNet without SFUDA, HEEGNet with mo-
ments alignment (DSMDBN1), and HEEGNet with DSMDBN.

Table 7: Hyperbolic computational costs. Comparisons of the runtime (seconds) per epoch.

Model SFUDA Cost (seconds/epoch)

EEGNet w/o 0.420
HEEGNet w/o 1.157
HEEGNet DSMDBN1 1.320
HEEGNet DSMDBN 1.451
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E FULL EXPERIMENTS

E.1 DATASET DETAILS

Nakanishi2015 is an SSVEP dataset including EEG from 9 subjects recorded with 8 channels at 256
Hz. Each subject performed a 12-class joint frequency-phase modulation paradigm with 15 trials
per class, each trial lasting 4.15 seconds. The dataset consists of a single session per subject and was
originally designed to evaluate online BCI performance. This benchmark is widely used for 12-class
SSVEP decoding.

Wang2016 is an SSVEP dataset including EEG from 34 subjects recorded with 64 channels at 250
Hz. Each subject performed a 40-class visual stimulation paradigm, where 40 flickering targets
were presented. The experiment comprised 6 blocks per subject, with 40 trials per block and 6 trials
per class in total. Each trial lasted 6 seconds, and subjects were instructed to gaze at the cued target
while avoiding blinks during stimulation. This dataset provides a large-scale benchmark for 40-class
SSVEP decoding.

CBVEP is a c-VEP and burst-VEP dataset including EEG from 12 subjects recorded with 32 chan-
nels at 500 Hz. Each subject performed a 4-class visual stimulation paradigm, with 15 trials per
class and trial duration of 2.2 seconds. EEG was recorded using a BrainProduct LiveAmp 32 sys-
tem with electrodes placed according to the 10–20 system, referenced to FCz and grounded at FPz.
Participants focused on cued targets during each stimulation phase, and post-experiment subjective
ratings of visual comfort, tiredness, and intrusiveness were also collected. This dataset provides a
benchmark for 4-class c-VEP decoding.

SEED is an emotion recognition dataset including EEG and eye movement data from 15 subjects,
recorded with a 62-channel system. Each subject performed a 3-class emotion elicitation task, where
they watched 15 different film clips (approximately 4 minutes each) designed to evoke positive,
neutral, or negative emotions. The experiment consisted of 15 trials, with each trial including a 5 s
hint before the clip, 45 s for self-assessment, and a 15 s rest period afterward.

Faced is a fine-grained emotion recognition dataset including EEG from 123 subjects recorded
with 32 channels at 250 Hz. Each subject performed a 9-class emotion elicitation task, where they
watched 28 video clips selected to evoke a range of emotions including amusement, inspiration,
joy, tenderness, anger, fear, disgust, sadness, and neutral states. This dataset provides a large-scale,
fine-grained, and balanced benchmark for 9-class emotion recognition from EEG signals.

Boran is an intracranial EEG (iEEG) dataset including recordings from 9 patients with drug-resistant
focal epilepsy. The dataset contains simultaneous recordings from stereotactically implanted depth
electrodes in the medial temporal lobe and from scalp EEG electrodes placed according to the 10–20
system. Macroelectrode iEEG was recorded at 4 kHz and microelectrode iEEG at 32 kHz, while
scalp EEG was recorded at 256 Hz. Recordings were performed using an ATLAS system for iEEG
and a NicoletOne system for scalp EEG. The dataset provides high-resolution iEEG and single-
neuron data from the human medial temporal lobe for studying epilepsy.

BNCI2015001 (Faller et al., 2012) is a motor imagery dataset including EEG recordings from 12
subjects with 13 channels at 512 Hz. Each subject performed sustained right hand versus both
feet motor imagery across 200 trials per class, resulting in a total of 14,400 trials. The experiment
comprised 3 sessions, each with a single run of 5-second trials. EEG was recorded from Laplacian
derivations centered on C3, Cz, and C4 according to the international 10–20 system.

BNCI2014001 (Tangermann et al., 2012) is a motor imagery dataset containing EEG from 9 subjects
recorded with 22 channels at 250 Hz. The paradigm involves four motor imagery tasks: left hand,
right hand, both feet, and tongue, with 144 trials per class per subject. Each subject completed two
sessions on different days, each comprising 6 runs of 48 4-second trials.
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E.2 VISUALLY EVOKED POTENTIALS

Table 8: VEP per dataset results. Average of test-set scores (balanced accuracy (%); higher is
better; mean ± std).

