TOWARDS SAMPLING DATA STRUCTURES FOR TENSOR PRODUCTS

Anonymous authors

004

006

008 009

010 011

012

013

014

015

016

017

018

019 020 Paper under double-blind review

Abstract

This paper studies the computational challenges of attention-based models in artificial intelligence by introducing innovative sampling methods to accelerate attention computation in large language models (LLM). Inspired by the recent progress of LLM in real-life applications, we introduces a streaming sampler question for attention setting. Our approach significantly reduces the computational burden of traditional attention mechanisms while maintaining or enhancing model performance. We demonstrate these methods' effectiveness from theoretical perspective, including space, update time. Additionally, our framework exhibits scalability and broad applicability across various model architectures and domains.

021 1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a significant paradigm shift with the advent of attention-based models, particularly in the domains of natural language processing and computer vision (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019; Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2022; Touvron et al., 2023; Inc., 2023; Manyika, 2023). At the heart of these models lies the attention mechanism (Vaswani et al., 2017), which has proven to be a powerful tool in enhancing the performance of deep learning networks. It enables models to focus on relevant parts of the input data, thereby facilitating a more nuanced and context-aware processing. However, as these models scale in size and complexity, the computational demands of the attention mechanism increase exponentially, posing significant challenges in terms of efficiency and scalability.

Traditional attention mechanisms (Vaswani et al., 2017), such as those used in Transformer models, require the computation of attention weights across all elements of the input sequence, leading to a quadratic increase in computational complexity with respect to the sequence length (Alman & Song, 2023; Kacham et al., 2023; Han et al., 2023; Zandieh et al., 2023). This computational burden becomes particularly pronounced in large-scale applications, hindering the deployment of attention-based models in resource-constrained environments and limiting their real-time processing capabilities. Furthermore, the high computational cost also exacerbates the environmental impact of training and deploying these models, due to increased energy consumption and carbon footprint.

The core question we ask in this paper then is:

Instead of computing all the entries explicitly, can we quickly sample only some important coordinates?

043 044

046

047

048

042

To address these challenges, our research introduces innovative sampling methods aimed at accelerating attention computation in deep learning models. By strategically sampling key elements from the input data, our approach significantly reduces the computational overhead associated with the attention mechanism, while maintaining, or even enhancing, the model's performance. This paper presents a comprehensive exploration of our proposed sampling techniques, detailing the underlying principles, implementation strategies, and the resultant gains in computational efficiency.

Our contributions can be summarized as follows:

• For the softmax distribution $(\langle \exp(Ax), \mathbf{1}_n \rangle^{-1} \exp(Ax))$, we prove an $\Omega(n)$ space streaming sampler algorithm lower bound. (See Theorem 4.4)

- As the softmax distribution has a strong lower bound, we then provide upper bounds for polynomial type samplers, i.e., L_2 sampling from Ax. There are three settings for various updates of A and x, (see Theorem 5.3, Theorem 5.5)
 - For updating both A and x, we provide an upper bound (see Theorem 5.7). In addition, we also provide a lower bound (see Theorem 6.2).
 - Toward tensor generalization, we will sample $(i_1, i_2) = i \in [n^2]$ approximately according to the ℓ_2 sampling distribution via using O(nd) space, O(n) update time (see Theorem 7.6). Note that the trivial result takes $O(n^2)$ space.

2 RELATED WORK

055

056

058

059

060

061

062 063

064 065

088

On sampling. Given a vector $v \in U^n$ whose coordinates are elements from a universe U and a 066 non-negative weight function $W: U \to \mathbb{R}^{\geq 0}$, a fundamental goal is to return an index $i \in \{1, \dots, n\}$ 067 with probability proportional to $W(v_i)$. The definition of U permits settings such as $U = \mathbb{R}^d$, so that 068 each coordinate is a row of a matrix or a d-dimensional point, or U may be a subset of the set of all 069 matrices or tensors. In perhaps the most well-studied setting, each coordinate is a real number, so that $U = \mathbb{R}$ and the weight function is chosen from the class $W(x) = |x|^p$ for p > 0. The problem is 071 particularly interesting when the vector $v \in U^n$ is implicitly defined through a data stream, i.e., a sequence of m updates to the coordinates of v, and the goal is to perform the sampling procedure 073 using space sublinear in n and m, and the existence of such L_p sampling algorithms was asked 074 by Cormode et al. (2005) in 2005.

