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ABSTRACT

Temporal knowledge graphs (TKGs) reflect the evolution patterns of facts, which
can be summarized as logical rules and applied to forecast future facts. However,
existing logical reasoning methods on TKGs face two limitations: 1) A lack of
efficient strategies for extracting logical paths. 2) Insufficient utilization of struc-
tural and textual information. To bridge these gaps, we propose CoLR, a two-stage
framework that mines relation dependencies and textual semantics for Coherent
Logical Reasoning over TKGs. In the first stage, we construct a temporal relation
structure graph (TRSG) composed of relations and cohesion weights between them.
Besides, we define a novel time-fusion search graph (TFSG) along with TRSG
to facilitate efficient and reliable temporal path searching. In the second stage,
the textual content and timestamp sequences from these paths undergo encod-
ing via a pre-trained language model and a time sequence encoder to accurately
capture potential logical rules. Additionally, for quadruplets missing paths, his-
torical edges sampled based on relation cohesion are used as supplements. Given
the limitations of existing benchmark datasets in evaluating accuracy, general-
ization, and robustness, we construct three new datasets tailored to transductive,
inductive, and few-shot scenarios, respectively. These datasets, combined with
four widely-used real-world datasets, are employed to evaluate our model com-
prehensively. Experimental results demonstrate that our approach significantly
outperforms existing methods across all three scenarios. Our code is available at
https://anonymous.4open.science/r/CoLR-0839.

1 INTRODUCTION

Temporal Knowledge Graphs (TKGs) are a pivotal method for representing the dynamic facts of the
real world. Due to their high application value in personalized recommendations (Wang et al., 2022)
and conversational systems Shang et al. (2022), they have attracted widespread research attention.
Reasoning tasks on TKGs encompass not only filling missing links within historical subgraphs
(interpolation reasoning) but also predicting future interactions among entities by analyzing historical
patterns (extrapolation reasoning). However, to achieve extrapolation reasoning, inductive capabilities
are significant, as new entities emerge over time. As shown in Figure 1, once Donald Trump assumes
the presidency, he is regarded as a new entity. Therefore, more fundamental connections between
facts should be uncovered, such as the logical correlations between relations.

Recently, several TKG Reasoning (TKGR) methods have been proposed, where multi-hop logical
reasoning methods learn logical rules from the historical multi-hop relation paths Liu et al. (2022);
Niu & Li (2023); Xiong et al. (2023); Mei et al. (2024). During the reasoning process, these methods
predict target entities by applying these rules to give confidence scores to each candidate. Assuming
the stability of these logical rules, such methods can effectively generalize to inductive scenarios,
with the logical rules offering interpretability for the reasoning process. For example, Imran Khan in
Figure 1(a) can be found as logical correlation between relations Express intent to meet or negotiate
and Make a visit has been learned in Figure 1(b)

The core of multi-hop logical reasoning lies in finding reliable multi-hop paths and their scoring
strategies. Traditional symbolic methods Omran et al. (2019); Liu et al. (2022) perform extensive
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Figure 1: Inductive inference over TKGs: training with historical data and inferring the future facts
involving new entities, where the quadruplets to be predicted are connected by dashed lines.

random walks to sample relation paths and assess rule confidence with global frequency information.
However, this process may incur substantial computational overhead and potentially overlook low-
frequency rules. Recent methods Xiong et al. (2023); Mei et al. (2024) simplify the rule learning
process by encoding relation paths and evaluating confidence based on the semantic similarity
between paths. Nonetheless, the majority of paths between the subject and object are predominantly
irrelevant noise paths, which may potentially interfere with inference. Moreover, existing methods
exhibit significant limitations when confronted with quadruplets lacking direct connectivity between
subject and object entities. Furthermore, these methods insufficiently utilize the rich structural and
textual information in temporal graphs. Symbolic methods leverage the frequency information of
relations, while neural methods focus on graph structural information. Both overlook the positive
role of the structural dependencies between relations and textual semantics in logical reasoning.

To address these challenges, we propose a novel Coherent Logical Reasoning method, named CoLR,
which is a two-stage portable framework designed to handle inductive scenarios. In the first stage, we
introduce a temporal relation structure graph (TRSG), where nodes represent relations, and weighted
edges reflect the cohesion between relations. The main idea comes from the concept of sentence
cohesion in linguistics Halliday & Hasan (1976), where words in a coherent sentence should have
semantic associations. Similarly, effective relation paths should also demonstrate close connections
between their elements. We design a time-fusion search graph (TFSG) and develop a novel search
algorithm to guide path selection along with cohesion weights between relations, thus efficiently
extracting reliable paths. If no connected path exists, we sample historical edges based on relation
cohesion and temporal dependency as information supplements. In the second stage, we extract
textual sequences and timestamp sequences of paths, and introduce a pre-trained language model
(PLM) and time sequence encoder for temporal and logical semantic encoding. The textual semantics
embedded in textual descriptions helps reveal the logical correlations between relations, such as
"Express intent to meet or negotiate" and "make a visit" in Figure 1. During the reasoning process,
we combine the embeddings of text and timestamps and evaluate the confidence of quadruplets based
on semantic similarity.

The proposed CoLR framework demonstrates significant transferability to previous logical reasoning
methods, effectively optimizing their learning efficiency and reasoning performance. Notably, we
introduce a novel confidence evaluation function for discrete logical reasoning methods, predicated on
the concept of cohesion. This innovative approach circumvents the substantial redundant computations
inherent in conventional methods while maintaining accuracy.

To comprehensively evaluate the efficacy of our methodology, we construct three novel datasets that
address the deficiencies in existing benchmarks, particularly in assessing accuracy, generalization,
and robustness. We conduct extensive experimentation across seven distinct datasets, encompassing
three pivotal experimental paradigms: transductive, inductive, and few-shot learning scenarios.
Experimental results show that our proposed method consistently achieves state-of-the-art (SOTA)
results under the three settings. Comprehensive ablation experiments and case studies verify the
effectiveness of the components we proposed in capturing the logical correlations between relations
and enhancing performance.

2 RELATED WORK

Representation-based methods for TKGR. Temporal Knowledge Graph Embedding (TKGE)
is a classic representation-based method for TKGR tasks. These methods project the TKG into
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various complex embedding spaces, such as quaternion and hyperbolic manifold spaces, to learn
vector representations of entities, relations, and timestamps. They have achieved significant success
in interpolation settings, exemplified by methods like TTransE Leblay & Chekol (2018), TA-DisMult
García-Durán et al. (2018), TNTComplEx Lacroix et al. (2020), BoxE Abboud et al. (2020), TeLM
Xu et al. (2021), HGE Pan et al. (2024). However, due to a lack of scalability, these methods struggle
to adapt to extrapolation reasoning. Recent studies have utilized RGCN Schlichtkrull et al. (2018)
to aggregate entity representations across historical snapshots and evolve these representations over
time using RNNs to address future time predictions. Despite their advancements, these methods still
heavily rely on entity representations, which makes them less suitable for inductive scenario He et al.
(2021); Jin et al. (2020b); Li et al. (2021; 2022b;a); Liang et al. (2023); Zhang et al. (2023a;b); Li
et al. (2024). Additionally, the black-box nature of complex neural networks makes their predictive
outcomes difficult to interpret intuitively.