Model SFUDA Dataset

CBVEP100 CBVEP40 Nakanishi Wang

ATCNet w/o 25.4 ± 1.8 25.2 ± 3.7 56.3 ± 20.6 32.8 ± 13.1
EA 74.4 ± 12.1 74.6 ± 9.0 54.7 ± 18.9 35.8 ± 10.8
STMA 25.6 ± 1.5 24.5 ± 1.0 58.9 ± 18.7 44.3 ± 11.1

EEGConformer w/o 25.0 ± 0.0 25.1 ± 0.2 29.4 ± 10.2 31.9 ± 11.0
EA 75.8 ± 10.3 73.1 ± 9.6 29.4 ± 9.0 30.5 ± 8.5
STMA 25.0 ± 0.0 24.8 ± 0.5 24.3 ± 7.4 30.7 ± 8.2

EEGNet w/o 24.9 ± 0.9 25.7 ± 4.9 57.2 ± 19.8 37.4 ± 12.9
EA 79.5 ± 11.2 77.4 ± 8.2 56.0 ± 16.5 39.7 ± 9.5
STMA 24.6 ± 2.9 24.1 ± 3.3 40.0 ± 10.7 32.0 ± 8.4

FBCNet w/o 29.4 ± 3.9 30.4 ± 3.1 28.3 ± 7.5 16.4 ± 4.5
EA 75.8 ± 10.4 74.3 ± 10.1 27.7 ± 7.4 16.2 ± 3.0
STMA 25.0 ± 0.5 24.2 ± 2.4 27.9 ± 7.3 17.8 ± 3.4

ShallowNet w/o 76.2 ± 7.2 74.3 ± 8.4 29.4 ± 7.7 18.4 ± 6.7
EA 66.7 ± 14.8 64.9 ± 13.7 27.6 ± 7.2 16.7 ± 4.4
STMA 54.7 ± 8.3 52.5 ± 6.4 28.6 ± 8.3 19.8 ± 4.3

TSLANet w/o 30.4 ± 12.5 41.8 ± 19.4 16.1 ± 4.3 18.4 ± 6.2
EA 73.5 ± 9.6 73.5 ± 9.1 14.0 ± 1.7 18.0 ± 5.5
STMA 25.9 ± 1.7 26.3 ± 2.4 15.4 ± 3.3 17.8 ± 4.0

DDGCNN w/o 24.4 ± 1.8 25.5 ± 2.2 26.2 ± 12.9 30.3 ± 10.7
EA 72.2 ± 11.1 70.8 ± 11.4 54.7 ± 21.2 46.1 ± 12.2

EEGInception w/o 28.9 ± 5.5 34.2 ± 20.9 60.7 ± 22.0 38.7 ± 12.8
EA 79.9 ± 8.8 75.5 ± 11.1 61.5 ± 19.0 41.8 ± 9.6

SSVEPNet w/o 26.0 ± 3.8 28.1 ± 4.4 70.8 ± 20.5 55.1 ± 16.0
EA 72.4 ± 13.3 68.5 ± 10.9 68.9 ± 20.2 53.9 ± 13.0

SSVEPFormer w/o 24.0 ± 3.9 26.7 ± 6.4 77.2 ± 21.0 72.3 ± 15.6
EA 72.2 ± 8.4 72.1 ± 7.0 77.0 ± 19.8 72.6 ± 12.6

LaBraM w/o 63.9 ± 26.0 61.8 ± 23.5 69.9 ± 25.5 72.2 ± 13.6

CBraMod w/o 62.0 ± 13.9 59.3 ± 10.5 68.6 ± 14.3 70.7 ± 21.9

HEEGNet DSMDBN 95.8 ± 6.2 92.6 ± 22.1 79.8 ± 20.8 69.3 ± 15.5
DSMDBN+EA 83.8 ± 9.5 79.0 ± 10.2 81.9 ± 18.7 73.5 ± 11.4

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.3 EMOTION RECOGNITION

Table 9: Emotion recognition per dataset results. Average of test-set scores (balanced accuracy
(%); higher is better; mean ± std).