075 Monemizadeh & Woodruff (2010) partially answered this question in the affirmative by giving an 076 L_p sampler using polylogarithmic space for $p \in [1, 2]$, although the sampling probabilities were 077 distorted by a multiplicative $(1 + \epsilon)$ factor and an additive $\frac{1}{\text{poly}(n)}$ factor. The space requirements of 078 the algorithm were subsequently improved (Andoni et al., 2011; Jowhari et al., 2011) and extended 079 to other choices of index domain U and weight function W (Cohen & Geri, 2019; Mahabadi et al., 2020; 2022), while retaining a multiplicative distortion in the sampling probability. Surprisingly, 081 Jayaram & Woodruff (2021) showed that it is possible to achieve no multiplicative distortion in the 082 sampling probabilities while using polylogarithmic space, while conversely Jayaram et al. (2022) 083 showed that removing the additive distortion would require linear space, essentially closing the line 084 of work studying the space complexity of L_p samplers. It should be noted however, achieving such 085 guarantees in sub-polynomial update time while retaining the space guarantees remains an intriguing open question (Jayaram et al., 2022). For a more comprehensive background on samplers, we refer to the survey by Cormode & Jowhari (2019). 087

On tensors. In the realm of tensor decomposition, the canonical polyadic (CP) decomposition, specifically the CANDECOMP/PARAFAC method, stands out for its unique ability to break down 090 tensors into rank-1 tensors in a singular way, distinct from matrix decomposition (Harshman, 1970; 091 Song et al., 2016). This method, having applications in computational neuroscience, data mining, 092 and statistical learning (Wang et al., 2015), emphasizes the rigidity and uniqueness of tensor decom-093 position. Earlier studies (Tsourakakis, 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang 094 et al., 2013; Kang et al., 2012; Wang et al., 2014; Bhojanapalli & Sanghavi, 2015) have delved into 095 efficient tensor decomposition methods. Subsequent works introduced methods for fast orthogonal 096 tensor decomposition using random linear sketching techniques (Wang et al., 2015) and explored symmetric orthogonally decomposable tensors' properties, integrating spectral theory (Robeva, 2016; 098 Robeva & Seigal, 2017). Additionally, importance sampling for quicker decomposition was proposed 099 (Song et al., 2016). (Deng et al., 2023a) studies the tensor cycle low rank approximation problem.

100 In algebraic statistics, tensor decompositions are linked to probabilistic models, particularly in 101 determining latent variable models' identifiability through low-rank decompositions of specific 102 moment tensors (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). Kruskal's theorem (Kruskal, 103 1977) was pivotal in ascertaining the precision of model parameter identification. However, this 104 approach, assuming an infinite sample size, falls short in providing minimum sample size information 105 necessary for learning model parameters within given error bounds. A more robust uniqueness 106 guarantee is needed, ensuring that the low-rank decomposition of an empirical moment tensor approximates that of an actual moment tensor, thus offering more insight into empirical moment 107 tensors' decomposition.

On sketching. The application of sketching and sampling techniques in numerical linear algebra 109 has been remarkably effective, revolutionizing a broad spectrum of core tasks. These methods are 110 crucial in linear programming (LP), as evidenced by Cohen et al. (2019); Jiang et al. (2021); Ye 111 (2020); Gu & Song (2022), and have significantly impacted tensor approximation (Song et al., 2019a; 112 Mahankali et al., 2022; Deng et al., 2023a). Sketching and sampling techniques also have been widely applied in matrix completion (Gu et al., 2023), matrix sensing (Qin et al., 2023c; Deng et al., 2023c), 113 submodular function maximization (Qin et al., 2023a), dynamic sparsification (Deng et al., 2022a), 114 dynamic tensor product regression (Reddy et al., 2022), and semi-definite programming (Song et al., 115 2022b). Additionally, sketching has been pivotal in iterative sparsification problems (Song et al., 116 2022a), adversarial training (Gao et al., 2022), kernel density estimation (Qin et al., 2022b), solving 117 the distance oracle problem (Deng et al., 2022b), and empirical risk minimization (Lee et al., 2019; 118 Qin et al., 2023b). Its applications furthermore extends to relational databases (Qin et al., 2022a) and 119 Large Language Models (LLMs) research (Deng et al., 2023d;c; Gao et al., 2023b; Li et al., 2023). 120

