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Abstract. In this paper, the numerical solutions of conformable fractional-order linear and nonlinear equa-
tions are obtained by employing the constructed conformable Adomian decomposition method (CADM).
We found that CADM is an effective method for numerical solution of conformable fractional-order dif-
ferential equations. Taking the conformable fractional-order simplified Lorenz system as an example, the
numerical solution and chaotic behaviors of the conformable fractional-order simplified Lorenz system are
investigated. It is found that rich dynamics exist in the conformable fractional-order simplified Lorenz sys-
tem, and the minimum order for chaos is even less than 2. The results are validated by means of bifurcation
diagram, Lyapunov characteristic exponents and phase portraits.

1 Introduction

Fractional calculus is a valuable tool in the modeling of many phenomena, and it has become a topic of great interest in
science and engineering [1-15]. Currently, the most commonly used definitions about fractional calculus are Riemann-
Liouville definition and Caputo definition [4]. Although both of them are used most in practice, there exist some
problems. For instance, they do not satisfy some properties that the integer-order derivative satisfies, such as the chain
rule and the properties for the product and quotient. To overcome these difficulties, recently Khalil et al. [5] proposed
a new fractional derivative, that is prominently compatible with the classical derivative, and is called the conformable
fractional-order derivative. Mathematical properties of conformable fractional-order derivative were investigated in [6],
and it also indicated in the paper that conformable definition is the simplest one to recognize the fractional derivative
and the integral derivative. Meanwhile, this new fractional definition also has some physical applications such as the
conformable fractional-order heat equation [7], conformable fractional-order Newonian mechanics [8] and conformable
fractional-order Burgers’s equation [9]. In fact, the research about conformable fractional derivative is still at an early
stage, and many further studies can be carried out in this new fractional derivative.

In recent years, dynamical analysis, synchronization and practical applications of fractional-order chaotic systems
have attracted much attention [10-15]. For instance, Chen et al. [10] analyzed the dynamics of the fractional-order Chen
system, and the minimum order they found to have chaos is 2.1. Maheri and Arifin [11] investigated synchronization
between two fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller.
He et al. [13] proposed a method for color image encryption based on fractional-order hyperchaotic systems. However,
the definition of the fractional-order derivative in these articles is the Riemann-Liouville definition or the Caputo
definition. As far as we know, there are no reports about conformable fractional-order chaotic system. It is interesting
and necessary to apply the conformable fractional-order derivative to chaotic systems and to analyze chaotic behaviors
in these fractional-order chaotic systems.

Particularly, we need to find a numerical solution method for conformable fractional-order chaotic systems. At
present, numerical solutions of the fractional-order chaotic systems with Riemann-Liouville definition or Caputo defi-
nition are obtained by frequency algorithm [16], Adms-Bashforth-Moulton algorithm (ABM) [17] or Adomian decom-
position method (ADM) [18]. Moreover, to solve conformable fractional-order differential equations, some efforts were
made [7-9,19,20]. However, these methods are used according to the particular occasion. Among the above numerical
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algorithms, ADM is a proper choice [21-23]. In this paper, conformable ADM (CADM) is developed to obtain the
numerical solution of conformable fractional-order equations, including the solution of the conformable fractional-order
chaotic system.

In this study, the numerical solution and dynamics of a conformable fractional-order chaotic system are investigated.
The rest of this paper is organized as follows. In sect. 2, the conformable Adomian decomposition method (CADM)
is proposed, and it is used to solve conformable fractional-order linear and nonlinear equations. In sect. 3, numerical
solution of a conformable fractional-order chaotic system is obtained by employing CADM, and dynamics of the
fractional-order simplified Lorenz system is investigated. Finally, the results are summarized in sect. 4.

2 Solution of conformable fractional differential equations
2.1 Definitions and fundamentals

Recently, Khalil et al. [5] introduced a new definition of fractional derivative, which is known as conformable fractional
derivative.

