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Abstract: Human skin provides a rich tactile sensing stream, localizing inten-
tional and unintentional contact events over a large and contoured region. Repli-
cating these tactile sensing capabilities for dexterous robotic manipulation systems
remains a longstanding challenge. In this work, we take a step towards this goal
by introducing DexSkin. DexSkin is a soft, conformable capacitive electronic
skin that enables sensitive, localized, and calibratable tactile sensing, and can be
tailored to varying geometries. We demonstrate its efficacy for learning down-
stream robotic manipulation by sensorizing a pair of parallel jaw gripper fingers,
providing tactile coverage across almost the entire finger surfaces. We empiri-
cally evaluate DexSkin’s capabilities in learning challenging manipulation tasks
that require sensing coverage across the entire surface of the fingers, such as re-
orienting objects in hand and wrapping elastic bands around boxes, in a learning-
from-demonstration framework. We then show that, critically for data-driven ap-
proaches, DexSkin can be calibrated to enable model transfer across sensor in-
stances, and demonstrate its applicability to online reinforcement learning on real
robots. Our results highlight DexSkin’s suitability and practicality for learning
real-world, contact-rich manipulation. Please see our project webpage for videos
and visualizations: https://dex-skin.github.io/.
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Figure 1: DexSkin sensors enable contact-rich robotic manipulation policies. We demonstrate the appli-
cations of DexSkin in in-hand pen reorientation, box packaging, and berry transporting tasks. In each frame,
we visualize tactile readings from DexSkin as heatmaps, where brighter readings correspond to larger forces.
DexSkin’s high-coverage sensing capabilities enable it to provide contact signals for a variety of robotic ma-
nipulation tasks. At the same time, it possesses desirable properties for learning-based manipulation systems.

1 Introduction

Tactile feedback is essential for robust and dexterous manipulation in natural and artificial systems.
In humans, mechanoreceptors within the skin provide a rich sensory stream that guides tasks ranging
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from handling delicate objects to using tools with force [1]. This tactile feedback enables more
precise reactive control than can be achieved with human and proprioceptive feedback alone [2].

Emulating this tactile sensitivity in robotic systems has long been a challenge, starting from sensing
hardware. Research efforts typically focus on rigid or partially flexible sensors that offer low spatial
coverage, limited adaptability, and poor conformability to complex surfaces. In contrast, everyday
tasks such as rotating a key in-hand or picking up delicate berries require sensing coverage in multi-
ple contact regions. Similarly, wrapping an elastic band around an object requires a sensor to detect,
distinguish, and localize dynamic contact events on all surfaces of a human hand or end effector
accurately, applying the appropriate force without allowing the band to slip.

Learning-based approaches offer a general way to harness tactile sensing information. However,
data-driven systems pose requirements beyond sensing coverage. Seemingly small distribution shifts
in sensor readings from wear or replacement can render previously trained models unusable, thus,
output signals must be replicable across sensor hardware instances. Additionally, for real-world
online learning, sensors must remain consistent, durable, and precise under repeated stresses during
trial-and-error interaction, and output interpretable signals amenable to reward or cost specification.

To address these challenges, we introduce a novel soft tactile skin named DexSkin that is particularly
suitable for robotic learning applications. DexSkin can be conformably integrated onto robotic end-
effectors with unparalleled spatial coverage. It is based on a capacitive mechanism, and features high
sensitivity and robustness under repeated interactions. Because each of the dozens of taxels on the
skin are individually addressable, DexSkin can localize and characterize simultaneous contacts from
distinct regions. It can also be calibrated to provide consistent readings across distinct sensor units,
enabling re-use of learned networks. At the same time, it can withstand deformations encountered
during typical dexterous tasks such as pinching, twisting, and bending.

In this work, we introduce the DexSkin framework and its fabrication, as well as a representative
integration with a soft cylindrical robotic fingertip that sensorizes the distal dome of the finger and
294◦ of the circumference. Then, we evaluate DexSkin’s applicability to robot learning. First, we
test whether DexSkin’s coverage and tailorability expands the range of learnable manipulation tasks.
Then, we evaluate its calibration performance, which are critical for working with and transferring
learned tactile models. Finally, we demonstrate its suitability for online robotic learning settings
by performing real-world reinforcement learning for a delicate object picking task. The results
highlight DexSkin’s robust applicability to a wide range of robotic tasks and morphologies, and its
particular practicality for robot learning researchers and practitioners.

2 Related Work

Tactile sensing in robotics. Tactile sensors generally fall into three categories: vision-based and
optical, magnetic, and electrically addressable.

Vision-based sensors image high-resolution deformations of an elastomer surface using cameras.
Various designs have been developed for flat [3, 4, 5, 6] or round and dome-shaped surfaces [7, 8, 9,
10, 11, 12, 13]. Miniaturizing and customizing them has proven challenging [12, 14], and each target
form factor requires re-design with extensive optical considerations. Alternatively, DISCO [15] uses
photodiodes and LEDs beneath a reflective elastomer, but requires an extensive calibration process
to correlate signals with contact locations and magnitudes.

Magnetic-based sensors [16, 17, 18] measure changes in magnetic flux of a magnetized surface due
to deformation. Assembling rigid magnetometers onto commercial boards requires lengthy design
iterations and is challenging to fit to complex geometries. Further, the sparse point readings struggle
to resolve contact imprints or simultaneous contacts, and estimating contact locations and magni-
tudes demands a data-intensive learning process. In contrast, DexSkin is intrinsically stretchable
and conformable to complex geometries. Its individually addressable taxels resolve multiple con-
tacts. Sensors from different batches can be aligned in minutes and calibrating for normal force
measurements requires just four loading-unloading cycles per taxel.
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Electrically addressable tactile sensors harness resistive, impedance, and capacitive mechanisms.
Piezoresistive sensors [19, 20, 21] detect force via pressure-sensitive layers but often have low
sensitivity, large hysteresis, and temperature dependence. AC-driven impedance-based sensors
(e.g., BioTac [22]) tend to be costly, low-density, and limited in customization. Capacitive sen-
sors [23, 24, 25, 26] measure displacement between electrode plates to resolve force, offering high
sensitivity and low power consumption, but often require microfabrication (e.g., photolithography).
DexSkin leverages the capacitive mechanism for performance, but can be fabricated on-site via ac-
cessible processes, enabling cost-effective same-day customization of sensing pattern and geometry.

Learning robotic manipulation with tactile sensors. Many prior works use tactile sensors
toward learning robotic manipulation. Some train in simulation and later transfer to the real
world [27, 28, 29, 30]. Since accurately simulating contacts and sensor outputs is difficult, many in-
stead learn directly from real-world data, for instance performing model-free reinforcement learning
(RL) [31, 32, 33, 34], learning supervised or self-supervised predictive models [35, 36, 37, 6], or im-
itating expert demonstrations [38, 34, 39, 40]. Real-world tactile data can be fused with other obser-
vation modalities [41] or provide rapid feedback [42]. We operate in this real-world data paradigm.
While we do not introduce new learning algorithms in this work, our findings indicate that DexSkin
can expand the capabilities and practicality of a variety of learned tactile manipulation systems.
Unlike prior works that perform imitation learning that demonstrate prehensile grasping [39], pack-
ing [34], and pouring [38] tasks, we focus on tasks that require high-coverage sensing capabilities
with minimal blind spots, support for multiple simultaneous contacts, and recovery from perturba-
tion such as in-hand reorientation and manipulating elastic bands. Further, we test the transfer of
learned models across DexSkin sensors, a critical practical challenge. Bhirangi et al. [18] narrow
inter-sensor gaps with sophisticated manufacturing techniques and hardware design. We instead
perform rapid standardization to obtain mappings between sensor taxels, for localized, transferable
sensing. In real-world online RL settings, while prior work mostly uses tactile information as pol-
icy inputs to optimize task completion objectives [31, 32, 33, 34], DexSkin’s readouts are more
interpretable compared to optical or magnetic sensors. This allows rewards to be computed directly
regarding the contact information itself, for instance, encouraging the gentle grasp of a berry.

