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ABSTRACT

This paper studies the computational challenges of attention-based models in artifi-
cial intelligence by introducing innovative sampling methods to accelerate attention
computation in large language models (LLM). Inspired by the recent progress of
LLM in real-life applications, we introduces a streaming sampler question for
attention setting. Our approach significantly reduces the computational burden of
traditional attention mechanisms while maintaining or enhancing model perfor-
mance. We demonstrate these methods’ effectiveness from theoretical perspective,
including space, update time. Additionally, our framework exhibits scalability and
broad applicability across various model architectures and domains.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a significant paradigm shift with
the advent of attention-based models, particularly in the domains of natural language processing
and computer vision (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019;
Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2022; Touvron et al., 2023a;b; Inc., 2023;
Manyika, 2023). At the heart of these models lies the attention mechanism (Vaswani et al., 2017),
which has proven to be a powerful tool in enhancing the performance of deep learning networks. It
enables models to focus on relevant parts of the input data, thereby facilitating a more nuanced and
context-aware processing. However, as these models scale in size and complexity, the computational
demands of the attention mechanism increase exponentially, posing significant challenges in terms of
efficiency and scalability.

Traditional attention mechanisms (Vaswani et al., 2017), such as those used in Transformer models,
require the computation of attention weights across all elements of the input sequence, leading
to a quadratic increase in computational complexity with respect to the sequence length (Alman
& Song, 2023; Kacham et al., 2023; Han et al., 2023; Zandieh et al., 2023). This computational
burden becomes particularly pronounced in large-scale applications, hindering the deployment of
attention-based models in resource-constrained environments and limiting their real-time processing
capabilities. Furthermore, the high computational cost also exacerbates the environmental impact of
training and deploying these models, due to increased energy consumption and carbon footprint.

The core question we ask in this paper then is:

Instead of computing all the entries explicitly, can we quickly sample only some important
coordinates?

To address these challenges, our research introduces innovative sampling methods aimed at acceler-
ating attention computation in deep learning models. By strategically sampling key elements from
the input data, our approach significantly reduces the computational overhead associated with the
attention mechanism, while maintaining, or even enhancing, the model’s performance. This paper
presents a comprehensive exploration of our proposed sampling techniques, detailing the underlying
principles, implementation strategies, and the resultant gains in computational efficiency.

Our contributions can be summarized as follows:

• For the softmax distribution (⟨exp(Ax),1n⟩−1 exp(Ax)), we prove an Ω(n) space stream-
ing sampler algorithm lower bound. (See Theorem 4.4)
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• As the softmax distribution has a strong lower bound, we then provide upper bounds for
polynomial type samplers, i.e., L2 sampling from Ax. There are three settings for various
updates of A and x, (see Theorem 5.3, Theorem 5.5 )

• For updating both A and x, we provide an upper bound (see Theorem 5.7). In addition, we
also provide a lower bound (see Theorem 6.2).

• Toward tensor generalization, we will sample (i1, i2) = i ∈ [n2] approximately according
to the ℓ2 sampling distribution via using O(nd) space, O(n) update time (see Theorem 7.6).
Note that the trivial result takes O(n2) space.

2 RELATED WORK

On sampling. Given a vector v ∈ Un whose coordinates are elements from a universe U and a
non-negative weight function W : U → R≥0, a fundamental goal is to return an index i ∈ {1, . . . , n}
with probability proportional to W (vi). The definition of U permits settings such as U = Rd, so that
each coordinate is a row of a matrix or a d-dimensional point, or U may be a subset of the set of all
matrices or tensors. In perhaps the most well-studied setting, each coordinate is a real number, so
that U = R and the weight function is chosen from the class W (x) = |x|p for p ≥ 0. The problem is
particularly interesting when the vector v ∈ Un is implicitly defined through a data stream, i.e., a
sequence of m updates to the coordinates of v, and the goal is to perform the sampling procedure
using space sublinear in n and m, and the existence of such Lp sampling algorithms was asked
by Cormode et al. (2005) in 2005.

Monemizadeh & Woodruff (2010) partially answered this question in the affirmative by giving an
Lp sampler using polylogarithmic space for p ∈ [1, 2], although the sampling probabilities were
distorted by a multiplicative (1 + ϵ) factor and an additive 1

poly(n) factor. The space requirements of
the algorithm were subsequently improved (Andoni et al., 2011; Jowhari et al., 2011) and extended
to other choices of index domain U and weight function W (Cohen & Geri, 2019; Mahabadi et al.,
2020; 2022), while retaining a multiplicative distortion in the sampling probability. Surprisingly,
Jayaram & Woodruff (2021) showed that it is possible to achieve no multiplicative distortion in the
sampling probabilities while using polylogarithmic space, while conversely Jayaram et al. (2022)
showed that removing the additive distortion would require linear space, essentially closing the line
of work studying the space complexity of Lp samplers. It should be noted however, achieving such
guarantees in sub-polynomial update time while retaining the space guarantees remains an intriguing
open question (Jayaram et al., 2022). For a more comprehensive background on samplers, we refer to
the survey by Cormode & Jowhari (2019).