Rule-based methods for TKGR. Rule-based methods learn first-order logical rules from the graph
and apply these rules to infer missing links. These methods also achieve stable predictions in inductive
scenarios, as demonstrated by AMIE+ Galárraga et al. (2015), DRUM Sadeghian et al. (2019) and
RNNLogic Qu et al. (2021). In TKGs, timestamps mark the sequence of events, making the logical
associations within them easier to uncover. Therefore, symbolic methods like StreamLearnerOmran
et al. (2019), TLogic Liu et al. (2022) and LCGE Niu & Li (2023) attempt to sample historical
multi-hop paths and extract reliable temporal logic rules from them. These rules, which do not
change with time or entities, are naturally suited for inductive prediction of future events and provide
interpretable reasoning. However, these methods require extensive random walks and corresponding
rule evaluations, leading to high computational costs. Recent approaches have introduced GRUs
to encode paths specific to query quadruplets and assess the credibility of rules based on semantic
similarity, thus simplifying rule learning and speeding up the reasoning process. This strategy, which
integrates neural methods, allows for more flexible and comprehensive learning of logical rules,
achieving superior performance in TKGR tasks. However, these methods Mei et al. (2022); Xiong
et al. (2023); Mei et al. (2024) still struggle with the absence of connected paths from subject to
object. Moreover, they overlook the positive influence of the logical semantics embedded in textual
information on the learning of logical rules.

3 PRELIMINARIES

Temporal Knowledge Graph(TKG). A TKG G is a complex structure used to record known
facts, where G ⊆ E ×R× E × T , E represents the set of entities,R represents the set of relations,
and T is the set of timestamps. At a specific point in time, all facts make up a temporal subgraph
Gi = {(sij , rij , oij , ti)}, where sij , oij ∈ E represent the subject and object of the jth event in
the subgraph, respectively, rij ∈ R represents the relation, and ti ∈ T is the i-th timestamp.
The entire TKG can be divided along timestamps into a series of consecutive temporal subgraphs:
G = {Gi}1≤i≤|T |. To enhance the connectivity of the graph, each relation r ∈ R is supplemented
with an inverse relation r−, and the corresponding inverse edges are denoted as (o, r−, s, t).

Link Forecasting. Link forecasting is one of the core tasks of TKGR. This task involves a historical
graph G containing known facts, with the maximum timestamp t̂, and aims to predict future possible
links. Specifically, for a query quadruplet in the form (s, rq, ?, tq), where tq > t̂, an ordered list
of candidate entities needs to be generated. During the training process, the goal is to increase the
score of the quadruplets comprising the correct candidate entities and decrease the score of those
with incorrect candidates. For cases where the subject is being predicted, the query quadruplet is
formalized as (o, r−q , ?, tq).

Temporal Logical Rule. A first-order logical rule is composed of a rule head and several binary
rule body atoms connected in sequence, and can be formalized in a TKG as a first-order temporal
logical rule of length l:

Υl : Pl+1(x, y, tl+1)← P1(x, z1, t1) ∧ P2(z1, z2, t2), ...,∧Pl(zl−1, y, tl), (1)

where x represents the subject entity, y represents the object entity, and zi can be any entity in the
graph. Each Pi represents a predicate, typically instantiated as a relation. t1, t2, . . . , tl+1 denote the
timestamps for each atom and must satisfy a non-decreasing constraint: t1 ≤ t2 ≤ . . . ≤ tl < tl+1.

The left side of Υl is the rule head HΥ, and the right side is the rule body BΥ. If BΥ is true and
satisfies the temporal constraints, then its HΥ is inferred to be true. In a TKG, if BΥ can be grounded,
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Figure 2: A simple example of an RSG and a TRSG, where yellow nodes and green nodes represent
entities and relations, respectively. The inverse and self-loop edges are omitted for brevity.

meaning all variables can be replaced with entities, relations, and timestamps from the TKG, it is
considered to be true. The grounded BΥ represents a multi-hop temporal path within the TKG,
accordingly, HΥ can be grounded as a quadruplet.

4 CONSTRUCTING TEMPORAL RELATION STRUCTURE GRAPH

4.1 RELATION STRUCTURE GRAPH

To capture the structural dependencies between relations, we define the positional patterns of relations
as follows:

Definition 1. Given a directed knowledge graph G, a node e, and its connected edge set F , the
positional pattern between any two relations r1 and r2 in F (r1 = r2 is possible) is:
(i) Coherent: e serves as the subject for r1 and the object for r2, or as the object for r1 and the
subject for r2;
(ii) Homologous: e serves as the subject for both r1 and r2;
(iii) Converging: e serves as the object for both r1 and r2.

If two relations are always connected to the same entity and exhibit the same positional pattern, then
there is a definite structural dependency between them. We define structural dependencies based
on positional patterns as cohesion, homology, and convergence. Some recent research endeavors
Lee et al. (2023); Chen et al. (2021) have explored the optimization of graph neural networks by
leveraging the homogeneity and homology between relations. Our approach, however, diverges
significantly from these efforts. As a logical reasoning method, our primary focus is on the principle
of cohesion. We estimate cohesion weights by calculating the frequency of two relations occurring in
the coherent positional pattern.

For a static knowledge graph G = (E ,R,F), we define two entity-relation matrices Es ∈ R|E|×2|R|

and Eo ∈ R|E|×2|R|, where the subscripts "s" and "o" represent subject and object, respectively.
Es[i, j] denotes the element at the i-th row and j-th column, recording the number of times the entity
ei in the graph is connected as a subject to the relation rj (including the inverse relation). Similarly,
Eo[i, j] records the number of times ei is connected as an object to the relation rj . Considering
the variance in interaction frequencies of entities within the graph, we introduce a degree diagonal
matrix for entities to compute the frequency of each entity’s interaction with relations, given by
Ẽs = D−1

s Es and Ẽo = D−1
o Eo. Subsequently, a cohesion matrix is defined as: R̃coh = ẼT

o Ẽs.

A coherent relation structure graph (RSG) can be constructed through R̃coh. As shown in Figure
2(a), R̃coh[i, j] represents the weight of the edge between nodes i and j in the graph. In multi-hop
logical reasoning, a multi-hop relation path should be coherent, thus the RSG can quickly assess the
confidence of a rule based on cohesion between relations. However, the method for constructing RSG
in static graphs cannot be directly applied to TKGs. Because TKGs consist of multiple subgraph
sequences, the structural dependencies between relations exist not only within the same subgraph but
also across different subgraphs.
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Figure 3: Overview of CoLR framework. The green and purple lines represent the relations and the
cohesion weights between them, respectively.

4.2 TEMPORAL RELATION STRUCTURE GRAPH

In a TKG, the closer the time, the stronger the association between facts. Thus for link forecasting
tasks, reasoning is often based on the most recent facts Liu et al. (2022); Li et al. (2022a); Mei et al.
(2022). To align with the reasoning phase, we define a time window ω and focus on the relation
dependencies within ω subgraphs. Theorem 1 demonstrates the calculation method for the coherent
matrix with ω time windows Rω

coh.

Theorem 1. Let G = {Gi}1≤i≤|T | be a TKG, Ei
s be the subject-relation matrix of the i-th subgraphGi,

Ei
o be the corresponding object-relation matrix, 0 < ω ≤ |T | be a time window. A cohesion relation

structure matrix Rω
coh without normalization can be calculated as follows:

Rω
coh =

|T |∑
j=ω

(

j∑
i=j−ω+1

EiT

o )Ej
s +

ω−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s. (2)

We illustrate formulation (2) with the following simple example. For a detailed proof, refer to
Appendix B.1.
Example 1. Assume G = {G1,G2,G3}, ω = 2, the coherent matrix can be calculated by

R2
coh = (E1T

o +E2T

o )E2
s + (E2T

o +E3T

o )E3
s +E1T

o E1
s

=

3∑
j=2

(

j∑
i=j−1

EiT

o )Ej
s +

1∑
j=1

(

j∑
i=1

EiT

o )Ej
s.

