
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHOOT FROM THE HIP: HESSIAN INTERATOMIC
POTENTIALS WITHOUT DERIVATIVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Fundamental tasks in computational chemistry, from transition state search to vi-
brational analysis, rely on molecular Hessians, which are the second derivatives of
the potential energy. Yet, Hessians are computationally expensive to calculate and
scale poorly with system size, with both quantum mechanical methods and neural
networks. In this work, we demonstrate that Hessians can be predicted directly
from a deep learning model, without relying on automatic differentiation or finite
differences. We observe that one can construct SE(3)-equivariant, symmetric Hes-
sians from irreducible representations (irrep) features up to degree l=2 computed
during message passing in graph neural networks. This makes HIP Hessians one
to two orders of magnitude faster, more accurate, more memory efficient, easier
to train, and enables more favorable scaling with system size. We validate our
predictions across a wide range of downstream tasks, demonstrating consistently
superior performance for transition state search, accelerated geometry optimization,
zero-point energy corrections, and vibrational analysis benchmarks. We open-
source the HIP codebase and model weights to enable further development of the
direct prediction of Hessians.

1 INTRODUCTION

Over the past decades, molecular simulation has become a cornerstone for many tasks in material
discovery and molecular design. Beyond energy and forces, chemists, chemical engineers, materials
scientists, and physicists frequently rely on Hessians to enable many critical workflows (Qu &
Bowman, 2016; Huang et al., 2018). For example, second-order geometry optimization accelerates
the determination of reliable equilibrium structures. Transition-state searches are needed to find
reaction pathways and estimate barrier heights and transition rates. This determines whether a
reaction is viable and how to tune selectivity, with high industrial relevance for the chemical and
pharmaceutical industry. Vibrational analyses connect theory to experiment through infrared and
Raman spectra and provide zero-point energies, which are essential for ranking isomers and estimating
reaction free energies.
Despite their broad utility, Hessian calculations remain a significant computational bottleneck. For a
molecule with N atoms, the Hessian is a 3N × 3N matrix, where each entry requires a mixed second
derivative of the electronic energy with respect to two nuclear coordinates

Hα,β
IJ =

∂2E

∂Rα
I ∂Rβ

J

(1)

with I, J = 1, . . . , N indexing atoms, and α, β ∈ {x, y, z} indexing the cartesian x, y and z compo-
nents of the atom positions R.
Traditional approaches rely either on analytic second derivatives or on numerical differentiation of
gradients, both of which have severe limitations (Jørgensen & Simons, 1983; Handy & Schaefer,
1984; Komornicki & Fitzgerald, 1993). Analytic second derivatives are available only for a limited set
of methods, such as Hartree-Fock, DFT, and MP2; whereas, for higher-level correlated wavefunction
methods such as CCSD or CASPT2, they are either not yet implemented in most computational
packages or computationally prohibitive. Numerical approaches sidestep analytic derivations but
can become infeasible even for medium-sized molecules, requiring O((3N)2) gradient evaluations
(Helgaker et al., 2000).
Most computational chemistry calculations are carried out with Kohn-Sham density functional theory

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: In contrast to previous methods that rely on AD to construct the Hessian matrix, Hessian
Interatomic Potentials (HIP) use a learned Hessian readout that predict the Hessian directly.

(Kohn, 1965) (KS-DFT), due to its balance of computational cost and accuracy (Bursch et al., 2022).
However, the O(N4) scaling of hybrid KS-DFT with system size remains expensive, which has
spurred the development of machine-learning interatomic potentials (MLIPs). MLIPs promise to
deliver near-DFT accuracy at a fraction of the cost by incorporating symmetries, thereby drastically
reducing the need for extensive training data (Schütt et al., 2018; Thomas et al., 2018; Gasteiger et al.,
2021; Schütt et al., 2021; Batatia et al., 2022; Batzner et al., 2022). Recently, some MLIP models
have also been adapted to compute Hessians via automatic differentiation (AD). These AD Hessians
incur significant computational costs of O(N2), which presents practical challenges during training
and inference (Yuan et al., 2024; Gönnheimer et al., 2025; Rodriguez et al., 2025; Williams et al.,
2025; Cui et al., 2025).
In this work we introduce HIP: Hessian Interatomic Potentials. HIPs predict the Hessian directly,
to eliminate the need for finite differences, coupled-perturbed equation solvers, or automatic differ-
entiation. By building on SE(3)-equivariant neural networks, we demonstrate how HIP can predict
Hessians at a fraction of the computational cost of traditional methods. A key observation is that one
can construct the Hessian from spherical harmonic features of the atom nodes and the messages
between atoms, while satisfying equivariance and symmetry constraints by design. This approach is
not only faster but also more accurate, enabling a variety of critical tasks in molecular simulations.

Our contributions are the following:

1. We present Hessian Interatomic Potentials (HIP), a method to construct SE(3)-equivariant,
symmetric Hessians directly, without finite differences, coupled-perturbed solvers, or auto-
matic differentiation, using an equivariant neural network backbone.

2. We show that downstream results can be improved further by using a loss function that
targets the relevant Hessian subspace

3. We show that, compared to AD, the predicted Hessians are 10-70x faster for single molecule
evaluation and over 70x faster in batched molecular prediction, while also requiring 2-3x
less peak memory on small molecules with 5-30 atoms.

4. We show that the predicted Hesians are more accurate on benchmark datasets, with 2x lower
Hessian MAE, 3.5x lower eigenvalue MAE, and 1.5x higher eigenvector cosine similarity.

5. Finally, we rigorously validate the practical utility of our predicted Hessians in several
downstream applications, such as (i) zero-point energy corrections, (ii) second-order ge-
ometry optimization, (iii) transition state search, and (iv) frequency analysis for extrema
classification.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

MLIPs and equivariant neural networks Early works on machine learning interatomic potentials
used local atomic environment descriptors in combination with linear regression (Thompson et al.,
2015; Shapeev, 2016), Gaussian processes (Bartók et al., 2010), and simple neural networks (Behler
& Parrinello, 2007). SchNet (Schütt et al., 2018) was the first work to introduce rotation-invariant
graph neural networks to predict molecular properties like energies and forces. Next-generation
invariant architectures include ViSNet (Wang et al., 2022) and QuinNet (Wang et al., 2024). In
parallel, rotation-equivariant architectures were developed, such as Cormorant (Anderson et al.,
2019), DimeNet (Gasteiger et al., 2020), GemNet (Gasteiger et al., 2021), PaiNN (Schütt et al.,
2021), NequIP (Batzner et al., 2022), SphereNet (Liu et al., 2022), MACE (Batatia et al., 2022) and
the Equiformer family (Liao & Smidt, 2023; Liao et al., 2024). Graph neural networks represent
a molecule as a graph G = (V, E) in 3D Euclidean space R3, with nodes/atoms I ∈ V at positions
rI ∈ R3 and edges (I, J) ∈ E defined by a cutoff radius. At layer t, each node carries a feature
h
(t)
I that is a direct sum of irreducible SO(3) representations (irreps): h(t)

I =
⊕lmax

l=0 h
(t,l)
I , where

h
(t,l)
I = {h(t)

I,l,m}lm=−l has 2l + 1 components. To update the node’s features, the model sends
messages between each connected node, which are then aggregated in a permutation invariant fashion
(usually the sum, or attention-weighted-sum operation) and then added to the receiving node. In
SO(3)-equivariant GNNs, node features transform under a global rotation Q via Wigner D-matrices:

h
(t)
i,l,m

(
Q{rk}Nk=1

)
=

l∑
m′=−l

D
(l)
mm′(Q)h

(t)
i,l,m′

(
{rk}Nk=1

)
, (2)

Translation equivariance is enforced by building messages from relative displacements rI,J = rJ−rI .
If we want O(3) instead of SO(3) equivariance, each order-l feature has an extra parity label that
determines the transformation under a global coordinate inversion.
Two irreps pl1 and gl2 interact using the Clebsch-Gordan tensor product (Thomas et al., 2018)

hl3,m3 =
(
pl1,m1 ⊗

l3
l1,l2

gl2,m2

)
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(l3,m3)
(l1,m1),(l2,m2)

pl1,m1
gl2,m2

(3)

A message from source atom J to target atom I is then constructed as

vI,J,l3 = vl3(hI ,hJ , rI,J) =
∑
l1,l2

wl1,l2,l3(||rI,J ||)
(
fl1(hI ,hJ)⊗l3

l1,l2
Yl2

(
rI,J
||rI,J ||

))
(4)

where Yl2 is the 2l2+1 dimensional vector of the spherical harmonics of degree l2, wl1,l2,l3 : R→ R
is a learned weighting function, and fl1 a simple function that takes both node features in, for example
concatenation in the case of EquiformerV2. A more efficient variation of equation 4 relying on the
reduction of the SO(3) tensor product to the SO(2) tensor products was proposed by eSCN (Passaro
& Zitnick, 2023) and adopted by subsequent works, such as EquiformerV2. Finally, the messages
are pooled to update the node features, which can be done, for example, via a sum or using graph
attention (Liao et al., 2024).
After several layers of message passing, task-dependent readout heads map the node features to the
desired targets while respecting symmetry. For example, energies E are SO(3)-invariant per-graph
scalars. The energy readout head therefore uses a global pooling and a reduction operation to output
a l=0 feature. Forces F are SO(3) equivariant per-atom vectors (l = 1), and can be outputted either
by a direct force readout head, or as the derivative of the energy F = −∇RE. As we will see
in section 3, Hessians are SO(3)-equivariant per-graph matrices composed of per-atom-pair 3× 3
equivariant sub-matrices.

Equivariant matrix prediction Similar to the Hessian, there are other matrices of interest that
are rotation-equivariant and that previous work tried to directly regress. For example, PhisNet Unke
et al. (2021), QHNet Yu et al. (2023), and WANet Li et al. (2025) try to predict the Fock matrix, and
Graph2Mat Febrer et al. (2025) predicts the density matrix.

