
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS SAMPLING DATA STRUCTURES FOR TENSOR
PRODUCTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the computational challenges of attention-based models in artifi-
cial intelligence by introducing innovative sampling methods to accelerate attention
computation in large language models (LLM). Inspired by the recent progress of
LLM in real-life applications, we introduces a streaming sampler question for
attention setting. Our approach significantly reduces the computational burden of
traditional attention mechanisms while maintaining or enhancing model perfor-
mance. We demonstrate these methods’ effectiveness from theoretical perspective,
including space, update time. Additionally, our framework exhibits scalability and
broad applicability across various model architectures and domains.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a significant paradigm shift with
the advent of attention-based models, particularly in the domains of natural language processing
and computer vision (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019;
Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2022; Touvron et al., 2023a;b; Inc., 2023;
Manyika, 2023). At the heart of these models lies the attention mechanism (Vaswani et al., 2017),
which has proven to be a powerful tool in enhancing the performance of deep learning networks. It
enables models to focus on relevant parts of the input data, thereby facilitating a more nuanced and
context-aware processing. However, as these models scale in size and complexity, the computational
demands of the attention mechanism increase exponentially, posing significant challenges in terms of
efficiency and scalability.

Traditional attention mechanisms (Vaswani et al., 2017), such as those used in Transformer models,
require the computation of attention weights across all elements of the input sequence, leading
to a quadratic increase in computational complexity with respect to the sequence length (Alman
& Song, 2023; Kacham et al., 2023; Han et al., 2023; Zandieh et al., 2023). This computational
burden becomes particularly pronounced in large-scale applications, hindering the deployment of
attention-based models in resource-constrained environments and limiting their real-time processing
capabilities. Furthermore, the high computational cost also exacerbates the environmental impact of
training and deploying these models, due to increased energy consumption and carbon footprint.

The core question we ask in this paper then is:

Instead of computing all the entries explicitly, can we quickly sample only some important
coordinates?

To address these challenges, our research introduces innovative sampling methods aimed at acceler-
ating attention computation in deep learning models. By strategically sampling key elements from
the input data, our approach significantly reduces the computational overhead associated with the
attention mechanism, while maintaining, or even enhancing, the model’s performance. This paper
presents a comprehensive exploration of our proposed sampling techniques, detailing the underlying
principles, implementation strategies, and the resultant gains in computational efficiency.

Our contributions can be summarized as follows:

• For the softmax distribution (⟨exp(Ax),1n⟩−1 exp(Ax)), we prove an Ω(n) space stream-
ing sampler algorithm lower bound. (See Theorem 4.4)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• As the softmax distribution has a strong lower bound, we then provide upper bounds for
polynomial type samplers, i.e., L2 sampling from Ax. There are three settings for various
updates of A and x, (see Theorem 5.3, Theorem 5.5)

• For updating both A and x, we provide an upper bound (see Theorem 5.7). In addition, we
also provide a lower bound (see Theorem 6.2).

• Toward tensor generalization, we will sample (i1, i2) = i ∈ [n2] approximately according
to the ℓ2 sampling distribution via using O(nd) space, O(n) update time (see Theorem 7.6).
Note that the trivial result takes O(n2) space.

2 RELATED WORK

On sampling. Given a vector v ∈ Un whose coordinates are elements from a universe U and a
non-negative weight function W : U → R≥0, a fundamental goal is to return an index i ∈ {1, . . . , n}
with probability proportional to W (vi). The definition of U permits settings such as U = Rd, so that
each coordinate is a row of a matrix or a d-dimensional point, or U may be a subset of the set of all
matrices or tensors. In perhaps the most well-studied setting, each coordinate is a real number, so
that U = R and the weight function is chosen from the class W (x) = |x|p for p ≥ 0. The problem is
particularly interesting when the vector v ∈ Un is implicitly defined through a data stream, i.e., a
sequence of m updates to the coordinates of v, and the goal is to perform the sampling procedure
using space sublinear in n and m, and the existence of such Lp sampling algorithms was asked
by Cormode et al. (2005) in 2005.

Monemizadeh & Woodruff (2010) partially answered this question in the affirmative by giving an
Lp sampler using polylogarithmic space for p ∈ [1, 2], although the sampling probabilities were
distorted by a multiplicative (1 + ϵ) factor and an additive 1

poly(n) factor. The space requirements of
the algorithm were subsequently improved (Andoni et al., 2011; Jowhari et al., 2011) and extended
to other choices of index domain U and weight function W (Cohen & Geri, 2019; Mahabadi et al.,
2020; 2022), while retaining a multiplicative distortion in the sampling probability. Surprisingly,
Jayaram & Woodruff (2021) showed that it is possible to achieve no multiplicative distortion in the
sampling probabilities while using polylogarithmic space, while conversely Jayaram et al. (2022)
showed that removing the additive distortion would require linear space, essentially closing the line
of work studying the space complexity of Lp samplers. It should be noted however, achieving such
guarantees in sub-polynomial update time while retaining the space guarantees remains an intriguing
open question (Jayaram et al., 2022). For a more comprehensive background on samplers, we refer to
the survey by Cormode & Jowhari (2019).

On tensors. In the realm of tensor decomposition, the canonical polyadic (CP) decomposition,
specifically the CANDECOMP/PARAFAC method, stands out for its unique ability to break down
tensors into rank-1 tensors in a singular way, distinct from matrix decomposition (Harshman, 1970;
Song et al., 2016). This method, having applications in computational neuroscience, data mining,
and statistical learning (Wang et al., 2015), emphasizes the rigidity and uniqueness of tensor decom-
position. Earlier studies (Tsourakakis, 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang
et al., 2013; Kang et al., 2012; Wang et al., 2014; Bhojanapalli & Sanghavi, 2015) have delved into
efficient tensor decomposition methods. Subsequent works introduced methods for fast orthogonal
tensor decomposition using random linear sketching techniques (Wang et al., 2015) and explored
symmetric orthogonally decomposable tensors’ properties, integrating spectral theory (Robeva, 2016;
Robeva & Seigal, 2017). Additionally, importance sampling for quicker decomposition was proposed
(Song et al., 2016). (Deng et al., 2023a) studies the tensor cycle low rank approximation problem.