Following Section 4.1, we introduce degree matrices Di
s and Di

o to normalize the matrices of each
subgraph Ẽi

s = Di
sE

i
s and Ẽi

o = Di
oE

i
o, and replace them in formulation (2) to obtain the matrix

R̃ω
coh. We normalize the matrix R̃ω

coh to obtain the final temporal cohesion matrix:

R̂ω
coh =

R̃ω
coh

∥R̃ω
coh∥2 + δ

, (3)

where δ ∈ (0, 0.1) is a parameter introduced to prevent the denominator from being zero. Similar to
Section 4.1, a TRSG can be constructed based on R̂ω

coh, as illustrated in Figure 2(b). We provide an
analysis of the computational complexity of TRSG construction in Appendix A.3.

5 COHERENT LOGICAL REASONING OVER TKGS

5.1 TIME-FUSION PATH EXTRACTING

As illustrated in Figure 3, in the first stage, our goal is to extract temporal logical paths corresponding
to query quadruplets. To achieve this, we have designed a time-fusion algorithm. Specifically,
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for a query quadruplet (s, rq, o, tq), we retrieve the multi-hop neighbors of s and o from histori-
cal subgraphs and construct a time-fusion search graph (TFSG) Gtf using their intersections, as
illustrated in Figure 3(b). Each entity in Gtf is annotated by a timestamp, denoted as eti = [ei, t].
Correspondingly, a l-hop path (et11 , r1, e

t2
2 , ..., etll−1, rl, e

tl+1) in Gtf can be converted to a unique
temporal path {(e1, r1, e2, t1), ..., (el, rl, el+1, tl)}.
The path searching starts from otj until reaching sti , where ti ≤ tj . The selection of the next edge is
jointly determined by the time interval and the relation cohesion. For current entity e

tj
j , probability

of next edge over time is given by

Ptime =
exp(tn − tj)∑

(e
ti
i ,ri,e

tj
j )∈Nj

exp(ti − tj)
, (4)

where Nj is the neighbors of etjj , tn is the timestamp of next edge. Similarly, the probability of
cohesion if given by

Pcoh =
exp(R̂wT

coh[rj , rn])∑
(e

ti
i ,ri,e

tj
j )∈Nj

exp(R̂wT

coh[rj , ri])
, (5)

where R̂ωT

coh[rj , ri] represents the cohesion when rj is next to ri in a temporal path. We combine
Ptime and Pcoh to get the score for the next edge of etjj : Pnext = Ptime + Pcoh.

A path with l hop (otj , r1, e
1
1, ..., e

l−1
l−1, rl, s

ti) is reversed to (sti , rl, e
l−1
l−1, ..., e

1
1, r1, o

tj ), forming a
temporal path. To ensure the reliability of the extracted paths, we limit the path length to L and the
number of paths to K. If no path is found, we employ path supplement strategy (PSS) to collect
historical contextual descriptions for these quadruplets. Specifically, we utilize Pnext to sample
an edge from the historical neighbor edges of either s and o as a historical supplementary path.
The sampled path offers crucial contextual descriptions for (s, rq, o, tq), aiding in determining its
significance. The detailed algorithm implementation are shown in Appendix A.1.

5.2 JOINT ENCODING OF TIME AND TEXT SEQUENCE

Given a temporal path {(s, r1, e1, t1), ..., (el−1, rl, o, tl)}, we separate the timestamps to obtain an
entity-relation path (s, r1, e1, ..., rl, o) and a timestamp sequence (t1, t2, ..., tl).

Text Sequence Encoding. The text sequence encompasses a textual description of entities and
relations in (s, r1, e1, ..., rl, o). In contrast to previous approaches, we incorporate the entire path,
not just the relation path, to generate text representations. We utilize ";" to delimit the text of each
entity or relation, with "[SEP]" marking the end of a sentence. In the case of inverse relation r−, we
reverse the textual order of r to generate the corresponding text. Then we introduce a PLM to encode
the text sequence:

htext =M(Φ([Γ(s); Γ(r1); ...; Γ(rl); Γ(o)])), (6)
where Φ(·) denotes any PLM encoder, M is meanpooling operation, Γ(·) represents the textual
description of an entity or a relation. htext ∈ Rd is the textual representation of the temporal path.

Time Sequence Encoding. We compute the difference between each element in (t1, t2, ..., tl) and
tq to create a time sequence (tq − t1, tq − t2, ..., tq − tl). The time sequence reflects the temporal
feature associated with logical rules. For instance, occurrences of "make a visit" and "have a visit"
tend to coincide. When they are distant in time, they are likely to be logically unrelated. We leverage
Time2Vec Kazemi et al. (2019) and GRU to encode the time sequence:

ϕ(t) =

√
1

d
[cos(w1t+ p1), · · · , cos(wdt+ pd)] ,

htime = GRU([ϕ(tq − t1), ϕ(tq − t2), ..., ϕ(tq − tl)]),

(7)

where w,p ∈ Rd are learnable parameter vectors, htime ∈ R is the temporal representation of the
temporal path. Finally, a MLP is used to combine htext and htime to generate the final representation:
hp = MLP ([htext;htime]). The two-stage framework of CoLR ensures high scalability, which is
discussed in detail in Appendix A.2.
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5.3 TRAINING REGIME

Consistent with prior research Mei et al. (2022); Su et al. (2023), we employ semantic similarity to
evaluate the confidence of each temporal path. Then we score the query quadruplet with the highest
confidence among all temporal paths, normalized as follows:

score(q) = max
pi∈P
{cosine(hq,hpi

)}, (8)

where cosine(·, ·) is cosine similarity function, hpi
denotes the embedding of i-th path in extracted

temporal paths set P . To train our model, we treat the facts in the TKG as positive quadruplets and
generate N corresponding negative quadruplets by replacing the subject or object. During training,
we leverage cosine embedding loss to optimize our model, which is formulated as follows:

L =

{
1− score(q) y = 1,

max(0, score(q)− γ) y = −1, (9)

where γ is the margin of confidence, y ∈ {−1, 1} denotes the label of a quadruplet.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENT SETUP

Datset & Evaluation. To validate the performance of our model in a transductive setting, we initially
selected four public datasets for comparative experiments on link forecasting task. These datasets
include ICEWS14 García-Durán et al. (2018), ICEWS18 García-Durán et al. (2018), ICEWS05-15
Jin et al. (2020a) and YAGO Mahdisoltani et al. (2015). However, traditional benchmark datasets
lack a comprehensive evaluation of accuracy, generalization, and robustness, which according to
transductive, inductive, and few-shot scenarios. Therefore, we design three datasets based on the
ACLED (The Armed Conflict Location & Event Data Project)2 and ICEWS: ACLED2023, ACLED-
IND, and ICEWS14-FS. These datasets aim to address specific issues in existing transductive,
inductive, and few-shot datasets:

• ACLED2023: To address the potential issue of information leakage due to the outdated
nature of existing datasets, where PLMs may learn from historical event texts, we compiled
all events from 2023 available in the ACLED database to create ACLED2023. This mitigates
the risk of information leakage since the release date of PLMs like ALBERT was in 2020,
well before the events in ACLED2023 occurred.

• ACLED-IND: Traditional approaches for partitioning inductive datasets typically segment
the entity set such that (Etrain ∩ Evalid ∩ Etest = ∅), while ensuring that (Rvalid ∈ Rtrain)
and (Rtest ∈ Rtrain). However, this can disrupt the temporal and topological features
of TKGs. For instance, in the ICEWS14 dataset, China and United States are among
the most frequently occurring entities. If they are categorized in the same set, it could
result in many related facts being excluded from other sets, severely affecting the graph’s
connectivity and the capture of temporal features. Therefore, we retrieved events from
ACLED occurring in Asia between 2019-2022 for the training set, and events from 2023 in
Europe and the Americas for the validation and test sets, respectively. This design ensures
that (Etrain ∩ Evalid = ∅) and (Etrain ∩ Etest = ∅), maintaining the structural integrity of
the training [(Gtrain)], validation [(Gvalid)], and test [(Gtest)] graphs.