2.1 TRADITIONAL METHODS FOR CALCULATING HESSIANS

Hessians from DFT The gold standard for computing nuclear Hessians is to derive them analyti-
cally. In Kohn-Sham DFT, this is achieved using the Coupled Perturbed Kohn–Sham (CPKS) method

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(Deglmann et al., 2002), which is employed to calculate the ground truth in the dataset and in the
workflows of our experiments. If available, analytical Hessians provide the most efficient ab-initio
way to obtain Hessians, but they still scale as O(N5). See Appendix A.1.1 for details. A major
downside of the CPKS approach to Hessians is its highly complex implementation and need for
exchange-correlation-functional-specific derivations, which makes it not always available. An alter-
native is to use a finite-difference scheme, requiring only energies or forces. Finite differences also
scale O(N5) for hybrid DFT, although with more numerical noise and a much larger computational
prefactor. We provide more details in A.1.2.

Hessians from MLIPs MLIPs have gained widespread popularity for their ability to accurately
approximate molecular energies and forces. The forces can either be directly predicted (Gasteiger
et al., 2021; Liao et al., 2024), or calculated as the derivative of the MLIP energy using automatic
differentiation. Previous work has shown that the Hessian can be calculated using AD to some success
(Yang et al., 2024; Yuan et al., 2024; Gönnheimer et al., 2025; Rodriguez et al., 2025; Williams
et al., 2025; Cui et al., 2025). Although AD Hessians are much cheaper to calculate compared to
DFT, they still have some downsides. First, accurately modeling the energy does not guarantee low
errors on Hessians (Yuan et al., 2024), but requires dedicated training (Zhao et al., 2025; Cui et al.,
2025). Second, compared to energies and forces, Hessians are expensive: Given a probing vector
v, AD only lets us calculate Hv. To calculate the full 3N × 3N Hessian, we need 3N Hessian
vector products (HVPs) with the unit vectors v = ei, i = 0, ..., 3N − 1, each yielding one column
of the Hessian. Since the energy calculation with an MLIP is usually O(N), the total cost of the
Hessian calculation is O(N2). While the HVPs can theoretically be parallelized, the O(N2) memory
footprint requires even medium-sized systems to be computed sequentially. Rodriguez et al. (2025)
in particular showed that including the Hessian in the loss leads to better extrapolation of energy and
force predictions, less data for a given accuracy, and improved stability in MD. This comes at the
cost of approximately 25 longer training times, which makes AD Hessians prohibitive to train.

2.2 OUR APPROACH: DIRECT PREDICTION OF HESSIANS

Instead of relying on automatic differentiation, we propose to directly predict Hessians with an
equivariant neural network. Similarly, direct force prediction has been proposed before (Gasteiger
et al., 2021; Liao et al., 2024). While direct force prediction can achieve low errors on benchmarks,
AD forces are often preferred (Bigi et al., 2025) as they are guaranteed to be conservative. This
prevents unphysical energy drift in molecular dynamics simulations, which would produce incorrect
observables. We want to stress that the situation is different for Hessians. There are no mainstream
tasks, that require to integrate Hessians for a long time to obtain a property. Nonetheless, it is
important to understand in which situations integrability is important, and when the non-integrability
error acts the same as normal approximation errors. We discuss this in more detail in A.2. Another
difference between the direct prediction of forces vs Hessians regards the computational speedup
achieved: the speed-up of direct force-prediction is ”only” about 2×-3× over AD forces, therefore
not ”worth it” in many cases. In contrast, the savings for direct Hessian predictions can be multiple
orders of magnitude, as we will see in section 4.

2.3 MOLECULAR OPTIMIZATION WITH HESSIANS

Rational function optimization (RFO) Geometry optimization locates minima argminR E(R) of
the potential energy surface (PES) starting from non-equilibrium molecular geometries. It underpins
most workflows from global searches to high-throughput screening. If Hessians are available, second-
order methods are favored due to their fast convergence guarantees (Nocedal & Wright, 2006; Doikov
et al., 2023). RFO (Simons et al., 1983; Banerjee et al., 1985) is a commonly used second-order
optimizer (it makes use of Hessian information to accelerate convergence) for molecular geometries
(Hermes et al., 2022). An attractive property of RFO is that it can be used both for minimizing E(R)
as well as for finding saddle points, and it is robust to indefinite Hessians (Banerjee et al., 1985). As
computing the Hessian is usually too expensive, a common practice is to maintain an approximate
Hessian using the BFGS quasi-Newton scheme. We provide more details in A.1.3.

Zero-point energy (ZPE) Zero-point corrections account for the quantum mechanical vibrational
energy that molecules have at absolute zero temperature. To calculate the ZPE, one relaxes a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

geometry to an extrema, computes the Hessian, and sums the frequencies ZPE = ℏ
2

∑
i

√
λ̃i.

Here, λ̃i are eigenvalues of the mass-weighted Hessian H̃AB = HAB/mAmB , and ℏ is Planck’s
reduced constant. One is usually interested in the relative ZPE between reactant and product states:
∆ZPE = ZPE(RR)− ZPE(RP). The relative ZPE is relevant for reaction thermochemistry, as
∆ZPE enters as a correction to the reaction free energy ∆G and therefore the equilibrium constant,
which relates forward and backward rates via detailed balance.

Transition states Transition states (TS) are first-order saddle points on the PES. They represent the
maximum barrier along the minimum energy path (MEP) between two minima. Identifying transition
states is crucial for understanding reaction mechanisms and mapping reaction networks. A first-order
saddle point is characterized by having exactly one negative eigenvalue of the Hessian. Over the
years, various computational methods have been developed to describe MEPs and locate transition
states. We review methods for transition state search in A.1.4.

Frequency analysis for extrema classification To carry out frequency analysis, one must first
remove the five or six redundant degrees of freedom, corresponding to the invariance of the energy
under rotation and translation. This is done by mass-weighing the Hessian and performing an Eckart
projection (Louck & Galbraith, 1976), which we describe in A.6.4. Then, the projected matrix is
decomposed into its eigenvalues, with all positive eigenvalues signaling a minimum, and exactly N
negative eigenvalue signaling the presence of a order-N transition state.

3 HIP HESSIAN PREDICTION

Any equivariant neural network (Duval et al., 2024) with features of at least l = 2 can be equipped
with a Hessian readout head. In this work, we pick the EquiformerV2 architecture as the backbone
with four transformer layers (Liao et al., 2024). Each layer contains a layer norm, message passing
with graph attention, another layer norm, and a feed-forward layer.

3.1 HESSIAN SYMMETRY REQUIREMENTS

Hessians are symmetric, real-valued, Cartesian tensors. This means, under rotation of the coordinate
system with rotation matrix Q, each Hessian sub-block HI,J transforms as

HI,J
Q−→ QHI,JQ

⊤ (5)

Any physically meaningful Hessian has to satisfy this rotation symmetry, as well as the symmetry of
the upper and lower triangular H = H⊤. We elaborate on the symmetry of Hessians in A.2.

3.2 HESSIAN PREDICTION HEAD

Starting from T layers of message passing in the backbone, we use the atom features h(T)
I,m,c, and

feed them into a Hessian readout module. Here, we first add another Hessian readout-specific
EquiformerV2 layer to improve expressivity. We then construct the Hessian sub-blocks: We first send
normal messages with equation 4, but instead of attention and summing, we treat the messages as
atom-pair features:

hI,J,l,m,c = vI,J,l,m,c = v
(
h
(T)
I ,h

(T)
J , rI,J

)
(6)

As we are reusing the message passing machinery with an interaction cutoff radius, predicting
Hessians scales initially O(N)2 in memory and compute within the cutoff, and then reduces to O(N)
scaling for larger systems. This sparsity with distance assumption aligns with the sparsity of Hessians
due to locality of electron interactions that is common in quantum chemistry and can be mathemati-
cally rigorously justified (Kussmann et al., 2015). After message passing we have to transform the
atom pair features hI,J,l,m,c into the corresponding Hessian sub-blocks HI,J . First, we project the
pair feature irreps down to a single {h̃I,J,l,m}l∈{0,1,2} irreps feature (1x0e + 1x1e + 1x2e in
e3nn notation (Geiger & Smidt, 2022)) using a linear layer Wl,c: h̃I,J,l,m = Wl,chI,J,l,m,c We
then expand h̃I,J,l,m to an intermediate Hessian sub-block H′

I,J using the tensor product expansion

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(Unke et al., 2021):

H′
I,J,m1,m2

=
∑
l,m

Cl,m
l1=1,m1,l2=1,m2

h̃I,J,l,m (7)

where Cl,m
l1,m1,l2,m2

are the Clebsch-Gordon coefficients ensuring that the relation in equation 5 is
enforced (Unke et al., 2021). Physically, this is a simple change of basis from the coupled to the
uncoupled angular momentum basis (Edmonds, 1996). H′

I,J,m1,m2
is a 3× 3 block, since m1 and

m2 run from −l1 = −l2 = −1 to l1 = l2 = 1. As Cl,m
l1=1,m1,l2=1,m2

= 0 for all l > 2, hI,J,l,m,c

only needs to contain irreps up to l = 2 to build the 3× 3 Hessian sub-blocks. Intuitively, equation 7
is the inverse of the irreducible tensor decomposition, so it assembles a spherical tensor back from its
irreducible components. Conversely, this also means we need all irreps up to l = 2 as only including
irreps up to l = 1 would not be sufficient to express the 3 × 3 tensors that decompose into l = 2
irreps. Finally, we symmetrize the immediate Hessian to the final prediction with H = H′ +H′⊤.

3.3 LOSS FUNCTION DESIGN

To learn the Hessians, one can use standard loss functions like mean absolute error (MAE) or mean
squared error (MSE) between predicted and actual Hessian elements:

LMAE / MSE =
∑
i,j

|Hi,j −Hpred
i,j |MAE / MSE (8)

However, we are often mainly interested in the smallest eigenvalues and the corresponding eigen-
vectors (Besalú & Bofill, 1998; Cerjan & Miller, 1981). For this reason, we use a loss function that
emphasize the relevant subspace of Hessian. This loss function is similar to Li et al. (2025), which
uses it to emphasize the subspace up to the Lowest Unoccupied Molecular Orbital (LUMO) in Fock
matrix prediction. Let V = [v1,v2, ...,v3N] be the matrix with columns made from eigenvectors of
the ground truth Hessian H, and Λ the corresponding matrix with eigenvalues on the diagonal and
zeros everywhere else. Further denote V[:,:k] and V[:,k:] the matrices sliced to contain all columns up
to/starting from the kth one. We can then define a subspace loss by

Lsub =
∑
i,j

∣∣∣V⊤
[:,:k]H

predV[:,:k] −Λ[:,:k]

∣∣∣
i,j

(9)

If Hpred = H we have V⊤HpredV = Λ, and the loss has therefore the correct minimum. Using
L = LMAE/MSE + αLsub lets us emphasize the subspace corresponding to the k lowest eigenvectors
and eigenvalues. Since the Hessian always has six redundant degrees of freedom with eigenvalues
close to zero, we need to set k > 6. In practice, we use k = 8. As we will show in A.5.1, predicting
Hessians with HIP using any loss function significantly outperforms AD Hessians. MAE combined
with the subspace loss in equation 9 further improves results in transition state search and extrema
classification with frequency analysis by a small margin, which is why we use them in the experiment
of the main text. For details and ablations of the choice of loss function see A.5.1.