On tensors. In the realm of tensor decomposition, the canonical polyadic (CP) decomposition,
specifically the CANDECOMP/PARAFAC method, stands out for its unique ability to break down
tensors into rank-1 tensors in a singular way, distinct from matrix decomposition (Harshman, 1970;
Song et al., 2016). This method, having applications in computational neuroscience, data mining,
and statistical learning (Wang et al., 2015), emphasizes the rigidity and uniqueness of tensor decom-
position. Earlier studies (Tsourakakis, 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang
et al., 2013; Kang et al., 2012; Wang et al., 2014; Bhojanapalli & Sanghavi, 2015) have delved into
efficient tensor decomposition methods. Subsequent works introduced methods for fast orthogonal
tensor decomposition using random linear sketching techniques (Wang et al., 2015) and explored
symmetric orthogonally decomposable tensors’ properties, integrating spectral theory (Robeva, 2016;
Robeva & Seigal, 2017). Additionally, importance sampling for quicker decomposition was proposed
(Song et al., 2016). (Deng et al., 2023a) studies the tensor cycle low rank approximation problem.

In algebraic statistics, tensor decompositions are linked to probabilistic models, particularly in
determining latent variable models’ identifiability through low-rank decompositions of specific
moment tensors (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). Kruskal’s theorem (Kruskal,
1977) was pivotal in ascertaining the precision of model parameter identification. However, this
approach, assuming an infinite sample size, falls short in providing minimum sample size information
necessary for learning model parameters within given error bounds. A more robust uniqueness
guarantee is needed, ensuring that the low-rank decomposition of an empirical moment tensor
approximates that of an actual moment tensor, thus offering more insight into empirical moment
tensors’ decomposition.
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On sketching. The application of sketching and sampling techniques in numerical linear algebra
has been remarkably effective, revolutionizing a broad spectrum of core tasks. These methods are
crucial in linear programming (LP), as evidenced by Cohen et al. (2019); Jiang et al. (2021); Ye
(2020); Gu & Song (2022), and have significantly impacted tensor approximation (Song et al., 2019a;
Mahankali et al., 2022; Deng et al., 2023a). Sketching and sampling techniques also have been widely
applied in matrix completion (Gu et al., 2023), matrix sensing (Qin et al., 2023c; Deng et al., 2023c),
submodular function maximization (Qin et al., 2023a), dynamic sparsification (Deng et al., 2022a),
dynamic tensor product regression (Reddy et al., 2022), and semi-definite programming (Song et al.,
2022b). Additionally, sketching has been pivotal in iterative sparsification problems (Song et al.,
2022a), adversarial training (Gao et al., 2022), kernel density estimation (Qin et al., 2022b), solving
the distance oracle problem (Deng et al., 2022b), and empirical risk minimization (Lee et al., 2019;
Qin et al., 2023b). Its applications furthermore extends to relational databases (Qin et al., 2022a) and
Large Language Models (LLMs) research (Deng et al., 2023d;c; Gao et al., 2023b; Li et al., 2023).

On theoretical attention. A comprehensive body of research, including studies (Child et al., 2019;
Kitaev et al., 2020; Wang et al., 2020; Daras et al., 2020; Katharopoulos et al., 2020; Chen et al., 2021;
2022; Zandieh et al., 2023; Alman & Song, 2023; Brand et al., 2023; Deng et al., 2023d; Kacham
et al., 2023; Alman & Song, 2024; Han et al., 2023; Awasthi & Gupta, 2023; Marcus et al., 2022), has
progressively shed light on the complexities and optimization of attention matrix computation. This
exploration has been further enriched by insights into the effectiveness of attention mechanisms in
Transformers (Dehghani et al., 2018; Vuckovic et al., 2020; Zhang et al., 2020; Edelman et al., 2021;
Snell et al., 2021; Wei et al., 2021; Deng et al., 2023e;b). Among these, Zhao et al. (2023) revealed
the adeptness of mid-scale masked language models in identifying syntactic elements, paving the
way for innovations like partial parse tree reconstructions. Inspired the exponential mechanism in
attention structure, Gao et al. (2023a) provides an analysis which shows exponential regression within
the over-parameterized neural tangent kernel framework can converge. In the over-constrained setting,
several work show the convergence for attention inspired regression problem (Li et al., 2023; Deng
et al., 2023c)

Roadmap. In Section 3, we provide some standard notations and definitions in literature. In Section 4,
we study the exponential sampler. In Section 5, we study the streaming upper for the ℓ2 sampling
problem, i.e., sampling coordinates from a vector Ax, where A and x may be updated across a
data stream. In Section 6, we present lower bounds for the same ℓ2 sampling problem. Finally, in
Section 7, we discuss the tensor sampling problem.

3 PRELIMINARIES

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[·] to denote the
expectation. We use Pr[·] to denote the probability. We use 1n to denote a length-n vector where all
the entries are ones. Given two length-n vector, we use ⟨x, y⟩ to denote the inner product between
x and y, i.e, ⟨x, y⟩ :=

∑n
i=1 xiyi. For a vector x ∈ Rn, we use exp(x) ∈ Rn to denote a vector

that has length n and the i-th entry is exp(xi). For a matrix A, we use exp(A) to denote the matrix
that (i, j)-th coordinate is exp(Ai,j). For a vector x, we use ∥x∥2 := (

∑n
i=1 x

2
i )

1/2. We use
∥x∥1 :=

∑n
i=1 |xi|. We use ∥x∥0 to denote the ℓ0 norm of x, which is the number of nonzero entries

in x. We use ∥x∥∞ to denote the ℓ∞ norm of x, which is maxi∈[n] |xi|.