• ICEWS14-FS: To address the lack of exploration in few-shot scenarios in existing bench-
mark datasets, we created the ICEWS14-FS dataset based on the ICEWS14 dataset by
extracting 10% of events at each timestamp. This process is designed to test the performance
of models in information-sparse environments.

For a comprehensive evaluation of our CoLR, we utilized classic link prediction metrics, including
MRR and Hits@k, to assess our framework’s performance across various tasks. Details on the
definitions and calculation methods of these metrics can be found in Appendix C.1. Additionally, a
comparison of the datasets is provided in Appendix C.3.

2https://acleddata.com/
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Table 1: Comparison results for transductive and few-shot settings on ICEWS14, ICEWS18,
ICEWS05-15, ACLED2023 and ICEWS14-FS.

Dataset Metrics TTransE TA-DisMult RE-GCN TiRGN CENET HGLS RPC TLogic ALRE-IR ILR-IR CoLR + Improve(%)

ICEWS14

MRR 12.86 26.22 37.78 44.04 41.30 40.06 44.55⋆ 40.42 54.01† 52.42 75.72 21.71
Hits@1 3.14 16.83 27.17 33.83 32.58 28.69 34.87⋆ 32.11 42.79† 38.23 66.12 23.33
Hits@3 15.72 29.72 42.50 48.95 46.36 45.70 49.80⋆ 45.41 61.16† 60.42 83.31 22.15

Hits@10 33.65 45.23 58.84 63.84 58.22 64.80 65.08⋆ 56.09 71.79 80.43† 91.49 11.06

ICEWS18

MRR 8.44 16.42 27.51 33.66 29.65 26.66 34.91⋆ 28.41 38.41† 35.94 68.74 30.33
Hits@1 1.85 8.60 17.82 23.19 19.98 16.14 24.34⋆ 18.74 25.66† 22.16 61.29 35.63
Hits@3 8.95 18.13 31.17 37.99 33.72 29.74 38.74⋆ 32.71 43.72† 42.05 76.57 32.84

Hits@10 22.38 32.51 46.55 54.22 48.23 48.25 55.89⋆ 47.97 61.00 64.26† 83.37 19.11

ICEWS05-15

MRR 16.53 27.51 38.27 50.04 47.13 43.26 51.14⋆ 45.99 60.18† 58.64 76.82 16.64
Hits@1 5.51 17.57 27.43 39.25 37.25 32.31 39.47⋆ 34.49 48.97† 46.72 70.57 21.60
Hits@3 20.77 31.46 43.06 56.13 54.16 48.68 57.11⋆ 52.89 67.77† 66.18 82.69 14.92

Hits@10 39.26 47.32 59.93 70.71 67.61 64.56 71.75⋆ 67.39 77.50 80.39† 90.47 10.08

YAGO

MRR 32.57 54.92 82.30 87.95 61.83 - 88.87⋆ 83.61 - - 94.23 5.36
Hits@1 27.94 48.15 78.83 84.34 48.02 - 85.10⋆ 83.82 - - 93.40 8.30
Hits@3 43.39 59.61 84.27 91.37 57.92 - 92.57⋆ 84.51 - - 94.48 1.91

Hits@10 53.37 66.71 88.58 92.92 80.06 - 94.04⋆ 83.85 - - 95.43 1.39

ACLED2023

MRR 36.59 66.41 73.15 73.82 71.16 76.97⋆ - 75.55† - - 83.24 6.27
Hits@1 19.73 51.09 63.39 63.59 62.11 66.48⋆ - 67.65† - - 74.76 7.11
Hits@3 47.96 80.67 80.72 82.00 77.89 85.58⋆ - 81.79† - - 90.24 4.66

Hits@10 67.20 88.81 90.38 91.32⋆ 91.18 87.00 - 89.13† - - 97.62 6.30

ICEWS14-FS

MRR 2.37 21.37 11.08 32.87⋆ 30.57 30.87 - 22.92† - - 50.95 18.08
Hits@1 0.08 16.68 6.99 23.87 24.44⋆ 18.99 - 17.81† - - 40.68 16.24
Hits@3 0.21 23.37 12.52 36.68⋆ 33.23 34.04 - 25.95† - - 54.92 18.24

Hits@10 6.39 30.07 17.85 49.55 43.31 56.51⋆ - 32.29† - - 72.78 16.27

Note: The best results are highlighted in bold. The symbols ⋆ and † denote the best results within representation-based and rule-based methods, respectively.

Baselines. We compare CoLR with representation-based methods:TTransE Leblay & Chekol
(2018), TA-DisMult García-Durán et al. (2018), RE-GCN Li et al. (2021), TiRGN Li et al. (2022a),
CENETXu et al. (2023), HGLS Zhang et al. (2023a) and RPCLiang et al. (2023), as well as rule-
based methods: TLogic Liu et al. (2022), ALRE-IR Mei et al. (2022), and ILR-LR Mei et al. (2024).
Except for CENET, the experimental results of all baselines on the existing benchmark datasets
were taken from prior papers. Considering that CENET’s experimental setup differs from other
baselines, we reproduced its results on the ICEWS and YAGO datasets under the time-filtering setting
Li et al. (2022a); Liang et al. (2023) for a fair comparison. For the proposed datasets, we conducted
experiments for each baseline using their parameter settings on ICEWS14 and reported the results.
The implementation details of our CoLR are provided in Appendix C.2.

6.2 MAIN RESULTS

The experimental results presented in Tables 1 and Tables 2 provide a detailed comparative analysis
of various machine learning models across transductive, few-shot, and inductive scenarios. For
comprehensive comparison and analysis of inductive capabilities, please refer to Appendix C.4.

Transductive and Few-shot Analysis (Table 1) As shown in Table 1, our CoLR significantly
outperforms existing baseline models across all metrics on four transductive datasets, demonstrating
its robust ability to integrate structured and temporal data effectively. For example, for ICEWS14,
CoLR achieves 21.71% improvement over the next best result. Compared to the sub-optimal rule-
based model ALRE-IR, CoLR shows improvements of 21.17%, 30.33%, and 16.64% in MRR
across the three ICEWS datasets, respectively. These performance gains are attributed to the high-
quality paths extracted and the designed multi-hop path encoder. Our method also surpasses both
representation-based methods and discrete logical reasoning approaches in comprehensive perfor-
mance, demonstrating that the introduction of path embeddings can significantly enhance reasoning
capabilities. Particularly on the ICEWS18 dataset, where the density of events at single timestamps
makes it challenging to capture structural features, temporal characteristics, and logical rules, other
methods’ performance drops sharply. Our model maintains stable performance in this complex
scenario by integrating structural information, logical correlations, textual semantics, and temporal
features. Additionally, our model performs exceptionally well on the ACLED2023 dataset, indicating
effective use of the encoding capabilities of PLM rather than solely relying on its prior knowledge.

In the few-shot scenario, due to the lack of usable connected paths, traditional multi-hop logical
reasoning methods like TLogic see a significant decline in reasoning performance on the ICEWS14-
FS dataset. However, our CoLR excels with its MRR exceeding the next best model, TiRGN, by
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Table 2: Inductive results of CoLR on four datasets.