121

On theoretical attention. A comprehensive body of research, including studies (Child et al., 2019; 122 Kitaev et al., 2020; Wang et al., 2020; Daras et al., 2020; Katharopoulos et al., 2020; Chen et al., 2021; 123 2022; Zandieh et al., 2023; Alman & Song, 2023; Brand et al., 2023; Deng et al., 2023d; Kacham 124 et al., 2023; Alman & Song, 2024; Han et al., 2023; Awasthi & Gupta, 2023; Marcus et al., 2022), has 125 progressively shed light on the complexities and optimization of attention matrix computation. This 126 exploration has been further enriched by insights into the effectiveness of attention mechanisms in 127 Transformers (Dehghani et al., 2018; Vuckovic et al., 2020; Zhang et al., 2020; Edelman et al., 2021; Snell et al., 2021; Wei et al., 2021; Deng et al., 2023e;b). Among these, Zhao et al. (2023) revealed 128 the adeptness of mid-scale masked language models in identifying syntactic elements, paving the 129 way for innovations like partial parse tree reconstructions. Inspired the exponential mechanism in 130 attention structure, Gao et al. (2023a) provides an analysis which shows exponential regression within 131 the over-parameterized neural tangent kernel framework can converge. In the over-constrained setting, several work show the convergence for attention inspired regression problem (Li et al., 2023; Deng 133 et al., 2023c) 134

Roadmap. In Section 3, we provide some standard notations and definitions in literature. In Section 4, we study the exponential sampler. In Section 5, we study the streaming upper for the ℓ_2 sampling problem, i.e., sampling coordinates from a vector Ax, where A and x may be updated across a data stream. In Section 6, we present lower bounds for the same ℓ_2 sampling problem. Finally, in Section 7, we discuss the tensor sampling problem.

140 141

142

3 PRELIMINARIES

143 For any positive integer n, we use [n] to denote the set $\{1, 2, \dots, n\}$. We use $\mathbb{E}[\cdot]$ to denote the 144 expectation. We use $\Pr[\cdot]$ to denote the probability. We use $\mathbf{1}_n$ to denote a length-*n* vector where all the entries are ones. Given two length-n vector, we use $\langle x, y \rangle$ to denote the inner product between 145 x and y, i.e, $\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i$. For a vector $x \in \mathbb{R}^n$, we use $\exp(x) \in \mathbb{R}^n$ to denote a vector 146 that has length n and the *i*-th entry is $\exp(x_i)$. For a matrix A, we use $\exp(A)$ to denote the matrix 147 that (i, j)-th coordinate is $\exp(A_{i,j})$. For a vector x, we use $||x||_2 := (\sum_{i=1}^n x_i^2)^{1/2}$. We use 148 $||x||_1 := \sum_{i=1}^n |x_i|$. We use $||x||_0$ to denote the ℓ_0 norm of x, which is the number of nonzero entries 149 in x. We use $||x||_{\infty}$ to denote the ℓ_{∞} norm of x, which is $\max_{i \in [n]} |x_i|$. 150

Let n_1, n_2, d_1, d_2 be positive integers. Let $A \in \mathbb{R}^{n_1 \times d_1}$ and $B \in \mathbb{R}^{n_2 \times d_2}$. We define the Kronecker product between matrices A and B, denoted $A \otimes B \in \mathbb{R}^{n_1 n_2 \times d_1 d_2}$, as $(A \otimes B)_{(i_1-1)n_2+i_2,(j_1-1)d_2+j_2}$ is equal to $A_{i_1,j_1}B_{i_2,j_2}$, where $i_1 \in [n_1], j_1 \in [d_1], i_2 \in [n_2], j_2 \in [d_2]$.