Let n1, n2, d1, d2 be positive integers. Let A ∈ Rn1×d1 and B ∈ Rn2×d2 . We define the Kronecker
product between matrices A and B, denoted A⊗B ∈ Rn1n2×d1d2 , as (A⊗B)(i1−1)n2+i2,(j1−1)d2+j2

is equal to Ai1,j1Bi2,j2 , where i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2], j2 ∈ [d2].

We use poly(n) to denote nC where C > 1 is some constant. For any function f , we use Õ(f) to
denote f · poly(log f). For two sets A and B, we use A ∩ B to denote their intersection. We use
|A ∩B| to denote the cardinality of A ∩B. We use A ∪B to denote the union of A and B.

3.1 TENSORSKETCH

TensorSketch (Pagh, 2013) has been extensively used in many sketching and optimizations (Song
et al., 2019b; Diao et al., 2018; 2019; Ahle et al., 2020; Song et al., 2021a;b; 2022a; Zhang, 2022;
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Song et al., 2023). Song et al. (2022a) defined TensorSparse by compose Sparse embedding (Nelson
& Nguyên, 2013; Cohen, 2016) with a tensor operation (Pagh, 2013).

Definition 3.1 (TensorSparse, see Definition 7.6 in Song et al. (2022a)). Let h1, h2 : [n] ×
[s]→ [m/s] be O(log 1/δ)-wise independent hash functions and let σ1, σ2 : [n]× [s]→ {±1} be
O(log 1/δ)-wise independent random sign functions. Then, the degree two tensor sparse transform,
S : Rn × Rn → Rm is given as:

Rr,(i,j) = ∃k ∈ [s] : σ1(i, k)σ2(j, k)/
√
s · 1[((h1(i, k) + h2(j, k)) mod m/s) + (k − 1)m/s = r]

For s = 1, the above definition becomes TensorSketch (Pagh, 2013).

4 EXPONENTIAL SAMPLER

In this section, we define and consider exponential samplers. We then show strong space lower
bounds for achieving such a data structure when the input dataset arrives in a data stream.

Let us firstly describe the offline version:

Definition 4.1 (Exponential sampler). Given matrix A ∈ Rn×d and x ∈ Rd, the goal is to sample
index i ∼ [n] with probability pi = ⟨exp(Ax),1n⟩−1 · exp(Ax)i, where 1n denotes a length-n
vector, exp(Ax) ∈ Rn denotes a length-n vector with exp(Ax)i = exp((Ax)i), and exp(z) is the
usual exponential function.

Note that at the end of the stream, we only need to sample one index i ∈ [n]. On the other hand, there
are three possibilities for streaming version:

• Both A and x arrive in streaming fashion

• A is fixed but x arrives in streaming fashion

• x is fixed but A arrives in streaming fashion

We consider each of these cases separately. Regardless, we use the following definition for each of
the various cases:

Definition 4.2. Let C > 0 be any fixed constant and let C0 ∈ [n−C , nC ]. Let y be a vector. Then the
exponential sampler outputs an index j∗ such that for all i ∈ [n],

Pr[j∗ = i] = C0 ·
exp(yi)

⟨exp(y),1n⟩
.

We first recall the (two-party) set-disjointness communication problem SetDisjn, in which two parties
Alice and Bob have subsets A and B, respectively, of [n]. Note that we can equivalently view A
and B as binary vectors in n-dimensional space, serving as the indicator vector for whether each
index i ∈ [n] is in the player’s input subset. The task for the players is to determine whether there
exists a common element in their intersection, i.e., whether there exists i ∈ [n] such that i ∈ (A ∩B)
or equivalently, Ai = Bi = 1. In fact, the problem promises that either the inputs are completely
disjoint, |A∩B| = 0 or the inputs contain only a single coordinate in their intersection, |A∩B| = 1.
We recall the following standard communication complexity result of set-disjointness.

Theorem 4.3 (Kalyanasundaram & Schnitger (1992); Razborov (1992); Bar-Yossef et al. (2004)).
Any protocol that solves the set-disjointness problem SetDisjn with probability at least 3

4 requires
Ω(n) bits of total communication.

We show that even a sampler that relaxes the probability distribution defined in Definition 4.2 up to a
factor of nC is infeasible in the streaming model.

Theorem 4.4. Let y ∈ Rn that arrives as a data stream and let C > 0 be a constant. Then any
algorithm that samples an index i ∈ [n] with probability proportional to pi =

exp(yj)
⟨exp(y),1n⟩ must use

Ω(n) bits of space, even if the sampling probabilities are allowed to be distorted by as large as nC

and even if ∥y∥∞ = O(log n).