4 EXPERIMENTS

We evaluate our proposed approach for direct prediction of molecular Hessians across multiple tasks
that test both accuracy and practical utility. Specifically, we measure prediction accuracy and quantify
computational speed-ups relative to AD and finite-difference Hessian calculation. We further assess
downstream performance in geometry optimization, zero-point energy, and TS searches. For TS
searches, we additionally perform frequency analyses to evaluate the reliability of the predicted
Hessians in distinguishing true transition states.

Dataset For the main results of the paper we consider the HORM dataset (Cui et al., 2025) of
molecular geometries with energy, force, and Hessian labels recomputed at the ωB97X/6-31G* level
of theory. The training dataset comprises 1,725,362 molecules from the Transition1x (T1x) dataset
with 50,844 molecules from T1x and 60,000 molecules from the RGD1 dataset serving as validation.
To isolate the Hessian from the forces and energy, we train only the Hessian prediction head using

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Hessian prediction errors on the HORM-T1x validation set. Denoted
are the mean absolute errors (MAE), cosine similarity (CosSim), and average time per forward pass
on a RTX 3060 GPU. λ1 and v1 were obtained after Eckart-projection.

Hessian Model Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓ Time ↓
eV/Å2 eV/Å2 unitless eV/Å2 ms

AD

AlphaNet 0.385 2.871 0.900 0.284 767.0
LEFTNet-CF 0.150 0.684 0.943 0.112 1110.7
LEFTNet-DF 0.197 0.669 0.930 0.148 341.3
EquiformerV2 0.074 0.242 0.915 0.097 633.0

EquiformerV2 (E-F) 2.252 20.752 0.279 1.372 613.3

Predicted HIP-EquiformerV2 0.030 0.063 0.982 0.031 38.5
HIP-EquiformerV2 (end-to-end) 0.020 0.041 0.982 0.031 31.4

Figure 2: Computational cost. (a) Speed and (b) memory footprint for a single sample as a function
of molecule size, and (c) scaling of Hessian predictions in parallel with increasing batch size. Timings
were performed on an RTX 3060 GPU. AD values are shown in blue, and HIP (this work) in orange.

a fixed EquiformerV2 backbone from HORM (Cui et al., 2025). This ensures that the energy and
force predictions of AD-EquiformerV2 and HIP-EquiformerV2 are the same for all experiments. All
baseline models originate from Cui et al. (2025) and were also trained using the same ground-truth
DFT Hessians. Therefore, all downstream task improvements are purely due to better Hessians.

Accuracy To quantitatively assess the accuracy and speed of our directly predicted Hessians, we
calculate the average elementwise mean absolute error, average eigenvalue error, and average time
per prediction. Since, for many tasks such as ZPE and TS search, the smallest eigenvalue/eigenvector
pair is particularly important, we calculate the cosine similarity and eigenvalue error for these
tasks separately. The results are presented in Table 1. Models trained on just energy and forces
without Hessian information fail completely (EquiformerV2 (E-F) and Cui et al. (2025)).
In every metric, our direct prediction Hessian approach outperforms the other models. The
improvement is especially notable in prediction speed, where we are an order of magnitude faster than
the models relying on automatic differentiation. Training HIP end-to-end improves the results further.

Speedup and memory In Figure 2(a-b), we further compare the prediction time and memory
footprint as a function of molecule size. The direct prediction of Hessians is 10 - 74× faster than
using AD for molecules in the HORM dataset. HIP predicted Hessians also benefit from a much
more favorable scaling with the molecule size. Figure 2(c) compares the batched AD Hessian
as implemented in (Cui et al., 2025) with our HIP-EquiformerV2. We observe at minimum a
78× speedup as a function of batch size compared to AD. We explain the significant performance
degradation of batched AD Hessians in A.3.

Geometry optimization We now turn to downstream applications of the Hessian, first focusing on
geometry optimization. We compare exact second-order approaches using Hessians (RFO) against
first-order methods, and quasi-second-order RFO initialized with Hessians followed by BFGS updates.
See A.6.1 for details. Figure 3(a) shows that RFO with HIP Hessians converges within the fewest
steps in the median case. In contrast, both finite difference Hessians and AD Hessians frequently
fail to converge. Among the Hessian-initialized BFGS methods (blue), the predicted Hessian also
performs the best. Steepest descent with line search does not converge within the step budget, which

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Geometry optimization. Methods ordered by their median (horizontal line) for (a) number
of steps and (b) wall-clock time to convergence. For clarity, we omit to plot the wall-clock time of
RFO with AD or finite difference Hessians, as they require one and two orders of magnitude more
time than RFO with HIP predicted Hessians.

Figure 4: Transition state search workflow suc-
cess rate across diverse models. ”DFT-verified
TS success” is defined when the DFT Hessian
has one negative eigenvalue. ”DFT-verified con-
verged and TS success” additionally requires the
DFT force RMS to be below 2× 10−3 Ha/Bohr.

Hessian Model ZPE MAE [eV] ∆ZPE MAE [eV]

AD AlphaNet 0.0565 (0.0283) 0.0625 (0.0770)
AD LeftNet-CF 1.2957 (0.3331) 0.1996 (0.2552)
AD LeftNet-DF 0.0094 (0.0039) 0.0269 (0.0264)
AD EquiformerV2 0.0600 (0.0719) 0.0539 (0.0706)
Predicted HIP-EquiformerV2 0.0004 (0.0003) 0.0016 (0.0018)

Table 2: Zero-point energy. Mean average error
and standard deviation of the signed error of the
ZPE of the predicted/AD Hessian compared to
DFT. We report both the ZPE at the reactant, as
well as the relative ∆ZPE between reactant and
product.

Hessian Model Accuracy ↑
AD AlphaNet 71%
AD LeftNet-DF 78%
AD LeftNet-CF 82%
AD EquiformerV2 75%
Predicted HIP-EquiformerV2 92%

Table 3: Classifying extrema using Hessian
frequency analysis. We report the accuracy by
model in characterizing stationary points via the
correct number of negative Hessian eigenvalues.
Percentages were computed over 1000 samples,
roughly half of which were true transition states
and 37% were minima. Validated against DFT.

demonstrates the difficulty of the task. As seen in Figure 3(b), RFO and BFGS methods with HIP
Hessians are also the fastest in terms of wall-clock time.

Zero-point energy We evaluated an important thermochemical property of the relaxed equilibrium
state, the zero-point energy (ZPE). We report both the ZPE of the reactant, as well as the relative
ZPE between reactant and product ∆ZPE. Experimental details are in A.6.3. Table 2 shows that the
HIP-predicted Hessians reach an order of magnitude lower MAE than the next-best model, and two
orders of magnitude lower MAE than the same model using automatic differentiation Hessians.

Transition state search Another important application of Hessians is transition state search. We
use the recently introduced ReactBench benchmark (Zhao et al., 2025), but additionally verify the

8

https://github.com/deepprinciple/ReactBench

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Accuracy scaling with dataset size. (a) Energy (b) Force (c) Hessian MAE on the
HORM-T1x validation over the number of training samples randomly chosen from the HORM-T1x
train set. EquiformerV2 trained on energy and forces is shown in dark gray, the same model trained
as HIP also on Hessian data (this work) in orange.

predicted transition states with DFT. A step-by-step description of the workflow can be found in A.6.2.
We present metrics of each step of the workflow in Figure 4. The growing string method (GSM)
success rate is the same for both AD and HIP-EquiformerV2 models. GSM only uses energy and
forces, which are the same for both models. For all subsequent metrics, the HIP predicted Hessians
outperform the AD ones. The RFO convergence and DFT-verified convergence metrics depend on
the Hessian the most. For both, the HIP Hessians yield the most improvements over AD Hessians.

Frequency analysis for extrema classification We further investigate the ability of the Hessian
methods to differentiate different extrema on the potential energy surface. We perform frequency
analysis on 1000 geometries from the HORM-T1x validation set. Roughly half (44%) are 1st order
transition states, 37% are minima, and the rest are higher order transition states according to their
DFT Hessians. As shown in Table 2, the HIP-predicted Hessians achieve the best accuracy compared
to all models using AD. In particular, HIP-EquiformerV2 has a significant advantage of 10 percentage
points in accuracy over any other model, and +17% over the same model with AD (EquiformerV2).

End-to-end HIP training improves energies and forces So far we restricted ourselves to only
finetuning the Hessian prediction head while freezing the existing parameters. We now investigate
the more realistic decision of training either a regular MLIP on energy and forces, or a HIP including
the Hessian prediction. We train both model types for the same wallclock time of 3 days at various
data scales. Figure 5 shows that end-to-end training of the joint backbone and the readout not only
improves the Hessian, but also the energy and force predictions.

Limitations Direct Hessian regression requires ground-truth data from DFT, similar to the energy
and force labels used for regular MLIPs. The experiments in this work focus on small organic
molecules, and future work should explore applying Hessian prediction to other chemical systems,
such as materials, larger complexes, or even proteins. To isolate the Hessian from the force and
energy predictions, we trained only the Hessian regression head using a fixed backbone. For optimal
results on all benchmarks, energy, forces, and Hessians should be trained end-to-end.