Test ICEWS14 ICEWS18 ICEWS05-15
ACLED-INDTrain ICEWS14 ICEWS18 ICEWS05-15 ICEWS18 ICEWS14 ICEWS05-15 ICEWS05-15 ICEWS14 ICEWS18

MRR 75.72 74.42 72.96 68.74 61.59 61.24 76.82 78.69 77.96 83.63
Hits@1 66.12 64.37 64.37 61.29 54.08 53.58 70.57 73.42 71.52 80.71
Hits@3 83.31 81.88 78.90 76.57 68.07 67.57 82.69 82.80 83.76 84.88
Hits@10 91.49 90.09 86.52 83.37 77.30 76.58 90.47 91.30 91.78 88.81

18.08%. This performance indicates that CoLR captures relevant historical paths and learns the
historical structural information of nodes to adapt to few-shot scenarios, thereby achieving remarkable
performance.

Inductive Analysis. (Table 2) We train CoLR on one dataset and then test it on multiple others to
demonstrate its cross-dataset application capabilities. The inductive results further highlight CoLR’s
robustness, as it consistently performs well across different training and testing dataset combinations.
For instance, when trained on ICEWS14 and tested on ICEWS05-15, it achieved an MRR of 78.69%;
conversely, when trained on ICEWS05-15 and tested on ICEWS14, its MRR was 72.96%, showing
only a slight performance variation. These outcomes illustrate CoLR’s ability to generalize beyond
its immediate training conditions, demonstrating that our model can deeply capture and effectively
utilize the logical rules within TKGs, maintaining high prediction quality across various datasets.

6.3 ABLATION STUDY

The experimental results presented in Table 3 showcase the effectiveness of various components
within the CoLR model, illustrated through an ablation study conducted on the ICEWS14 dataset.
We undertake a more comprehensive analysis of the proposed method in Appendix C.5 and Appendix
C.6, encompassing scalability, parameter sensitivity, and explainability.

Temporal Relation Structure Graph Ablation (CoLR−TRSG). Removing the TRSG com-
ponent resulted in a decrease across all metrics (MRR, Hits@1, Hits@3, Hits@10) by 2.97%
compared to the full CoLR model. This substantial drop highlights the TRSG’s crucial role
in leveraging logical correlations and temporal cohesion to guide efficient pathfinding in TKGs.

Table 3: Abalation Studies of CoLR under
ICEWS14.

Model
ICEWS14

MRR Hits@1 Hits@3 Hits@10

CoLR−TRSG 72.93 62.34 81.28 87.95
CoLR−TSE 68.95 61.43 73.09 80.71
CoLR−PSS 63.23 57.74 64.17 73.09
CoLR−RP 71.29 64.63 72.36 79.26

CoLR 75.72 66.12 83.31 91.49

Time Sequence Encoder Ablation
(CoLR−TSE). After replacing the TSE
with the time-point encoder used in ALP-IR,
performance significantly declined. This
result confirms that traditional time-point
encoders only model the temporal relations
between historical paths and query tuples,
without capturing temporal features. In
contrast, our Time Sequence Encoder (TSE)
can combine time sequences with logical
rules in a more detailed manner, significantly
enhancing the model’s prediction accuracy.

Path Supplement Strategy Ablation
(CoLR−PSS). During the path searching process, for missing paths, we solely use the textual
sequences of the subject and object as representations of the historical paths, substituting the Path
Supplement Strategy. The results for variant-PSS in the ablation study significantly decreased,
demonstrating the positive effect of the Path Supplement Strategy in enhancing model performance.

Multi-hop Path Ablation (CoLR−RP ). After replacing the full multi-hop paths containing entities
with paths containing only relations, the model’s performance on all metrics decreased by an average
of 7.28%. This indicates that full path encoding can capture critical semantic knowledge and structural
information that cannot be obtained through relation paths alone, thus enhancing the model’s ability
to handle complex temporal reasoning.
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Figure 4: Visualization of TRSG from ICEWS14, ICEWS18, ICEWS05-15 and ACLED2023
datasets.

6.4 VISUALIZATION OF TRSG

We visualize the TRSG constructed from ICEWS14, ICEWS18, ICEWS05-15, and ACLED2023
to provide an intuitive analyze of their impact on temporal logical reasoning. As shown in Figure
4, we present the edges with strong cohesion in the TRSG (>0.2 for ICEWS datasets and >0.1 for
ACLED2023) using scatter plots. It can be observed that there are two distinct diagonal lines in
the four sub-figures of Figure 4, indicating that relations and their inverses typically exhibit strong
cohesion in TKGs. In other words, there is a substantial amount of repetitive events in TKGs,
supporting the basic assumption of previous works Li et al. (2022a); Mirtaheri et al. (2023); Liang
et al. (2023). Additionally, in the ICEWS datasets, there are certain relations that evidently exhibit
cohesion with the majority of other relations. These relations often appear with high frequency
in the dataset and serve as conjunctions in temporal logical paths. Notably, despite the different
numbers of relations in the three ICEWS datasets, their cohesion distributions are strikingly similar.
This substantiates that the TRSG we propose can effectively capture stable structure information of
relations in the datasets and enhance the robustness of logical reasoning in inductive scenarios.

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose a two-stage coherent logical reasoning framework, named CoLR, which
integrates structural dependencies and text semantics of temporal paths to tackle the link forecasting
task over TKGs. It searches for temporal logical paths in the first stage and encodes these paths using
a PLM and a novel time sequence encoder in the second stage. To efficiently search for reliable paths,
we construct TRSG based on cohesion between relations and design a temporal fusion search graph.
To address path-missing issues, we implement a path supplement strategy that samples historical
paths based on cohesion. Additionally, we introduced three new datasets to address the deficiencies
of existing benchmarks in transductive, inductive, and few-shot scenarios. Experimental results
demonstrate that CoLR comprehensively outperforms existing methods across six datasets. Since
temporal paths consist of only 1 to 3 hop edges, the corresponding text sequences pose challenges for
PLMs in capturing semantic dependencies. In future work, we plan to integrate LLMs to generate
more detailed and precise texts to enhance the ability of PLMs to deeply understand the latent
semantics of text sequences.
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A METHODS

A.1 TIME-FUSION ALGORITHM

The time-fusion algorithm is proposed to accurately search for reliable logical paths. The pro-
cess is shown in Algorithm 1. Intuitively, Algorithm 1 is a breadth-first and depth-first algo-
rithm, where Ntf [u] denotes the neighbors of u in Gtf with previous timestamps. generatePath
reverse the edge list {([o, tq], rl, [el−1, tl]), ..., ([e1, t1], r1, [s, t1])} to generate a temporal path
{(s, r1, e1, t1), ..., (el−1, rl, t1)}. sampleEdge samples the next edge based on both time inter-
vals and relation cohesions, i.e. Pnext = Ptime + Pcoh. PSS denotes path supplement strategy.

Algorithm 1 Time-fusion Algorithm

Input: time-fusion search graph Gtf , TRSG with cohesion R̂coh, query quadruplet (s, rq, o, tq),
max path length L, max path number K

Output: list of extracted logical paths P
1: Init P = List(); q = Stack(); visited = Set([o, tq]); prev = Dict();
2: if |Gtf |=0 then
3: P.append(PSS(Gtf , s, o))
4: end if
5: q.push([o, tq]); visited[[o, tq]] = True
6: while |q| > 0 do
7: u = q[−1]
8: if u not in Gtf or |q| >= L then
9: q.pop();continue

10: end if
11: if u not in prev then
12: prev[u] = Ntf [u]
13: end if
14: nextedges = prev[u]
15: for edge in nextedges do
16: if edge[2][0] == s then
17: P.append(generatePath(q, edge))
18: end if
19: if |P| >= L then
20: break
21: end if
22: end for
23: if |P| >= L then
24: break
25: end if
26: nextedge = sampleEdge(nextedges);q.append(nextedge);prev[u].delete(nextedge)
27: end while
28: if |P|=0 then
29: P.append(PSS(Gtf , s, o))
30: end if

A.2 APPLICATIONS OF TRSG

The components of the proposed CoLR framework can be flexibly transferred to other logical reason-
ing methods. For instance, for neural logical reasoning approaches, TRSG and TFSG can optimize
the efficiency of temporal path search, enhancing the reliability of logical pathways. Additionally,
the time sequence encoder can help capture more nuanced temporal information, thereby improving
reasoning performance.