Model SFUDA Dataset

Faced Seed

ATCNet w/o 11.2 ± 0.9 34.8 ± 9.8
EA 57.5 ± 15.0 44.6 ± 13.1
STMA 59.3 ± 15.5 48.4 ± 15.7

EEGConformer w/o 85.4 ± 14.3 77.5 ± 21.7
EA 89.0 ± 11.1 65.9 ± 18.1
STMA 81.5 ± 13.9 69.2 ± 17.7

EEGNet w/o 24.8 ± 13.7 74.5 ± 19.8
EA 83.9 ± 14.5 46.2 ± 15.4
STMA 78.2 ± 16.6 50.1 ± 15.2

FBCNet w/o 19.0 ± 8.4 54.5 ± 17.4
EA 42.1 ± 12.7 76.3 ± 17.4
STMA 23.1 ± 8.9 60.0 ± 20.3

ShallowNet w/o 43.1 ± 16.6 76.2 ± 17.6
EA 80.3 ± 16.7 75.6 ± 15.2
STMA 64.6 ± 17.2 63.3 ± 15.5

TSLANet w/o 33.3 ± 11.8 41.8 ± 13.8
EA 37.2 ± 12.4 65.6 ± 14.4
STMA 46.2 ± 13.1 58.7 ± 16.4

EMT w/o 32.9 ± 13.4 48.4 ± 14.5
EA 38.6 ± 11.4 42.8 ± 16.1

TSception w/o 14.3 ± 4.6 42.2 ± 15.4
EA 84.3 ± 13.3 55.0 ± 18.0

CBraMod w/o 48.3 ± 7.3 70.9 ± 18.7

LaBraM w/o 52.4 ± 11.6 73.5 ± 17.6

HEEGNet DSMDBN 84.1 ± 14.7 79.4 ± 20.8
DSMDBN+EA 89.7 ± 11.2 78.7 ± 12.4
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E.4 INTRACRANIAL EEG RESULTS

Table 10: Intracranial EEG result. Average of test-set scores (balanced accuracy (%); higher is
better; mean ± std).

Model SFUDA Intracranial

EEGNet w/o 55.4 ± 9.1
EA 59.1 ± 11.2
STMA 51.2 ± 5.9

EEGConformer w/o 55.5 ± 7.0
EA 61.7 ± 13.1
STMA 53.1 ± 5.2

ATCNet w/o 57.5 ± 9.0
EA 57.1 ± 9.0
STMA 54.2 ± 5.7

TSLANet w/o 55.1 ± 9.3
EA 54.9 ± 10.4
STMA 54.1 ± 6.2

SchirrmeisterNet w/o 56.9 ± 7.7
EA 65.0 ± 10.2
STMA 53.9 ± 5.5

FBCNet w/o 61.1 ± 10.6
EA 61.3 ± 11.0
STMA 53.0 ± 6.8

LaBraM w/o 44.4 ± 49.7

CBraMod w/o 53.6 ± 6.2

HEEGNet (proposed) DSMDBN 58.4 ± 9.6
DSMDBN+EA 66.7 ± 12.5
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F FULLY HYPERBOLIC NEURAL NETWORK EXPERIMENT

To investigate the necessity of the hybrid design in HEEGNet, we conducted experiments by replac-
ing Euclidean convolutional operations in EEGNet (Lawhern et al., 2018) with hyperbolic variants
as follows:

• None (EEGNet) : Original EEGNet
• HMLR: Replaced the final MLR layer with hyperbolic MLR
• HMLR + Block2: Additionally replaced Block2 in EEGNet (the depht-wise convolution

and the point-wise convolution)
• Full Hyperbolic: Fully hyperbolic models

As shown in Tab. 11, the performance on the 4 representative datasets demonstrates a degradation
pattern as more Euclidean operations are replaced with hyperbolic variants. These result suggests
that the Euclidean backbone is essential for effective downstream classification, supporting the ra-
tionale behind our hybrid architecture, which combines Euclidean encoders with hyperbolic neural
networks.

Table 11: Fully hyperbolic neural network experiments. The averages of test-set scores are shown
above using balanced accuracy (the score and the standard deviation are shown for each dataset).
The number of domains in each dataset is indicated by n.

Visual Emotion Intracranial

Dataset Nakanishi Wang Seed Boran
Model (n = 9) (n = 34) (n = 45) (n = 37)

None (EEGNet) 57.2± 19.8 37.4± 12.9 74.5± 19.8 55.4± 9.1

HMLR 60.8± 20.7 39.2± 13.8 75.1± 20.0 57.4± 8.7

HMLR + Block2 53.4± 17.5 32.5± 11.9 76.9± 22.1 55.5± 7.3

Fully Hyperbolic 27.3± 12.0 22.5± 8.8 70.7± 21.6 52.7± 8.9
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