5 CONCLUSION

In this work, we have presented Hessian Interatomic Potentials (HIP), a novel method for directly
predicting molecular Hessians using SE(3)-equivariant neural networks. Our approach eliminates
the need for traditional computationally expensive methods, such as finite differences or automatic
differentiation, offering a significant improvement in computational time, memory usage, and accu-
racy. Through extensive validation across a range of critical molecular tasks, we have shown that our
predicted Hessians are highly effective for practical applications in computational chemistry. By mak-
ing Hessians more accessible, we believe our method enables new possibilities for high-throughput
screening, material discovery, and drug design. For future work, any base model using spherical
harmonics and message passing can be made HIP.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Cody Aldaz, Tamas Stenczel, Joshua Kammeraad, and Paul M. Zimmerman. Zimmerman-
Group/pyGSM. ZimmermanGroup, August 2025. A.6.2

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019. 2

Ajit Banerjee, Noah Adams, Jack Simons, and Ron Shepard. Search for stationary points on
surfaces. The Journal of Physical Chemistry, 89(1):52–57, January 1985. ISSN 0022-3654. doi:
10.1021/j100247a015. 2.3, A.1.3, A.1.3

Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials:
The accuracy of quantum mechanics, without the electrons. Physical review letters, 104(13):
136403, 2010. 2

Ilyes Batatia, David P. Kovacs, Gregor Simm, Christoph Ortner, and Gabor Csanyi. MACE: Higher
Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Advances
in Neural Information Processing Systems, 35:11423–11436, December 2022. 1, 2

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453, May 2022.
ISSN 2041-1723. doi: 10.1038/s41467-022-29939-5. 1, 2

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Physical review letters, 98(14):146401, 2007. 2

Emili Besalú and Josep Maria Bofill. On the automatic restricted-step rational-function-optimization
method. Theoretical Chemistry Accounts, 100(5):265–274, December 1998. ISSN 1432-2234. doi:
10.1007/s002140050387. 3.3, A.6.1, A.6.2

Filippo Bigi, Marcel Langer, and Michele Ceriotti. The dark side of the forces: Assessing non-
conservative force models for atomistic machine learning, July 2025. 2.2

Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural Relax-
ation Made Simple. Physical Review Letters, 97(17):170201, 2006. doi: 10.1103/PhysRevLett.97.
170201. URL https://link.aps.org/doi/10.1103/PhysRevLett.97.170201.
A.1.3, A.6.1

Markus Bursch, Jan-Michael Mewes, Andreas Hansen, and Stefan Grimme. Best-Practice DFT Pro-
tocols for Basic Molecular Computational Chemistry. Angewandte Chemie, 134(42):e202205735,
October 2022. ISSN 1521-3757. doi: 10.1002/ange.202205735. 1

Charles J. Cerjan and William H. Miller. On finding transition states. The Journal of Chemical
Physics, 75(6):2800–2806, September 1981. ISSN 0021-9606. doi: 10.1063/1.442352. 3.3

Taoyong Cui, Yunhong Han, Haojun Jia, Chenru Duan, and Qiyuan Zhao. HORM: A Large Scale
Molecular Hessian Database for Optimizing Reactive Machine Learning Interatomic Potentials,
May 2025. 1, 2.1, 4, 4, 4, A.4, A.4, 4, 5, A.6.2

Peter Deglmann, Filipp Furche, and Reinhart Ahlrichs. An efficient implementation of second
analytical derivatives for density functional methods. Chemical Physics Letters, 362(5):511–518,
August 2002. ISSN 0009-2614. doi: 10.1016/S0009-2614(02)01084-9. 2.1

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-Order Optimization with Lazy Hessians.
In Proceedings of the 40th International Conference on Machine Learning, pp. 8138–8161. PMLR,
July 2023. 2.3

Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D.
Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A Hitchhiker’s Guide
to Geometric GNNs for 3D Atomic Systems, March 2024. 3

10

https://link.aps.org/doi/10.1103/PhysRevLett.97.170201

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alan Robert Edmonds. Angular momentum in quantum mechanics, volume 4. Princeton university
press, 1996. 3.2

Pol Febrer, Peter Bjørn Jørgensen, Miguel Pruneda, Alberto Garcı́a, Pablo Ordejón, and Arghya
Bhowmik. Graph2mat: universal graph to matrix conversion for electron density prediction.
Machine Learning: Science and Technology, 6(2):025013, 2025. 2

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020. 2

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal Directional
Graph Neural Networks for Molecules. In Advances in Neural Information Processing Systems,
volume 34, pp. 6790–6802. Curran Associates, Inc., 2021. 1, 2, 2.1, 2.2

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022. 3.2

Nils Gönnheimer, Karsten Reuter, and Johannes T. Margraf. Beyond Numerical Hessians: Higher-
Order Derivatives for Machine Learning Interatomic Potentials via Automatic Differentiation.
Journal of Chemical Theory and Computation, April 2025. doi: 10.1021/acs.jctc.4c01790. 1, 2.1

Nicholas C. Handy and Henry F. Schaefer. On the evaluation of analytic energy derivatives for
correlated wave functions. The Journal of Chemical Physics, 81(11):5031–5033, December 1984.
ISSN 0021-9606. doi: 10.1063/1.447489. 1

Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Multiconfigurational Self-Consistent Field
Theory. In Molecular Electronic-Structure Theory, chapter 12, pp. 598–647. John Wiley & Sons,
Ltd, 2000. ISBN 978-1-119-01957-2. doi: 10.1002/9781119019572.ch12. 1

Graeme Henkelman and Hannes Jónsson. A dimer method for finding saddle points on high
dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics, 111
(15):7010–7022, 1999. ISSN 0021-9606. doi: 10.1063/1.480097. URL https://doi.org/
10.1063/1.480097. A.1.4

Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. The Journal of Chemical
Physics, 113(22):9901–9904, 2000. ISSN 0021-9606. doi: 10.1063/1.1329672. URL https:
//doi.org/10.1063/1.1329672. A.1.4

Henry C. Herbol, James Stevenson, and Paulette Clancy. Computational Implementation of Nudged
Elastic Band, Rigid Rotation, and Corresponding Force Optimization. Journal of Chemical Theory
and Computation, 13(7):3250–3259, July 2017. ISSN 1549-9618. doi: 10.1021/acs.jctc.7b00360.
A.6.1

Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, and Judit Zádor. Sella, an Open-Source
Automation-Friendly Molecular Saddle Point Optimizer. Journal of Chemical Theory and Com-
putation, 18(11):6974–6988, November 2022. ISSN 1549-9618. doi: 10.1021/acs.jctc.2c00395.
2.3

Hrant P. Hratchian, Michael J. Frisch, and H. Bernhard Schlegel. Steepest descent reaction path
integration using a first-order predictor–corrector method. The Journal of Chemical Physics, 133
(22):224101, December 2010. ISSN 0021-9606. doi: 10.1063/1.3514202. A.6.4

Jing Huang, Yanzi Zhou, and Daiqian Xie. Predicted infrared spectra in the HF stretching band of the
H2–HF complex. The Journal of Chemical Physics, 149(9), September 2018. ISSN 0021-9606.
doi: 10.1063/1.5046359. 1

Poul Jørgensen and Jack Simons. Ab initio analytical molecular gradients and Hessians. The Journal
of Chemical Physics, 79(1):334–357, July 1983. ISSN 0021-9606. doi: 10.1063/1.445528. 1

W. Kohn. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,
140(4A):A1133–A1138, 1965. doi: 10.1103/PhysRev.140.A1133. 1

11

https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrew Komornicki and George Fitzgerald. Molecular gradients and hessians implemented in
density functional theory. The Journal of Chemical Physics, 98(2):1398–1421, January 1993.
ISSN 0021-9606. doi: 10.1063/1.465054. 1

Jörg Kussmann, Arne Luenser, Matthias Beer, and Christian Ochsenfeld. A reduced-scaling density
matrix-based method for the computation of the vibrational hessian matrix at the self-consistent
field level. The Journal of Chemical Physics, 142(9), 2015. 3.2

Yunyang Li, Zaishuo Xia, Lin Huang, Xinran Wei, Han Yang, Sam Harshe, Zun Wang, Chang Liu,
Jia Zhang, Bin Shao, et al. Enhancing the scalability and applicability of kohn-sham hamiltonians
for molecular systems. arXiv preprint arXiv:2502.19227, 2025. 2, 3.3

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
Graphs, February 2023. 2

Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
mCOBKZmrzD. 2, 2, 2.1, 2.2, 3

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=givsRXsOt9r. 2

James D. Louck and Harold W. Galbraith. Eckart vectors, Eckart frames, and polyatomic molecules.
Reviews of Modern Physics, 48(1):69–106, January 1976. doi: 10.1103/RevModPhys.48.69. 2.3,
A.6.4

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006. ISBN 978-0-387-30303-1. doi: 10.1007/
978-0-387-40065-5. 2.3

Saro Passaro and C. Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient equivariant
GNNs. In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
ICML’23, pp. 27420–27438. JMLR.org, July 2023. 2

Baron Peters, Andreas Heyden, Alexis T. Bell, and Arup Chakraborty. A growing string method
for determining transition states: Comparison to the nudged elastic band and string methods. The
Journal of Chemical Physics, 120(17):7877–7886, 2004. ISSN 0021-9606. doi: 10.1063/1.1691018.
URL https://doi.org/10.1063/1.1691018. A.1.4, A.1.4

Chen Qu and Joel M. Bowman. An ab initio potential energy surface for the formic acid dimer:
Zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting
calculated in relaxed 1–4-mode subspaces. Physical Chemistry Chemical Physics, 18(36):24835–
24840, September 2016. ISSN 1463-9084. doi: 10.1039/C6CP03073D. 1

Austin Rodriguez, Justin S. Smith, and Jose L. Mendoza-Cortes. Does Hessian Data Improve the
Performance of Machine Learning Potentials? Journal of Chemical Theory and Computation, July
2025. doi: 10.1021/acs.jctc.5c00402. 1, 2.1

K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. SchNet – A deep
learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24):
241722, March 2018. ISSN 0021-9606. doi: 10.1063/1.5019779. 1, 2

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In Proceedings of the 38th International Conference
on Machine Learning, pp. 9377–9388. PMLR, July 2021. 1, 2

Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable interatomic
potentials. Multiscale Modeling & Simulation, 14(3):1153–1173, 2016. 2

12

https://openreview.net/forum?id=mCOBKZmrzD
https://openreview.net/forum?id=mCOBKZmrzD
https://openreview.net/forum?id=givsRXsOt9r
https://doi.org/10.1063/1.1691018

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jack Simons, Poul Joergensen, Hugh Taylor, and Judy Ozment. Walking on potential energy
surfaces. The Journal of Physical Chemistry, 87(15):2745–2753, 1983. ISSN 0022-3654. doi:
10.1021/j100238a013. URL https://doi.org/10.1021/j100238a013. 2.3, A.1.3,
A.1.3