3 The DexSkin Framework
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Figure 2: Designs of electrode patterns. The 2D
pattern design of the inner plate (top left) and outer
plate (bottom left) electrodes on the soft SEBS sub-
strate and its appearance after its vertical traces have
been conformed onto the dome and cylindrical cir-
cumference of the finger sleeve (top right and bottom
right). Note that SEBS is transparent and can be hard
to distinguish in the post-assembly photo (right).

In this section, we introduce the main compo-
nents of the DexSkin framework and compare it
to other widely adopted tactile sensors in Table 1.
Although DexSkin can be applied to a variety of
morphologies, as shown in Appendix Figure 7,
we focus on a system that enables a robotic arm to
learn tactile-based manipulation policies by sen-
sorizing the fingertip-shaped jaws of a parallel
gripper. We first discuss the soft sensor skin it-
self, its fabrication, then describe its integration
with a finger, robotic gripper, and 7-axis arm.

Low-cost, high-performance, conformable
DexSkin sensors. Electrically addressable
tactile sensors remain rare in robotics [39, 43]
due to challenges in sensitivity, hysteresis,
cost, and integration. We introduce DexSkin,
a soft stretchable capacitive sheet that can be
fabricated for under $10 per pair (at 1,000
units) with easily accessible fabrication tools while maintaining high sensitivity, commercial
off-the-shelf cyclic drift and hysteresis performance (TekScan WB201), and a broad pressure
sensing range (up to 702kPa). It provides almost full coverage for a robotic finger while offering
calibratable and individually addressable taxels that inherently resolve simultaneous contacts.
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Sensor Area
(mm²) ↑

Force res.
(N) ↓

Spatial res.
(mm) ↓

DexSkin (ours) 1944–6471+ 0.086† ≤ 0.60∗

ReSkin [17] 400+ < 0.2 1.00
BioTac [22] 484 0.26 1.40
DISCO [15] 6107 < 0.35 ≥ 0.7
GelTip [8] 3142 N/A ≥ 3.33
DIGIT [6] 304 0.006 0.150
DIGIT360 [13] 2340 0.001 0.007

Table 1: Comparison of DexSkin framework to state-
of-the-art tactile sensors. DexSkin enables the largest
sensing area coverage, the finest spatial and force
resolution among selected non-vision based systems.
†RMSE of force estimation over 0−2.5N normal
loads. *Estimated from pitch size, machine resolution
dependent. More details are in Appendix A.3.

DexSkin adopts a compliant parallel plate grid
configuration where a highly deformable dielec-
tric layer is sandwiched by two soft electrode
plates, forming individually addressable capac-
itive sensing taxels at every electrode intersec-
tion. We tailor the sensor to envelop a fingertip-
like shape despite being a single continuous
piece. It conforms to the curved sides of the
sleeve and also to shapes with non-zero Gaus-
sian curvature that challenge traditional sheet-
like taxel-based sensors. The hemispherical
dome of the finger adopts a flower petal-inspired
design as the outer plate, as shown in Fig-
ure 2(b). It uses protruding columns, which nar-
row toward the tip, as the inner plate. When the
petals’ edges are sealed, it becomes a snugly fit-
ting hemispherical outer plate that forms 12 taxels with each column underneath. The cylindrical
body features 48 taxels, located at the intersections of the black electrode crossbar structure formed
by wrapping the row-wise outer plate around the column-wise inner plate (see Figure 2(a)) providing
an angular coverage of 294◦ around the finger.

(a) (b)
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Figure 3: Robotic gripper finger assembly sen-
sorized with DexSkin. (a) Exploded section-view di-
agram of the finger assembly. (b) Two fully assembled
sensorized gripper fingers on the SSG-48 gripper used
in our experiments.

Same-day tailorable sensor fabrication. The
fabrication process begins with computer-aided
electrode pattern design, providing full control
over taxel layout and size. We incorporate con-
ductive wire traces and capacitive plate patterns
into a styrene-ethylene-butylene-styrene (SEBS)
substrate, resulting in a 240µm-thick thin film.
We seal the edges of the flower-petal outer plate
using drips of SEBS solution, to form the hemi-
spherical structure shown in Figure 3(b). We
screen-print silver paste adhesive (MG Chemi-
cals 8331) through paper shadow masks to con-
nect sensor traces to FFCs. For the dielectrics,
we spincoat the SEBS solution onto a reusable
micro-structured PDMS mold (Dow Sylgard™
184) to produce the 20µm-thick dielectric layer.

We assemble the sensor by first attaching the inner plate to the soft sleeve using double-sided tape.
We then wrap the dielectric around the inner plate and cap it on top with the hemispherical plate.

We conducted experiments characterizing DexSkin’s sensing range, crosstalk, cross-taxel unifor-
mity, robustness, hysteresis, and cyclic stability. Please see Appendix A.3 for the details and results.
We are committed to open-sourcing the detailed fabrication instructions and materials for DexSkin.

Integrated Robotic Setup. We integrate two DexSkin-sensorized fingers into a tabletop manipula-
tion system with a 7-axis Franka Emika Panda arm, shown in Appendix Figure 15.

While rigid gripper fingers may offer better sensor performance by causing most of the force-induced
deformation to occur between its electrode plates, soft materials provide better cushioning for object
interactions. Balancing compliance and sensor performance, we design each finger with three layers
(Figure 3): the sensor skin, a deformable outer sleeve, and a rigid inner core for structural integrity.
We 3D-print the sleeve and inner core using NinjaFlex TPU and PLA respectively.

For precise and reactive finger control, we mount the DexSkin sensors to a Source Robotics SSG-48
gripper. A complete fabricated gripper assembly is shown in Figure 3(b). For tasks that use visual
input, we mount a RealSense D415 RGB-D camera to the robot end-effector’s wrist.
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Figure 4: Pen reorientation task rollouts. (Top) The DexSkin policy successfully reorients the pen (cols.
1-3) and reacts to human perturbation (col. 4) by repeating the motion (col. 5). We visualize DexSkin
readings as if facing the robot’s front. Note the readings at the sensor’s domed tip when the pen is grasped
(green circle, col. 2) and the impression when the pen is reoriented to vertical (cols. 3 & 5). (Middle) With
spatially pooled tactile information, the robot fails to respond to perturbation and stalls excessively (cols.
2-3). (Bottom) The no tactile policy is unable to detect perturbation. Best viewed in supplementary video.