4
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Proof. Let A,B ∈ {0, 1}n be input vectors from the set disjointness problem, so that the goal is
to determine whether there exists i ∈ [n] such that Ai = Bi = 0. Observe that Alice and Bob can
multiply A and B by 100C log n for some constant C > 0. Now, note that in the disjoint case, we have
that ∥A+B∥∞ = 100C log n and in the non-disjoint case, we have that ∥A+B∥∞ = 200C log n.
In particular, in the non-disjoint case, there exists i ∈ [n] such that Ai +Bi = 200C log n and for all
j ̸= i, we have that Aj +Bj ≤ 100C log n. Hence, in the non-disjoint case, any exponential sampler
will output i with probability proportional to exp(200C log n) and output j ̸= i with probability
proportional to n · exp(100C log n). Even if the sampling probabilities are distorted by a factor of
nC , any exponential sampler would output i with probability at least 3

4 .

Thus, Alice and Bob can use such a data structure to sample an index i and then check whether
Ai = Bi = 1. In particular, Alice can first create a data stream encoding the vector A, run the
sampling algorithm on the data stream, and then pass the state of the algorithm to Bob. Bob can
then create another portion of the data stream encoding an addition of the vector B, take the state of
the algorithm from Alice, run the sampling algorithm on the portion of the data stream, and query
the algorithm for an index i. Bob can then take the index and pass it to Alice, and the two parties
can finally communicate whether Ai = Bi = 1, thereby solving set-disjointness with probability at
least 3

4 . Note that the communication of the protocol is the space used by the sampling algorithm.
Therefore by Theorem 4.3, such a sampler must use Ω(n) bits of space.

5 ℓ2 SAMPLER UPPER BOUND WITH A AND x

In this section, we describe a standard data structure for ℓ2 sampling. We start with providing the
definition of ℓ2 sampler as follows,
Definition 5.1. Let n denote a positive integer. Let ϵ ≥ 0 denote a parameter. In ℓ2 sampling, we
receives y each coordinates online, it can be positive/negative, the goal is to at the end of the stream
output an index I ∈ [n] such that for each j ∈ [n]

Pr[I = j] = (1± ϵ) · |yj |
2

∥y∥22
+ 1/ poly(n).

We describe various instantiations of the ℓ2 sampler for sampling entries from a vector Ax ∈ Rn,
based upon whether the matrix A ∈ ⋉× is updated during the data stream, whether the vector
x ∈ Rd is updated during the data stream, or both.

5.1 A IS UPDATED DURING THE STREAMING AND x IS FIXED

In this section, we describe the construction of an ℓ2 sampler for sampling coordinates of the vector
Ax ∈ Rn, in the setting where the vector x ∈ Rd is fixed, but the entries of A ∈ Rn×d are evolving
as the data stream progresses.
Definition 5.2 (Updating A and fixed x). In this setting, we assume x ∈ Rd is fixed, we receive
updates to the entries of A ∈ Rn×d in a turnstile data stream. Then for y = Ax, we want a data
structure that produces the ℓ2 sampling guarantee for y.

We remark that a turnstile data stream means that each update of the data stream can increase or
decrease a single entry of A.

In this work, we are interested in the regime of n≫ d. Then we have the following guarantee:
Theorem 5.3. Suppose y = Ax, for x ∈ Rn, which is fixed, and A ∈ Rn×d, which is defined by
a turnstile stream. There exists an algorithm that uses d log n + poly

(
1
ϵ , log n

)
bits of space and

returns I ∈ [n] such that Pr[I = j] = (1 ± ϵ) · |yj |2
∥y∥2

2
+ 1/poly(n). The update time of the data

structure is d poly
(
1
ϵ , log n

)
.

Proof. Recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy,
where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. We have y = Ax, where x ∈ Rd is fixed but A ∈ Rn×d

is defined through turnstile updates. Nevertheless, we can maintain the state of ΦAx. In particular,
whenever we receive an update in Ai,j by ∆, then we can compute Φeie

⊤
j ∆x to update the sketch

5
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ΦAx. To analyze the space complexity, observe that storing ΦAx requires O(m) words of space and
x requires d words of space, which is d log n+ poly

(
1
ϵ , log n

)
bits of space in total. Moreover, each

update to Ai,j can change all entries of ΦAx, so the update time is O(md) = d poly
(
1
ϵ , log n

)
.

5.2 x IS UPDATED DURING THE STREAMING AND A IS FIXED

We next consider the setting where the vector x ∈ Rd is updated as the data stream progress, but the
entries of A ∈ Rn×d are fixed.

Definition 5.4 (Fixed A and updating x). We assume A ∈ Rn×d is fixed, we receive updates to
x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that produces the ℓ2
sampling guarantee for y.

We have the following algorithmic guarantees for this setting:

Theorem 5.5. Suppose y = Ax, for A ∈ Rn×d, which is fixed, and x ∈ Rn, which is defined by
a turnstile stream. There exists an algorithm that uses d poly

(
1
ϵ , log n

)
bits of space and returns

I ∈ [n] such that Pr[I = j] = (1± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n). The update time of the data structure is

O(1).