Johannes Steinmetzer, Stephan Kupfer, and Stefanie Gräfe. Pysisyphus: Exploring potential energy
surfaces in ground and excited states. International Journal of Quantum Chemistry, 121(3):e26390,
2021. ISSN 1097-461X. doi: 10.1002/qua.26390. A.6.1, A.6.2, A.6.4

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds,
May 2018. 1, 2

Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and Garritt J Tucker.
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic
potentials. Journal of Computational Physics, 285:316–330, 2015. 2

Oliver Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, and Klaus-Robert
Müller. Se (3)-equivariant prediction of molecular wavefunctions and electronic densities. Advances
in Neural Information Processing Systems, 34:14434–14447, 2021. 2, 3.2, 3.2

N. van der Aa, H. ter Morsche, and R. Mattheij. Computation of eigenvalue and eigenvector
derivatives for a general complex-valued eigensystem. The Electronic Journal of Linear Algebra,
16:300–314, January 2007. ISSN 1081-3810. doi: 10.13001/1081-3810.1203. A.5.1

Brook Wander, Joseph Musielewicz, Raffaele Cheula, and John R Kitchin. Accessing numerical
energy hessians with graph neural network potentials and their application in heterogeneous
catalysis. The Journal of Physical Chemistry C, 129(7):3510–3521, 2025. A.5.1

Yusong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, Tie-Yan
Liu, and Tong Wang. Visnet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules. arXiv preprint arXiv:2210.16518, 2022. 2

Zun Wang, Guoqing Liu, Yichi Zhou, Tong Wang, and Bin Shao. Efficiently incorporating quintuple
interactions into geometric deep learning force fields. Advances in Neural Information Processing
Systems, 36, 2024. 2

Nicholas J. Williams, Lara Kabalan, Ljiljana Stojanovic, Viktor Zólyomi, and Edward O. Pyzer-
Knapp. Hessian QM9: A quantum chemistry database of molecular Hessians in implicit solvents.
Scientific Data, 12(1):9, January 2025. ISSN 2052-4463. doi: 10.1038/s41597-024-04361-2. 1,
2.1, A.5.1, 12

E. B. Wilson, J. C. Decius, P. C. Cross, and Benson R. Sundheim. Molecular Vibrations: The Theory
of Infrared and Raman Vibrational Spectra. Journal of The Electrochemical Society, 102(9):235Ca,
September 1955. ISSN 1945-7111. doi: 10.1149/1.2430134. A.6.4

Xingyu Yang, Haitao Ma, Qing Lu, and Wensheng Bian. Efficient Method for Numerical Calculations
of Molecular Vibrational Frequencies by Exploiting Sparseness of Hessian Matrix. The Journal of
Physical Chemistry A, March 2024. doi: 10.1021/acs.jpca.3c07645. 2.1

Haiyang Yu, Zhao Xu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Efficient and equivariant
graph networks for predicting quantum hamiltonian. In International Conference on Machine
Learning, pp. 40412–40424. PMLR, 2023. 2

Eric C.-Y. Yuan, Anup Kumar, Xingyi Guan, Eric D. Hermes, Andrew S. Rosen, Judit Zádor, Teresa
Head-Gordon, and Samuel M. Blau. Analytical ab initio hessian from a deep learning potential for
transition state optimization. Nature Communications, 15(1):8865, October 2024. ISSN 2041-1723.
doi: 10.1038/s41467-024-52481-5. 1, 2.1

Qiyuan Zhao, Yunhong Han, Duo Zhang, Jiaxu Wang, Peichen Zhong, Taoyong Cui, Bangchen Yin,
Yirui Cao, Haojun Jia, and Chenru Duan. Harnessing Machine Learning to Enhance Transition
State Search with Interatomic Potentials and Generative Models, May 2025. 2.1, 4, A.6.2, A.6.4

13

https://doi.org/10.1021/j100238a013

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Paul M. Zimmerman. Single-ended transition state finding with the growing string method. Jour-
nal of Computational Chemistry, 36(9):601–611, 2015. ISSN 1096-987X. doi: 10.1002/
jcc.23833. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
23833. A.1.4, A.1.4, A.6.2

14

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23833
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23833

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXTENDED BACKGROUND

A.1.1 ANALYTICAL HESSIANS VIA CPKS

The gold standard for computing nuclear Hessians is to derive them analytically. In Kohn-Sham
DFT, this is done with the Coupled Perturbation Kohn-Sham (CPKS) method. This is much more
complex and computationally demanding than energy or force calculations. The difficulty arises from
the need to calculate the response term of the electron density, which involves understanding how
the self-consistent field (SCF) solution to the Kohn-Sham equations changes with a change in the
nuclear coordinates. To see why this is necessary, write the DFT energy in terms of the density matrix
P(R) = (C)T (R)S(R)C(R) with molecular orbital coefficients C and overlap matrix S:

E[P] = Tr[hP] +
1

2
Tr[J[P]] + ρ(P) (10)

To get the force, so the nuclear gradient, we first have to define the Lagrangian to enforce normalization
of the wavefunction:

L(C, ϵ,R) = E[R]− Tr[ϵ(CTSC− I)] (11)

We then get the nuclear gradient by differentiating L. The derivative w.r.t. nuclear component x is:

dL
dx

=
∂L
∂x

+
∂L
∂C︸︷︷︸
=0

∂C

∂x
− Tr

[
ϵCT ∂S

∂x
C

]
+ 2Tr

[
(SCϵ)T

dC

dx

]
(12)

=
∂E

∂x
− 2Tr

[
(SCϵ)T

dC

dx

]
− Tr

[
ϵCT ∂S

∂x
C

]
+ 2Tr

[
(SCϵ)T

dC

dx

]
(13)

=
∂E

∂x
− Tr

[
ϵCT ∂S

∂x
C

]
︸ ︷︷ ︸

”Pulay terms”

(14)

Due to the stationarity ∂L
∂C = 0 we did not need to calculate the density response ∂C

∂x , which is
why calculating forces is cheap, on the same order as the cost of energies. However, once we want
Hessians, we need to differentiate equation 11 twice:

d2L
dxdy

=
∂2L
∂x∂y

+
∂2L
∂C∂x

dC

dy
+

∂2L
∂ϵ∂x

dϵ

dy
(15)

=
∂2L
∂y ∂x

−
[

∂2L
∂C ∂x

∂2L
∂ε ∂x

] ∂2L
∂C2

∂2L
∂C ∂ε

∂2L
∂ε ∂C

∂2L
∂ε2


−1 

∂2L
∂C ∂y
∂2L
∂ε ∂y

 . (16)

Solving the linear system of equations scales formally as O(N5) in computation and O(N4) in
memory. Similar to energy calculations, density fitting, sparsification (integral screening), and other
optimizations can reduce the cost for CPKS. Still, the scaling remains worse in both computation and
memory compared to energy calculations.

A.1.2 HESSIANS VIA FINITE DIFFERENCES

A major downside of the CPKS approach to Hessians is its highly complex implementation and need
for exchange-functional-specific derivations. Therefore, many new methods do not support Hessians,
and most codes instead resort to finite difference calculations in these cases. Using central differences
of the forces along the 3N Cartesian directions, the Hessian elements are constructed from

Hij ≈
Fi(R+ hej)− Fi(R− hej)

2h
(17)

This requires 2× 3N displaced gradient calculations. Each gradient calculation scales similarly to
the energy calculation with O(N4), leading to a O(N5), the same as naive CPKS, although typically
with more numerical noise and a much larger prefactor because we have to repeatedly converge an
SCF, as opposed to solving a large linear system in analytical Hessians.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1.3 GEOMETRY OPTIMIZATION

Geometry optimization locates minima argminR E(R) of the potential energy surface starting
from non-equilibrium molecular geometries. It underpins most workflows from global searches to
high-throughput screening. The efficiency of geometry optimization depends on four key factors: (i)
the choice of coordinate system, (ii) the quality of the Hessian approximation, (iii) the update strategy,
and (iv) the step size control. Cartesian coordinates are straightforward but strongly coupled, which
limits step size and slows convergence for flexible systems. In contrast, internal coordinates are better
aligned with chemically meaningful motions, separate stiff and soft modes, and allow constraints to
be imposed naturally. These properties often lead to substantially fewer iterations. Some of the most
widely used optimizers are the first-order FIRE (Bitzek et al., 2006) optimizer and the second-order
rational function optimization (RFO) optimizer.

RFO Rational function optimization (RFO) (Simons et al., 1983; Banerjee et al., 1985) is a
commonly used second-order optimization technique in molecular geometry optimization. RFO
starts with a [2/2]-Padé-expansion of the energy:

E(Rt +∆x)− E(Rt) ≈
g⊤∆x+ 1

2∆x⊤H∆x

1 + |∆x|2
(18)

The extrema ∆x′ of this surrogate are given by the solution of the generalized eigenvalue problem:[
H g

g⊤ 0

][
∆x′

1

]
= λ

[
I 0

0 1

][
∆x′

1

]
. (19)

An attractive property of RFO is that it can be used both for minimizing E(R) as well as for finding
saddle points (important for transition state search, see next section): If we pick the first eigenvector
of equation 19, we get an update pointing to the minimum; if we select the second eigenvector, we get
a transition state update. In contrast to Newton-Raphson optimization, RFO is also robust to indefinite
Hessians. For detailed derivation, see (Simons et al., 1983; Banerjee et al., 1985). In this paper,
for minimization, we are using restricted step RFO (RS-RFO), which adds a trust region to prevent
unphysically large steps. For the transition point search, we are using restricted step partitioned RFO
(RS-P-RFO), a slight modification that treats the subspace with negative and positive eigenvalues of
the Hessian separately.

BFGS To apply RFO in practice, we need a Hessian at each step. As computing full Hessians is
usually too expensive, a common practice is to maintain an approximate Hessian using the BFGS
quasi-Newton scheme. BFGS updates approximate Hessians Bk of the true Hessian H(Rk) using
the update equation

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤
k sk

, y⊤
k sk > 0, (20)

where the curvature condition y⊤
k sk > 0 (typically ensured by a Wolfe line search) guarantees that

Bk+1 remains positive-definite, which is desirable for minimization. In the RFO framework, Bk

simply replaces the exact Hessian H in the augmented eigenvalue problem in equation 19.