Definition 1 ([5]). The conformable fractional derivative is given by

etl—a) —
TI (1) = timg LD IO 1)

e—0 I3

where ¢t > 0, g € (0,1]. Obviously, when ¢ = 1, it is an integer-order derivative.
Some properties of the conformable fractional derivative are listed as follows.

Theorem 1 ([5]). Let g € (0,1], and suppose f(-) and g(-) are q-differentiable at point t > 0. Then
i) Tl (af(t) £bg(t)) = aTi f(t) £ T g(t), where a,b € R;

£ (f()g(®) = 9T f(t) + F(O) T g(t);

q(f(t ) = gOTIfFB)—FOTg(t) .
g(t) g(t)? ’

i) T
i) T

i) TPTE f(t) = TEE f(2);
) T f(g(t) ="' (8) f'(9(1))-

Remark 1. Riemann-Liouville definition and Caputo definition do not satisfy the properties as shown in theorem 1.

iii

v

According to definition 1 and theorem 1, the conformable fractional derivatives of some functions are given as
shown in theorem 2.

Theorem 2 ([5]). Let q € (0,1], and suppose f(-) is g-differentiable at point t > 0, then
i) qu(t) — 41—q df(t) .

Definition 2 ([6]). The conformable fractional integral of function f(-) starting from ¢y > 0 is defined as

IE f(t) :/t (xf(x)dxa (2)

_ to)l q
where t > tg, f(-) is g-differentiable at (to,¢] and g € (0, 1].

Here, two useful Lemmas about conformable fractional calculus are given and they will be used to solve the
conformable fractional differential equations.
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Lemma 1. Let to > 0, ¢ € (0,1], and f(-) is g-differentiable at [to, c0), so we have

I T f () = f(8) = f (to) » 3)
Proof. When t > tg, theorem 2i) now is given by [6]

7 £(1) = (¢ — 1) L. (@

According to definition 2, we have

t
1370 (1) = / (& — t0) ™ T4 f (2)da

to

- / (@ —t0)" " (@ — 1) ™" f'(x)da

to
= f(t) = f (to) - (5)

Lemma 2. If C' is a constant, q1,q2,-..,qn € (0,1], we have
(t _ CL)q1+...+qn

g +a@) . (a+...+aqn)

. RO =C

Proof.
¢ c t—to)
Ic = 4——wa=cL—Qa (7)
to (T —to)t— o 7
t C (7— _ tO)Q1 C(T _ to)q1+q2
rre=[ = dr = . 8
fo~to o @ (T — o)l @ (1 + q2) ®

The rest can be done in the same manner, thus we have
(t —a)tTan
alg+aq2) (@ +. +aqn)
Particularly, when ¢1 = g2 = ... = ¢, = ¢, ¢ € (0, 1], the following equation is obtained:
(t—a)™
nlg®

I9 . IP[NC =C

I9...19719C = C (10)
2.2 Conformable Adomian decomposition method

The Adomian decomposition method (ADM) [18] is developed to obtain numerical solution of conformable fractional-
order equations. Let us assume that the conformable fractional-order equation is presented by

Tix(t) = f(x(t) + &, (11)
where T} is the ¢ € (0,1] order conformable fractional-order derivative, z(t) = (z1(t),z2(t),..., 2, (t))T are state
variables, and g is the constant. Firstly, divide the equation into three parts, which now is given by

Tix(t) = Lx(t) + Nx(t) + g. (12)

Here, Lx(t) is the linear term and Nx(t) is the nonlinear term. By applying the conformable fractional integral operator
on both sides of eq. (11), according to lemma 1, we get

x(t) = I Lx(t) + I} Nx(t) + I} g + x(to). (13)

The nonlinear terms are decomposed based on the following method [22,23]:

A= L]

sy -
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where ¢ = 0,1,2,...,00, and j = 1,2,...,n. Thus the nonlinear terms can be presented as
o0
Nx:z:AZ (Xo,xl,...7xz). (15)
i=0