Proof. Again recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch
Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but A ∈ Rn×d is too large to store,

while x ∈ Rn is defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Note that storing ΦA requires O(md)
words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in total.

Moreover, each update to x changes a single entry, so the update time is O(1).

5.3 BOTH A AND x ARE UPDATED DURING THE STREAMING

Finally, we consider the setting where both the vector x ∈ Rd and the entries of A ∈ Rn×d can be
changed by updates from the data stream.

Definition 5.6 (Updating A and updating x). In this setting, we receive updates to both A ∈ Rn×d

and x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that provides the
ℓ2 sampling guarantee for y.

We have the following guarantees:

Lemma 5.7 (Upper Bound). Suppose y = Ax, for A ∈ Rn×d and x ∈ Rn, which are each defined
in a stream through turnstile updates. There exists an algorithm that uses d poly

(
1
ϵ , log n

)
bits of

space and returns I ∈ [n] such that Pr[I = j] = (1 ± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n). The update time is

poly
(
1
ϵ , log n

)
.

Proof. As before, recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear
sketch Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but now both A ∈ Rn×d

and x ∈ Rn are defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Observe that maintaining ΦA requires
O(md) words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in

total. Each update to A can change all m entries of in a single column of ΦA, while each update to x
changes a single entry. Hence, the update time is poly

(
1
ϵ , log n

)
.

6 ℓ2 SAMPLER LOWER BOUND (WITH A AND x)

In this section, we give lower bounds for ℓ2 sampling from a vector y = A⊗px, as either A or x are
updated in a data stream. We show that in any of these cases, the general problem is substantially
more difficult than the previous case where p = 1.

6
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We first recall the Index problem for one-way communication. In the INDEXn problem, Alice receives
a vector v ∈ {0, 1}n and Bob receives a coordinate i ∈ [n]. The goal is for Bob to compute vi with
probability at least 3

4 , given some message Π from Alice. We recall the following communication
complexity lower bounds for Index.
Theorem 6.1 (Kremer et al. (1999)). Any protocol that solves INDEXn with probability at least 3

4
requires Ω(n) bits of communication.
Lemma 6.2 (Lower Bound). Any streaming algorithm that solves problem defined as Definition 5.6
will require Ω(d) space.

Proof. Suppose Alice receives a vector v ∈ {0, 1}d. Then Alice creates the diagonal matrix M ∈
{0, 1}d×d so that the j-th diagonal entry of A is vj , for all j ∈ [n]. Finally, Alice creates A ∈
R(d+1)×d by appending the row consisting of 1

1010 in all of its d entries to M . Suppose Bob receives
the coordinate i ∈ [d] and wants to determine vi. Then Bob can set x to be the elementary vector
ei ∈ Rd, which has a 1 in its i-th coordinate and zeros elsewhere. Observe that by construction, Ax
is the i-th column of A. If vi = 1, then the i-th column of A consists of a 1 in the i-th entry, 1

1010 in
the (d+ 1)-st entry, and zeros elsewhere. Hence, a sampler with the desired properties will output
i with probability at least 3

4 . Similarly, if vi = 0, then the i-th column of A consists of 1
1010 in the

(d+ 1)-st entry and zeros elsewhere. Thus, the sampler with the desired properties will output d+ 1
with probability 1. Bob can therefore distinguish between these two cases with probability at least 3

4 ,
thereby solving INDEXd with probability at least 3

4 . Therefore, by Theorem 6.1, such a sampler must
use at least Ω(d) space.

In fact, we show that if y = A⊗px, where A ∈ Rn×n so that A⊗p ∈ Rnp×np

denotes the p-wise
self-tensor and x ∈ Rnp

, then actually L2 sampling from y uses Ω(n) bits of space.

Lemma 6.3. Let A ∈ Rn×n and A⊗p ∈ Rnp×np

denote the p-wise self-tensor. Let y = A⊗px, so
that x ∈ Rnp

. Then even if all the entries of x arrive in a data stream followed by all the entries of A,
L2 sampling from y requires Ω(n) bits of space.

Proof. Let S ∈ {0, 1}n be an instance of INDEXn. Suppose Alice creates the diagonal matrix A
with exactly S being the entries across its diagonal, i.e., A1,1 = S1, . . . , An,n = Sn. Bob has an
index i ∈ [n], and sets the vector x to be the elementary vector ej , where j = i · np−1. Then by
construction Ax is the all zeros vector if Si = 0 and otherwise there is a nonzero entry, which allows
Alice and Bob to solve INDEXn. Hence, L2 sampling from y requires Ω(n) bits of space.

7 THE TENSOR VERSION PROBLEM

In this section, we further consider sampling from a tensor product. We provide the tensor notations
and objects.
Definition 7.1. Let A1 ∈ Rn×d, let A2 ∈ Rn×d, we define

A = A1 ⊗A2 ∈ Rn2×d2

.

Let x ∈ Rd2

. Let Ai ∈ Rn×d2

denote the i-th block of A.
Definition 7.2 (fixed x, Streaming Sampler for one of A1 and A2 is updating.). One way, we assume
x ∈ Rd2

is fixed. We assume that

• one of A1 and A2 is updating

• one of A1 and A2 is fixed

Let y = Ax, we want ℓ2 sampling guarantee for sampling one coordinate in yi ∈ Rn2

for all i ∈ [n2].