A.1.4 TRANSITION STATE SEARCH

Computational methods for transition state search can broadly be categorized as single-ended and
double-ended. In double-ended methods, we know the product and reactant states (the two minima on
the energy surface) and try to find an interpolation on the MEP that goes through the TS. In contrast,
in single-ended methods, we only know a starting point and try to climb up on the energy surface
to find a nearby transition state. Often, double-ended methods are used to give good initial guesses,
which are then refined by single-ended methods. In this study, we are using the Growing string
method to find the initial states, which we then refine with RS-P-RFO (see above).
Different double-ended methods are distinguished by how they grow the interpolations between
product and reactant states. The most common approaches are the nudge elastic band method
(Henkelman & Jónsson, 1999; Henkelman et al., 2000) and the growing string method (GSM) (Peters
et al., 2004; Zimmerman, 2015).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Nudged elastic band method The nudged elastic band method aims to find the minimum energy
path between given initial and final configurations. A set of images connecting these states is linked
by classical spring forces, forming an elastic band. Each image experiences a total force comprising
the spring force along the local tangent and the true force perpendicular to it. The images are
simultaneously optimized to trace the MEP. To converge to the transition state, a climbing image is
introduced, for which the force along the band is inverted, leaving only the perpendicular component
of the true force. This drives the climbing image up the potential energy surface along the band while
descending perpendicularly, reaching the transition state along the MEP.

Growing string method The growing string method (GSM) locates transition states by incremen-
tally constructing a discrete path of structures on the potential energy surface. Starting from the
reactant and product endpoints, two path fragments are iteratively grown together. At each iteration,
a new node on the string is added along the local tangent direction and relaxed orthogonally to the
path according to the force

F⊥ = F− (t̂⊤F)t̂, (21)
where F = −∇E is the force and t̂ is the local tangent unit vector. Convergence is typically acceler-
ated by approximate Hessians, constructed in delocalized internal coordinates and updated by quasi-
Newton schemes, which enable eigenvector-guided optimization while avoiding full second-derivative
evaluations (Zimmerman, 2015). Once the two fragments merge, the full string is reparameterized to
maintain uniform node distance, and the highest energy node serves as a transition state estimate,
which can be further refined using Hessian-based eigenvector following (Peters et al., 2004).

A.2 HESSIAN PROPERTIES

The Hessian is a symmetric matrix H = H⊤ where each sub-block transforms under rotation as a
cartesian tensor

HI,J
Q−→ QHI,JQ

⊤ (22)
or equivalently

H
Q−→ (IN ⊗Q)H(IN ⊗Q)⊤ (23)

The symmetry follows directly from Schwartz’s theorem, which states that for every scalar function
E(R) that has continuous partial second derivatives in the neighborhood of a point R0, the partial
second derivatives commute(

∂2E

∂Ri∂Rj

)
R=R0

=

(
∂2E

∂Rj∂Ri

)
R=R0

(24)

The transformation law under rotation follows straightforwardly from the chain rule:
First, write the rotated coordinates as

R′ = (IN ⊗Q)R (25)
∂R′

∂R
= (IN ⊗Q) (26)

Then, define the energy in the rotated frame

E′(R′) = E((IN ⊗Q)⊤R′) = E(R) (27)
Then the first order derivative is

∇R′E′(R′) = (IN ⊗Q)∇RE′(R′) (28)

= (IN ⊗Q)∇RE((IN ⊗Q)−1(IN ⊗Q)R′) (29)
= (IN ⊗Q)∇RE(R) (30)

showing the equivariance of the forces. The second-order derivative is
H′ = ∇2

R′E′(R′) = ∇R′((IN ⊗Q)∇RE(R)) (31)
= (IN ⊗Q)∇R′∇RE(R) (32)

= (IN ⊗Q)∇R∇RE(R)(IN ⊗Q)⊤ (33)

= (IN ⊗Q)H(IN ⊗Q)⊤ (34)
which shows the equivariance of the Hessian matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Non-integrability Hessians Since direct Hessian predicrtions are not formulated as derivatives,
they are not guaranteed to be integrable. It is important to understand when a non-integrability error
can lead to catastrophically wrong downstream predictions similar to direct force predictions in MD
simulations.
Lets first review the more familiar case: Why do direct force predictions fail in MD simulations
but succeed in geometry optimization? Suppose we directly predict forces with error e(x) =
Fpred(x)− F (x). We can decompose the error in a conservative and a non-conservative field using
the Helmholtz decomposition: e(x) = ∇ϕ(x) + S(x). ϕ ∈ R is a scalar potential, and S is a vector
field S(x) ∈ R3N that is divergence-free∇ · S(x) = 0 but not curl-free ∃x s.t. ∇× S(x) ̸= 0. Now
consider how the energy of the system changes over time in an MD simulation:

∆E′ =

∫ T

0

Fpred(x(t))v(t)dt =

∫ T

0

(F (x(t) + e(x(t)))v(t)dt

=

∫ T

0

(F (x) +∇ϕ(x) + S(x))v(t)dt

= E(T)− E(0) + ϕ(T)− ϕ(0)︸ ︷︷ ︸
error bounded with time

+

∫ T

0

S(x)v(t)dt︸ ︷︷ ︸
error unbounded with time

Since MD simulations use large T , non-conservative forces lead to the blowups in error.

In geometry optimization we define E′ = E + ϕ, then follow the gradient descent ODE:

dE′(x(t))

dt
= ∇E′(x(t)) · dx(t)

dt
(35)

= −∇E′(x(t)) · (∇E(x) + e(x)) (36)

= −∇E′(x(t)) · (∇E(x) +∇ϕ(x) + S(x)) (37)

= −∇E′(x(t)) · (∇E′(x) + S(x)) (38)

= −|∇E′(x(t))|2 +∇E′(x) · S(x) (39)

Using the general inequality 2ab ≤ a2 + b2:

dE′(x(t))

dt
= −|∇E′(x(t))|2 +∇E′(x) · S(x) (40)

≤ −|∇E′(x(t))|2 + 1

2
|∇E′(x(t))|2 + 1

2
|S(x)|2 (41)

= −1

2
|∇E′(x(t))|2 + 1

2
|S(x)|2 (42)

Therefore, as long as |∇E′(x(t))|2 > |S(x)|2, the direct predicted force minimizes the energy plus
some error potential similar to AD forces. Once we are close to convergence we have |∇E′(x(t))|2 ≤
|S(x)|2 and stop converging or enter a limit cycle. This means, we will converge to an extrema
on a energy surface E′ within a distance of O(|S|). In practice we are interested in how close we
converge to the extrema of the DFT energy E. For this it doesnt matter if the error stems from the
error potential ϕ shifting the extrema, or S inducing a small limit cycle. As there is no time dependent
error blow up it is therefore safe to use direct forces for geometry optimization.

Now we can do the same for the directly predicted Hessian Hpred(x) = H(x) + e(x): Denote the
error again as e(x) = ∇2ϕ(x) + S(x). As before we would get errors scaling with integration length
if we would try to calculate quantities of the form

Q(T) =

∫ T

0

f(x(t), Hpred(x(t)))dx(t) (43)

leading to large errors for large T .

However, our key argument is: No mainstream task integrates over a function of the Hessian for large
T !

ZPE and geometry classification are single point calculation, therefore the errors∇2ϕ(x) and S(x)
both behave the same, one error is not ”worse” than the other.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: HIP compared to ground-truth DFT Hessian. The horizontal and vertical axis index the
(3NAtoms)

2 entries of the Hessian. We depict the absolute values of test sample C5H6O in eV/Å2.

Mode following in transition state search is equivalent to the geometry optimization analysis with
direct forces above. Energy minimization with Hessian preconditioner is also unproblematic, as
preconditioner cannot change the minimum, they only change the convergence speed.

In fact, it is common practice to use BFGS updates for transition state search and energy minimization,
and BFGS updates do not have any notion of integrability either.

A.3 BATCHED AD HESSIAN PERFORMANCE

We observe in Figure 2 a fast degradation of the AD Hessian speed with batch size. To explain this, we
have to understand exactly how AD treats Hessians. From the point of view of the AD engine, there
is no difference between a batch of two molecules of system size NA and NB , and a larger system
of size NA + NB . In both cases, the MLIP function takes in an array of dimension 3NA + 3NB ,
and returns either a single scalar EA +EB or even worse, an array [EA, EB], so mathematically the
energy function looks like E(R) : R3NA+3NB → R or E(R) : R3NA+3NB → R2. Consequently,
a Hessian of this function is a block diagonal matrix of dimension 3(NA + NB) × 3(NA + NB),
or even 2 × 3(NA + NB) × 3(NA + NB). Therefore, the memory costs grow quadratically with
the batch size. Since we have to implement the Hessian calculation with sequential Hessian-Vector
products in order not to run out of memory, we can not even make use of parallelization in the batched
processing of Hessians.

A.4 TRAINING DETAILS

The hyperparameters our HIP-EquiformerV2 model are listed in 4. We inherit the model settings and
large parts of the optimizer settings from the HORM codebase (Cui et al., 2025).

Training resources Training AD Hessians is exceptionally more expensive than training HIP. The
memory cost of computing loss gradients through the full 3N × 3N Hessian is prohibitive. Instead,
the baseline models from Cui et al. (2025) randomly sample one or two columns of the Hessian via
random Hessian-vector products at each training step. Despite this, training AD Hessians remains
exceedingly expensive. The HORM paper states that they use 2 HVPs at a batch size of 128. Their
checkpoint metadata shows that the per device batch size was 8, implying a 16xA30 GPU setup for 1
million gradient steps. In contrast, we trained HIP on a single H100 GPU for 500k steps. Additionally,
each train step of HIP costs 1/5 the cost of AD Equiformer training on our hardware. Finally, we
observe HIP fully converges after 300-500k training steps, while AD Hessians require a multiple of
steps, due to the limited supervision of not being able to use the full Hessian.

A.5 ADDITIONAL RESULTS

A.5.1 LOSS FUNCTION

We are trying to design a loss function that emphasizes the lowest lying eigenvalues/eigenvectors. To
design such a loss function, one could naively compute a loss directly as L =

∑k
i |v

predict
i − vtrue

1 |.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters. We use the same hyperparameters for HIP as HORM (Cui et al., 2025)
for simplicity.