In algebraic statistics, tensor decompositions are linked to probabilistic models, particularly in
determining latent variable models’ identifiability through low-rank decompositions of specific
moment tensors (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). Kruskal’s theorem (Kruskal,
1977) was pivotal in ascertaining the precision of model parameter identification. However, this
approach, assuming an infinite sample size, falls short in providing minimum sample size information
necessary for learning model parameters within given error bounds. A more robust uniqueness
guarantee is needed, ensuring that the low-rank decomposition of an empirical moment tensor
approximates that of an actual moment tensor, thus offering more insight into empirical moment
tensors’ decomposition.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

On sketching. The application of sketching and sampling techniques in numerical linear algebra
has been remarkably effective, revolutionizing a broad spectrum of core tasks. These methods are
crucial in linear programming (LP), as evidenced by Cohen et al. (2019); Jiang et al. (2021); Ye
(2020); Gu & Song (2022), and have significantly impacted tensor approximation (Song et al., 2019a;
Mahankali et al., 2022; Deng et al., 2023a). Sketching and sampling techniques also have been widely
applied in matrix completion (Gu et al., 2023), matrix sensing (Qin et al., 2023c; Deng et al., 2023c),
submodular function maximization (Qin et al., 2023a), dynamic sparsification (Deng et al., 2022a),
dynamic tensor product regression (Reddy et al., 2022), and semi-definite programming (Song et al.,
2022b). Additionally, sketching has been pivotal in iterative sparsification problems (Song et al.,
2022a), adversarial training (Gao et al., 2022), kernel density estimation (Qin et al., 2022b), solving
the distance oracle problem (Deng et al., 2022b), and empirical risk minimization (Lee et al., 2019;
Qin et al., 2023b). Its applications furthermore extends to relational databases (Qin et al., 2022a) and
Large Language Models (LLMs) research (Deng et al., 2023d;c; Gao et al., 2023b; Li et al., 2023).

On theoretical attention. A comprehensive body of research, including studies (Child et al., 2019;
Kitaev et al., 2020; Wang et al., 2020; Daras et al., 2020; Katharopoulos et al., 2020; Chen et al., 2021;
2022; Zandieh et al., 2023; Alman & Song, 2023; Brand et al., 2023; Deng et al., 2023d; Kacham
et al., 2023; Alman & Song, 2024; Han et al., 2023; Awasthi & Gupta, 2023; Marcus et al., 2022), has
progressively shed light on the complexities and optimization of attention matrix computation. This
exploration has been further enriched by insights into the effectiveness of attention mechanisms in
Transformers (Dehghani et al., 2018; Vuckovic et al., 2020; Zhang et al., 2020; Edelman et al., 2021;
Snell et al., 2021; Wei et al., 2021; Deng et al., 2023e;b). Among these, Zhao et al. (2023) revealed
the adeptness of mid-scale masked language models in identifying syntactic elements, paving the
way for innovations like partial parse tree reconstructions. Inspired the exponential mechanism in
attention structure, Gao et al. (2023a) provides an analysis which shows exponential regression within
the over-parameterized neural tangent kernel framework can converge. In the over-constrained setting,
several work show the convergence for attention inspired regression problem (Li et al., 2023; Deng
et al., 2023c)

Roadmap. In Section 3, we provide some standard notations and definitions in literature. In Section 4,
we study the exponential sampler. In Section 5, we study the streaming upper for the ℓ2 sampling
problem, i.e., sampling coordinates from a vector Ax, where A and x may be updated across a
data stream. In Section 6, we present lower bounds for the same ℓ2 sampling problem. Finally, in
Section 7, we discuss the tensor sampling problem.

3 PRELIMINARIES

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[·] to denote the
expectation. We use Pr[·] to denote the probability. We use 1n to denote a length-n vector where all
the entries are ones. Given two length-n vector, we use ⟨x, y⟩ to denote the inner product between
x and y, i.e, ⟨x, y⟩ :=

∑n
i=1 xiyi. For a vector x ∈ Rn, we use exp(x) ∈ Rn to denote a vector

that has length n and the i-th entry is exp(xi). For a matrix A, we use exp(A) to denote the matrix
that (i, j)-th coordinate is exp(Ai,j). For a vector x, we use ∥x∥2 := (

∑n
i=1 x

2
i)

1/2. We use
∥x∥1 :=

∑n
i=1 |xi|. We use ∥x∥0 to denote the ℓ0 norm of x, which is the number of nonzero entries

in x. We use ∥x∥∞ to denote the ℓ∞ norm of x, which is maxi∈[n] |xi|.

Let n1, n2, d1, d2 be positive integers. Let A ∈ Rn1×d1 and B ∈ Rn2×d2 . We define the Kronecker
product between matrices A and B, denoted A⊗B ∈ Rn1n2×d1d2 , as (A⊗B)(i1−1)n2+i2,(j1−1)d2+j2

is equal to Ai1,j1Bi2,j2 , where i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2], j2 ∈ [d2].

We use poly(n) to denote nC where C > 1 is some constant. For any function f , we use Õ(f) to
denote f · poly(log f). For two sets A and B, we use A ∩ B to denote their intersection. We use
|A ∩B| to denote the cardinality of A ∩B. We use A ∪B to denote the union of A and B.

3.1 TENSORSKETCH

TensorSketch (Pagh, 2013) has been extensively used in many sketching and optimizations (Song
et al., 2019b; Diao et al., 2018; 2019; Ahle et al., 2020; Song et al., 2021a;b; 2022a; Zhang, 2022;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Song et al., 2023). Song et al. (2022a) defined TensorSparse by compose Sparse embedding (Nelson
& Nguyên, 2013; Cohen, 2016) with a tensor operation (Pagh, 2013).