For symbolic methods, we propose a novel cohesion-based rule confidence evaluation function as
follows.
Definition 2. Given a query quadruplet (s, rq, o, tq), the subject and object cohesion confidence of a
relation path Υl = (r1, r2, ..., rl, rq) is defined as follows:
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confs
coh(Υl) =

1

l + 1

i=l−1∑
i=0

(1− exp(−R̂ω
coh[ri, ri+1])), (10)

confo
coh(Υl) =

1

l + 1

i=l∑
i=1

(1− exp(−R̂ω
coh[ri, ri+1])). (11)

The formulation 10 and 11 are designed to calculate the weight of a coherent path composed of
BΥl

= (r1, r2, ..., rl) and HΥl
= rq in the relation path, where R̂ω

coh[r0, r1] = R̂ω
coh[r

−
1 , rq] and

R̂ω
coh[rl, rl+1] = R̂ω

coh[rl, r
−
q ], respectively. A high-confidence path is expected to exhibit stronger

cohesion. We then combine the two cohesion confidence scores to obtain the final confidence score:

confcoh(Υl) =
1

2
(confs

coh(Υl) + confo
coh(Υl)). (12)

Compared to traditional confidence evaluation approaches, cohesion confidence is more intuitive and
efficient. For instance, the evaluation function in TLogic can be formalized as

confsup(BΥl
⇒ HΥl

) =
sup(BΥl

⇒ HΥl
(x, y, t))

#(x, y,BΥl
) : ∃z1, ..., zl; t1, ..., tl : BRl

, (13)

where sup(·) denotes the count of quadruplets with HΥl
supported by BΥl

, #(x, y,BΥl
) is the

number of unique paths grounded by BΥl
. Clearly, confidence evaluation approaches similar to

confsup(BΥl
⇒ HΥl

) require extensive path sampling for each rule. In contrast, once the TRSG
of a TKG is constructed, our cohesion-based method can directly estimate the confidence of a rule.
Experimental results indicate that our confidence estimation function shows only a slight performance
decrease compared to confsup(BΥl

⇒ HΥl
) when applied to TLogic.

A.3 COMPUTATIONAL COMPLEXITY OF TRSG

As shown in Equation 2, the TRSG on each subgraph can be obtained by multiplying two entity-
relation matrices, which is efficiently implemented in PyTorch. Therefore, as the graph size expands,
the computational cost mainly arises from the increased number of matrix multiplications due to
the extension of the timestamp sequence. For a TKG with N timestamps, when the time window
ω is 1, the times of matrix multiplications is N ; when the time window size is N , the computation
times is 1/2(N ∗ (N + 1)). Thus, the time complexity for constructing a TRSG lies between O(N)
and O(N2). Since the time window is typically much smaller than N , the time complexity of
constructing TRSG approaches O(N). Clearly, as the number of timestamps in the TKG increases,
the computational cost does not grow dramatically. In fact, for the ICEWS05-15 dataset, which
contains over 4000 timestamps, constructing a TRSG with a time window of 10 takes only 20 seconds.
In summary, our proposed TRSG can flexibly scale to very large real-world graphs.

B PROOFS

B.1 PROOF OF THEOREM 1

Proof. Let (e1, r1, e2, ti) ∈ Gi and (e2, r2, e3, tj) ∈ Gj represent any two coherent edges in the
TKG, where Gi and Gj are subgraphs and |ti − tj | ≤ ω. Ei

o ∈ R|E|×|R| is the object-relation matrix
of Gi and Ej

s ∈ R|E|×|R| is the subject-relation matrix of Gj . To calculate the cohesion matrix, we
first need to discuss the three cases of connectivity in the TKG:
(I) Consider the case where ti = tj . In this case, the two edges are in the same subgraph Gi (Gi = Gj).
According to Section 4.1, the cohesion matrix in Gi can be calculated as Rcoh = EiT

o Ei
s. Then, the

cohesion between r1 and r2 in Gi is ci12 = Ri
coh[1, 2].

(II) Consider the case where ti < tj . The two edges are coherent from a historical graph Gi to a future
graph Gj through e2. Therefore, the cohesion matrix from Gi to Gj is calculated as Rcoh = EiT

o Ej
s.

Then we have cij12 = Rcoh[1, 2], where cij12 is the cohesion between r1 and r2.
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(III) Consider the case where ti > tj . Although these two edges are structurally coherent, they violate
temporal constraints and cannot serve as part of a temporal logical path. Therefore, such interactions
between relations should be ignored.
By summing all the (I) intra-subgraph and (II) inter-subgraph cohesion matrices in a TKG, we can
obtain the overall TKG relation cohesion matrix. Then, the formulation in Theorem 1 can be derived
through mathematical induction:
Base Case (ω = 1): Let Rω

coh denote the cohesion matrix with a time window ω. For ω = 1, the
cohesion matrix of G is obtained by summing the cohesion matrices within each subgraphs, thus
R1

coh =
∑k

i=i E
iT

o Ei
s.

Inductive hypothesis: Assume that for some positive integer 1 < k ≤ |T | − 1, the formula

Rk
coh =

|T |∑
j=k

(

j∑
i=j−k+1

EiT

o )Ej
s +

k−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s

holds true when ω = k.
Inductive step (ω = k + 1): Consider that the extension of the time window will introduce new
items

∑|T |−ω+1
i=1 EiT

o Ei+ω−1
s , we add them to Rk

coh:

Rω
coh = Rk

coh +

|T |−ω+1∑
i=1

EiT

o Ei+ω−1
s

=

|T |∑
j=k

(

j∑
i=j−k+1

EiT

o )Ej
s +

k−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s +

|T |−k∑
i=1

EiT

o Ei+k
s

=

|T |∑
j=k+1

(

j∑
i=j−k+1

EiT

o )Ej
s +

k∑
j=k

(

j∑
i=1

EiT

o )Ej
s +

k−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s +

|T |∑
j=k+1

Ej−kT

o Ej
s

=

|T |∑
j=k+1

(

j∑
i=j−k

EiT

o )Ej
s +

k∑
j=1

(

j∑
i=1

EiT

o )Ej
s

=

|T |∑
j=ω

(

j∑
i=j−ω+1

EiT

o )Ej
s +

ω−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s.

Consider the extreme case of k = |T | − 1, the cohesion matrix can be calculated by summing
the cohesion matrices within all subgraphs and the cohesion matrices between any two increment
subgraphs.

Rω
coh =

|T |∑
j=1

EjT

o Ej
s +

|T |∑
j=2

(

j−1∑
i=1

EiT

o )Ej
s

=

|T |∑
j=|T |

(

j∑
i=j

EiT

o )Ej
s +

|T |−1∑
j=1

j∑
i=j

EiT

o Ej
s +

|T |∑
j=|T |

(

j−1∑
i=1

EiT

o )Ej
s +

|T |−1∑
j=2

(

j−1∑
i=1

EiT

o )Ej
s

=

|T |∑
j=|T |

(

j∑
i=1

EiT

o )Ej
s +

|T |−1∑
j=2

(

j∑
i=1

EiT

o )Ej
s +

1∑
j=1

(

j∑
i=1

EiT

o )Ej
s

=

|T |∑
j=|T |

(

j∑
i=1

EiT

o )Ej
s +

|T |−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s

=

|T |∑
j=ω

(

j∑
i=j−ω+1

EiT

o )Ej
s +

ω−1∑
j=1

(

j∑
i=1

EiT

o )Ej
s.