Model Type: EquiformerV2
Layers: 4
Sphere channels: 128
Attention hidden channels: 64
Attention heads: 4
Attention alpha channels: 64
Attention value channels: 64
FFN hidden channels: 128
Activation: SiLU
Distance basis: 512 (Gaussian)
Radius cutoff: 12 Angstrom
Cutoff Hessian: 12 Angstrom
Hessian layers: 3 (1 for end-to-end)
Spherical harmonics: Lmax=4, Mmax=2
Grid resolution: 18, Sphere samples: 128
Dropout: α=0, drop path=0

Loss MAE weight: 1
Eigen subspace k: 8
Eigen loss weight α: 1.0

Optimizer AdamW
Betas: (0.9, 0.999)
AMSGrad: True
Weight decay: 0
Batch size: 128
Gradient clipping: 0.1 (norm)

Learning Rate Learning rate: 0.0005
Scheduler: StepLR
Step size: 10
Gamma: 0.85

Trainer Steps: 500k (3-5 days on a H100 GPU)

Model Hessian Columns Batch Size BZ / GPU GPU # GPUs Training Steps

AlphaNet 1 32 16 H20 2 688,000

LeftNet-CF 1 64 16 A30 8 192,000

LeftNet-DF 2 64 16 A30 8 120,000

EquiformerV2 (E-F) 0 128 8 A30 16 384,000

EquiformerV2 2 128 8 A30 16 1,008,000

HIP-EquiformerV2 3N (all) 128 128 H100 16 500,000

Table 5: Summary of training resources. Comparing HIP to checkpoints from HORM (Cui et al.,
2025).

This requires computing the eigenvalues and eigenvectors of the true and predicted Hessian via
an eigenspectrum decomposition. Unfortunately, backpropagation through such an eigenspectrum
decomposition is numerically unstable (van der Aa et al., 2007). First, gradients computed using the
eigenvectors tensor will only be finite when H has distinct eigenvalues. Furthermore, if the distance
between any two eigenvalues is close to zero, the gradient will be highly sensitive, as it depends on
the eigenvalues λi through the computation of mini ̸=j

1
λi−λj

. Instead, we propose the following
subspace loss.

In the following section, we compare the eigenspace loss that we introduced in equation 9 to the
standard choice of mean square error (MSE) and mean absolute error (MAE).
In particular, we emphasize the subspace k = 8. The reason for this is that transition state search, ZPE,
and frequency analysis for extrema classification all depend on the two lowest-lying eigenvectors
and eigenvalues. We choose k = 8 instead of k = 2 to account for the usual 6 redundant degrees of
freedom, which we do not remove during training for numerical stability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Loss Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓ λ2 ↓ λE
1 ↓ λE

2 ↓ CosSim vE
1 ↑ CosSim vE

2 ↑
eV/Å2 eV/Å2 unitless eV/Å2 eV/Å2 eV/Å2 eV/Å2 unitless unitless

MSE 0.033 0.072 0.728 0.168 0.088 0.037 0.013 0.959 0.928
MAE 0.026 0.057 0.825 0.127 0.052 0.031 0.012 0.976 0.952
MAE+Sub 0.030 0.063 0.870 0.130 0.030 0.031 0.010 0.980 0.957

Table 6: Accuracy of HIP-EquiformerV2 using different loss functions. Superscript E denotes after
removing redundant degrees of freedom using Eckart-projection on the mass-weighted matrix.

Figure 7: Geometry relaxation with HIP-EquiformerV2 trained using different loss functions

We combine the subspace loss with MAE, so the total loss becomes

LMAE+Sub = LMAE + L(k=8)
sub (44)

=
∑
i,j

|Hi,j −Hpred
i,j |+

∑
i,j

∣∣∣V⊤
[:,:k]H

predV[:,:8] −Λ[:,:8]

∣∣∣
i,j

(45)

For simplicity, we weight both the MAE and subspace loss equally. Future work could benefit from
carefully tuning the relative weights between the loss terms.

On downstream tasks, subspace loss improves over MAE and MSE in (i) transition state search, as
shown in Table 8, and (ii) transition state identification frequency analysis, as shown in Table 9. We
observe equal performance between MAE and the subspace loss for (i) geometry relaxation Table 7
and (ii) computing the zero-point energy Table 7.

Table 6 shows that the subspace loss improves the first eigenvector v1 cosine similarity, and the
second eigenvalue λ2 MAE. This is consistent with the better performance of the subspace loss on
transition state-related tasks, since the transition state is characterized via the two smallest eigenvalues
λ1, λ2, and is found by following the first eigenvector v1.

MSE generally underperforms compared to MAE and MAE with subspace loss. MSE has the
theoretical advantage that it is rotation invariant, while the MAE is not. In practice, however, we find
that the MSE leads to a high variance (spikes) in the training loss and gradient norm across batches.
We speculate that MAE outperforms MSE due to training stability.
Hessian prediction with any loss function tested significantly outperforms prior AD Hessians.

RGD1 To test the extrapolation of HIP we test the same model checkpoints on the slightly larger
molecules in the RGD1 dataset in table 10. Similar to T1x, models trained without Hessian data fail

Hessian Model ZPE MAE (Std) [eV] ∆ZPE MAE (Std) [eV]

MSE HIP-EquiformerV2 0.0008 (0.0012) 0.0019 (0.0025)
MAE HIP-EquiformerV2 0.0004 (0.0004) 0.0013 (0.0019)
MAE+Sub HIP-EquiformerV2 0.0004 (0.0003) 0.0016 (0.0018)

Table 7: Zero-point energy by HIP-EquiformerV2 for different loss functions

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Loss Model TS Success RFO Converged Both
MSE HIP-EquiformerV2 718 669 659
MAE HIP-EquiformerV2 740 693 683
MAE+Sub HIP-EquiformerV2 750 705 698

Table 8: Transition state search with HIP-EquiformerV2 trained with different loss functions

Name TPR ↑ FPR ↓ FNR ↓ TNR ↑ Precision ↑ Accuracy ↑ Accuracy All ↑
MSE 88% 11% 12% 89% 86% 89% 86%
MAE 93% 7% 7% 93% 91% 93% 91%
MAE+Sub 93% 6% 7% 94% 92% 94% 92%

Table 9: Identifying transition states (left) and any extrema (rightmost column) via frequency analysis
using HIP-EquiformerV2 for different loss functions.

to produce accurate AD Hessians (EquiformerV2 (E-F)). HIP produces significantly better Hessians
faster on every metric compared to AD. End-to-end training HIP improves over only training the
readout head. We reach the same conclusions on the QM9 Hessian dataset in A.5.1. Training HIP
from scratch is also orders of magnitude cheaper to train than AD Hessians, as we discuss in A.4.

Computational cost compared to finite difference Wander et al. (2025) showed that finite differ-
ence Hessians obtained from finetuned MLIPs can increase success rates in transition state search
for catalysis. The advantage of finite difference is that it does not require additional memory over a
regular forward pass, and only force labels are needed for training. The limitation of finite difference
Hessians is their steep time cost. Like AD Hessians, finite difference requires O(N2) time, but with
an even larger prefactor, as can be seen in figure 8.

QM9 Hessian QM9 Hessian (Williams et al., 2025) is a dataset of 41,645 equilibrium configurations
from the QM9 dataset with numerical Hessians at the ωB97x/6-31G* level. Molecular Hessians were
calculated in an implicit solvation model for water, tetrahydrofuran (THF), toluene, and in vacuum.
Like the baseline, all models are trained end-to-end for each solvent separately. We train on one L40s
GPU for one day for HIP and three days for AD Hessian variants. The training setup is listed in table
11. The results in table 12 show that HIP improves over all baselines, in particular the Nequip-based
model from Williams et al. (2025). EquiformerV2 models trained with AD Hessians via HVPs
perform poorly even after three times the training wall time of HIP. Training without Hessians (E-F)
yields poor accuracy on Hessian metrics.

A.6 EXPERIMENTAL DETAILS

A.6.1 RELAXATIONS

We compare our RFO-based optimization (Besalú & Bofill, 1998) using predicted Hessians (RFO
predicted), and our RFO with BFGS updates with initial predicted Hessian (RFO-BFGS predicted init)
against first-order methods, quasi-second-order BFGS variants, and exact second-order approaches
obtained via automatic differentiation or finite differences.
Our baselines include steepest descent with backtracking line search (SteepestDescent) and the first-
order method FIRE (Bitzek et al., 2006). For quasi-second-order methods, we consider RFO with

Table 10: HORM-RGD1 Comparison of Hessian prediction errors on the HORM-RGD1 validation
set.

Hessian Model
Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓ Time ↓

eV/Å2 eV/Å2 unitless eV/Å2 ms

AD

AlphaNet 0.456 4.008 0.734 0.545 935.4
LEFTNet-CF 0.243 1.388 0.821 0.337 1358.9
LEFTNet-DF 0.292 1.319 0.809 0.301 434.3
EquiformerV2 0.092 0.315 0.822 0.220 946.1

EquiformerV2 (E-F) 1.234 10.349 0.397 0.969 946.7

Predicted
HIP-EquiformerV2 0.057 0.158 0.943 0.130 50.9

HIP-EquiformerV2 (end-to-end) 0.049 0.123 0.950 0.098 40.6

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 8: Computational cost. Comparing (a) time and (b) memory of a forward without Hessians,
with HIP, automatic differentiation (AD), finite difference Hessians. The memory for Forward Pass,
FD Hessians, and HIP Hessians is nearly identical.

Model Hessian Columns Batch Size Train Time / Epoch (s)
EquiformerV2 (E-F) 0 64 380
EquiformerV2 2 16 1900
EquiformerV2-CF 1 12 3200
HIP-EquiformerV2 3N 64 550

Table 11: Training configuration and epoch time for QM9 Hessian. Training was performed on a
L40s GPU. Batch size is the maximum that could be fitted on the GPU.

BFGS updates initialized from either the identity (RFO-BFGS unit init), AD Hessian (RFO-BFGS
AD init), or finite difference Hessian (RFO-BFGS FiniteDifference init). For full second-order
methods, we include RFO with either automatic differentiation or finite difference Hessians. We
run relaxations on 80 reactant geometries from the Transition1x validation set (which is different
from HORM-T1x), that we noise with 0.5 Å RMS. We use the RS-RFO and redundant coordinate
implementation in pysisyphus (Steinmetzer et al., 2021; Herbol et al., 2017). We set the convergence
criteria to ”Gaussian default” (see A.6.4), with a budget of 150 steps.