Definition 3.1 (TensorSparse, see Definition 7.6 in Song et al. (2022a)). Let h1, h2 : [n] ×
[s]→ [m/s] be O(log 1/δ)-wise independent hash functions and let σ1, σ2 : [n]× [s]→ {±1} be
O(log 1/δ)-wise independent random sign functions. Then, the degree two tensor sparse transform,
S : Rn × Rn → Rm is given as:

Rr,(i,j) = ∃k ∈ [s] : σ1(i, k)σ2(j, k)/
√
s · 1[((h1(i, k) + h2(j, k)) mod m/s) + (k − 1)m/s = r]

For s = 1, the above definition becomes TensorSketch (Pagh, 2013).

4 EXPONENTIAL SAMPLER

In this section, we define and consider exponential samplers. We then show strong space lower
bounds for achieving such a data structure when the input dataset arrives in a data stream.

Let us firstly describe the offline version:

Definition 4.1 (Exponential sampler). Given matrix A ∈ Rn×d and x ∈ Rd, the goal is to sample
index i ∼ [n] with probability pi = ⟨exp(Ax),1n⟩−1 · exp(Ax)i, where 1n denotes a length-n
vector, exp(Ax) ∈ Rn denotes a length-n vector with exp(Ax)i = exp((Ax)i), and exp(z) is the
usual exponential function.

Note that at the end of the stream, we only need to sample one index i ∈ [n]. On the other hand, there
are three possibilities for streaming version:

• Both A and x arrive in streaming fashion

• A is fixed but x arrives in streaming fashion

• x is fixed but A arrives in streaming fashion

We consider each of these cases separately. Regardless, we use the following definition for each of
the various cases:

Definition 4.2. Let C > 0 be any fixed constant and let C0 ∈ [n−C , nC]. Let y be a vector. Then the
exponential sampler outputs an index j∗ such that for all i ∈ [n],

Pr[j∗ = i] = C0 ·
exp(yi)

⟨exp(y),1n⟩
.

We first recall the (two-party) set-disjointness communication problem SetDisjn, in which two parties
Alice and Bob have subsets A and B, respectively, of [n]. Note that we can equivalently view A
and B as binary vectors in n-dimensional space, serving as the indicator vector for whether each
index i ∈ [n] is in the player’s input subset. The task for the players is to determine whether there
exists a common element in their intersection, i.e., whether there exists i ∈ [n] such that i ∈ (A ∩B)
or equivalently, Ai = Bi = 1. In fact, the problem promises that either the inputs are completely
disjoint, |A∩B| = 0 or the inputs contain only a single coordinate in their intersection, |A∩B| = 1.
We recall the following standard communication complexity result of set-disjointness.

Theorem 4.3 (Kalyanasundaram & Schnitger (1992); Razborov (1992); Bar-Yossef et al. (2004)).
Any protocol that solves the set-disjointness problem SetDisjn with probability at least 3

4 requires
Ω(n) bits of total communication.

We show that even a sampler that relaxes the probability distribution defined in Definition 4.2 up to a
factor of nC is infeasible in the streaming model.

Theorem 4.4. Let y ∈ Rn that arrives as a data stream and let C > 0 be a constant. Then any
algorithm that samples an index i ∈ [n] with probability proportional to pi =

exp(yj)
⟨exp(y),1n⟩ must use

Ω(n) bits of space, even if the sampling probabilities are allowed to be distorted by as large as nC

and even if ∥y∥∞ = O(log n).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proof. Let A,B ∈ {0, 1}n be input vectors from the set disjointness problem, so that the goal is
to determine whether there exists i ∈ [n] such that Ai = Bi = 0. Observe that Alice and Bob can
multiply A and B by 100C log n for some constant C > 0. Now, note that in the disjoint case, we have
that ∥A+B∥∞ = 100C log n and in the non-disjoint case, we have that ∥A+B∥∞ = 200C log n.
In particular, in the non-disjoint case, there exists i ∈ [n] such that Ai +Bi = 200C log n and for all
j ̸= i, we have that Aj +Bj ≤ 100C log n. Hence, in the non-disjoint case, any exponential sampler
will output i with probability proportional to exp(200C log n) and output j ̸= i with probability
proportional to n · exp(100C log n). Even if the sampling probabilities are distorted by a factor of
nC , any exponential sampler would output i with probability at least 3

4 .

Thus, Alice and Bob can use such a data structure to sample an index i and then check whether
Ai = Bi = 1. In particular, Alice can first create a data stream encoding the vector A, run the
sampling algorithm on the data stream, and then pass the state of the algorithm to Bob. Bob can
then create another portion of the data stream encoding an addition of the vector B, take the state of
the algorithm from Alice, run the sampling algorithm on the portion of the data stream, and query
the algorithm for an index i. Bob can then take the index and pass it to Alice, and the two parties
can finally communicate whether Ai = Bi = 1, thereby solving set-disjointness with probability at
least 3

4 . Note that the communication of the protocol is the space used by the sampling algorithm.
Therefore by Theorem 4.3, such a sampler must use Ω(n) bits of space.

5 ℓ2 SAMPLER UPPER BOUND WITH A AND x

In this section, we describe a standard data structure for ℓ2 sampling. We start with providing the
definition of ℓ2 sampler as follows,
Definition 5.1. Let n denote a positive integer. Let ϵ ≥ 0 denote a parameter. In ℓ2 sampling, we
receives y each coordinates online, it can be positive/negative, the goal is to at the end of the stream
output an index I ∈ [n] such that for each j ∈ [n]

Pr[I = j] = (1± ϵ) · |yj |
2

∥y∥22
+ 1/ poly(n).

We describe various instantiations of the ℓ2 sampler for sampling entries from a vector Ax ∈ Rn,
based upon whether the matrix A ∈ ⋉× is updated during the data stream, whether the vector
x ∈ Rd is updated during the data stream, or both.