155 We use poly(n) to denote n^C where C > 1 is some constant. For any function f, we use $\widetilde{O}(f)$ to 156 denote $f \cdot poly(\log f)$. For two sets A and B, we use $A \cap B$ to denote their intersection. We use 157 $|A \cap B|$ to denote the cardinality of $A \cap B$. We use $A \cup B$ to denote the union of A and B.

158

159 3.1 TENSORSKETCH

161 TensorSketch (Pagh, 2013) has been extensively used in many sketching and optimizations (Song et al., 2019b; Diao et al., 2018; 2019; Ahle et al., 2020; Song et al., 2021a;b; 2022a; Zhang, 2022;

Song et al., 2023). Song et al. (2022a) defined TensorSparse by compose Sparse embedding (Nelson & Nguyên, 2013; Cohen, 2016) with a tensor operation (Pagh, 2013).

Definition 3.1 (TensorSparse, see Definition 7.6 in Song et al. (2022a)). Let $h_1, h_2 : [n] \times [s] \rightarrow [m/s]$ be $O(\log 1/\delta)$ -wise independent hash functions and let $\sigma_1, \sigma_2 : [n] \times [s] \rightarrow \{\pm 1\}$ be $O(\log 1/\delta)$ -wise independent random sign functions. Then, the degree two tensor sparse transform, $S : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^m$ is given as:

 $R_{r,(i,j)} = \exists k \in [s] : \sigma_1(i,k)\sigma_2(j,k)/\sqrt{s} \cdot \mathbf{1}[((h_1(i,k) + h_2(j,k)) \bmod m/s) + (k-1)m/s = r]$

For s = 1, the above definition becomes TensorSketch (Pagh, 2013).

4 EXPONENTIAL SAMPLER

169 170 171

172 173

174 175

176

177

183

186

187

188 189

190

195 196 197 In this section, we define and consider exponential samplers. We then show strong space lower bounds for achieving such a data structure when the input dataset arrives in a data stream.

178 Let us firstly describe the offline version:

Definition 4.1 (Exponential sampler). Given matrix $A \in \mathbb{R}^{n \times d}$ and $x \in \mathbb{R}^d$, the goal is to sample index $i \sim [n]$ with probability $p_i = \langle \exp(Ax), \mathbf{1}_n \rangle^{-1} \cdot \exp(Ax)_i$, where $\mathbf{1}_n$ denotes a length-*n* vector, $\exp(Ax) \in \mathbb{R}^n$ denotes a length-*n* vector with $\exp(Ax)_i = \exp((Ax)_i)$, and $\exp(z)$ is the usual exponential function.

Note that at the end of the stream, we only need to sample one index $i \in [n]$. On the other hand, there are three possibilities for streaming version:

- Both A and x arrive in streaming fashion
- A is fixed but x arrives in streaming fashion
 - x is fixed but A arrives in streaming fashion

We consider each of these cases separately. Regardless, we use the following definition for each of the various cases:

Definition 4.2. Let C > 0 be any fixed constant and let $C_0 \in [n^{-C}, n^C]$. Let y be a vector. Then the exponential sampler outputs an index j^* such that for all $i \in [n]$,

$$\Pr[j^* = i] = C_0 \cdot \frac{\exp(y_i)}{\langle \exp(y), \mathbf{1}_n \rangle}$$

We first recall the (two-party) set-disjointness communication problem SetDisj_n, in which two parties 199 Alice and Bob have subsets A and B, respectively, of [n]. Note that we can equivalently view A 200 and B as binary vectors in n-dimensional space, serving as the indicator vector for whether each 201 index $i \in [n]$ is in the player's input subset. The task for the players is to determine whether there 202 exists a common element in their intersection, i.e., whether there exists $i \in [n]$ such that $i \in (A \cap B)$ 203 or equivalently, $A_i = B_i = 1$. In fact, the problem promises that either the inputs are completely 204 disjoint, $|A \cap B| = 0$ or the inputs contain only a single coordinate in their intersection, $|A \cap B| = 1$. 205 We recall the following standard communication complexity result of set-disjointness. 206

Theorem 4.3 (Kalyanasundaram & Schnitger (1992); Razborov (1992); Bar-Yossef et al. (2004)). Any protocol that solves the set-disjointness problem SetDisj_n with probability at least $\frac{3}{4}$ requires $\Omega(n)$ bits of total communication.

