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Abstract
Two-time-scale stochastic approximation is a popular iterative method for finding the solution of a
system of two equations. Such methods have found broad applications in many areas, especially in
machine learning and reinforcement learning. In this paper, we propose a distributed variant of this
method over a network of agents, where the agents use two graphs representing their communica-
tion at different speeds due to the nature of their two-time-scale updates. Our main contribution
is to provide a finite-time analysis for the performance of the proposed method. In particular, we
establish an upper bound for the convergence rates of the mean square errors at the agents to zero
as a function of the step sizes and the network topology.

1. Introduction

Two-time-scale stochastic approximation (SA) is a recursive algorithm for finding the solution of
a system of two equations Borkar (2008). In this algorithm, one iterate is updated using step sizes
that are very small compared to the ones used to update the other iterate. One can view that the
update associated with the small step sizes is implemented at a “slow” time-scale, while the other
is executed at a “fast” time-scale. In this paper, our focus is to consider a distributed variant of this
two-time-scale SA in the context of multi-agent systems, where a group of agents can communicate
at different speeds through two possibly different connected graphs. Our main goal is to study a
finite-time analysis for the performance of the proposed method, where we provide an upper bound
for its convergence rate as a function of the two step sizes and the two network topology.

Two-time-scale SA and its distributed counterpart have received a surge of interests due to their
broad applications in many areas, some examples include optimization Wang et al. (2017); Polyak
(1987), distributed optimization on multi-agent systems Doan et al. (2018a, 2017), power control
for wireless networks Long et al. (2007), and especially in reinforcement learning Sutton and Barto
(1998); Konda and Tsitsiklis (2003); Sutton et al. (2009b); Lee and He (2019). In these applications,
it has been observed that using two-time-scale iterations one can achieve a better performance than
the one-time-scale counterpart; for example, the iterates may converge faster Polyak (1987), the
algorithm performs better under communication constraints Doan et al. (2017, 2018a), and the al-
gorithm is more stable under the so-called off-policy in reinforcement learning Sutton et al. (2009b).

The existing literature has only focused on the convergence of the centralized two-time-scale
SA. The asymptotic convergence of this two-time-scale SA can be achieved by using the ODE
methods Borkar and Meyn (2000), while its rates of convergence has been studied in Konda and
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Tsitsiklis (2004); Dalal et al. (2018); Karmakar and Bhatnagar (2018); Gupta et al. (2019); Doan
and Romberg (2019). In particular, the work in Dalal et al. (2018); Karmakar and Bhatnagar (2018)
provides a concentration bound for the finite-time analysis of this method, while an asymptotic rate
has been studied in Konda and Tsitsiklis (2004). Recently, a finite-time analysis for the performance
of the centralized two-time-scale SA has been provided in Gupta et al. (2019) under constant step
sizes and in Doan and Romberg (2019) under time-varying step sizes.

We also note some relevant works on time-scale separations on network consensus problems
Awad et al. (2015); Jardón-Kojakhmetov and Kuehn (2019), where the authors consider continuous-
time dynamics and utilize tools from singular perturbation theory to study the asymptotic conver-
gence of their algorithms. However, this singular perturbation theory does not immediately give the
rate of the algorithms, which is the main focus of this paper.

Main Contribution. In this paper, we propose a distributed variant of the linear two-time-scale
SA over a multi-agent system. Due to the two-time-scale updates, the agents use two different
graphs representing their communication at two different speeds. Our focus is to provide a finite-
time analysis for the proposed method. In particular, we provide an upper bound for the rates of
the average of the mean square errors at the nodes to zero, as a function of the two step sizes and
the two network topology. We show that this method converges at a rate O(1/(1− σ)2k2/3) under
some proper choice of the two step sizes, where σ represents the slower mixing time of the two
communication graphs and k is the number of iterations. Our theoretical results explicitly show the
impacts of the two step sizes and network topology on the performance of the proposed algorithm.

2. Distributed linear two-time-scale stochastic approximation

We consider the problem of finding the solution (x∗, y∗) ∈ Rd×Rd of a linear system of equations
defined over a network of N nodes. Associated with each node i is a matrix A and a vector bi

A =

[
A11 A12

A21 A22

]
∈ R2d×2d, bi =

[
bi1
bi2

]
∈ R2d.