According to ADM, the solution of eq. (12) is given by
x=> x'=IILY x"+ 11> A"+ I g +x(to). (16)
i=0 i=0 i=0
By employing the following method, x can be calculated:
x" = I g + x(to)
xt = I Lx? + I A°(x")

x? = I Lx' + I A*(x°,x")

x\ =TI} Lx 4 IE AT (X0, x!, L xE

2.3 Solution of conformable fractional-order equations

In this section, we deduce the solutions of two conformable fractional-order differential equations by applying the
CADM. Moreover, we compare these solutions with their corresponding exact solutions.

Case 1. The conformable fractional-order exponential function. The equation given by T f(t) = f(t), with f(to) =
f(0) =1 and ¢ € (0,1] is calculated by employing CADM. The exact solution of this conformable fractional-order
equation is

F(t) = exp (?q) . (18)

According to CADM, the solution is given by

HOED I (19)
i=0
Firstly, the initial condition is
o= o) =1. (20)
According to eq. (16) and lemma 2, the following items are calculated:
L_ 720 ﬁ 21
=1, . (21)
P - (22)
2q
f = Igof t= W ) (23)
N L e N 1
10=3 1= S e = (). ey
i=0 i=0

When we calculate infinite items, the solution obtained is the same exact solution. To illustrate the precision of
the CADM solutions, the error between CADM solutions with 6 items and the exact solution is calculated as show in
fig. 1. The order ¢ is chosen as 0.7, 0.8, 0.9 and 1.0, respectively. It shows that the accuracy of the CADM solutions
increases with the increase of order ¢, but it decreases with the increase of time. It means that CADM can get more
accurate results when ¢ is closer to one. Moreover, for smaller order ¢, the simulation time should be shorter when we
want more satisfying results.
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Fig. 1. Error between CADM solution (6 items) and exact solution with different ¢: (a) ¢ = 0.7; (b) ¢
q=1.0.

0.8; (¢c) ¢ =0.9; (d)

Case 2. The conformable fractional-order Riccati equation. This equation is defined as

TIF() =1- (FO7  F(0) =0,

(25)
The exact solution is .
exp(;17) — 1 . (26)
exp(%tq) +1

In conformable fractional-order Riccati equation, there is a nonlinear term —f(¢) x f(¢). According to eq. (13), we
define

F@&) = O NP NN (27)
Then, the nonlinear item can be calculated as

F(t) = —f(t) x f(t)
— _f0f0_2f1f0)\_ (2f2f0_f1f1) A2— (2f3f0_2f2f1))\3_--- .

(28)
Thus
1 [d°
0= |gwro]  =-rr, (20)
0! [dXO =0
A= |0 =y (30)
11 [dA =0
1 LG TR @)
21 [ dA? A=0
By applying the above method, A? can be obtained. By applying the CADM, the following items are computed:
9 td
fP=1Ifg= 9= (32)
1 q ( £0y2 g 1% £
== (f) :_Itoqﬁ:_$7 (33)
2t44 2151
2 _ 1,0y _ _
pe-nerr) =1 (5 ) = (34)
4¢6a  ¢ba 17t
3:_Iq220 1rely _ _ 79 v [ R ) 35
f to( f f +f f ) to 15(]6 + 9q6 315q7 ( )
Based on the CADM, the solution is given by
B & U B U L B A
t) = t— — — ... 36
1) ;f qg 3¢° 15¢° 315q7 + 2835¢° (36)

Obviously, the CADM solution obtained above is the power series expansion of the exact solution as shown in
eq. (26). Figure 2 shows the relationship between the exact solution and the CADM solution. As shown in fig. 2,
the solution is more accurate when the order ¢ is larger. In addition, fig. 2 shows that the CADM solution has high
precision when time is small.