4 Evaluating DexSkin for Learning Robotic Manipulation

We evaluate DexSkin for learning robotic manipulation from the following perspectives:

1. Can DexSkin’s coverage and tailorability enable robots to learn a range of manipulation tasks?
2. Can calibrating DexSkin allow learned policies to be transferred across sensor instances?
3. Is DexSkin suitable for applications to learning robot behaviors online?

4.1 Learning Manipulation with Expanded Coverage and Tailorability

To test whether the coverage and resolution of DexSkin can expand the manipulation capabilities of
learned robotic policies, we consider two representative tasks. For each task, we learn policies via
imitation learning from 50 expert human demonstrations by teleoperating the setup from Section 3
using GELLO [44] and training diffusion policies [45, 46]. The tasks are as follows:

• In-hand pen reorientation. The robot must pick up the pen and push it against a flat face of a
nearby cabinet to reorient it in-hand, using only tactile and proprioceptive feedback. Further, it
must be robust to disturbances (e.g. human perturbation) of the pen at inference time. This task
requires the robot to use tactile information to estimate the in-hand pose of the pen.

• Packaging a box with a suitable elastic band. Humans use the dorsal side of their fingertips
to perform everyday tasks like flipping switches or removing batteries from remotes. To evaluate
similar capabilities, we task the robot with securing the lid of a container with a rubber band. The
robot is randomly provided with an intact band or a perforated band that will snap if used. In
the latter case, the robot must retrieve a replacement. This is challenging because the robot must
adjust its behavior based on forces exerted by the unknown band on the dorsal sides of the fingers.

Comparative evaluation. To test our hypothesis, we compare the following settings:

• DexSkin (ours): Uses the full 120 taxels of DexSkin readings, proprioception, and wrist camera
RGB images. Note wrist camera images are provided for the box task only, not the pen task.

• No tactile: A baseline identical to DexSkin (ours) but excluding all tactile information.
• Ablated policies trained with spatially aggregated tactile readings for the pen task (DexSkin (spa-

tial pooling)), emulating force-sensitive resistors or load cells that cannot detect multiple localized
contacts, and a separate ablation using readings from only inner sensor columns between the grip-
per fingers for the box task (DexSkin (inner cols. only)), a proxy for sensors with flat or restricted
sensing surfaces. These test the importance of DexSkin’s resolution and coverage.
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Figure 5: Examples of box packaging task rollouts. (Top) With an initially provided perforated band, the
DexSkin policy correctly detects and discards the perforated band based on the tactile reading (col. 1),
retrieves the backup (col. 2), and wraps it around the box (cols. 3-5). We visualize DexSkin sensor readings
as if the viewer is facing the robot, looking at the gripper. (Bottom) With an initially provided unperforated
band, the policy without tactile information unnecessarily replaces the band (cols. 1-2) and then fails to
package the box as the band slips off the gripper fingers (cols. 3-5). Best viewed in supplementary video.

• DIGIT: Uses a pair of DIGIT [6] sensors as gripper fingers and as input to the policy, comparing
our system to existing and commercially available sensors.

Pen task results. We test two settings: the first is the same as in training; in the second, if the robot
reorients the pen successfully, a human experimenter perturbs the pen, rotating it within the robot’s
gripper to be again parallel to the ground. The results are shown in Table 2 and Figure 4. Without
perturbation, three out of four policies solve the task 19/20 times. The DexSkin (spatial pooling)
policy achieves moderate but poorer performance. When perturbed, the policy with full DexSkin
information maintains its success rate, and is the only policy that can recover from perturbation.

Qualitatively, we find that the policy without tactile information repeats the same trajectory regard-
less of external perturbation, per expectation, making it effective only in the unperturbed setting.
While one may anticipate that the policy with spatially pooled tactile information may struggle to
estimate in-hand object pose and deal with perturbations, it does not succeed reliably in the unper-
turbed setting either, likely because it sometimes has insufficient information to determine whether
the pen has already been reoriented or not. In its failure cases, this policy often does not fully reorient
the pen. For DIGIT, while the sensor provides rich signal within its sensitive region, we find surpris-
ingly that many contacts with the pen are outside this narrow region, even though demonstrations
include natural motions with approximately antipodal grasps.

Box packaging results. The results are shown in Table 2 and Figure 5. Only the policy with
full DexSkin information (ours) can consistently perform the box packaging task with both non-
perforated and perforated initial bands. For the first stage – selecting the correct band for the pack-
aging task – all other policies adopt a singular strategy, either discarding or directly using the initially
provided band every time, regardless of its suitability for packaging. Because the bands are difficult
to visually distinguish, we hypothesize that each policy commits to an arbitrary trajectory mode from
the data. However, the policy with full DexSkin information can successfully select the appropriate
band based on the tension perceived by the tactile skin.

Beyond allowing the policy to discern the suitability of a given elastic band, access to full DexSkin
information improves the robot’s ability to dynamically wrap the band around the box. This can be
seen in the fraction of rollouts that succeed in the band selection stage but fail in completing the
packaging task by wrapping the band. While only 32% and 70% of rollouts for the No tactile and
DexSkin (inner cols. only) policies complete the second stage given success in the first stage, the
policy with complete DexSkin readings does so 86% of the time.

4.2 Calibration and Model Transfer Across Sensor Instances

The physical mechanisms and intricate fabrication procedures of tactile sensors make it challenging
to manufacture hardware that produces identical sensing outputs given the same stimuli. For exam-
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Model
Pen reorientation Box: Non-Perforated Band Box: Perforated Band

No perturb Perturb Select Wrap Select Wrap

No tactile 19/20 0/20 0/20 0/20 19/20 6/20
DIGIT [6] 19/20 0/20 20/20∗ 20/20∗ 0/20 0/20
DexSkin (ablated) 12/20 0/20 19/20 14/20 1/20 0/20
DexSkin (ours) 19/20 19/20 18/20 17/20 19/20 15/20

Table 2: Pen reorientation and box packaging success rates. Policies with full DexSkin information achieve
the most consistent performance across tasks requiring high sensing coverage. For box packaging, we report
success in two cumulative stages for evaluation only: (1) determining the correct elastic band to use and (2)
physically wrapping the band around the box. ∗Placing the band around DIGIT’s bulkier geometry elongates
the band more, making wrapping it around the box easier.

ple, optical sensor readings vary based on the elastomer interface’s texture, while outputs of both
magnetic and resistive sensors rely on consistent filler loading and composite thickness [18, 47].
Yet, learned models that ingest tactile information are highly sensitive to the distribution of sensor
signals present in the training data. This presents a major practical bottleneck for using tactile sens-
ing in robot learning. Because sensors must eventually be replaced, significant distribution shifts
from existing training data often rendering existing models unusable.

In this section, we present a calibration procedure for DexSkin, and evaluate whether it can alleviate
these challenges to enable downstream policy transfer to a different sensor hardware instance.

Calibration procedure. We develop two calibration protocols. The first houses DexSkin with
a custom 3D-printed airtight PLA chamber with a thin, soft Ecoflex 00-50 inner membrane, and
ramps the relative internal pressure linearly from 0psi to 6psi, imposing uniform stress across the
entire sensor surface. Fitting each taxel’s response to an exponential curve yields both a forward
mapping (∆C/C0 → pressure) and an inverse mapping that when combined can align new sensor
data with a legacy sensor’s output. The second involves mounting DexSkin on a motorized linear
stage with a force gauge and recording three loading-unloading cycles for each taxel to map sensor
outputs to normal force. Details on calibration procedures and performance are in Appendix A.5.