A.6.2 TRANSTION STATE SEARCH WITH REACTBENCH

We use the recently introduced ReactBench benchmark (Zhao et al., 2025). The workflow consists
of generating an initial guess using the growing string method (Aldaz et al., 2025; Zimmerman,
2015), followed by local search using the restricted-step partitioned rational-function-optimization
method (RS-P-RFO) (Besalú & Bofill, 1998). Finally, convergence to the correct transition state is
confirmed by frequency analysis, and following the intrinsic reaction coordinate (IRC) (Steinmetzer
et al., 2021).
Following previous work (Zhao et al., 2025; Cui et al., 2025), we report success metrics of each step:

1. GSM successfully converged below a force RMS of 5e−5 Hartree/Bohr within 100 iterations
(”GSM Success”)

2. After RS-P-RFO, the frequency analysis determines geometry as a true transition state (”TS
Success”)

3. IRC converged to the same criteria and yields the original initial reactant and product (”IRC
Verified”).

We then treat the samples successfully passing (a)-(c) as transition state proposals, and verify for a
random subset of 100, if the DFT Hessians have one negative eigenvalue and the DFT force RMS is
below 2e−3 Ha/Bohr. We additionally report if RS-P-RFO converged to ”Gaussian default” (A.6.4)
within 50 steps.

23

https://github.com/deepprinciple/ReactBench

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Comparison of Hessian prediction errors on the QM9 Hessian dataset. Denoted are the
mean absolute error (MAE), cosine similarity (CosSim), and average time per forward pass on a L40s
GPU. λ1 and v1 where obtained after Eckart-projection. Bold values highlight the best-performing
model. E3x-Neuqip models are taken from Williams et al. (2025).

Solvent Model Hessian Forces ↓ Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓
eV/Å eV/Å2 eV/Å2 unitless eV/Å2

Vacuum

E3x-Nequip AD 0.035 0.070 - - -
EquiformerV2 AD 0.030 0.340 2.641 0.425 0.151
EquiformerV2 (E-F) AD 0.002 2.107 32.471 0.076 0.175
EquiformerV2-CF AD 0.049 0.881 12.212 0.074 0.652
HIP-EquiformerV2 (end-to-end) Predicted 0.002 0.040 0.172 0.975 0.010

THF

E3x-Nequip AD 0.028 0.067 - - -
EquiformerV2 AD 0.030 0.281 1.874 0.380 0.117
EquiformerV2 (E-F) AD 0.002 2.077 31.566 0.067 0.169
EquiformerV2-CF AD 0.048 0.846 10.447 0.079 0.523
HIP-EquiformerV2 (end-to-end) Predicted 0.002 0.060 0.240 0.878 0.033

Toluene

E3x-Nequip AD 0.029 0.062 - - -
EquiformerV2 AD 0.030 0.320 2.232 0.424 0.104
EquiformerV2 (E-F) AD 0.002 2.095 31.606 0.072 0.158
EquiformerV2-CF AD 0.361 4.794 39.822 0.023 320.933
HIP-EquiformerV2 (end-to-end) Predicted 0.002 0.038 0.117 0.947 0.008

Water

E3x-Nequip AD 0.028 0.054 - - -
EquiformerV2 AD 0.028 0.273 1.817 0.377 0.071
EquiformerV2 (E-F) AD 0.001 2.097 31.862 0.066 0.050
EquiformerV2-CF AD 0.068 0.991 11.440 0.070 1.290
HIP-EquiformerV2 (end-to-end) Predicted 0.001 0.025 0.091 0.926 0.012

Setting Max Force RMS Force Max Step RMS Step Used for

Gaussian loose 1.7e-3 1.0e-2 6.7e-3
Gaussian default 4.5e-4 3.0e-4 1.8e-3 1.2e-3 Relaxation, TS search 4
Gaussian tight 1.5e-5 1.0e-5 6.0e-5 4.0e-5 ZPE 4
Gaussian very tight 1.0e-6 6.0e-6 4.0e-6

Table 13: Convergence metrics used in our experiments

A.6.3 ZERO-POINT ENERGY

Starting from 80 reactant and product geometries from the Transition1x validation set, we relax
the geometries using DFT and RS-RFO (BFGS, identity initialization), up to ”Gaussian tight”
convergence (see A.6.4). We use the same level of theory for the relaxation as for the training of the
models. Then we compute the ZPE from the Eckart-projected, mass-weighted Hessian as predicted
by the different models and compare to DFT. We report all energies in eV per molecule.

A.6.4 CONVERGENCE CRITERIA

Throughout our experiments, we adopt the following convergence criteria, set forth by the Gaussian
software and widely used in different codebases. All criteria need to be met for a geometry to be
considered converged.

MASS-WEIGHTING AND ECKART PROJECTION

We briefly describe the process of removing the redundant degrees of freedom of the Hessian (Wilson
et al., 1955; Louck & Galbraith, 1976).

We start from a system of N atoms with Cartesian coordinates q = (x1, y1, z1, . . . , xN , yN , zN)⊤ ∈
R3N , atomic positions Ri = (xi, yi, zi)

⊤, and masses mi.

Centering at the center of mass The first step is to use COM-centered coordinates ri = Ri−Rcom,
which are computed from the total mass M =

∑N
i=1 mi, and the center of mass (COM)

Rcom =
1

M

N∑
i=1

mi Ri. (46)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mass-weighing Given a Cartesian Hessian H ∈ R3N×3N , its mass-weighted form is

H̃ = M−1/2 HM−1/2. (47)

where the diagonal mass matrix is

M = diag
(
m1,m1,m1︸ ︷︷ ︸

atom 1

, . . . ,mN ,mN ,mN︸ ︷︷ ︸
atom N

)
∈ R3N×3N . (48)

Inertia tensor and principal axes To build the Eckart vectors, we require the eigendecomposition
of the inertia tensor. The inertia tensor about the COM is

I =

N∑
i=1

mi

[(
ri · ri

)
13 − ri r

⊤
i

]
=

(
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

)
, (49)

with components

Ixx =
∑
i

mi(y
2
i + z2i), Iyy =

∑
i

mi(x
2
i + z2i), Izz =

∑
i

mi(x
2
i + y2i),

Ixy = −
∑
i

mixiyi, Ixz = −
∑
i

mixizi, Iyz = −
∑
i

miyizi.
(50)

The eigendecomposition of the inertia tensor is then IE = EΛ, where the columns {̂i1, î2, î3} of E
are orthonormal principal axes.

Translational and rotational subspace (Eckart vectors) We can now define the three mass-
weighted translational unit vectors {tα}α=x,y,z ∈ R3N (using unit vectors e.g., êx = (1, 0, 0)⊤)

t(i)α =
√
mi êα, α ∈ {x, y, z}, i = 1, . . . , N, (51)

as well as the three mass-weighted rotational vectors {rk}k=1,2,3 ∈ R3N using the COM-centered
coordinates and the principal axes from the inertia tensor:

r
(i)
k =

√
mi

(̂
ik × ri

)
, k = 1, 2, 3. (52)

For linear molecules, one rotational vector has (near-)zero norm and is discarded; in practice, we
drop any rk whose norm is below a small threshold. We collect the translation and rotation vectors as
rows of a matrix

T =


t⊤x
t⊤y
t⊤z
r⊤1
r⊤2
r⊤3

 ∈ Rd×3N , (53)

with d = 6 for non-linear molecules and d = 5 for linear molecules. We then orthonormalize these
rows (e.g., QR factorization of T⊤) to obtain an orthonormal set {ua}da=1 spanning the rigid-body
subspace in mass-weighted coordinates.

Eckart projector To build the projector, two equivalent forms are convenient in practice.
1) Explicit projector

P = I3N −
d∑

a=1

ua u
⊤
a . (54)

2) Nullspace basis via the SVD T⊤ = UΣV⊤, which we use as default due to improved numerics.
The columns of U associated with zero singular values span the vibrational subspace. Stack them
row-wise to form Pbasis ∈ R(3N−d)×3N .
Finally, we apply the Eckart projection

H̃Eckart = Pbasis H̃ P⊤
basis. (55)

followed by re-enforcing the projected Hessian to be symmetric:

H̃Eckart ← 1
2

(
H̃Eckart + H̃⊤

Eckart

)
. (56)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

INTRINSIC REACTION COORDINATE WITH EULER PREDICTOR-CORRECTOR

The intrinsic reaction coordinate (IRC) traces the steepest-descent path on the potential energy surface
(PES) from a transition state (TS) toward reactant and product minima. We use the IRC provided
in the ReactBench benchmark (Zhao et al., 2025), which itself uses the pysisyphus implementation
(Steinmetzer et al., 2021). We integrate in mass-weighted Cartesian coordinates to obtain a physically
meaningful path, solving:

dx

ds
= − g(x)

∥g(x)∥
,

where x are mass-weighted coordinates and g is the mass-weighted gradient. The pysisyphus imple-
mentation follows an Euler predictor-corrector (EulerPC) scheme (Hratchian et al., 2010). Starting
from a TS, we diagonalize the mass-weighted Hessian, identify the imaginary mode (transition
vector), and displace slightly along it to initialize the path. We perform small Euler integrations along
−g/∥g∥, updating the gradient via a local Taylor expansion using the current Hessian. The Hessian
is updated with BFGS updates from ∆x,∆g. We refine the predicted point using distance-weighted
interpolation (DWI) of previously visited points (coordinates, energies, gradients, Hessians). The
corrector integrates the IRC equation on this surrogate PES using a modified Bulirsch-Stoer procedure
with Richardson extrapolation.

26

https://github.com/deepprinciple/ReactBench

	Introduction
	Background
	Traditional methods for calculating Hessians
	Our Approach: Direct prediction of Hessians
	Molecular optimization with Hessians

	HIP Hessian Prediction
	Hessian Symmetry Requirements
	Hessian Prediction Head
	Loss function design

	Experiments
	Conclusion
	Appendix
	Extended background
	Analytical Hessians via CPKS
	Hessians via finite differences
	Geometry optimization
	Transition State Search

	Hessian properties
	Batched AD Hessian performance
	Training Details
	Additional results
	Loss function

	Experimental Details
	Relaxations
	Transtion State Search with ReactBench
	Zero-Point energy
	Convergence Criteria