In fact, more items can improve the accuracy of the CADM solution. Here, we take case 1 as an example, the
accuracy with different number of terms is calculated and the results are shown in fig. 3, where ¢ = 0.7, the number
of terms is seven, eight, nine and ten. It is shown that the solution with more terms is more accurate.
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Fig. 2. The relationship between CADM solution and exact solution (solid lines), (a) ¢ = 0.7; (b) ¢ = 0.8; (c) ¢ = 0.9;
(d) ¢ =1.0.

3 Conformable fractional-order simplified Lorenz system
3.1 Solution and its accuracy

In ref. [23] and [24], the fractional-order simplified Lorenz system with Caputo definition is investigated by applying
ADM and ABM, respectively. It shows that the fractional-order simplified Lorenz system has rich dynamics under
both cases. In this paper, we introduce the conformable definition to the simplified Lorenz system, and the conformable
fractional-order simplified Lorenz system is defined as

thxl = 10(.’1}2 - -'1/‘1)7
Tizy = (24 — 4c)xq + cxg — 2123, (37)

thl‘g, = X1T2 — 81‘3/3,

where ¢ is the order and c is the system parameter. The linear terms and nonlinear terms of the system are

Lwl 10(%2 — 1‘1) le 0
Lyo | = | (24 —4e)x1 +cxo |, Npo | = | —mz3 | . (38)
L3 —8x3/3 Ngs T1%2

According to eq. (14), the nonlinear terms can be represented as

A3 = —afal,
A3 = —wja§ — afag,

A3 = -2 — wial — 2023, (39)
A3 = —a%a§ - atal — ata? — afad,

A3 = —atal — ot} — wlag — ool - alad,

A3 = —aiaf — xizg — wiag — 2irf — afaf — afag,

Af = afy,

AL = 212l + 2921,

A2 = 2229 + 2lad + 2023, 10
A3 = 2329 + 232l + 2323 + 2023, (40)
Aj = wiab + 2wl + +atwy + atad + 2w,

Ag = x?acg + x%m% + x%x% + x?x% + x%x% + x?xg

Let us assume the initial condition is xo = (21 (to), x2(t0), x3(t0)), then the first term is
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Let ¢ =20, ¢ = 2 and ¢§ = IES, thus we have ¢? = (¢, 3, ¢§). According to eq. (17), we have x* = I Lx? + I A°.

Base on the method as shown in eq. (17), the second term of each state variable is shown as follows:

z3 = [(24 — 4¢)cf + ec) — 4
8 (t — to)*
x% = <—3cg + c?c%) p .

)

(t—1t0)?
] q

If we let

et =10(ch — ),

c3 = (24 — 4e)c + ec§ — A,
ey = —(8/3)c3 + ey,

the second term can be defined as

t—tp)9
o tt—t)
q

Similarly, the third, fourth, fifth, sixth and seventh set of coefficients are, respectively,
¢t =10(c5 — ¢i),
c3 = (24 — 4de)ct + el — cic) — el

_ _8. 1.0 4 0.1
€3 = —3C3 + C1C3 + CjC3,

cf =10(c3 — ¢f),

c3 = (24 —4e)c? +cc3 — 3c) — 2¢tcd — 3,
3 8 0,2
C3 = *303 + cfeh + 2cic5 + i3,

¢l =10(c3 — ¢f),

c3 = (24 —de)cd + e — 3 — 3(c3cd + cled) — g,
A=+ A+ 3G +Ad) +

¢} =10(c3 — i),

0

c5 = (24 — de)cf + cch — i) — Al + cted) — 6c3c2 — e,

=4 8
c3 = _§C3 + 1 + 4(cicd + cleg) + 6cic3 + Aes,

cf =10(c3 — ),

= (24 — 4c)c} + cc3 — 3§ — 5(ciel + cted) — ey — 10(c3e3 + 3ed),

8
§ = —gcg + c}e3 4 5(cics + cieg) +10(cie3 + ce3) + el

So the CADM solution of the conformable fractional-order simplified Lorenz system with seven terms is

ilq

i‘j(t) = chw
=0

(43)