Sensor configuration Stage 1 Stage 2

DexSkin
Source sensors 20/20 20/20
Swapped (no calib.) 17/20 12/20
Swapped (calib.) 18/20 16/20
Replaced (no calib.) 13/20 5/20
Replaced (calib.) 18/20 14/20

DIGIT
Source sensors 20/20 0/20
Swapped 0/20 0/20
Swapped (diff. img) 20/20 0/20
Replaced (diff. img) 15/20 0/20

Table 3: Pen reorientation policy performance
when transferred across sensor hardware. We
report successes across two stages: (1) suc-
cessfully reorienting the pen the first time and
(2) detecting and fixing human perturbation.

Policy transfer experiment. We revisit the pen reori-
entation task with perturbation from Section 4.1. We
start with a policy trained on 50 demonstrations from
one pair of sensors, denoted Source sensors, and test its
performance when transferred to the same sensors but
swapped between left and right fingers (Swapped) and
transferred to replacement sensors fabricated in a differ-
ent batch (Replaced). We test policy performance with
and without calibrating sensor outputs.

The results are presented in Table 3. DexSkin exhibits
reasonable policy transfer to target sensor configura-
tions even without explicit calibration, and achieves an
additional performance improvement after a short cal-
ibration procedure. In contrast, a policy trained on
DIGIT sensors cannot transfer at all to a setting where
gels have been swapped from their assignments during
data collection, due to changes in visual appearance of
the tactile readings. Performance improves if the policy ingests difference images relative to con-
tactless readings, but still underperforms DexSkin’s calibration pipeline for replaced sensors.

4.3 Real-World Online Robot Learning with DexSkin

Beyond applications in imitation learning, tactile sensing is a promising source of signals for robots
that learn by interacting with their environments, for instance via reinforcement learning (RL). How-

7



ever, many tactile sensors lack the durability for repeated trial-and-error rollouts in the real world,
and further, it is often unclear how to define reward functions based on sensor outputs from optical
or magnetic mechanisms without collecting extensive datasets for supervision or calibration.

In this section, we validate DexSkin’s suitability for online learning applications, by study-
ing the task of delicate object grasping via real-world residual reinforcement learning.

Residual RL w/ 
DexSkin rewards (ours) Random residual policy

Base imitation 
learning policy

Figure 6: (Top) Residual policy learning curves. Over the
course of training, the policy learns to minimize DexSkin-output
forces that exceed the specified threshold (maximizing force re-
ward), and trade off the action norm cost of larger residual ac-
tions (decreasing action reward). We train with a faux berry until
episode 150, and real berries for the last 30 episodes. (Bottom)
Berries after grasp and transport by each policy. The finetuned
residual policy causes significantly less damage.

Specifically, the robot’s task is to grasp
and transport a fragile blueberry with-
out damaging it. This is challenging:
episodes are over 200 timesteps long,
and a single overly forceful action can
crush the delicate berry.

Given a policy trained via imitation on
data from a gripper without a tactile
sensor, we sensorize the gripper with
DexSkin, and then learn a neural net-
work residual policy that parameterizes
a modification of the frozen base pol-
icy’s output. The reward function pe-
nalizes tactile sensor readings above a
set threshold, representing undesirably
strong contacts, ℓ2 action magnitude,
and failed grasps or object transports.
For real-world sample efficiency, we
use soft actor-critic [48, 49] to learn the
residual policy. We do not advocate for
a particular RL training procedure, but rather aim to study the capabilities of DexSkin in such frame-
works. Further experimental details are in Appendix B.2.

Avg.
Pressure

(Artificial)
↓

Avg.
Pressure
(Real)

↓ Intact
(Real) ↑

Base IL (no tac.) 14.5kPa 3.36kPa 20%
Random resid. 6.17kPa 3.64kPa 10%
Resid. RL (ours) 1.53kPa 1.92kPa 60%

Table 4: Evaluation of the final residual RL policy
compared to base IL and uniformly random residual
policy baselines. We report mean normal pressure
applied per DexSkin taxel across time over evalua-
tion trajectories on the artificial berry used for train-
ing and real blueberries, and the percentage of fully
intact real blueberries after transport for each policy.
We perform 20 evaluation trials per policy.

Figure 6 shows force and action rewards through-
out the learning procedure, indicating that the
residual policy learns to adjust the base pol-
icy’s actions to produce gentler grasping behav-
ior. Qualitatively, the base imitation learning pol-
icy (without tactile information) causes the robot
to grasp the berries firmly and crush them – likely
as haptic feedback is absent for demo collection.
With the combined residual and base policy, the
robot can grasp berries delicately enough to avoid
breaking them. This is supported quantitatively
by our experimental evaluation, shown in Table 4.

This study illustrates how DexSkin can not only
be used to sensorize and adapt policies for agents trained initially without tactile information, but
also that it enables sensible reward definitions without learned classifiers or calibration.

5 Conclusion
In this paper, we introduced the DexSkin framework, beginning with our novel elastic tactile sensor
that conforms to different geometries, offering repeatable, localized, and high-coverage sensing. We
equip a robotic gripper with DexSkin and investigate its suitability for robotic learning applications.
Through our experiments, we find that DexSkin can enable imitation learning of improved policies
for contact-rich manipulation tasks requiring high-coverage and localized sensing, enable learned
model transfer across hardware instances via calibration, and provide feedback for real-world online
reinforcement learning. We hope DexSkin is a step toward tactile sensors that can rival human skin
in coverage and sensitivity, while remaining practical and suitable for data-driven systems.
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6 Limitations

In this work, we instantiate DexSkin on a pair of parallel jaw gripper fingers and conduct all ex-
periments on this platform, which may not reflect its performance for different robot morphologies.
Due to DexSkin’s customizability, sensorizing robots with morphologies like dexterous hands and
covering even non-end-effector regions is an exciting and realizable next step.

Additionally, during policy learning, we treat DexSkin readings naı̈vely as a one-dimensional feature
vector. Future work may investigate how policy architectures can instead take advantage of spatial
correlations in the DexSkin data to learn more efficiently and robustly. On the sensor development,
despite significant improvement on coverage, a blind spot of 66◦ measured in angular coverage
remains. Furthermore, an electrical limitation exists, as ensuring a common ground is critical to
maintaining signal integrity, particularly when the sensors are installed onto unshielded, non-metal
grippers. The current open-sourced PCB design accommodates this with external jumper wires,
which represents a less robust solution. To overcome this limitation, dedicated sensor shielding
layers will be implemented in future iterations.
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In addition to the following information, please see the supplementary video and project web-
site (https://dex-skin.github.io/) for a visual walkthrough of the framework hardware,
a demonstration of DexSkin’s tactile sensing capabilities, and example videos of rollouts from
each policy on each experiment.

A Additional Details on DexSkin Framework

A.1 Additional Sensorized Morphologies

Unlike other sensors limited by the form factors of commercial sensing elements, DexSkin allows
for complete customization of the size, distribution, and layout of taxels. Its thin-sheet form also
seamlessly integrates with existing designs.