We show that even a sampler that relaxes the probability distribution defined in Definition 4.2 up to a factor of n^C is infeasible in the streaming model.

Theorem 4.4. Let $y \in \mathbb{R}^n$ that arrives as a data stream and let C > 0 be a constant. Then any algorithm that samples an index $i \in [n]$ with probability proportional to $p_i = \frac{\exp(y_j)}{\langle \exp(y), 1_n \rangle}$ must use $\Omega(n)$ bits of space, even if the sampling probabilities are allowed to be distorted by as large as n^C and even if $\|y\|_{\infty} = O(\log n)$. 216 *Proof.* Let $A, B \in \{0,1\}^n$ be input vectors from the set disjointness problem, so that the goal is 217 to determine whether there exists $i \in [n]$ such that $A_i = B_i = 0$. Observe that Alice and Bob can 218 multiply A and B by $100C \log n$ for some constant C > 0. Now, note that in the disjoint case, we have 219 that $\|A + B\|_{\infty} = 100C \log n$ and in the non-disjoint case, we have that $\|A + B\|_{\infty} = 200C \log n$. 220 In particular, in the non-disjoint case, there exists $i \in [n]$ such that $A_i + B_i = 200C \log n$ and for all $j \neq i$, we have that $A_i + B_i \leq 100C \log n$. Hence, in the non-disjoint case, any exponential sampler 221 will output i with probability proportional to $\exp(200C \log n)$ and output $j \neq i$ with probability 222 proportional to $n \cdot \exp(100C \log n)$. Even if the sampling probabilities are distorted by a factor of 223 n^{C} , any exponential sampler would output *i* with probability at least $\frac{3}{4}$. 224

225 Thus, Alice and Bob can use such a data structure to sample an index i and then check whether 226 $A_i = B_i = 1$. In particular, Alice can first create a data stream encoding the vector A, run the sampling algorithm on the data stream, and then pass the state of the algorithm to Bob. Bob can 227 then create another portion of the data stream encoding an addition of the vector B, take the state of 228 the algorithm from Alice, run the sampling algorithm on the portion of the data stream, and query 229 the algorithm for an index i. Bob can then take the index and pass it to Alice, and the two parties 230 can finally communicate whether $A_i = B_i = 1$, thereby solving set-disjointness with probability at 231 least $\frac{3}{4}$. Note that the communication of the protocol is the space used by the sampling algorithm. 232 Therefore by Theorem 4.3, such a sampler must use $\Omega(n)$ bits of space. \square 233

234 235

236

246

247

248 249

250

257

5 ℓ_2 Sampler Upper bound with A and x

In this section, we describe a standard data structure for ℓ_2 sampling. We start with providing the definition of ℓ_2 sampler as follows,

Definition 5.1. Let n denote a positive integer. Let $\epsilon \ge 0$ denote a parameter. In ℓ_2 sampling, we receives y each coordinates online, it can be positive/negative, the goal is to at the end of the stream output an index $I \in [n]$ such that for each $j \in [n]$

$$\Pr[I = j] = (1 \pm \epsilon) \cdot \frac{|y_j|^2}{\|y\|_2^2} + 1/\operatorname{poly}(n).$$

We describe various instantiations of the ℓ_2 sampler for sampling entries from a vector $Ax \in \mathbb{R}^n$, based upon whether the matrix $A \in \mathbb{R} \times \mathbb{R}$ is updated during the data stream, whether the vector $x \in \mathbb{R}^d$ is updated during the data stream, or both.