(45)

(47)

(48)

(50)

As is shown in sect. 2, the analytical solution may be inaccurate as time goes on. Here, we let ¢ = 1, xo = [1, 1, 1],
= 2. As there are no exact solution for chaotic system, the accuracy of CADM is compared to the numerical
solution by employing the fourth-order Runge-Kutta method (RK4) with h = 0.01. As the CADM solution is an
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Fig. 3. Error between exact solution and CADM solution with different number of terms: (a) 7 terms; (b) 8 terms; (c) 9 terms;
(d) 10 terms.
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Fig. 4. Differences between CADM solution and RK4 solution. (a) Analytical solution of CADM; (b) discrete solution of
CADM.

analytical solution, we just calculate the solution of some points in time. Specifically, according to eq. (50), we

calculate z;capm(t = 0),zjcapm(t = 0.01),...,z;capm(t = 3.0), where j = 1,2,3. Thus two solutions can be
one-to-one correspondent. The differences between CADM solution and RK4 solution are given in fig. 4(a), where

Azj = |zjRK, — TjcADM] - (51)

The simulation carried out in this paper is between ¢ = 0s to t = 3.0s. As can be seen from fig. 4(a), the results
of CADM are far away from those of RKy4. So, we need to divide the computation interval [tg,t] into N parts with
step size of h, and each subinterval can be presented as [t,,,tm+1], where b = (t;,41 — t;n)/N. Namely, we now
have subintervals [to, t1], [t1,t2], [t2, €3], - - -, [Ems tmti]s - - -, [EN—1, ], where £y = ¢. Taking subinterval [t,,,tm,11] as
an example, according to X(t,,) and eq. (50), x(t;,+1) can be calculated. For conformable fractional-order simplified
Lorenz system, the initial values are x(to) = [x1(to), x2(t0), x3(to)]. Thus we can get x(¢1) according to x(¢y) based on

eq. (50) in subintervals [to,t1], and so on. By adopting this method, we obtain x(t,,11) = Foapm(X(tm)). Thus the
solution can also be expressed as [25]

x(m+1) = Foapm (x(m)), (52)

which is a typical discrete map. In our study, we fix h = 0.01. It is shown in fig. 4(b) that the discrete solution agrees

well with that of RK4. Thus in this paper, the conformable fractional-order simplified Lorenz is solved by CADM with
discrete form.

3.2 Dynamical analysis

Lyapunov characteristic exponents (LCEs) of the conformable fractional-order simplified Lorenz system are calculated

based on eq. (52) and QR decomposition method [26]. Firstly, the Jacobian matrix of eq. (52) is computed. Let us
suppose that the solution is given by

Ficapum (x(m)),
x (m+ 1) = Feapm (x(m)) = § Facapm (x(m)) (53)

Fzcapum (x(m)).
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Fig. 5. LCEs results with ¢ = 1 and ¢ = 2. (a) Error curve with different iteration number; (b) LCEs curve versus different
iteration numbers.

The Jacobian matrix of discrete solution as given by eq. (53) is defined as

OFicapm OFicapm OFi1capm
8131 8172 31’3
J_ O0Fycapm 0Fcapm 0Fbcapm
0xy Oxs Oxs ’
OF3capm OF3capm OF3cADM
8351 (9{E2 al‘g

(54)

which can be obtained by using mathematical software. In this paper, function Jacobian (-) of Matlab is applied. Then,
QR decomposition method is applied for LCEs calculation. The method is shown as follows:

qr (InuIp—r- o J1) =qr (IuIp—1... J2(J1Qo))
=qr (TpuInm-1...J3(J2Q1)) Ry

=qr (I Inr—1--.Ji(Ji21Qi—2)) Ri—1 .. . RoRy

=QuRum ... R2Ry. (55)

Here, gr(-) is the QR decomposition function. Thus LCEs is calculated according to