To showcase DexSkin’s tailorability, Figure 7 shows applications of DexSkin to additional mor-
phologies: a LEAP robotic hand and a rigid parallel jaw gripper with planar grasping surfaces. For
the LEAP hand, we sensorize the palm and thumb links. We omit the visualization for the thumb
links here because the grasp configuration produced unclear contacts in that region. For the rigid
gripper, we sensorize a 13.8mm × 22.3mm area on each fingertip.

Left Right

7 mm

0.8
mm

13.8
mm

22.3
mm

Palm

Figure 7: DexSkin application and example readings for a (top) flat parallel jaw gripper (228 taxels
each) and (bottom) LEAP hand (372 taxels each for palm and thumb). For the LEAP hand, we
visualize the palm taxels when holding the studded rectangular plastic block shown in the bottom
left.

A.2 Sensor Characterization Setup

We used a custom-built programmable pressure station to characterize the force-induced responses
of our DexSkin under repetitive loading and unloading cycles. The pressure station features a mo-
torized vertical stage (Newmark Systems, NVS-12), a force gauge (Mark-10, M5-10), and either a
precision LCR meter (Agilent E4980A) or our customized PCB for readout. DexSkin is mounted
on a 3D-printed rigid PLA core fixed to the stage with tape.

Depending on the taxel to be tested, DexSkin is either laid flat to orient one column of the cylindrical
taxels normally upwards, or tilted to position a single dome taxel oriented normally upwards. The
force gauge is fixed, while the stage moves in constant steps of 0.01mm to gradually increase and
decrease the normal force applied as programmed. Cured 10:1 PDMS applicators (Dow Sylgard™
184) matching the sizes of the tested taxels are placed between the force gauge probe and the surface
of DexSkin. They compensate for the rigidity and non-curving nature of the force probe, enabling
conformal contacts with soft DexSkin.
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Measurements from the force gauge and the LCR meter are automatically synchronized with a cus-
tom LabView script at logging time. Measurements from the PCB are synchronized with the force
gauge by aligning key timestamps.

A.3 Sensor Characterization Experiments

To measure the physical characteristics of DexSkin, we conducted key experiments to showcase its
cross-taxel uniformity, low hysteresis, robustness, cyclic stability, broad sensing range, and minimal
crosstalk. While we report the forces applied in the following sections, we would like to note that
they are in terms of normal force per taxel and cannot be directly compared with other setups without
accounting for differences in the size of force applicators. Therefore, in the following discussions,
we normalize the forces to report normal pressure loads.

A.3.1 DexSkin’s Cross-taxel Uniformity, Hysteresis and Cyclic Stability

We evaluated the sensor’s cross-taxel uniformity by randomly selecting ten taxels (five on the dome
and five on the cylindrical body) and measuring their responses subject to normal pressure up to
702.1 kPa (11.12N), as visualized in Figure 8(a). All ten taxels, though designed with different
sizes, exhibit consistent logarithmic force-capacitance (normalized) responses in the entire sensing
range. Additionally, the hysteresis performance, indicated by the maximum height of the gap be-
tween the loading and unloading curves, averages 6.52% ± 1.58% across ten selected taxels, is
significantly lower than the 17.8% reported for the STAG glove [21] and comparable to commercial
flexible force sensors (Tekscan FlexiForce WB201).

We then evaluated the long-term cyclic stability and robustness of DexSkin by subjecting a single
taxel from the sensor dome to 500 cyclic loading and unloading cycles of up to 702.1 kPa (11.12N)
normal loading, over the course of eight hours. As depicted in Figure 8(b), the smooth and min-
imally tilted response over 500 cycles shown at the bottom indicates minimal drift over time, and
quantitative analysis reveals a peak drift of 2.09% and a zero drift of 1.72%. Zoomed-in views of
the beginning and ending cycles further confirm consistent loading and unloading behaviors. This
level of consistency and stability of DexSkin, attainable without the need for individual calibration
or drift compensation, enables us to directly input sensor responses into our policy learning pipeline.

(a) (b)

Figure 8: Characterization of the cross-taxel uniformity and cyclic stability of DexSkin. (a) Normal-
ized capacitance change ∆C/C0 versus applied force for 10 randomly selected taxels measured
during loading and unloading up to 702.1 kPa (11.12N). Note the small hysteresis and high con-
sistency across both dome and cylindrical taxels. (b) Single-taxel cyclic loading up to 702.1 kPa
(11.12N) for 500 cycles. The red rectangles (top) highlight 10 cycles (30th. to 40th., 460th. to
470th.) near the beginning and the end of the test, with zoomed-in view of consistent loading and
unloading behavior for each highlighted segment. The black rectangle (bottom) depicts the taxel’s
changes in capacitance across all 500 cycles, with smooth and minimally-tilted top and bottom
edges. This indicates minimal drift in both the maximum and the baseline responses.

A.3.2 DexSkin’s Broad Sensing Range

To support diverse use cases, we evaluated our DexSkin under two sleeve configurations: a soft low-
infill TPE sleeve for compliant, low-load tasks and a more rigid sleeve with 100% TPE infill for high-
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load applications. We conducted cyclic loading tests using our custom-designed PCB for readout, in
the same configuration as deployed on the real robotic system, to characterize each configuration’s
response to normal pressure loads. We used the vertical-stage based sensor characterization setup
discussed in Section A.2 to apply cyclic normal pressure loadings on a randomly selected taxel.

As shown in Figure 11, both configurations demonstrate stable and repeatable responses across three
loading-unloading cycles, aligning well with the stability observed using an LCR meter. The soft
sleeve variant of DexSkin responds reliably to normal pressure loads as small as 1.7 kPa (27mN)
and up to 702.1 kPa (11.12N), beyond which the sleeve structure yields to provide cushioning. The
loading range of soft sleeve DexSkin, characterized up to 702.1 kPa, exceed prior sensors such as
Gelsight (∼ 200 kPa) [50] and DIGIT Pinki (∼ 80 kPa) [14]. The variant of DexSkin with a rigid
sleeve, in contrast, withstands higher loads without significant deformations and stably responds
to normal pressure loads beyond those achieved by the soft sleeve counterpart, up to 2527.4 kPa
(40.03N).
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Figure 9: Evaluation of DexSkin’s crosstalk under a localized normal load. (a) Heatmap of the
sensed normal pressure across DexSkin’s full 60 taxels when a single taxel is subjected to a lo-
calized normal load measuring 561.6 kPa (8.90N). (b) Quantitative evaluation of the maximum
crosstalk (in percentage) observed across the remaining 59 taxels with four different normal pres-
sures applied on the loaded taxel. The average crosstalk remains below 3% at the four sampled
loads, demonstrating minimal interference and couplings between closely-positioned taxels.

A.3.3 DexSkin’s Minimal Crosstalk

We evaluated the level of crosstalk using the same vertical-stage based sensor characterization setup
as described in Section A.2 to apply normal loads ranging from 280.8 kPa (4.45N) to 2808.1 kPa
(44.48N) on a randomly selected taxel in 100% infill TPE sleeve DexSkin. We read out the sensor
outputs using our custom PCB in normal pressure applied. We were able to obtain 1435 force-sensor
value pairs for crosstalk evaluations.