We use the following formulation of Nisan’s pseudorandom generator to derandomize our algorithm.
Theorem 7.3 (Nisan’s PRG, Nisan (1992)). Suppose A is an algorithm that requires S = Ω(log n)
bits of space and R random bits. Then there exists a pseudorandom generator for A that succeeds
with probability 1− 1

poly(n) and uses O(S logR) bits of space.
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Algorithm 1 We build on algorithm based on S(x1 ⊗ x2)

1: procedure MAIN(x1, x2 ∈ Rn)
2: Suppose we use O(nd) space to store A1 and A2 (Avoid n2 time/space)
3: Suppose we receive an update q ∈ [2], i ∈ [n], j ∈ [d],∆
4: Suppose you have hash function g to access uniform number
5: if q = 1 then
6: p← g(i(n− 1) + 1, · · · , in) ▷ p ∈ Rn

7: y ← y +Φ∆(e[i(n−1)+1,in] ◦ (A2)∗,j)/p ▷ Φ1 is decided by h1, σ1

8: else
9: y2 ← y2 +Φ2ei∆ ▷ Φ2 is decided by h2, σ2

10: end if
11:
12: end procedure

In the following Lemma, we state a streaming algorithm to solve tensor related sampling problem.
We consider the situation that one of A1 and A2 is fixed, and the other one is updated in streaming
fashion. We show the following estimation guarantees using the standard CountSketch analysis,
c.f., Charikar et al. (2004); Jowhari et al. (2011).

Lemma 7.4 (Tensor ℓ2 Tail Estimation). Let y = (A1 ⊗ A2)x ∈ Rn2

. Let only one of A1 and A2

be updated in streaming. Let w = yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly
(
1
ϵ , log n

)
space, uses O(n) update time, and

estimates each element of w up to additive error ϵ · ∥z∥2, where z denotes the tail vector of w without
the largest 1

ϵ2 entries in magnitude. Specifically, for all i ∈ [n2], we have |ŵi − wi| ≤ ϵ · ∥z∥2.

Proof. Consider hash function h1, h2 : [n] → [b]. Consider random sign functions σ1, σ2 : [n] →
{−1,+1}. We consider a fixed index i1, i2 ∈ [n]. Let j = h1(i1) + h2(i2) (mod b). Let h−1(j)
denote the all the pairs (i1, i2) ∈ [n] × [n] such that h1(i1) + h2(i2) (mod b) = j. Note that ŷi
induced by h is

ŵi = wi +
∑

l∈h−1(j)\{i}

sislwl1wl2 ,

For ease of presentation, we write σi = σ1,i1σ2,i2 and σl = σ1,l1σ2,l2 .

E[ŵi] = E
[
wi +

∑
l∈h−1(j)\{i}

σ(i)σ(l)wl

]
= E[wi] +

∑
l∈h−1(j)\{i}

E[σ(i) · σ(l)] · wl

= wi +
∑

l∈h−1(j)\{i}

E[σ(i)] · E[σ(l)] · wl = wi,

where the first step follows from definition, the second step follows from linearity of expectation, the
third step follows from σ(i) and σ(l) are independent, the forth step follows from E[σ(l)] = 0.

We now upper bound the variance of ŵi − yi by analyzing E[(ŷi)2]. LetH be the set of the top 1
ϵ2

items and let E be the event that none of the items inH are mapped to h(i), i.e., h(a) ̸= h(i) for all
a ∈ H.

Observe that for b = 100
ϵ2 , we have that Pr[E ] ≥ 0.9. Then we have:

E[(ŵi − wi)
2 | E ] = E[(

∑
l∈[n]2\H,l∈h−1(j)

σ(i)σ(l)wl)
2]

= E
[ ∑
l∈[n]2\H,l∈h−1(j)

w2
l

]

8
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=
1

b
·

∑
l∈[n]2\H,l∈h−1(j)

w2
l

≤ 1

b
· (w2

1 + . . .+ w2
n2 −

∑
l∈H

w2
l )

= 100ϵ2 · ∥z∥22,

for b = 100
ϵ2 , since z is the vector corresponding to y that removes the entries inH. By Chebyshev’s

inequality, we have that

Pr[|ŵi − wi| ≥ ϵ · ∥z∥2 | E ] ≤
1

10
.

Since Pr[E ] ≥ 0.9, then
Pr |ŵi − wi| ≥ ϵ · ∥z∥2 ≤ 0.2,

for a fixed hash function h. By taking the median of O(log n) estimations corresponding to O(log n)
different hash functions h, we have that

Pr[|ŵi − wi| ≥ ϵ · ∥z∥2] ≤
1

n10
.

Thus by a union bound over i ∈ [n]× [n], we have that with probability at least 1− 1
n5 , we have for

all i ∈ [n], |ŵi − wi| ≥ ϵ · ∥z∥2.

We state the following lemma as a structural property that will allow us to achieve our tenor product
sampler. We remark that the proof is a simple adaptation of existing proofs for approximate ℓp
sampling (Jowhari et al., 2011). Thus we defer the proof to Appendix B.