The goal of the nodes is to cooperatively find the solution (x∗, y∗) of the system of linear equations

A11x
∗ + A21y

∗ =

N∑
i=1

bi1 and A21x
∗ + A22y

∗ =

N∑
i=1

bi2. (1)

We are interested in the situation where a central coordinator is absent, therefore, the nodes have
to cooperatively solve this problem. In addition, we assume that the matrices Aij and bi1, for all
i, j, are unknown to node i and each node can only have an access to a noisy observation of these
matrices and vectors. Therefore, we consider distributed iterative methods for solving this problem.
In particular, we are interested in studying the distributed variant of the linear two-time-scale SA
Konda and Tsitsiklis (2004); Doan and Romberg (2019); Gupta et al. (2019); Dalal et al. (2018),
where each node i maintains an estimate (xi, yi) of (x∗, y∗) and iteratively updates its estimates as

xik+1 =

N∑
j=1

wijx
j
k − αk(A11x

i
k + A12y

i
k − bi1 + ξik) (2)

yik+1 =
N∑
j=1

vijy
j
k − βk(A21x

i
k + A22y

i
k − bi2 + ψi

k), (3)
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where βk � αk are two different nonnegative step sizes. In addition, (wij , vij) are the weights that
node i assigns for the iterate (xj , yj) received from node j, a neighbor of node i. We denote by W =
[wij ] ∈ RN×N and V = [vij ] ∈ RN×N the two adjacency matrices imposed the communication
structures between the nodes, that is, nodes i and j can interact with each other if and only ifwij > 0
or vij > 0. Note that W and V can represent two different graphs, i.e., the nodes can exchange
information in different speeds. In addition, {ξik, ψi

k} are the noise sequences corresponding to
observations at each node i. Here, the goal of the nodes is to obtain (x∗, y∗), i.e.,

lim
k→∞

xik = x∗ and lim
k→∞

yik = y∗ a.s., ∀i ∈ [1, N ].

Here βk is much smaller than αk, implying that xik is updated at a faster time scale than yik. Finally,
the adjacency matrices W,V is used to present different communication speeds between the nodes.

2.1. Motivating applications

We are motivated by the wide applications of (2) and (3) in many applications, especially the recent
interests in multi-agent reinforcement learning Mathkar and Borkar (2017); Doan et al. (2019b,a);
Zhang et al. (2019); Yang et al. (2018); Kar et al. (2013); Wai et al. (2018); Ding et al. (2019).
One fundamental and important problem in this area is to estimate the total accumulative return
rewards of a stationary policy using linear function approximations, which is referred to as the policy
evaluation problems. In this context, two-time-scale algorithms (e.g., gradient temporal difference
learning (GTD)) have been observed to be more stable and perform better compared to the single-
time-scale counterpart (e.g., temporal difference learning (TD)) in the so-called off-policy settings;
see for example Sutton et al. (2009b,a). Motivated by the distributed variant of TD studied in Doan
et al. (2019b), we consider a distributed version of GTD formulated under the forms of (2) and
(3). In particular, a team of agents act in a common environment, get rewarded, update their local
estimates of the value function, and then communicate with their neighbors. Let Xk be the state
of environment, γ be the discount factor, φ(Xk) be the feature vector of state Xk, and Ri(·) be the
local reward return at agent i. Given a sequence of samples {Xk}, the updates at the agents can be
viewed as a distributed variant of the GTD studied in Sutton et al. (2009a) given as

xik+1 =

N∑
j=1

wijx
j
k − αk

(
φ(Xk)Txik +

[
φ(Xk)− γφ(Xk+1)

]T
yik −Ri(Xk)

)
φ(Xk)

yik+1 =
N∑
j=1

vijy
j
k − βk

[
γφ(Xk+1)− φ(Xk)

]
φT (Xk)xik.