5.1 A IS UPDATED DURING THE STREAMING AND x IS FIXED

In this section, we describe the construction of an ℓ2 sampler for sampling coordinates of the vector
Ax ∈ Rn, in the setting where the vector x ∈ Rd is fixed, but the entries of A ∈ Rn×d are evolving
as the data stream progresses.
Definition 5.2 (Updating A and fixed x). In this setting, we assume x ∈ Rd is fixed, we receive
updates to the entries of A ∈ Rn×d in a turnstile data stream. Then for y = Ax, we want a data
structure that produces the ℓ2 sampling guarantee for y.

We remark that a turnstile data stream means that each update of the data stream can increase or
decrease a single entry of A.

In this work, we are interested in the regime of n≫ d. Then we have the following guarantee:
Theorem 5.3. Suppose y = Ax, for x ∈ Rn, which is fixed, and A ∈ Rn×d, which is defined by
a turnstile stream. There exists an algorithm that uses d log n + poly

(
1
ϵ , log n

)
bits of space and

returns I ∈ [n] such that Pr[I = j] = (1 ± ϵ) · |yj |2
∥y∥2

2
+ 1/poly(n). The update time of the data

structure is d poly
(
1
ϵ , log n

)
.

Proof. Recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy,
where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. We have y = Ax, where x ∈ Rd is fixed but A ∈ Rn×d

is defined through turnstile updates. Nevertheless, we can maintain the state of ΦAx. In particular,
whenever we receive an update in Ai,j by ∆, then we can compute Φeie

⊤
j ∆x to update the sketch

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ΦAx. To analyze the space complexity, observe that storing ΦAx requires O(m) words of space and
x requires d words of space, which is d log n+ poly

(
1
ϵ , log n

)
bits of space in total. Moreover, each

update to Ai,j can change all entries of ΦAx, so the update time is O(md) = d poly
(
1
ϵ , log n

)
.

5.2 x IS UPDATED DURING THE STREAMING AND A IS FIXED

We next consider the setting where the vector x ∈ Rd is updated as the data stream progress, but the
entries of A ∈ Rn×d are fixed.

Definition 5.4 (Fixed A and updating x). We assume A ∈ Rn×d is fixed, we receive updates to
x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that produces the ℓ2
sampling guarantee for y.

We have the following algorithmic guarantees for this setting:

Theorem 5.5. Suppose y = Ax, for A ∈ Rn×d, which is fixed, and x ∈ Rn, which is defined by
a turnstile stream. There exists an algorithm that uses d poly

(
1
ϵ , log n

)
bits of space and returns

I ∈ [n] such that Pr[I = j] = (1± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n). The update time of the data structure is

O(1).

Proof. Again recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch
Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but A ∈ Rn×d is too large to store,

while x ∈ Rn is defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Note that storing ΦA requires O(md)
words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in total.

Moreover, each update to x changes a single entry, so the update time is O(1).

5.3 BOTH A AND x ARE UPDATED DURING THE STREAMING

Finally, we consider the setting where both the vector x ∈ Rd and the entries of A ∈ Rn×d can be
changed by updates from the data stream.

Definition 5.6 (Updating A and updating x). In this setting, we receive updates to both A ∈ Rn×d

and x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that provides the
ℓ2 sampling guarantee for y.

We have the following guarantees:

Lemma 5.7 (Upper Bound). Suppose y = Ax, for A ∈ Rn×d and x ∈ Rn, which are each defined
in a stream through turnstile updates. There exists an algorithm that uses d poly

(
1
ϵ , log n

)
bits of

space and returns I ∈ [n] such that Pr[I = j] = (1 ± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n). The update time is

poly
(
1
ϵ , log n

)
.

Proof. As before, recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear
sketch Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but now both A ∈ Rn×d

and x ∈ Rn are defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Observe that maintaining ΦA requires
O(md) words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in

total. Each update to A can change all m entries of in a single column of ΦA, while each update to x
changes a single entry. Hence, the update time is poly

(
1
ϵ , log n

)
.

6 ℓ2 SAMPLER LOWER BOUND (WITH A AND x)

In this section, we give lower bounds for ℓ2 sampling from a vector y = A⊗px, as either A or x are
updated in a data stream. We show that in any of these cases, the general problem is substantially
more difficult than the previous case where p = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We first recall the Index problem for one-way communication. In the INDEXn problem, Alice receives
a vector v ∈ {0, 1}n and Bob receives a coordinate i ∈ [n]. The goal is for Bob to compute vi with
probability at least 3

4 , given some message Π from Alice. We recall the following communication
complexity lower bounds for Index.
Theorem 6.1 (Kremer et al. (1999)). Any protocol that solves INDEXn with probability at least 3

4
requires Ω(n) bits of communication.
Lemma 6.2 (Lower Bound). Any streaming algorithm that solves problem defined as Definition 5.6
will require Ω(d) space.

Proof. Suppose Alice receives a vector v ∈ {0, 1}d. Then Alice creates the diagonal matrix M ∈
{0, 1}d×d so that the j-th diagonal entry of A is vj , for all j ∈ [n]. Finally, Alice creates A ∈
R(d+1)×d by appending the row consisting of 1

1010 in all of its d entries to M . Suppose Bob receives
the coordinate i ∈ [d] and wants to determine vi. Then Bob can set x to be the elementary vector
ei ∈ Rd, which has a 1 in its i-th coordinate and zeros elsewhere. Observe that by construction, Ax
is the i-th column of A. If vi = 1, then the i-th column of A consists of a 1 in the i-th entry, 1

1010 in
the (d+ 1)-st entry, and zeros elsewhere. Hence, a sampler with the desired properties will output
i with probability at least 3

4 . Similarly, if vi = 0, then the i-th column of A consists of 1
1010 in the

(d+ 1)-st entry and zeros elsewhere. Thus, the sampler with the desired properties will output d+ 1
with probability 1. Bob can therefore distinguish between these two cases with probability at least 3

4 ,
thereby solving INDEXd with probability at least 3

4 . Therefore, by Theorem 6.1, such a sampler must
use at least Ω(d) space.

In fact, we show that if y = A⊗px, where A ∈ Rn×n so that A⊗p ∈ Rnp×np

denotes the p-wise
self-tensor and x ∈ Rnp

, then actually L2 sampling from y uses Ω(n) bits of space.