Lemma 7.5. Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that wi = yi√
ui

for a constant

ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the largest 1
ϵ2

entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a 2-approximation to ∥y∥2. Then

Pr

[
Ẑ >

√
C log n

ϵ
· Ŷ

]
≤ O(ϵ) +

1

poly(n)
.

Finally, we describe the guarantees of our tensor-based sampler, deferring the proof to Appendix C.

Theorem 7.6. Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that for each i ∈ [n2], wi =
yi√
ui

for
a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the
largest 1

ϵ2 entries in magnitude. Suppose there exists:

1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2, |ŵi −wi| ≤
ϵ · ∥z∥2, for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi, such that

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
.

We remark that the algorithms A1 and A2 in the context of Theorem 7.6 can be achieved using the
standard AMS ℓ2 norm estimator (Alon et al., 1999). Moreover, algorithm A3 in the context of
Theorem 7.6 can be achieved using the standard CountSketch algorithm (Charikar et al., 2004).

9
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8 CONCLUSION

Our research introduces a transformative approach to enhancing the efficiency of attention-based deep
learning models, crucial in fields like natural language processing and computer vision. By developing
an innovative sampling framework, we’ve effectively reduced the computational demands while
preserving or enhancing model performance. This balance is a significant advancement, particularly
for deploying complex models in resource-limited environments.

Our methods not only lower computational needs but also maintain or improve model accuracy and
robustness. These results highlight the practicality and adaptability of our approach across different
architectures and data types. Additionally, our framework’s scalability ensures its relevance in the
face of ever-growing model and dataset sizes.

In summary, our contribution addresses a key challenge in attention-based AI models, opening the
door to more efficient, scalable, and sustainable AI technologies. This work lays the groundwork for
future advancements in the field, catering to the increasing computational demands of modern AI
applications.
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Roadmap. In Section A, we briefly discuss the background on ℓ2 sampler. In Section B, we show
that how to use the tail bound to obtain sampling result. In Section C, we present the tensor sampling
result.

A ℓ2 SAMPLER

We give the full details of the standard L2 sampler from Jowhari et al. (2011); Mahabadi et al. (2020)
in Algorithm 2. The proof of correctness is verbatim from Jowhari et al. (2011); Mahabadi et al.
(2020). The challenge is how to implement the data structures of y, which is implicitly defined
as (A1 ⊗A2)x. By comparison, in the standard setting of ℓ2 samplers Monemizadeh & Woodruff
(2010); Andoni et al. (2011); Jowhari et al. (2011); Jayaram & Woodruff (2021); Mahabadi et al.
(2020), y is given as a data stream.

Algorithm 2 Standard ℓ2 Sampler, e.g., extension of Jowhari et al. (2011) to p = 2

1: For each i ∈ [n], let ui ∈ [0, 1] be chosen uniformly at random
2: wi ← yi√

ui

3: Let z denote the tail vector of w without the largest 1
ϵ2 entries in magnitude

4: Let Ŷ be a 2-approximation of ∥y∥2
5: Let Ẑ be a 2-approximation of ∥z∥2
6: i← argmaxi∈[n]|ŵi|
7: Let C > 0 be a large constant determined by the additive faliure probability 1

poly(n)

8: if Ẑ >
√

C logn
ϵ · Ŷ or |wi| <

√
C logn

ϵ · Ŷ then
9: Return FAIL

10: else
11: Return i with estimate

√
ui · ŵi

12: end if

B FROM TAIL TO SAMPLING

Lemma B.1 (Restatement of Lemma 7.5). Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that
wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector

of w without the largest 1
ϵ2 entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a

2-approximation to ∥y∥2. Then

Pr

[
Ẑ >

√
C log n

ϵ
· Ŷ

]
≤ O(ϵ) +

1

poly(n)
.

Proof. Let E1 denote the event that Ẑ is a 2-approximation to ∥z∥2 and Ŷ is a 2-approximation to
∥y∥2, so that

Pr[E1] ≥ 1− 1

poly(n)
.

Conditioned on E1, it suffices to bound the probability that

4∥z∥2 >

√
C log n

ϵ
· ∥y∥2.

Let j ∈ [n2] be a fixed index and let uj be fixed.

Let T =
√
ϵ · ∥y∥2 and for each i ∈ [n2], we define the indicator random variable Wi = 1 if |wi| > T

and Wi = 0 otherwise, if |wi| ≤ T . Note that Wi is an indicator random variable for whether the
coordinate wi in the vector w is “heavy” in magnitude.
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We then define

Zi =
w2

i

T 2
· (1−Wi)

to be the scaled contribution of the small entries of z, and observe that Zi ∈ [0, 1].

Let
W =

∑
i∈[n2],i̸=j

wi

denote the total number of heavy indices besides possibly index j and Z =
∑

i∈[n2],i̸=j Zi denote
the total scaled contribution of the light indices besides possibly index j. Let v denote the vector
containing the heavy indices, so that vi = wi for Wi = 1 and vi = 0 otherwise for Wi = 0. Note that
v has sparsity at most Y + 1 and moreover U2Z = ∥w − v∥22. We also have that ∥z∥2 ≤ ∥w − v∥2
unless W ≥ 2

ϵ2 .