At each agent i, yik is the main variable used to estimate the optimal solution, while xik is an addi-
tional auxiliary variable. To put these updates in the form of (2) and (3), we introduce the notation

A11(Xk) = φ(Xk)φT (Xk), A12(Xk) = φ(Xk)
[
φ(Xk)− γφ(Xk+1)

]T
, bi1(Xk) = Ri(Xk)φ(Xk)

A21(Xk) = [γφ(Xk+1)− φ(Xk)]φT (Xk), A22(Xk) = 0, bi2(Xk) = 0.

In addition, we denote by A`u = E[A`u(Xk)] and bi` = E[bi`(Xk)], for all `, u = 1, 2 and i ∈ [1, N ].
One can reformulate the distributed GTD above by introducing ξik and ψi

k as

ξik = [A11(Xk)−A11]x
i
k + [A12(Xk)−A12]y

i
k + bi1(Xk)− bi1, ψi

k = [A21(Xk)−A21]x
i
k

3
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Let b1 = 1/N
∑

i b
i
1. The goal of the distributed GTD is tried to have all (xik, y

i
k) converge to

(x∗, y∗), where x∗ = A−111

(
AT

21y
∗ + b1

)
and y∗ = A−112 b1.

Another motivating example of using such distributed two-time-scale algorithms 2 and 3 is to solve
distributed optimization problems under communication constraints, where another step size in ad-
dition to the one associated with the gradients of the functions is introduced to stabilize the algo-
rithm due to the imperfect communication between agents Doan et al. (2017, 2018a). Finally, the
distributed two-time-scale method studied in this paper can be used to solve a convex relaxation of
the popular pose graph estimation in robotic networks Choudhary et al. (2016).

2.2. Assumptions and notation

We introduce in this section various assumptions, which are necessary to our analysis given later. We
first state an assumption on the matrices Aij to guarantee the existence and uniqueness of (x∗, y∗).

Assumption 1 The matrices A11 and ∆ = A22 −A21A
−1
11 A12 are positive definite but not nec-

essarily symmetric, i.e., their eigenvalues are strictly positive.

One can relax Assumption 1 to cover the case of complex eigenvalues, i.e., A11 and ∆ have eigen-
values with strictly positive real parts. To simplify the notation of our analysis we, however, assume
that these matrices are positive definite. An extension of this work to the case of complex eigenval-
ues is straightforward; see for example Konda and Tsitsiklis (2004); Doan and Romberg (2019).

Assumption 2 All the matrices Aij and vectors bi1 are uniformly bounded, i.e., ‖Aij‖ ≤ 1 and
there exists a positive constant R such that max{‖bi1‖, ‖bi2‖} ≤ R for all i ∈ [1, N ].

Assumption 3 The matrix W, whose (i, j)-th entries are wij , is doubly stochastic with positive di-
agonal, i.e.,

∑n
j=1wij =

∑n
i=1wij = 1. Moreover, the graph GW associated with W is connected,

and wij > 0 if and only if (i, j) is an edge of GW. Similar conditions are assumed for V.

Assumption 4 The sequence of random variables (ξik, ψ
i
k), for all i ∈ [1, N ] and k ≥ 0, is inde-

pendent of each other, with zero mean and uniformly bounded, i.e., there exists a positive constant
C s.t. max{‖ξik‖, ‖ψi

k‖} ≤ C for all i ∈ [1, N ]. Moreover, they have common variances given as

E[(ξik)T ξik] = Γ11, E[(ξik)Tψi
k] = Γ12 = ΓT

21, E[(ψi
k)Tψi

k] = Γ22. (4)

Assumption 2 can be guaranteed through a proper scaling step, while Assumption 3 is a standard
assumption in distributed consensus algorithms Doan et al. (2018b). Finally, we consider the noise
model similar to the one in Konda and Tsitsiklis (2004); Doan and Romberg (2019).