5.1 A is updated during the streaming and x is fixed

In this section, we describe the construction of an ℓ_2 sampler for sampling coordinates of the vector $Ax \in \mathbb{R}^n$, in the setting where the vector $x \in \mathbb{R}^d$ is fixed, but the entries of $A \in \mathbb{R}^{n \times d}$ are evolving as the data stream progresses.

Definition 5.2 (Updating A and fixed x). In this setting, we assume $x \in \mathbb{R}^d$ is fixed, we receive updates to the entries of $A \in \mathbb{R}^{n \times d}$ in a turnstile data stream. Then for y = Ax, we want a data structure that produces the ℓ_2 sampling guarantee for y.

258 We remark that a turnstile data stream means that each update of the data stream can increase or 259 decrease a single entry of *A*.

In this work, we are interested in the regime of $n \gg d$. Then we have the following guarantee:

Theorem 5.3. Suppose y = Ax, for $x \in \mathbb{R}^n$, which is fixed, and $A \in \mathbb{R}^{n \times d}$, which is defined by a turnstile stream. There exists an algorithm that uses $d \log n + poly\left(\frac{1}{\epsilon}, \log n\right)$ bits of space and returns $I \in [n]$ such that $\Pr[I = j] = (1 \pm \epsilon) \cdot \frac{|y_j|^2}{||y||_2^2} + 1/poly(n)$. The update time of the data structure is d poly $\left(\frac{1}{\epsilon}, \log n\right)$.

266

267 *Proof.* Recall that existing approximate ℓ_2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy , 268 where $\Phi \in \mathbb{R}^{m \times n}$, for $m = \text{poly}\left(\frac{1}{\epsilon}, \log n\right)$. We have y = Ax, where $x \in \mathbb{R}^d$ is fixed but $A \in \mathbb{R}^{n \times d}$ 269 is defined through turnstile updates. Nevertheless, we can maintain the state of ΦAx . In particular, whenever we receive an update in $A_{i,j}$ by Δ , then we can compute $\Phi e_i e_j^\top \Delta x$ to update the sketch $\Phi Ax. To analyze the space complexity, observe that storing <math>\Phi Ax$ requires O(m) words of space and x requires d words of space, which is $d \log n + \operatorname{poly}\left(\frac{1}{\epsilon}, \log n\right)$ bits of space in total. Moreover, each update to $A_{i,j}$ can change all entries of ΦAx , so the update time is $O(md) = d \operatorname{poly}\left(\frac{1}{\epsilon}, \log n\right)$.

274 275

276

277

5.2 x is updated during the streaming and A is fixed

We next consider the setting where the vector $x \in \mathbb{R}^d$ is updated as the data stream progress, but the entries of $A \in \mathbb{R}^{n \times d}$ are fixed.

Definition 5.4 (Fixed A and updating x). We assume $A \in \mathbb{R}^{n \times d}$ is fixed, we receive updates to $x \in \mathbb{R}^d$ in a turnstile data stream. Then for y = Ax, we want a data structure that produces the ℓ_2 sampling guarantee for y.

We have the following algorithmic guarantees for this setting:

Theorem 5.5. Suppose y = Ax, for $A \in \mathbb{R}^{n \times d}$, which is fixed, and $x \in \mathbb{R}^n$, which is defined by a turnstile stream. There exists an algorithm that uses d poly $(\frac{1}{\epsilon}, \log n)$ bits of space and returns $I \in [n]$ such that $\Pr[I = j] = (1 \pm \epsilon) \cdot \frac{|y_j|^2}{||y||_2^2} + 1/\operatorname{poly}(n)$. The update time of the data structure is O(1).

289

Proof. Again recall that existing approximate ℓ_2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy , where $\Phi \in \mathbb{R}^{m \times n}$, for $m = \text{poly}(\frac{1}{\epsilon}, \log n)$. Since y = Ax, but $A \in \mathbb{R}^{n \times d}$ is too large to store, while $x \in \mathbb{R}^n$ is defined through turnstile updates, we can instead maintain the sketch ΦA and the vector x and compute $\Phi Ax = \Phi y$ after the stream concludes. Note that storing ΦA requires O(md)words of space and x requires d words of space, which is d poly $(\frac{1}{\epsilon}, \log n)$ bits of space in total. Moreover, each update to x changes a single entry, so the update time is O(1).