Figure 9(a) shows a representative heatmap of the sensed normal pressure when a single taxel en-
counters a normal load of 561.6 kPa (8.90N). The visualized response is highly localized and
exhibits minimal activations in the surrounding taxels.

To quantify crosstalk, we define the crosstalk (in %) as the ratio between the highest pressure sensed
by any of the 59 unloaded taxels and the pressure sensed by the loaded taxel:

Crosstalk (%) =

max
j ̸=i

Pj

Pi

× 100%

where Pi denotes the pressure sensed by the loaded taxel. This formulation of crosstalk reflects the
magnitude of ghost contacts at regions experiencing zero normal loads. As seen in Figure 9(b), the
average crosstalk increases with the magnitude of normal loads but remains below 3% for all four
loading conditions shown. Expanding the analysis to all 1435 pairs acquired, we obtain a mean
crosstalk of 1.48%± 1.07%. This highlights the minimal amount of interference and couplings and
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Figure 10: Custom readout PCB used by DexSkin.
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Figure 11: Normalized PCB output from a randomly selected taxel during three consecutive loading
and unloading cycles under different normal pressure application conditions for two sleeve types.
(a) DexSkin with the low-fill TPE soft sleeve: data shown for 1.7 kPa (27mN), 28.1 kPa (0.44N),
280.8 kPa (4.45N), and 702.1 kPa (11.12N). (b) DexSkin with a more rigid 100% infill TPE sleeve:
data shown for 702.1 kPa (11.12N), 1404.1 kPa (22.24N), 2106.2 kPa (33.36N), and 2527.4 kPa
(40.03N). Taxel readings are normalized with respect to the initial zero-load values. The y-axis,
representing timestamps, has been relabeled as cycle counts to better highlight the three consecutive
cycles performed in each condition. The vertical stage step size defaults to 0.01mm but is reduced
to 0.002mm for the 1.7 kPa (27mN) condition to prevent force overshoot.

the individually addressable characteristic of taxels in DexSkin, which is required for accurately
localizing contact events, particularly for densely-packed taxel arrays.

A.4 Readout circuitry

We measure pressure-induced capacitance changes with an inexpensive (costs USD $18.4 at quan-
tities of 1000) custom readout PCB shown in Figure 10, measuring 72.6mm x 40.6mm. A single
PCB is capable of handling inputs from all 120 taxels across both fingers, sufficient for a parallel
jaw gripper setup. The onboard ESP32-S3 microcontroller scans through each taxel sequentially
using multiplexers while communicating with the onboard capacitance-to-digital chip to clock dis-
charging for capacitance measurement. The PCB also provides active and passive shielding options
to minimize the effects of electromagnetic interference (EMI). During our experiments, each taxel
is measured four times and averaged for accuracy. The resulting serial data stream is transmitted to
the computer at 30Hz.
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Figure 12: Representative scatter plot visualizing the collected force estimation dataset with 4
loading-unloading cycles with normal force applied up to 2.5N (157.8 kPa) on a randomly selected
taxel. Each of the gray dots represents a force-sensor output pair obtained during the calibration pro-
cess, and the red line depicted is the exponential trend line obtained by fitting onto the calibration
dataset composed of gray dots. The R2 value for the trend line is 0.9929, indicating an excellent fit.

A.5 Sensor Calibration with Readout PCB

DexSkin exhibits consistency and low hysteresis, which are both crucial for reliable calibrations
that accurately map measured sensor outputs into normal force and pressure values. In the following
sections, we describe a calibration method that builds an accurate mapping from the PCB outputs
to the normal pressure and force experienced. We then showcase the method by calibrating five
randomly selected taxels and evaluating their force estimation error post-calibration.

A.5.1 Comprehensive Normal Force Calibration

For calibrating DexSkin’s output to normal forces, we employ the same vertical-stage-based sensor
characterization setup introduced in Section A.2 with max normal load set to 157.8 kPa (2.5N),
step size set to 0.01mm, and number of loading-unloading cycles set to 3. DexSkin taxels consis-
tently follow an exponential pattern between the PCB readout and the force applied; thus we select
the exponential function a ·

(
eb·(x+d) − eb·d

)
where a, b, and d are the three fitting parameters to

describe the relationship. After four loading/unloading cycles, we obtain the dataset required for our
parameter fitting process. We first detect the peaks of these cycles and align the peak timestamps
between the PCB readings and the applied force before performing downsampling on the former to
match the sampling frequency of the force gauge. The resulting downsampled dataset is then used to
fit the exponential trend line and derive the three fitting parameters. This completes the calibration
of one taxel and takes approximately 3 minutes. The entire calibration process for all 60 taxels on
DexSkin takes around 3 hours.

A.5.2 Force Estimation Performance of Calibrated-Taxels

To evaluate force estimation errors, we randomly selected five taxels, calibrated them following pro-
cedures outlined in the previous section, and obtained the three fitting parameters for its exponential
trend lines. The exponential calibration curve for one of the taxels is visualized in Figure 12. Then
we used the vertical stage setup to apply normal loads up to 2.5N (157.8 kPa) onto each of the five
taxels until we have obtained more than 6500 pairs of ground truth normal force values and PCB
readings for each of them. For each resulting evaluation dataset, we feed the PCB readings into the
fitted exponential trend line for force estimation, the results of which for one of the five taxels are
plotted with the ground truth force values in Figure 13. Quantitatively, we collected a total of 39304
force-PCB value pairs across taxels and report (0.086± 0.021)N as the root mean square error for
estimated forces.

18



0.0 0.5 1.0 1.5 2.0 2.5
Ground Truth Force (N)

0.0

0.5

1.0

1.5

2.0

2.5

Es
tim

at
ed

 F
or

ce
 (N

)

Estimated vs. Ground Truth
Ideal Fit

Figure 13: Representative scatter plot of estimated vs. ground truth force for one of the randomly
selected taxels. We visualize the force estimation results against 7367 collected ground truth normal
forces up to 2.5N (157.8 kPa). Each of the gray dots represents an estimated force-ground truth
force pairs and the red line depicted is the ideal fit line representing perfect estimation.

A.5.3 Three-Minute Pneumatic Pressure Calibration for Policy Transfer

In real-world robotic deployments, tactile sensors inevitably suffer from physical damage and wear,
eventually failing. Yet due to fabrication variations, replacing a failed unit often results in distinct
force responses which invalidates previously collected data and trained neural networks.

To address this, we developed a pneumatic calibration fixture, shown in Figure 14(a). It is comprised
of a custom 3D-printed PLA chamber with an air outlet on top, a thin and soft Ecoflex 00-50 inner
membrane adhered to the bottom surface of the chamber, and a 3D-printed PLA base with leg
support tailored for DexSkin’s height. We adopt a breadboard setup where the onboard ESP32-
C3 microcontroller drives a 2N7000 MOSFET in low-side configuration to modulate a 6V DC air
pump for inflation and reads the chamber pressure from a parallel-connected gas pressure sensor
(Honeywell ABP) for feedback. When pressurized, the internal membrane deforms and applies a
uniform stress over the surface of the DexSkin sensor. The system is capable of ramping up the
relative chamber pressure up to 6psi (41.4 kPa).