Thus, for any positive integer time window ω ≤ |T |, Formula 2 holds true. Proof completed.
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C EXPERIMENTS

C.1 EVALUATION METRICS

Link forecasting is the main objective of our experiments. For each query quadruplet (s, rq, o, t)
in Gtest, we generate two queries (s, rq, ?, tq) and (o, r−q , ?, tq) for answering o and s, respectively.
Following the setup of previous work Zha et al. (2022); Su et al. (2024), for each query quadruplet,
we sample 49 negative and 1 positive candidates entities from the past ω subgraphs in evaluation.
Temporal paths are extracted by constructing quadruplets for each candidate entity, from which
scores are calculated. The rank list of quadruplet scores is then utilized to assess the effectiveness of
reasoning by the Mean Reciprocal Rank (MRR for short) and Hits@k metrics.

C.2 IMPLEMENTATION DETAILS

For our experiments, we tailor the ω parameter to suit the characteristics of each dataset. Specifically,
for ICEWS14, ICEWS18, ICEWS14-FS and YAGO datasets, ω is set to 5; for ICEWS05-15,
ACLED2023, and ACLED-IND datasets, it’s set to 10. Additionally, we set the maximum path length
(L) and the number of paths (K) across all datasets to 3. The hyperparameters δ and γ are fixed to
0.05 and 0.1, respectively. Following previous works Li et al. (2022a); Liu et al. (2022); Mei et al.
(2022), we perform quadruplet filtering under the time-filtering setting and only predicted future
events at the next timestamp.

We implement our CoLR in a PyTorch 1.9.1 environment. The model is initialized using the
"albert-base-v2"3 pre-trained language model from Hugging Face, which outputs embeddings with a
dimension of 768, consistent with the dimensions of the GRU units. The entire model is trained using
the Adam optimizer with a learning rate of 1e-5. All experiments are conducted on a single NVIDIA
4090 GPU with 24GB of RAM.

C.3 STATISTIC OF DATASETS

Table 4: Statistics information of six datasets, where # represent the number of the item.

Dataset ICEWS14 ICEWS18 ICEWS05-15 ICEWS14-FS ACLED2023 ACLED-IND

#Entities 7,128 23,033 10,488 2,955 4,850 3,464
#Relations 230 256 251 164 24 23
#Train Facts 63,685 373,108 322,958 6,368 57,076 45,787
#Valid Facts 13,823 45,995 69,224 1,382 12,031 6,781
#Test Facts 13,222 49,545 69,147 1,322 11,150 13,683
#Timestamps 365 304 4,014 365 365 1,826

C.4 INDUCTIVE COMPARISON RESULTS

We compared CoLR with multi-hop logical reasoning methods in an inductive setting, and the experi-
mental results are presented in Table 5. It can be observed that even when applied to datasets from
different time periods, the performance of the three models only slightly decreased, demonstrating
that logical rules are indeed crucial for solving inductive reasoning problems. When trained on
ICEWS14 and ICEWS05-15 and tested on ICEWS18, the performance of the three methods declined
most significantly because the fact distribution in ICEWS14 and ICEWS05-15 is sparser than in
ICEWS18. Notably, despite some performance decline, our model still significantly outperforms
ILR-IR in inductive scenarios, underscoring the robustness and superiority of our proposed frame-
work. Furthermore, on the ACLED-IND dataset, our model exceeds TLogic by 22.24% in the MRR
metric, showcasing its superior inductive capability and reasoning ability compared to TLogic.

3https://huggingface.co/albert/albert-base-v2/tree/main
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Table 5: Comparison results for inductive setting on ICEWS14, ICEWS18, ICEWS05-15 datasets.

Test ICEWS14 ICEWS18 ICEWS05-15
ACLED-INDTrain ICEWS14 ICEWS18 ICEWS05-15 ICEWS18 ICEWS14 ICEWS05-15 ICEWS05-15 ICEWS14 ICEWS18

ILR-IR

MRR 52.42 47.77 49.38 35.94 32.88 30.87 58.64 56.25 56.74 -
Hits@1 38.23 33.87 35.64 22.16 19.98 18.29 46.72 44.30 44.76 -
Hits@3 60.42 52.43 53.96 42.05 39.72 36.69 66.18 63.43 64.02 -

Hits@10 80.43 75.66 77.98 64.26 61.83 59.49 80.39 78.54 79.09 -

CoLR

MRR 75.72 74.42 72.96 68.74 61.59 61.24 76.82 78.69 77.96 83.63
Hits@1 66.12 64.37 64.37 61.29 54.08 53.58 70.57 73.42 71.52 80.71
Hits@3 83.31 81.88 78.90 76.57 68.07 67.57 82.69 82.80 83.76 84.88

Hits@10 91.49 90.09 86.52 83.37 77.30 76.58 90.47 91.30 91.78 88.81

TLogic

MRR 40.42 37.11 38.09 28.41 26.68 26.88 45.99 41.76 40.45 61.39
Hits@1 32.11 28.77 29.80 18.74 18.54 18.52 34.49 33.39 32.15 52.41
Hits@3 45.41 42.17 43.05 32.71 30.45 30.72 52.89 47.20 45.72 69.28

Hits@10 56.09 55.76 53.66 47.97 42.79 43.55 67.39 57.12 55.94 75.29

C.5 COMPREHENSIVE ANALYSIS

In this section, we undertake a comprehensive analysis of the proposed method, encompassing
scalability, parameter sensitivity, and explainability.

Scalability Analysis. To validate the scalability of our proposed two-stage architecture, we de-
signed three variants: CoLR+FRE , CoLR-GRU, and Tlogic+TRSG. Here, +FRE represents the
integration of a frequency-based confidence evaluation method during historical path search; CoLR-
GRU represents replacing the PLM in the CoLR framework with a traditional GRU sequence encoder;
Tlogic+TRSG involves incorporating a temporal relation graph into TLogic to enhance path sampling
efficiency. The specific implementation process is detailed in Appendix B, and scalability experi-
ment results are shown in Table 6. CoLR+FRE , by incorporating frequency information, showed
performance improvement over the original model, demonstrating our model’s ability to effectively
combine other beneficial information through a logic-gated network to enhance reasoning accuracy.
Meanwhile, TLogic+TRSG(50) performed significantly better than TLogic(50) and reached a level
comparable to TLogic(200), where (·) denotes the sampling count; TLogic+TRSG(200) outperformed
TLogic(200), indicating that TRSG can efficiently search logical paths using the cohesion among
relations, reducing the computational cost of rule learning in TLogic while enhancing performance.
Additionally, we observed that the performance of CoLR-GRU significantly surpassed ILR-IR (as
shown in Table 2), thanks to high-quality path extraction ensuring even simple encoders could learn
logical associations. However, there was a noticeable gap between CoLR-GRU and CoLR because
GRU lacks the capability to recognize rich semantic information in text and faces insufficient model-
ing capacity when dealing with large-scale sequence data. These observations and results validate
that our proposed methods can be easily merged or extended into existing diverse logical reasoning
models.

Table 6: Scalability Analysis of CoLR under ICEWS14.