296 297 298

5.3 Both A and x are updated during the streaming

Finally, we consider the setting where both the vector $x \in \mathbb{R}^d$ and the entries of $A \in \mathbb{R}^{n \times d}$ can be changed by updates from the data stream.

Definition 5.6 (Updating A and updating x). In this setting, we receive updates to both $A \in \mathbb{R}^{n \times d}$ and $x \in \mathbb{R}^d$ in a turnstile data stream. Then for y = Ax, we want a data structure that provides the ℓ_2 sampling guarantee for y.

305 We have the following guarantees:

Lemma 5.7 (Upper Bound). Suppose y = Ax, for $A \in \mathbb{R}^{n \times d}$ and $x \in \mathbb{R}^{n}$, which are each defined in a stream through turnstile updates. There exists an algorithm that uses d poly $(\frac{1}{\epsilon}, \log n)$ bits of space and returns $I \in [n]$ such that $\Pr[I = j] = (1 \pm \epsilon) \cdot \frac{|y_j|^2}{||y||_2^2} + 1/\operatorname{poly}(n)$. The update time is poly $(\frac{1}{\epsilon}, \log n)$.

311

Proof. As before, recall that existing approximate ℓ_2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy , where $\Phi \in \mathbb{R}^{m \times n}$, for $m = \text{poly}(\frac{1}{\epsilon}, \log n)$. Since y = Ax, but now both $A \in \mathbb{R}^{n \times d}$ and $x \in \mathbb{R}^n$ are defined through turnstile updates, we can instead maintain the sketch ΦA and the vector x and compute $\Phi Ax = \Phi y$ after the stream concludes. Observe that maintaining ΦA requires O(md) words of space and x requires d words of space, which is $d \text{ poly}(\frac{1}{\epsilon}, \log n)$ bits of space in total. Each update to A can change all m entries of in a single column of ΦA , while each update to xchanges a single entry. Hence, the update time is poly $(\frac{1}{\epsilon}, \log n)$.

319

6 ℓ_2 SAMPLER LOWER BOUND (WITH A AND x)

more difficult than the previous case where p = 1.

320 321

In this section, we give lower bounds for ℓ_2 sampling from a vector $y = A^{\otimes p}x$, as either A or x are updated in a data stream. We show that in any of these cases, the general problem is substantially We first recall the Index problem for one-way communication. In the INDEX_n problem, Alice receives a vector $v \in \{0, 1\}^n$ and Bob receives a coordinate $i \in [n]$. The goal is for Bob to compute v_i with probability at least $\frac{3}{4}$, given some message Π from Alice. We recall the following communication complexity lower bounds for Index.

Theorem 6.1 (Kremer et al. (1999)). Any protocol that solves INDEX_n with probability at least $\frac{3}{4}$ requires $\Omega(n)$ bits of communication.

Lemma 6.2 (Lower Bound). Any streaming algorithm that solves problem defined as Definition 5.6 will require $\Omega(d)$ space.

332

333 *Proof.* Suppose Alice receives a vector $v \in \{0,1\}^d$. Then Alice creates the diagonal matrix $M \in$ 334 $\{0,1\}^{d \times d}$ so that the j-th diagonal entry of A is v_j , for all $j \in [n]$. Finally, Alice creates $A \in \{0,1\}^{d \times d}$ 335 $\mathbb{R}^{(d+1)\times d}$ by appending the row consisting of $\frac{1}{10^{10}}$ in all of its d entries to M. Suppose Bob receives 336 the coordinate $i \in [d]$ and wants to determine v_i . Then Bob can set x to be the elementary vector 337 $e_i \in \mathbb{R}^d$, which has a 1 in its *i*-th coordinate and zeros elsewhere. Observe that by construction, Ax338 is the *i*-th column of A. If $v_i = 1$, then the *i*-th column of A consists of a 1 in the *i*-th entry, $\frac{1}{10^{10}}$ in the (d + 1)-st entry, and zeros elsewhere. Hence, a sampler with the desired properties will output 339 *i* with probability at least $\frac{3}{4}$. Similarly, if $v_i = 0$, then the *i*-th column of A consists of $\frac{1}{10^{10}}$ in the 340 (d+1)-st entry and zeros elsewhere. Thus, the sampler with the desired properties will output d+1341 with probability 1. Bob can therefore distinguish between these two cases with probability at least $\frac{3}{4}$, 342 thereby solving INDEX_d with probability at least $\frac{3}{4}$. Therefore, by Theorem 6.1, such a sampler must 343 use at least $\Omega(d)$ space. 344