We denote by X,Y ∈ RN×d the matrices whose i−th rows are (xi)T and (yi)T in R1×d,
respectively. Then, the matrix forms of Eqs. (2) and (3) are given as

Xk+1 = WXk − αk

(
XkA

T
11 + YkA

T
12 −B1 + Ξk

)
(5)

Yk+1 = VYk − αk

(
XkA

T
21 + YkA

T
22 −B2 + Ψk

)
, (6)

where B1,B2,Ξk, and Ψk are the matrices whose i−th rows are (bi1)
T , (bi2)

T , (ξik)T , and (ψi
k)T ,

respectively. Given a collection of x1, . . . , xN , we use x̄ to denote its average, i.e., x̄ = 1
N

∑N
i=1 x

i.
Thus, since W and V are doubly stochastic matrices and by Eqs. (2) and (3) we have

x̄k+1 = x̄k − αk

(
A11x̄k + A12ȳk − b̄1 + ξ̄k

)
(7)

ȳk+1 = ȳk − αk

(
A21x̄k + A22ȳk − b̄2 + ψ̄k

)
. (8)
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3. Finite-time bounds of distributed linear two-time-scale SA

We present here the convergence rates of the distributed linear two-time-scale SA, where we provide
an upper bound for the rates of the average of the mean square errors at the nodes to zero. Our result
shows that this quantity decays to zero at a rateO(1/(k+ 1)2/3). In addition, it also depends on the
network topology represented by 1− σ, the algebraic network connectivity of two graphs.

We first introduce a bit more notation. We denote by σW and σV the second larges singular
values of W and V, respectively. By Assumption 3 we have σW, σV ∈ (0, 1); see for example
Godsil and Royle (2001). In addition, we denote by σ, the slower mixing speed of these two graphs

σ , max{σW, σV} ∈ (0, 1). (9)

Let δ ∈ (σ, 1) and denote by K∗ a positive integer such that

K∗ ≥
⌈
(α0/(δ − σ))3/2

⌉
. (10)

Finally, since limk→∞ σ
k(k + 1) = 0, without loss of generality we assume that σk ≤ 1

k+1 . Our
main result, the rate of the distributed two-time-scale SA, is stated in the following theorem.

Theorem 1 Suppose that Assumptions 1–4 hold. Let {xik, yik}, for all i ∈ [1, N ], be generated by
(2) and (3) with xi0 = yi0 = 0. Let {αk, βk} be the sequence of step sizes chosen as

αk =
α0

(k + 1)2/3
, βk =

β0
k + 1

· (11)

Then, there exits constants D,D0,D1 given in Lemmas 1 and 2 below such that

1

N

N∑
i=1

(
E[‖yik − y∗‖2] +

βk
αk

E[‖xik − x∗‖2]
)

≤ 16D2β0α0 ln2(K∗)σ−2K∗

N(1− σ)2(k + 1)2/3
+

16D2β0α0

N(1− σ)2(k + 2)5/3
+

2D0

(k + 1)2/3
+

2D1 ln(k + 1)

k + 1
· (12)

More details about the choice of the two step sizes can be found in Doan and Romberg (2019).

4. Convergence analysis

We now present the analysis for the results presented in Theorem 1. Our analysis is composed of
two main steps. We first show that the estimates xik and yik converge to their averages x̄k and ȳk,
respectively. We provide an upper bound for the rates of this convergence. This step is done through
considering a residual function, which takes into account the coupling between the two step sizes

Vk = ‖Yk − 1ȳTk ‖+
βk
αk
‖Xk − 1x̄Tk ‖. (13)

Second, we study the convergence of x̄k and ȳk to the solutions x∗ and y∗, respectively. One can
view the updates of (7) and (8) as a centralized approach for solving (21). We, therefore, utilize the
results in our previous work to have such convergence Doan and Romberg (2019). Due to the space
limit, we skip the analysis of the second step and refer interested readers to Doan and Romberg
(2019) for more details. Our focus here is to provide the analysis for the first step as follows.
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Lemma 1 Suppose that all assumptions and step sizes in Theorem 1 hold. Denote by D a constant

D ,
2
√
N(R+ C)(6α0 + 1)(K∗)1/3

1− δ
, (14)

where K∗ is defined in (10). Then we obtain for all k ≥ 0

N∑
i=1

(
‖yki − ȳk‖2 +

βk
αk
‖xki − x̄k‖2

)
≤ 8D2β0α0 ln2(K∗)σ−2K∗

(1− σ)2(k + 1)2/3
+

8D2β0α0

(1− σ)2(k + 2)5/3
· (15)