Model
ICEWS14

MRR Hits@1 Hits@3 Hits@10

CoLR+FRE 77.50 65.32 84.45 92.59

CoLR-GRU 67.98 61.10 70.35 81.37

TLogic(50) 38.52 30.47 43.69 53.51
TLogic(200) 40.42 32.11 45.41 56.09
TLogic+TRSG(50) 39.12 30.68 43.87 55.36
TLogic+TRSG(200) 41.17 32.99 45.79 57.03

CoLR 75.72 66.12 83.31 91.49

Sensitivity Analysis. During the search for historical paths, we conducted a comprehensive sensi-
tivity analysis of our proposed method on ICEWS14, focusing particularly on the influence of the
hyperparameters—time window ω and path count K—on model performance. To deeply understand
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Figure 5: Sensitivity on (a) the time window ω and (b) the path number K for CoLR.
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Figure 6: Sensitivity on (a) the backbone PLM and (b) the path length L for CoLR.

the model’s response to parameter changes, we adjusted these two critical parameters separately and
experimentally verified their impact on reasoning performance. Figure 5(a) displays the specific
effects of changes in the time window ω on performance. The results indicate that as the time window
increases, the overall performance of the model also gradually improves. This is because a larger time
window allows the model to consider events over a longer period, enhancing its ability to capture
temporal relations, consistent with previous research findings Mei et al. (2022).

Additionally, we studied the impact of the variation in path count K on performance, as shown in
Figure 5(b). We found that the model achieves optimal performance when the number of paths is
moderate. However, as the number of paths further increases, the inclusion of logically irrelevant
paths also grows, introducing noise that leads to a gradual decline in model reasoning accuracy. This
finding emphasizes the importance of quality over quantity in path selection and also explains why
our method significantly surpasses previous methods in performance. These experiments not only
showcase the direct impact of adjusting hyperparameters on model performance but also validate the
robustness and adaptability of our approach under different parameter settings.

In Figure 6(b), we show the experimental results of our CoLR on ICEWS14 under different maximum
path length constraints. When the maximum path length L is set to 2, CoLR achieves the best
performance on the Hits@1 metric. However, as the path length increases, the performance decreases.
This suggests that while increasing the path search depth allows more paths to be retrieved, these
paths are often logically unrelated to the query and may interfere with reasoning about the correct
target entity. When the maximum path length is set to 3, CoLR achieves the best performance on
the remaining three metrics. It indicates that a search range that is too small may prevent the correct
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Table 7: Comparison of training time on ICEWS14 and ICEWS05-15.

Dataset TiRGN HGLS CoLR CoLR-GRU

ICEWS14 25min 17min 2.3h 22min
ICEWS05-15 4.5h 3h 12.8h 3.5h

Table 8: Comparison of path search time (in second) on ICEWS14, ICEWS18, and ICEWS05-15.

Method ICEWS14 ICEWS18 ICEWS05-15

TLogic 135 562 871
CoLR 38 156 192

entity from being retrieved. Taking these findings into account, we set the maximum path length L to
3 for all other experiments.

To investigate the sensitivity of our CoLR to different PLM encoders, we constructed three variants
using different PLMs as backbones: CoLR+ALBERT, CoLR+BERT, and CoLR+MPNET. We
conducted experiments on ICEWS14 using these three variants, and the results are shown in Figure
6(a). It can be observed that the differences in MRR scores among the three variants are negligible.
Although BERT Devlin et al. (2019) has larger model parameters compared to ALBERT Lan
et al. (2020), CoLR+BERT only improves the MRR score by 1.06% compared to CoLR+ALBERT.
When using MPNet Song et al. (2020), which has stronger sentence understanding capabilities,
CoLR+MPNET achieves only a 1.04% improvement on MRR. These observations suggest that CoLR
is a stable framework, and differences among PLMs can be effectively mitigated through subsequent
fine-tuning.

Efficiency Analysis. Due to the utilization of the pre-trained language model, the training of CoLR
is a time-intensive process. Despite our adoption of LoRA to enhance training efficiency, the training
still consumes several hours. However, CoLR-GRU, employing GRU as the encoder, completes
training in half an hour, rendering CoLR suitable for real-world applications.

We compared the training time of CoLR with other methods on ICEWS14 and ICEWS05-15 to
further validate its training efficiency. For all baseline models, including our CoLR and CoLR-GRU,
each model was trained until achieving its best performance. For a fair comparison, all models
were trained on a single NVIDIA 4090 GPU. The experimental results are shown in Table 7. As
observed, when using PLM as the encoder, our CoLR indeed requires a considerable amount of time
for training. However, when replacing PLM with GRU, CoLR-GRU achieves comparable training
speeds with other methods, even outperforming TiRGN. It demonstrates that the significant time
cost of CoLR originates from fine-tuning the PLM. Notably, as shown in Table 6, CoLR-GRU still
maintains excellent reasoning performance, significantly outperforming previous methods.

Additionally, we evaluated the path search time of CoLR on ICEWS14, ICEWS18, and ICEWS05-15
to investigate the efficiency of our path search approach. As shown in Table 8, the time cost of CoLR
for path search is significantly lower than that of TLogic, validating the effectiveness of the proposed
time-fusion path search algorithm. By introducing TRSG and TFSG, our time-fusion path search
algorithm can efficiently identify historical paths relevant to the query. Specifically, TRSG ensures
that CoLR only needs to retrieve the top-K historical paths, avoiding the additional computational
cost of retrieving unrelated paths. TFSG preserves temporal information while compressing the TKG
into a static graph, eliminating the need for re-expanding the static graph back into a TKG.

C.6 CASE STUDY

Explainability Analysis. Compared to black-box representation-based methods, logical reasoning
methods can provide reasonable explanations for predictions with logical rules. Our CoLR samples
temporal paths from historical subgraphs, which naturally serve as the basis for reasoning. To analyze
the explainability of our CoLR, we illustrate an inference example in Table 9 and Figure 7.
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Table 9: Candidates and corresponding paths from fig 7 for query (South Korea; Engage in diplomatic
cooperation; ?; 2015-6-27)

.
Candidate No. Temporal path Condifence

Xi Jinping (1) South Korea; Express intent to meet or negotiate−; Xi Jinping; 2015-6-23 0.73

China
(2) South Korea; Consult−; China; 2015-6-25 0.88
(3) South Korea; Make an appeal or request; China; 2015-6-26 0.93

Japan
(4) South Korea; Criticize or denounce; Japan; 2015-6-23 0.16
(5) South Korea; Reduce relations; Japan; 2015-6-22 0.11
(6) South Korea; Reject; Japan; 2015-6-23 0.05

Figure 7: Historical interactions of South Korea for query (South Korea; Engage in diplomatic
cooperation; ?; 2015-6-27) from ICEWS05-15 dataset.

Given a query quadruplet (South Korea; Engage in diplomatic cooperation; ?; 2015-6-27), 6 paths
in Table 9 can be extracted from its historical interactions in Figure 7. Obviously, the candidate
Japan has the most frequent interactions with South Korea are the most frequent. However, the
historical paths extracted from these interactions have little logical correlation with a relation Engage
in diplomatic cooperation. Therefore, our CoLR assigns lower scores to paths (4), (5), and (6). For
the intended object China, despite fewer interactions with South Korea, these interactions exhibit a
remarkably close logical correlation with the query concerning both temporal intervals and semantics.
As a result, path (2) and (3) achieved the highest confidence score. These findings and analyses
substantiate the explainability and efficacy of our method.

Moreover, we observe that although Xi Jinping does not directly connect South Korea and China to
form a valid path, the prior knowledge that Xi Jinping is the President of China allows path (1) to
effectively assist in identifying the correct entity. This prior knowledge is derived from the advanced
natural language understanding capabilities of the pre-trained language model and the structural
information learned from the complete paths. This observation indirectly confirms the validity of our
path supplement strategy.
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