N
1
Ly, N ;:1 n|R;(n,n)|, (56)

where n = 1,2,3. If ¢ = 1, the summation of LCEs of simplified Lorenz system is A = —10+4c¢—8/3. Let the difference
between /A and summation of obtained LCEs be

3
Lyer = Z Ly; +104+8/3 —¢|. (57)

i=1

Let ¢ = 2, M = 5000, xo = [1,2,3], the result is illustrated in fig. 5. In this case, LCEs are (Lyi, Ly2, Lys) =
(0.8135,0,—11.4802). It means that the system is chaotic. Meanwhile, it shows that LCEs calculated in this paper
have high accuracy and fast convergence speed.

Next, bifurcation diagram, LCEs are employed to investigate dynamical behaviors of the conformable fractional-
order simplified Lorenz system. Two cases are analyzed.

Case 1. Dynamics with ¢ = 2 and q varying.

Fix ¢ = 2, let the derivative order ¢ vary from 0.55 to 1 with step size of 0.0009 and the initial values of state
variables xg = [1,2,3]. It shows in fig. 6 that the system is chaotic over the interval ¢ € [0.5743, 1]. Meanwhile, the
maximum Lyapunov characteristic exponent decreases with the increase of derivative order g. Phase portraits for
g = 0.5743 are presented in fig. 7. It is shown, in fig. 7(a), that the phase diagram is not smooth, which means the
solution is not accurate when ¢ = 0.5743 with A = 0.01. To get smoother result, smaller i should be used. In fig. 7(b),
h = 0.001 is used for calculation, and it is shown that a much more satisfying result is obtained. So in this case, the
minimum order for chaos is ¢ = 0.5743.
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Fig. 6. Dynamics analysis results with ¢ = 2 and ¢ varying. (a) Bifurcation diagram; (b) LCEs.
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Fig. 8. Dynamics analysis results with ¢ = 0.98 and ¢ varying. (a) Bifurcation diagram; (b) LCEs.
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Fig. 9. Phase diagrams for ¢ = 0.98 and different ¢: (a) ¢ = —2; (b) ¢ = 3.5; (¢) ¢ = 6; (d) ¢ = 7.5.

Case 2. Dynamics with ¢ = 0.98 and ¢ varying.

Fix ¢ = 0.98, and vary the system parameter ¢ from —2 to 8 with step size of 0.02, and the initial values are
the same as above. The bifurcation diagram is shown in fig. 8(a), and its corresponding LCEs result is illustrated in
fig. 8(b). The chaotic zone covers most of the range ¢ € [—1.7395,7.018], excepting a periodic window near ¢ = 4.6.
With the decrease of ¢, the system enters chaos by periodic double bifurcation, then the system is drawn out from
chaotic movement abruptly and the convergent state is observed at ¢ = —1.74. Phase diagrams in different stage
are plotted as shown in fig. 9, where ¢ = —2, 3.5, 6 and 7.5. Convergent state, chaotic attractor, periodic circles are
observed, respectively. Thus the system has rich dynamics.

4 Conclusion

In this paper, the numerical solution of the conformable fractional-order chaotic system is investigated for the first
time. The conformable Adomian decomposition method (CADM) is constructed to find the numerical solution of
conformable fractional-order differential equations. We apply CADM to the conformable fractional-order exponential
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function and conformable fractional-order Riccati equation. In these two cases, the series solution obtained can be
written with respect to the exact solution. This indicates that CADM is an effective method for the numerical solution
of conformable fractional-order differential equations. The dynamics of conformable fractional-order simplified Lorenz
system is investigated. Different states, including convergent state, chaotic attractor and periodic circles, are observed,
which means that the conformable fractional-order simplified Lorenz system has rich dynamics. The minimum order for
chaos is 1.7223 for ¢ = 2 and h = 0.01. This lays the foundation for the extensive applications research of conformable
fractional-order chaotic systems in the future.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61073187).
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