Similarly to Section A.5.1, with the pressure and corresponding sensor values collected, one can
fit an exponential function a · eb·x + d where a, b, d are the three fitting parameters. For the pen
reorientation model transfer evaluation, we capped the maximum inflating pressure at 18.7 kPa.

With the three fitting parameters obtained for both the source sensor and the target sensor, we adopt
the following formula to calculate the estimated target sensor outputs using outputs from the source
sensor:

C2 =
C0,2

b2
ln

(
a1 exp

(
b1

C1−C0,1

C0,1

)
+ d1 − d2

a2

)
+ C0,2

where a1, b1, d1 are fitting parameters for the source sensor, C1, C0,1 are the current output and no-
load output for the source sensor respectively, a2, b2, d2 are fitting parameters for the target sensor,
and C2, C0,2 are the current output and no-load output for the target sensor respectively.

To evaluate the effectiveness of the pressure calibration, we subject two DexSkin fingers to 18.7 kPa
pressure loads and obtained the fitting parameters. Then we converted the recorded source sensor
outputs using the formula shown above. Under a relatively uniform load of 18.7 kPa, the outputs for
the source sensor, the target sensor, and the source sensor calibrated to emulate the target sensor are
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(a) (b)

Figure 14: The pneumatic normal pressure calibration setup for DexSkin. (a) Exploded view of the
airtight chamber that houses DexSkin during calibration and applies stress over the entire sensing
region when pressurized. (b) Example heatmaps showing a set of raw values from the source sen-
sor, raw PCB values from the target sensor to be transferred to, and the source sensor values after
pneumatic pressure calibration when subject to the same 18.7 kPa normal pressure load. Ideally, the
target sensor and calibrated source sensor readings should match.

visualized in Figure 14(b). The heatmaps of the target sensor and the calibrated source sensor are
nearly indistinguishable while the source sensor’s map remains noticeably different. Quantitatively,
the calibration brings the source sensor’s outputs much closer to the target sensor’s: the Structural
Similarity Index Measure (SSIM) increases from 0.3344 to 0.9442, and the mean squared error
decreases from 1085.1 to 13.9. The effectiveness of this calibration procedure can be seen not only
in these direct comparisons of sensor output values but also by downstream improvements in policy
model transfer performance (Section 4.2).

B Additional Details on Robotic Experiments

Figure 15 shows an overview of the entire robotic hardware system, including the sensorized gripper,
wrist camera, robot, and teleoperation device.

B.1 Details on Imitation Learning for Manipulation with Expanded Coverage and
Tailorability

B.1.1 Task Definitions

Here we provide additional details about the physical definitions for each task:

• Pen reorientation: We use the same standard-size Expo pen when collecting all training
episodes and when performing evaluation. The starting position of the pen on the table is es-
sentially fixed (with allowances for small 1-2 cm variations) at the beginning of each episode.
We also define a fixed target final location for the pen on the surface of the table.

• Box packaging: We mount a plastic sushi box in a fixed location on the table. We also 3D-print
a small holder to hold the extra elastic band. All bands that we use are of an identical #19 size.
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Figure 15: Hardware setup for manipulation and teleoperated demonstration collection with
DexSkin. Our system consists of a Franka Panda robot, GELLO teleoperation device [44], SSG-
48 gripper with DexSkin-equipped fingers, RealSense D415 RGB-D camera, and custom DexSkin
readout circuitry.

B.1.2 Policy Training and Inference

To train imitation learning policies for the pen and box tasks in Section 4.1 and 4.2, as well as
the base berry picking policy in Section 4.3, we use diffusion policies [45, 46]. We use the open-
source implementation by the original authors and default hyperparameters from the official release,
specifically the unet hybrid image configuration specified in the GitHub repository. We summa-
rize these hyperparameters in Table 5.

Hyperparameter Value
Model Configuration
Horizon (H) 16
Observation Steps (nobs) 2
Inference Steps (naction) 8
Crop Shape [202, 202]
Kernel Size 5

Optimizer (AdamW)
Learning Rate (η) 1e-4
Betas (β1, β2) (0.95, 0.999)
Epsilon (ϵ) 1e-8
Weight Decay 1e-6

Table 5: Diffusion policy training and inference hyperparameters.

For policy configurations where DexSkin observations are provided as input, the DexSkin obser-
vations are processed as low-dimensional observations of dimension 120, which are ingested by
the policy in the same way as the robot proprioceptive state and gripper state, that is, using fully-
connected (linear) layers. We perform random crops on the RGB camera observations, which is a
standard recommendation for training image-based diffusion policies.

Training is carried out on a mixture of NVIDIA TITAN RTX, 3090, and A5000 GPUs. Training
policies for the pen reorientation task takes approximately 12 hours, completing 581k global steps.
The policies for the box packaging task trained for approximately 34 hours, completing 554k global
steps.
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At inference time, we perform 8 diffusion policy denoising steps for computational efficiency, as
recommended by Chi et al. [45]. We execute all 16 actions output by the policy before performing
another policy forward pass, rolling out the policy actions at 20Hz.

We perform all policy inference on an NVIDIA RTX A4000 GPU.

B.1.3 Evaluation Details

When conducting comparative evaluations for a set of policies, we programmatically randomly shuf-
fle the order in which the trials for each policy will be evaluated. This order is unknown to the
experimental evaluator to eliminate potential bias. We perform experimental trials for all policies
for a particular experimental configuration (e.g. no perturbation vs. with perturbation for the pen
reorientation task) consecutively before moving to the next configuration.

We define success conditions for each task as follows:

• Pen reorientation: A trajectory is considered successful if the pen reaches an orientation that
is within 30◦ of perpendicular to the ground, and then hovers or rests its cap over a predefined
target location. In the experimental setting where the human experimenter perturbs the pen,
the trajectory is deemed successful only if the robot reorients the pen to within 30◦ of perpen-
dicular to the ground initially and returns it to this pose after the human perturbs the pen one
time to its starting orientation.
In the calibration experiments described in Section 4.2, we report more granular notions of
success: solving stage 1 involves completing a successful initial reorientation of the pen (prior
to perturbation), and stage 2 requires detecting and fixing the human perturbation.

• Box packaging: A trajectory is considered successful if both of the following conditions are
true: (a) the robot discards the band it initially is holding if it is perforated and does not discard
it otherwise, and (b) the trajectory ends with the rubber band wrapped around the box and lid,
with the rubber band not touching any part of the robot. We also report performance on the
“Select Band” subtask, which corresponds to satisfying condition (a).

B.2 Details on Real-World Online Learning Experiments

B.2.1 Reinforcement Learning Training Details

To train the base imitation learning policy (“base policy”), we collect 50 task demonstrations on
a robot equipped with an unsensorized gripper. Using this data, we train a diffusion policy
following almost an identical configuration as the box packaging task in Section 4.1, including the
use of wrist camera inputs. However, the base imitation policy training has one key difference: while
the experiments in Section 4.1 used DexSkin tactile sensor readings as inputs, our base policy for
online learning does not use tactile information as input.

Then, we use SAC [48, 49] to train a residual policy. The residual policy takes as input the same
proprioceptive information as the base policy, but does not use visual (wrist camera image) inputs
and instead does use 120 taxels of DexSkin tactile information. Excluding visual inputs from the
residual policy input keeps the residual policy lightweight and quicker to learn, and avoids potential
visual distribution shifts from faux to real berries. In addition to the proprioceptive states from the
robot, the residual policy receives the base policy’s predicted action ab at a given step as input, such
that it has access to the action it is modifying.