Let E2 denote the event that W ≥ 2
ϵ2 and let E3 denote the event that Z ≥ C logn

16T 2ϵ · ∥y∥
2
2. Observe

that if neither E2 nor E3 occur, then we have 4∥z∥2 ≤
√

C logn
ϵ · ∥y∥2, as desired. Thus it remains to

bound the probability of the failure events E2 and E3.

We have E[Wi] =
∥w∥2

2

T 2 , so that E[W ] ≤ 1
ϵ . By Markov’s inequality, we have that Pr[E2] ≤ ϵ

2 .

We now upper bound Pr[E3]. Recall that Zi =
w2

i

T 2 · (1 −Wi) =
w2

i

Tu2
i
· (1 −Wi), since wi =

yi√
ui

.

Observe that Zi > 0 only if |wi| < T , i.e., if ui ≥ y2
i

ϵ·∥y∥2
2

, since T =
√
ϵ · ∥y∥2. For ϵ ∈ (0, 1), we

thus have

E[Zi] ≤
∫ 1

y2
i /∥y∥2

2

zidui

=

∫ 1

y2
i /∥y∥2

2

y2i
ui

1

T 2
dui.

Now, let E4 be the event that ui ≥ 1
nC/2 for all i ∈ [n2], so that Pr[E4] ≥ 1− 1

nC/2−2 .

Then

E[Zi | E4] ≤
1

1− 1
nC/2−2

∫ 1

1/nC/2

y2i
ui

1

T 2
dui

≤ C log n

T 2
y2i .

Thus, we have

E[Z | E4] =
∑

i∈[n2]

E[Zi | E4]

=
∑

i∈[n2]

C log n

T 2
y2i

≤
∑

i∈[n2]

C log n

ϵ

y2i
∥y∥22

=
C log n

ϵ
.

Thus by Markov’s inequality, the probability that Z is larger than C logn
16T 2ϵ · ∥y∥

2
2 = C logn

16ϵ2 is at most
ϵ
16 . The claim then follows from taking a union bound over the events E1,¬E2,¬E3,¬E4.

C TENSOR SAMPLING

Theorem C.1 (Restatement of Theorem 7.6). Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that
for each i ∈ [n2], wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote

the tail vector of w without the largest 1
ϵ2 entries in magnitude. Suppose there exists:
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1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2,

|ŵi − wi| ≤ ϵ · ∥z∥2,

for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi, such that

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
.

Proof. Let i be fixed and let E denote the event that ui <
ϵ

C logn
y2
i

Ŷ 2
, so that |wi| >

√
C logn

ϵ · Ŷ .

Let E1 denote the event that Ŷ is a 2-approximation to ∥y∥2, Ẑ is a 2-approximation to ∥z∥2, and

|ŵi −wi| ≤ ϵ · ∥z∥2 for all i ∈ [n]. Let E2 denote the event that Ẑ >
√

C logn
ϵ · Ŷ and let E3 denote

the event that multiple indices j satisfy |wj | >
√

C logn
ϵ · Ŷ . Finally, let E4 denote the event that

|ŵi| <
√

C logn
ϵ · Ŷ .

Intuitively, E1 is a good event, i.e., correctness of the data structures, which we would like to hold.
On the other hand, E2, E3, E4 are bad events that distort the sampling probabilities, which we would
like to avoid.

We first note that E1 holds with high probability due to the correctness of the CountSketch and
L2-norm estimation data structures. We next note that by Lemma 7.5, the probability that E2 occurs
is O(ϵ).

Next, note that the probability that for a fixed j ∈ [n], uj satisfies
y2
j

uj
≥ C logn

ϵ · Ŷ is at most
ϵ

C′ logn

y2
j

∥y∥2
2

for some constant C ′. Thus summing over all j ∈ [n], the probability that there exist

an additional j ∈ [n] for which |wj | >
√

C logn
ϵ · Ŷ is O(ϵ). Thus the probability that E3 occurs is

O(ϵ).

Finally, conditioned on ¬E2, we have that Ẑ ≤
√

C logn
ϵ · Ŷ . Then conditioning on E1, we have

∥z∥2 ≤ Ẑ and thus |ŵi − wi| ≤ ϵẐ ≤
√
Cϵ log nŶ , so that E4 can only occur for

√
C logn

ϵ · Ŷ ≤

|wi| ≤
√

C logn
ϵ · Ŷ , which is at most probability O

(
ϵ2

C logn
y2
i

Ŷ 2

)
, over the randomness of ui.

In summary, we observe that conditioned on some value being output, the probability that item i is
selected is proportional to the event that the events E and E1 occur, and none of the events E2, E3, E4
occur. The probability that E occurs is ϵ

C logn
y2
i

Ŷ 2
, which ui is chosen uniformly at random. Due

to the event E1, the sampling probability is distorted additively by 1
poly(n) , while due to the events

E2, E3, E4, the sampling probability is distorted multiplicatively by (1 + ϵ). Thus conditioned on the
event that some index is returned, the probability pi that index i is returned satisfies

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
,

as desired.
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