Proof Let x̂i = xi − x̄ and ŷi = yi − ȳ. Since W is doubly stochastic Eqs. (2) and (7) gives

x̂ik+1 =
N∑
j=1

wij x̂
j
k − αkA11x̂

k
i − αkA12ŷ

i
k + αk(bi1 − b̄1)− αk(ξik − ξ̄k),

which implies that

X̂k+1 = WX̂k − αkX̂kA
T
11 − αkŶkA

T
12 + αk(B1 − 1bT1 )− αk(Ξk − 1ξ̄Tk ). (16)

Using Assumption 3 yields ‖WX̂k‖ ≤ σW‖X̂k‖. Thus, by (16) and Assumptions 2 and 4 we have

‖X̂k+1‖ ≤ (σW + αk)‖X̂k‖+ αk‖Ŷk‖+
√
N(R+ C)αk. (17)

Similarly, using Eqs. (3) and (8) we obtain

‖Ŷk+1‖ ≤ (σV + βk)‖Ŷk‖+ βk‖X̂k‖+
√
N(R+ C)βk. (18)

By (9), σ = max{σV, σW} ∈ (0, 1), and by (10), σ + 2αk ≤ δ ∈ (σ, 1),∀k ≥ K∗. Then, adding
Eq. (17) to Eq. (18) and using βk � αk yield

‖X̂k+1‖+ ‖Ŷk+1‖

≤ (σ + 2αk)(‖X̂k‖+ ‖Ŷk‖) + 2
√
N(R+ C)αk ≤ δ(‖X̂k‖+ ‖Ŷk‖) + 2

√
N(R+ C)αk

≤ δk+1−K∗
(‖X̂K∗‖+ ‖ŶK∗‖) + 2

√
N(R+ C)

k∑
t=K∗

αkδ
k−t ≤ (‖X̂K∗‖+ ‖ŶK∗‖) +

2
√
N(R+ C)α0

1− δ
·

Similarly, since xi0 = yi0 = 0 we can obtain

‖X̂K∗‖+ ‖ŶK∗‖ ≤ (σ + 2α0)(‖X̂K∗−1‖+ ‖ŶK∗−1‖) + 2
√
N(R+ C)αK∗−1

≤ 2
√
N(R+ C)

K∗−1∑
t=0

αt ≤ 6
√
N(R+ C)α0(K∗)1/3,

where the last inequality is due to
∑K∗−1

t=0 αt ≤ 3α0(K∗)1/3. Thus, the two preceding relations give

‖X̂K∗+1‖+ ‖ŶK∗+1‖ ≤
6
√
N(R+ C)α0(K∗)1/3

1− δ
· (19)
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We denote by γk = βk/αk, a nonnegative and nonincreasing sequence since βk � αk. Moreover,
since β0 ≤ α0, we have γk ≤ 1. We next consider the residual function V in (13). Indeed, using
Eqs. (17) and (18) and since γk+1 ≤ γk ≤ 1 we have

Vk+1 = ‖Ŷk+1‖+ γk+1‖X̂k+1‖ ≤ ‖Ŷk+1‖+ γk‖X̂k+1‖

≤ (σV + βk)‖Ŷk‖+ βk‖X̂k‖+ 2
√
N(R+ C)βk + σWγk‖X̂k‖+ βk‖X̂k‖+ βk‖Ŷk‖

≤ σVk + 2βk(‖Ŷk‖+ ‖X̂k‖) + 2
√
N(R+ C)βk,

which by using Eq. (19) and D in (14) we have for all k ≥ K∗

Vk+1 ≤ σVk +Dβk ≤ σk+1−K∗
VK∗ +D

k∑
t=K∗

βtσ
k−t ≤ σk+1−K∗

VK∗ +D
bk/2c∑
t=K∗

βtσ
k−t +D

k∑
t=dk/2e

βtσ
k−t

≤ σk+1−K∗
VK∗ +

Dβ0σdk/2e

1− σ
+
Dβk/2
1− σ

≤ σk+1−K∗
VK∗ +

Dβ0
1− σ

σdk/2e +
2Dβ0

(1− σ)

1

k + 1
·

Moreover, since xi0 = yi0 = 0 implying V0 = 0, we have

VK∗ ≤ σVK∗−1 +DβK∗−1 ≤ Dβ0
K∗−1∑
t=0

1

t+ 1
≤ Dβ0 ln(K∗).