Lemma 6.3. Let A ∈ Rn×n and A⊗p ∈ Rnp×np

denote the p-wise self-tensor. Let y = A⊗px, so
that x ∈ Rnp

. Then even if all the entries of x arrive in a data stream followed by all the entries of A,
L2 sampling from y requires Ω(n) bits of space.

Proof. Let S ∈ {0, 1}n be an instance of INDEXn. Suppose Alice creates the diagonal matrix A
with exactly S being the entries across its diagonal, i.e., A1,1 = S1, . . . , An,n = Sn. Bob has an
index i ∈ [n], and sets the vector x to be the elementary vector ej , where j = i · np−1. Then by
construction Ax is the all zeros vector if Si = 0 and otherwise there is a nonzero entry, which allows
Alice and Bob to solve INDEXn. Hence, L2 sampling from y requires Ω(n) bits of space.

7 THE TENSOR VERSION PROBLEM

In this section, we further consider sampling from a tensor product. We provide the tensor notations
and objects.
Definition 7.1. Let A1 ∈ Rn×d, let A2 ∈ Rn×d, we define

A = A1 ⊗A2 ∈ Rn2×d2

.

Let x ∈ Rd2

. Let Ai ∈ Rn×d2

denote the i-th block of A.
Definition 7.2 (fixed x, Streaming Sampler for one of A1 and A2 is updating.). One way, we assume
x ∈ Rd2

is fixed. We assume that

• one of A1 and A2 is updating

• one of A1 and A2 is fixed

Let y = Ax, we want ℓ2 sampling guarantee for sampling one coordinate in yi ∈ Rn2

for all i ∈ [n2].

We use the following formulation of Nisan’s pseudorandom generator to derandomize our algorithm.
Theorem 7.3 (Nisan’s PRG, Nisan (1992)). Suppose A is an algorithm that requires S = Ω(log n)
bits of space and R random bits. Then there exists a pseudorandom generator for A that succeeds
with probability 1− 1

poly(n) and uses O(S logR) bits of space.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 We build on algorithm based on S(x1 ⊗ x2)

1: procedure MAIN(x1, x2 ∈ Rn)
2: Suppose we use O(nd) space to store A1 and A2 (Avoid n2 time/space)
3: Suppose we receive an update q ∈ [2], i ∈ [n], j ∈ [d],∆
4: Suppose you have hash function g to access uniform number
5: if q = 1 then
6: p← g(i(n− 1) + 1, · · · , in) ▷ p ∈ Rn

7: y ← y +Φ∆(e[i(n−1)+1,in] ◦ (A2)∗,j)/p ▷ Φ1 is decided by h1, σ1

8: else
9: y2 ← y2 +Φ2ei∆ ▷ Φ2 is decided by h2, σ2

10: end if
11:
12: end procedure

In the following Lemma, we state a streaming algorithm to solve tensor related sampling problem.
We consider the situation that one of A1 and A2 is fixed, and the other one is updated in streaming
fashion. We show the following estimation guarantees using the standard CountSketch analysis,
c.f., Charikar et al. (2004); Jowhari et al. (2011).

Lemma 7.4 (Tensor ℓ2 Tail Estimation). Let y = (A1 ⊗ A2)x ∈ Rn2

. Let only one of A1 and A2

be updated in streaming. Let w = yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly
(
1
ϵ , log n

)
space, uses O(n) update time, and

estimates each element of w up to additive error ϵ · ∥z∥2, where z denotes the tail vector of w without
the largest 1

ϵ2 entries in magnitude. Specifically, for all i ∈ [n2], we have |ŵi − wi| ≤ ϵ · ∥z∥2.

Proof. Consider hash function h1, h2 : [n] → [b]. Consider random sign functions σ1, σ2 : [n] →
{−1,+1}. We consider a fixed index i1, i2 ∈ [n]. Let j = h1(i1) + h2(i2) (mod b). Let h−1(j)
denote the all the pairs (i1, i2) ∈ [n] × [n] such that h1(i1) + h2(i2) (mod b) = j. Note that ŷi
induced by h is

ŵi = wi +
∑

l∈h−1(j)\{i}

sislwl1wl2 ,

For ease of presentation, we write σi = σ1,i1σ2,i2 and σl = σ1,l1σ2,l2 .

E[ŵi] = E
[
wi +

∑
l∈h−1(j)\{i}

σ(i)σ(l)wl

]
= E[wi] +

∑
l∈h−1(j)\{i}

E[σ(i) · σ(l)] · wl

= wi +
∑

l∈h−1(j)\{i}

E[σ(i)] · E[σ(l)] · wl = wi,

where the first step follows from definition, the second step follows from linearity of expectation, the
third step follows from σ(i) and σ(l) are independent, the forth step follows from E[σ(l)] = 0.

We now upper bound the variance of ŵi − yi by analyzing E[(ŷi)2]. LetH be the set of the top 1
ϵ2

items and let E be the event that none of the items inH are mapped to h(i), i.e., h(a) ̸= h(i) for all
a ∈ H.

Observe that for b = 100
ϵ2 , we have that Pr[E] ≥ 0.9. Then we have:

E[(ŵi − wi)
2 | E] = E[(

∑
l∈[n]2\H,l∈h−1(j)

σ(i)σ(l)wl)
2]

= E
[∑
l∈[n]2\H,l∈h−1(j)

w2
l

]

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

=
1

b
·

∑
l∈[n]2\H,l∈h−1(j)

w2
l

≤ 1

b
· (w2

1 + . . .+ w2
n2 −

∑
l∈H

w2
l)

= 100ϵ2 · ∥z∥22,

for b = 100
ϵ2 , since z is the vector corresponding to y that removes the entries inH. By Chebyshev’s

inequality, we have that

Pr[|ŵi − wi| ≥ ϵ · ∥z∥2 | E] ≤
1

10
.