Just as in the imitation learning experiments, the base policy computes a sequence of 16 actions,
which are all executed (with residual actions applied) before the base policy is queried again.

The residual policy’s actions ar ∈ AR = [0.8, 1.2] (where AR is the residual policy’s action space)
represent scaling modifications to the base policy’s gripper action. That is, the action executed on
the robot is modified for the gripper joint to instead be a = min(max(ab ∗ ar, 0), 1). This scaling
formulation allows the residual policy to have a high level of control when the gripper is mostly
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closed, while reducing high-amplitude oscillations when the gripper is mostly open (e.g. when the
robot is simply approaching the object) that cause exploration to become very challenging.

We apply exponential moving average smoothing to the final gripper actions with α = 0.3 to reduce
high frequency jittering that makes exploration challenging and can potentially damage hardware.

During training, we train for 130 episodes, approximately equivalent to 42k environment steps. An
episode ends after the robot attempts or successfully deposits a berry into the basket, returning its
end effector to above a prespecified height, or reaches a time limit of 425 steps (approximately 30
seconds) without doing so. For the first 100 episodes, we train using a faux berry that has a visual
appearance and geometry similar to that of a real berry. For the last 30 episodes, to fine-tune the
model for better performance on real blueberries, we remove all transitions from the replay buffer
and then resume training using real blueberries.

The reward function has three terms as follows:

• Large force penalty: Unlike some optical or magnetic tactile sensors, DexSkin readings are
immediately localized and readily interpretable, and can thus be used to compute rewards such
as this large force penalty, which equals the amount by which each DexSkin taxel reading
exceeds a specified threshold. We first filter out very large tactile values (> 0.35) that are
caused by unintentional contacts with the surface of the plate that the berry starts on. That is,
using t ∈ R120 to represent the DexSkin outputs,

rforce = ∥max(0, t− tthresh)∥22
where tthresh = 0.1.

• Residual policy action regularizer: This is an ℓ2 penalty that discourages modifications to
the base policy that do not result in larger rewards. Specifically, we penalize the amount by
which the residual action changes the gripper action in gripper width space:

raction = −∥(1− ar) ∗ ab∥2
• Task failure penalty: A poor residual policy can cause the combined policy to entirely fail

to solve the task, for example, by failing to grasp the berry, dropping it in the middle of
transport, or causing the policy to continuously stall in midair. In these cases, the human
operator manually assigns a large negative reward only at the last timestep of rfailure = −10.
Otherwise, rfailure = 0. Note that the failure reward is not assigned when the robot applies
too much force and squishes or breaks the berry; it is only assigned when the picking or
transporting motions fail.

The total reward is r = rforce + 0.01 ∗ raction + rfailure.

Table 6 shows detailed hyperparameters for SAC.

B.2.2 Evaluation Details

During evaluation, we evaluate each policy over 20 trials. To be consistent and minimize potential
bias, we perform comparative evaluations of policies in one sitting and programmatically random-
ize the order in which the trial for each policy will be evaluated. This order is unknown to the
experimental evaluator.

For Table 4, we use strict criteria to determine if a berry remains “intact”: A berry with any visible
tear or cut whatsoever is considered not intact. Our residual policy keeps 60% of the berries
fully intact, but visual inspection shows that even those it does not keep intact are considerably less
damaged than the ones handled by the baselines (Figure 6).

To compute the pressure value comparisons in Table 4, we first filter out any raw sensor values below
0.005 to select only potentially active taxels, then apply the mapping of sensor values to pressure
values (kPa) obtained following the calibration procedure from Section A.5, and finally compute
the mean of the mapped pressure values over all timesteps in the 20 evaluation trajectories in each
setting.
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Hyperparameter Value
Learning rate 3e-4
Batch size 256
(Polyak) parameter τ 0.005
Discount factor γ 0.99
Num gradient steps per env step 5
Entropy coefficient learned
Target network updates per env step 1
Policy/critic architecture MLP w/ hidden dimensions [256, 256]

Table 6: Hyperparameters for real-world reinforcement learning with SAC. We largely keep to Sta-
ble Baselines3 [49] defaults, and any unlisted hyperparameters take on their SB3 default values. One
notable difference is that we use 5 gradient steps per environment step as opposed to the default of
1, which we found to improve sample efficiency.

B.3 Details on Calibration and Model Transfer Experiments

For this experiment, the task definition and setup are identical to that of the pen reorientation task in
Section B.1.1. We start by collecting a dataset of 50 demonstrations for the task, in the same fashion
as in Section B.1.1.

For the baseline experimental configuration, we verify that the policies achieve strong success rates
with the sensors with which the training data was collected (source sensors).

We then physically exchange the sensors that are attached to the left and right sides of the gripper
to the right and left respectively (as our sensors are designed to be interchangeable), simulating a
rearrangement of the sensors. Deploying the policy directly with this configuration is the “Swapped
(no calib.)” setting. We also calibrate the sensors using values computed as in Section A.5 to
map all readings first into pressure values, and then into the space of source sensor readings. Note
that this does not require retraining the policy. The setting with the same policy model, but pro-
viding remapped tactile values as inputs, is denoted “Swapped (calib)”. We conduct blind, order-
randomized evaluations between the two “Swapped” settings. Unfortunately, we cannot do so with
“Source sensors” because running evaluation on that setting requires physically adjusting the hard-
ware, making it impossible to evaluate blindly.

We repeat this experiment with a set of physically different sensors that were fabricated using the
same procedure, but in different batches. This simulates a replacement of the sensors, or deployment
on an entirely different robotic setup. These experiments are denoted “Replaced (no calib.)” and
“Replaced (calib.)”.

For the DIGIT comparison, we test the policies from Section 4.1 first by physically swapping the
gel cartridge between left and right DIGIT sensors. The visual appearance of the gel can vary from
cartridge to cartridge as a result of variations in manufacturing. This setting is denoted “Swapped” in
Table 3. Replacement of gel cartridges is a common maintenance operation that must be performed
as the surfaces of DIGIT sensors accumulate wear over time. While the DIGIT policy in the target
sensor setting (swapped gels) does not complete the task in any of the 20 trials, it exhibits reasonable
behaviors such as reaching for and often grasping the pen. However, it shows a variety of failure
modes such as mispositioning the gripper before attempting a grasp, and being unable to push the
pen against the cabinet in an appropriate way to reorient it. It is likely that the differences in the
visual appearances of the gels led to these errors that ultimately cause task failure.

One technique for reducing a policy’s sensitivity to visual appearance is to train policies computed
on difference images. We tested a setting where the policy’s tactile input is a difference between the
current tactile image observation and the image from the first step in the trajectory, which is assumed
to be captured while the sensor is not deformed. This yields significantly improved performance in
the swapped sensor setting (“Swapped (diff. image)” in Table 3).
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We finally test the performance of the DIGIT difference image policies on entirely physically dis-
tinct sensors ordered from Gelsight Inc. (different housing, image sensor, gel) to simulate sensor
replacement, denoted (“Replaced (diff. image)”).
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