Combining these two relations immediately gives

Vk+1 ≤ Dβ0 ln(K∗)σk+1−K∗
+
Dβ0
1− σ

σdk/2e +
2Dβ0

(1− σ)

1

k + 1

≤ 2Dβ0 ln(K∗)σ−K∗

1− σ
σdk/2e +

2Dβ0
(1− σ)

1

k + 1
·

Using the preceding relation, the definition of V in (13), and (x+ y)2 ≤ 2x2 + 2y2 we obtain

N∑
i=1

‖yki − ȳk‖2 ≤
4D2β20 ln2(K∗)σ−2K∗

(1− σ)2
σk +

4D2β20
(1− σ)2(k + 2)2

.

Similarly, we obtain

βk
αk

N∑
i=1

‖xki − x̄k‖2 ≤
4D2β20 ln2(K∗)σ−2K∗

(1− σ)2
σkαk

βk
+

4D2β20
(1− σ)2

αk

(k + 2)2βk

≤ 4D2β0α0 ln2(K∗)σ−2K∗

(1− σ)2
1

(k + 1)2/3
+

4D2β0α0

(1− σ)2
1

(k + 2)5/3
,

where recall that we assume σk ≤ 1/(k + 1). Adding the preceding two relations give Eq. (15).

We next utilize the following result about the convergence of of (x̄k, ȳk) to the solutions (x∗, y∗).

Lemma 2 (Theorem 1 in Doan and Romberg (2019)) Suppose that all assumptions and step sizes
in Theorem 1 hold. Then there exists two absolute constants D0 and D1 such that

E[‖ȳk − y∗‖2] +
βk
αk

E[‖x̄k − x∗‖2] ≤
D0

(k + 1)2/3
+
D1 ln(k + 1)

k + 1
· (20)

7
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Using the results in Lemmas 1 and 2, we immediately have the proof of Theorem 1 as follows. By
using Eqs. (15) and (20) we obtain Eq. (12), i.e.,

1

N

N∑
i=1

(
E[‖yik − y∗‖2] +

βk
αk

E[‖xik − x∗‖2]
)

≤ 16D2β0α0 ln2(K∗)σ−2K∗

N(1− σ)2(k + 1)2/3
+

16D2β0α0

N(1− σ)2(k + 2)5/3
+

2D0

(k + 1)2/3
+

2D1 ln(k + 1)

k + 1
·

Remark 3 Note that the analysis studied in this paper can be extended to cover the case when each
node i knows a different matrix Ai, i.e., associated with each node i is a matrix Ai and a vector bi

Ai =

[
Ai

11 Ai
12

Ai
21 Ai

22

]
∈ R2d×2d, bi =

[
bi1
bi2

]
∈ R2d.

The goal of the nodes is to cooperatively find the solution (x∗, y∗) of the linear equations

N∑
i=1

Ai
11x
∗ + Ai

21y
∗ − bi1 = 0, and

N∑
i=1

Ai
21x
∗ + Ai

22y
∗ − bi2 = 0. (21)

However, an additional projection step to a compact set X containing (x∗, y∗) is needed in this case

xik+1 =

 N∑
j=1

wijx
j
k − αk(Ai

11x
i
k + Ai

12y
i
k − bi1 + ξik)


X

yik+1 =

 N∑
j=1

vijy
j
k − βk(A21x

i
k + Ai

22y
i
k − bi2 + ψi

k)


X

.

This projection is often used in the context of distributed optimization Doan et al. (2017, 2018a).
However, this step may not be practical in reinforcement learning sinceX is often difficult to decide.

5. Concluding Remarks

We proposed a distributed variant of the two-time-scale SA for finding the root of a system of two
linear equations. Our main contribution is to provide a finite-time analysis of the proposed method,
where we show that this method converges at a rateO(1/k2/3). Future interesting problems include
the finite-time analysis of nonlinear counterparts, impacts of Markovian noise Gupta et al. (2019),
and applications to multi-agent reinforcement learning.
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