Since Pr[E] ≥ 0.9, then
Pr |ŵi − wi| ≥ ϵ · ∥z∥2 ≤ 0.2,

for a fixed hash function h. By taking the median of O(log n) estimations corresponding to O(log n)
different hash functions h, we have that

Pr[|ŵi − wi| ≥ ϵ · ∥z∥2] ≤
1

n10
.

Thus by a union bound over i ∈ [n]× [n], we have that with probability at least 1− 1
n5 , we have for

all i ∈ [n], |ŵi − wi| ≥ ϵ · ∥z∥2.

We state the following lemma as a structural property that will allow us to achieve our tenor product
sampler. We remark that the proof is a simple adaptation of existing proofs for approximate ℓp
sampling (Jowhari et al., 2011). Thus we defer the proof to Appendix B.

Lemma 7.5. Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that wi = yi√
ui

for a constant

ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the largest 1
ϵ2

entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a 2-approximation to ∥y∥2. Then

Pr

[
Ẑ >

√
C log n

ϵ
· Ŷ

]
≤ O(ϵ) +

1

poly(n)
.

Finally, we describe the guarantees of our tensor-based sampler, deferring the proof to Appendix C.

Theorem 7.6. Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that for each i ∈ [n2], wi =
yi√
ui

for
a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the
largest 1

ϵ2 entries in magnitude. Suppose there exists:

1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2, |ŵi −wi| ≤
ϵ · ∥z∥2, for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi, such that

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
.

We remark that the algorithms A1 and A2 in the context of Theorem 7.6 can be achieved using the
standard AMS ℓ2 norm estimator (Alon et al., 1999). Moreover, algorithm A3 in the context of
Theorem 7.6 can be achieved using the standard CountSketch algorithm (Charikar et al., 2004).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 CONCLUSION

Our research introduces a transformative approach to enhancing the efficiency of attention-based deep
learning models, crucial in fields like natural language processing and computer vision. By developing
an innovative sampling framework, we’ve effectively reduced the computational demands while
preserving or enhancing model performance. This balance is a significant advancement, particularly
for deploying complex models in resource-limited environments.

Our methods not only lower computational needs but also maintain or improve model accuracy and
robustness. These results highlight the practicality and adaptability of our approach across different
architectures and data types. Additionally, our framework’s scalability ensures its relevance in the
face of ever-growing model and dataset sizes.

In summary, our contribution addresses a key challenge in attention-based AI models, opening the
door to more efficient, scalable, and sustainable AI technologies. This work lays the groundwork for
future advancements in the field, catering to the increasing computational demands of modern AI
applications.

REFERENCES

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141–160.
SIAM, 2020.

Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A), dec 2009a. doi:
10.1214/09-aos689. URL https://doi.org/10.1214%2F09-aos689.

Elizabeth S. Allman, Sonja Petrović, John A. Rhodes, and Seth Sullivant. Identifiability of 2-tree
mixtures for group-based models, 2009b. URL https://arxiv.org/abs/0909.1854.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. In ICLR. arXiv preprint arXiv:2310.04064, 2024.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
sampling. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, pp.
363–372, 2011.

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hinting.
arXiv preprint arXiv:2310.00726, 2023.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to
data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. In arXiv preprint.
https://arxiv.org/pdf/1502.05023, 2015.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci., 312(1):3–15, 2004.

10

https://doi.org/10.1214%2F09-aos689
https://arxiv.org/abs/0909.1854
https://arxiv.org/pdf/1502.05023

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. Advances in Neural Information Processing Systems (NeurIPS), 34:
17413–17426, 2021.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations (ICLR), 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, pp.
1296–1304, 2014.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Edith Cohen and Ofir Geri. Sampling sketches for concave sublinear functions of frequencies. In
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 1361–1371, 2019.

Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington,
VA, USA, January 10-12, 2016, pp. 278–287, 2016.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC). https://arxiv.org/pdf/1810.07896.pdf, 2019.

Graham Cormode and Hossein Jowhari. lp samplers and their applications: A survey. ACM Comput.
Surv., 52(1):16:1–16:31, 2019.

Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 25–36. ACM, 2005.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems (NeurIPS), 33:
6476–6489, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsifiers.
arXiv preprint arXiv:2211.14825, 2022a.

Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any
symmetric norm. arXiv preprint arXiv:2205.14816, 2022b.

Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. arXiv
preprint arXiv:2304.06594, 2023a.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for softmax
attention optimization. arXiv preprint arXiv:2307.08352, 2023b.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023c.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi-
cation algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023d.

Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear
units. arXiv preprint arXiv:2308.08358, 2023e.

11

https://arxiv.org/pdf/1810.07896.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Huaian Diao, Zhao Song, Wen Sun, and David P. Woodruff. Sketching for kronecker product
regression and p-splines. In AISTATS. https://arxiv.org/pdf/1712.09473, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. arXiv preprint arXiv:2110.10090, 2021.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm. arXiv
preprint arXiv:2208.05395, 2022.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023b.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. arXiv preprint arXiv:2302.11068, 2023.

Insu Han, Rajesh Jarayam, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an" explana-
tory" multimodal factor analysis. 1970.

Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand-
kumar. Fast detection of overlapping communities via online tensor methods on gpus. CoRR,
abs/1309.0787, 2013.

Adobe Inc. Adobe firefly. https://www.adobe.com/sensei/generative-ai/firefly.html, 2023.

Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. SIAM J. Comput., 50
(2):382–439, 2021.

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and
sliding windows. In PODS ’22: International Conference on Management of Data, pp. 29–40,
2022.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC. arXiv preprint arXiv:2004.07470, 2021.

Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates
in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pp. 49–58, 2011.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set
intersection. SIAM J. Discret. Math., 5(4):545–557, 1992.

U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries. In KDD, pp. 316–324, 2012.

12

https://arxiv.org/pdf/1712.09473

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv: 2001.04451, 2020.

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
Comput. Complex., 8(1):21–49, 1999.

Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18(2):95–
138, 1977. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(77)90069-6. URL https:
//www.sciencedirect.com/science/article/pii/0024379577900696.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In COLT. https://arxiv.org/pdf/1905.04447.pdf, 2019.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems.
arXiv preprint arXiv:2303.15725, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou. Non-adaptive adaptive
sampling on turnstile streams. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pp. 1251–1264, 2020.

Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. Adaptive sketches for robust regression
with importance sampling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pp. 31:1–31:21, 2022.

Arvind V Mahankali, David P Woodruff, and Ziyu Zhang. Near-linear time and fixed-parameter
tractable algorithms for tensor decompositions. arXiv preprint arXiv:2207.07417, 2022.

James Manyika. An overview of bard: an early experiment with generative ai. Technical report, Tech.
rep., Technical report, Google AI, 2023.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. arXiv
preprint arXiv:2204.13807, 2022.

Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with applications.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 1143–1160. SIAM, 2010.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):1–17, 2013.

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss–newton
algorithms for candecomp/parafac. SIAM Journal on Matrix Analysis and Applications, 34(1):
126–147, 2013.

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. VLDB, 2022a.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. arXiv preprint arXiv:2212.11408, 2022b.

13

https://www.sciencedirect.com/science/article/pii/0024379577900696
https://www.sciencedirect.com/science/article/pii/0024379577900696
https://arxiv.org/pdf/1905.04447.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lianke Qin, Zhao Song, and Yitan Wang. Fast submodular function maximization. arXiv preprint
arXiv:2305.08367, 2023a.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization. In
International Conference on Artificial Intelligence and Statistics, pp. 101–156. PMLR, 2023b.

Lianke Qin, Zhao Song, and Ruizhe Zhang. A general algorithm for solving rank-one matrix sensing.
arXiv preprint arXiv:2303.12298, 2023c.

Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106
(2):385–390, 1992.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. arXiv preprint
arXiv:2210.03961, 2022.

John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. Bulletin of
mathematical biology, 74:212–231, 2012.

Elina Robeva. Orthogonal decomposition of symmetric tensors. SIAM Journal on Matrix Analysis
and Applications, 37(1):86–102, 2016.

Elina Robeva and Anna Seigal. Singular vectors of orthogonally decomposable tensors. Linear and
Multilinear Algebra, 65(12):2457–2471, 2017.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain, pp. 793–801, 2016.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
SODA. arXiv preprint arXiv:1704.08246, 2019a.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019b.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
Fast algorithm for dynamic kronecker projection maintenance. arXiv preprint arXiv:2210.11542,
2022b.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(
√
n) passes, small

space and fast runtime. Manuscript, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Charalampos E. Tsourakakis. MACH: fast randomized tensor decompositions. In SDM, pp. 689–700,
2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of attention.
arXiv preprint arXiv:2007.02876, 2020.

Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Scalable moment-based inference for latent
dirichlet allocation. In ECML-PKDD, pp. 290–305, 2014.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed
tensor decomposition via sketching. In Advances in Neural Information Processing Systems (NIPS),
pp. 991–999. https://arxiv.org/pdf/1506.04448, 2015.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. arXiv preprint arXiv:2107.13163, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Guanghao Ye. Fast algorithm for solving structured convex programs. The University of Washington,
Undergraduate Thesis, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance.
Master’s thesis, Carnegie Mellon University, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

15

https://arxiv.org/pdf/1506.04448

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Roadmap. In Section A, we briefly discuss the background on ℓ2 sampler. In Section B, we show
that how to use the tail bound to obtain sampling result. In Section C, we present the tensor sampling
result.

A ℓ2 SAMPLER

We give the full details of the standard L2 sampler from Jowhari et al. (2011); Mahabadi et al. (2020)
in Algorithm 2. The proof of correctness is verbatim from Jowhari et al. (2011); Mahabadi et al.
(2020). The challenge is how to implement the data structures of y, which is implicitly defined
as (A1 ⊗A2)x. By comparison, in the standard setting of ℓ2 samplers Monemizadeh & Woodruff
(2010); Andoni et al. (2011); Jowhari et al. (2011); Jayaram & Woodruff (2021); Mahabadi et al.
(2020), y is given as a data stream.

Algorithm 2 Standard ℓ2 Sampler, e.g., extension of Jowhari et al. (2011) to p = 2

1: For each i ∈ [n], let ui ∈ [0, 1] be chosen uniformly at random
2: wi ← yi√

ui

3: Let z denote the tail vector of w without the largest 1
ϵ2 entries in magnitude

4: Let Ŷ be a 2-approximation of ∥y∥2
5: Let Ẑ be a 2-approximation of ∥z∥2
6: i← argmaxi∈[n]|ŵi|
7: Let C > 0 be a large constant determined by the additive faliure probability 1

poly(n)

8: if Ẑ >
√

C logn
ϵ · Ŷ or |wi| <

√
C logn

ϵ · Ŷ then
9: Return FAIL

10: else
11: Return i with estimate

√
ui · ŵi

12: end if

B FROM TAIL TO SAMPLING

Lemma B.1 (Restatement of Lemma 7.5). Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that
wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector

of w without the largest 1
ϵ2 entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a

2-approximation to ∥y∥2. Then

Pr

[
Ẑ >

√
C log n

ϵ
· Ŷ

]
≤ O(ϵ) +

1

poly(n)
.

Proof. Let E1 denote the event that Ẑ is a 2-approximation to ∥z∥2 and Ŷ is a 2-approximation to
∥y∥2, so that

Pr[E1] ≥ 1− 1

poly(n)
.

Conditioned on E1, it suffices to bound the probability that

4∥z∥2 >

√
C log n

ϵ
· ∥y∥2.

Let j ∈ [n2] be a fixed index and let uj be fixed.

Let T =
√
ϵ · ∥y∥2 and for each i ∈ [n2], we define the indicator random variable Wi = 1 if |wi| > T

and Wi = 0 otherwise, if |wi| ≤ T . Note that Wi is an indicator random variable for whether the
coordinate wi in the vector w is “heavy” in magnitude.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We then define

Zi =
w2

i

T 2
· (1−Wi)

to be the scaled contribution of the small entries of z, and observe that Zi ∈ [0, 1].

Let
W =

∑
i∈[n2],i̸=j

wi

denote the total number of heavy indices besides possibly index j and Z =
∑

i∈[n2],i̸=j Zi denote
the total scaled contribution of the light indices besides possibly index j. Let v denote the vector
containing the heavy indices, so that vi = wi for Wi = 1 and vi = 0 otherwise for Wi = 0. Note that
v has sparsity at most Y + 1 and moreover U2Z = ∥w − v∥22. We also have that ∥z∥2 ≤ ∥w − v∥2
unless W ≥ 2

ϵ2 .

Let E2 denote the event that W ≥ 2
ϵ2 and let E3 denote the event that Z ≥ C logn

16T 2ϵ · ∥y∥
2
2. Observe

that if neither E2 nor E3 occur, then we have 4∥z∥2 ≤
√

C logn
ϵ · ∥y∥2, as desired. Thus it remains to

bound the probability of the failure events E2 and E3.

We have E[Wi] =
∥w∥2

2

T 2 , so that E[W] ≤ 1
ϵ . By Markov’s inequality, we have that Pr[E2] ≤ ϵ

2 .

We now upper bound Pr[E3]. Recall that Zi =
w2

i

T 2 · (1 −Wi) =
w2

i

Tu2
i
· (1 −Wi), since wi =

yi√
ui

.

Observe that Zi > 0 only if |wi| < T , i.e., if ui ≥ y2
i

ϵ·∥y∥2
2

, since T =
√
ϵ · ∥y∥2. For ϵ ∈ (0, 1), we

thus have

E[Zi] ≤
∫ 1

y2
i /∥y∥2

2

zidui

=

∫ 1

y2
i /∥y∥2

2

y2i
ui

1

T 2
dui.

Now, let E4 be the event that ui ≥ 1
nC/2 for all i ∈ [n2], so that Pr[E4] ≥ 1− 1

nC/2−2 .

Then

E[Zi | E4] ≤
1

1− 1
nC/2−2

∫ 1

1/nC/2

y2i
ui

1

T 2
dui

≤ C log n

T 2
y2i .

Thus, we have

E[Z | E4] =
∑

i∈[n2]

E[Zi | E4]

=
∑

i∈[n2]

C log n

T 2
y2i

≤
∑

i∈[n2]

C log n

ϵ

y2i
∥y∥22

=
C log n

ϵ
.

Thus by Markov’s inequality, the probability that Z is larger than C logn
16T 2ϵ · ∥y∥

2
2 = C logn

16ϵ2 is at most
ϵ
16 . The claim then follows from taking a union bound over the events E1,¬E2,¬E3,¬E4.

C TENSOR SAMPLING

Theorem C.1 (Restatement of Theorem 7.6). Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that
for each i ∈ [n2], wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote

the tail vector of w without the largest 1
ϵ2 entries in magnitude. Suppose there exists:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2,

|ŵi − wi| ≤ ϵ · ∥z∥2,

for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi, such that

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
.

Proof. Let i be fixed and let E denote the event that ui <
ϵ

C logn
y2
i

Ŷ 2
, so that |wi| >

√
C logn

ϵ · Ŷ .

Let E1 denote the event that Ŷ is a 2-approximation to ∥y∥2, Ẑ is a 2-approximation to ∥z∥2, and

|ŵi −wi| ≤ ϵ · ∥z∥2 for all i ∈ [n]. Let E2 denote the event that Ẑ >
√

C logn
ϵ · Ŷ and let E3 denote

the event that multiple indices j satisfy |wj | >
√

C logn
ϵ · Ŷ . Finally, let E4 denote the event that

|ŵi| <
√

C logn
ϵ · Ŷ .

Intuitively, E1 is a good event, i.e., correctness of the data structures, which we would like to hold.
On the other hand, E2, E3, E4 are bad events that distort the sampling probabilities, which we would
like to avoid.

We first note that E1 holds with high probability due to the correctness of the CountSketch and
L2-norm estimation data structures. We next note that by Lemma 7.5, the probability that E2 occurs
is O(ϵ).

Next, note that the probability that for a fixed j ∈ [n], uj satisfies
y2
j

uj
≥ C logn

ϵ · Ŷ is at most
ϵ

C′ logn

y2
j

∥y∥2
2

for some constant C ′. Thus summing over all j ∈ [n], the probability that there exist

an additional j ∈ [n] for which |wj | >
√

C logn
ϵ · Ŷ is O(ϵ). Thus the probability that E3 occurs is

O(ϵ).

Finally, conditioned on ¬E2, we have that Ẑ ≤
√

C logn
ϵ · Ŷ . Then conditioning on E1, we have

∥z∥2 ≤ Ẑ and thus |ŵi − wi| ≤ ϵẐ ≤
√
Cϵ log nŶ , so that E4 can only occur for

√
C logn

ϵ · Ŷ ≤

|wi| ≤
√

C logn
ϵ · Ŷ , which is at most probability O

(
ϵ2

C logn
y2
i

Ŷ 2

)
, over the randomness of ui.

In summary, we observe that conditioned on some value being output, the probability that item i is
selected is proportional to the event that the events E and E1 occur, and none of the events E2, E3, E4
occur. The probability that E occurs is ϵ

C logn
y2
i

Ŷ 2
, which ui is chosen uniformly at random. Due

to the event E1, the sampling probability is distorted additively by 1
poly(n) , while due to the events

E2, E3, E4, the sampling probability is distorted multiplicatively by (1 + ϵ). Thus conditioned on the
event that some index is returned, the probability pi that index i is returned satisfies

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
,

as desired.

18

	Introduction
	Related Work
	Preliminaries
	TensorSketch

	Exponential Sampler
	L2 Sampler Upper bound with A and x
	 is updated during the streaming and is fixed
	 is updated during the streaming and is fixed
	Both and are updated during the streaming

	L2 Sampler Lower Bound (with and)
	The Tensor Version Problem
	Conclusion
	 Sampler
	From Tail to Sampling
	Tensor Sampling