345

351

357

359 360

361

362

364 365

366

367

368 369

370 371

372

In fact, we show that if $y = A^{\otimes p}x$, where $A \in \mathbb{R}^{n \times n}$ so that $A^{\otimes p} \in \mathbb{R}^{n^p \times n^p}$ denotes the *p*-wise self-tensor and $x \in \mathbb{R}^{n^p}$, then actually L_2 sampling from y uses $\Omega(n)$ bits of space.

Lemma 6.3. Let $A \in \mathbb{R}^{n \times n}$ and $A^{\otimes p} \in \mathbb{R}^{n^p \times n^p}$ denote the *p*-wise self-tensor. Let $y = A^{\otimes p}x$, so that $x \in \mathbb{R}^{n^p}$. Then even if all the entries of *x* arrive in a data stream followed by all the entries of *A*, L_2 sampling from *y* requires $\Omega(n)$ bits of space.

Proof. Let $S \in \{0,1\}^n$ be an instance of INDEX_n. Suppose Alice creates the diagonal matrix Awith exactly S being the entries across its diagonal, i.e., $A_{1,1} = S_1, \ldots, A_{n,n} = S_n$. Bob has an index $i \in [n]$, and sets the vector x to be the elementary vector \mathbf{e}_j , where $j = i \cdot n^{p-1}$. Then by construction Ax is the all zeros vector if $S_i = 0$ and otherwise there is a nonzero entry, which allows Alice and Bob to solve INDEX_n. Hence, L_2 sampling from y requires $\Omega(n)$ bits of space.

7 THE TENSOR VERSION PROBLEM

In this section, we further consider sampling from a tensor product. We provide the tensor notations and objects.

Definition 7.1. Let $A_1 \in \mathbb{R}^{n \times d}$, let $A_2 \in \mathbb{R}^{n \times d}$, we define

 $\mathsf{A} = A_1 \otimes A_2 \in \mathbb{R}^{n^2 \times d^2}.$

Let $x \in \mathbb{R}^{d^2}$. Let $A_i \in \mathbb{R}^{n \times d^2}$ denote the *i*-th block of A.

Definition 7.2 (fixed x, Streaming Sampler for one of A_1 and A_2 is updating.). One way, we assume $x \in \mathbb{R}^{d^2}$ is fixed. We assume that

- one of A_1 and A_2 is updating
- one of A_1 and A_2 is fixed

Let y = Ax, we want ℓ_2 sampling guarantee for sampling one coordinate in $y_i \in \mathbb{R}^{n^2}$ for all $i \in [n^2]$.

We use the following formulation of Nisan's pseudorandom generator to derandomize our algorithm. **Theorem 7.3** (Nisan's PRG, Nisan (1992)). Suppose A is an algorithm that requires $S = \Omega(\log n)$ bits of space and R random bits. Then there exists a pseudorandom generator for A that succeeds with probability $1 - \frac{1}{poly(n)}$ and uses $O(S \log R)$ bits of space. 378 Algorithm 1 We build on algorithm based on $S(x_1 \otimes x_2)$ 379 1: procedure MAIN $(x_1, x_2 \in \mathbb{R}^n)$ 380 Suppose we use O(nd) space to store A_1 and A_2 (Avoid n^2 time/space) 2: 3: Suppose we receive an update $q \in [2], i \in [n], j \in [d], \Delta$ 382 4: Suppose you have hash function g to access uniform number 5: if q = 1 then 384 6: $p \leftarrow g(i(n-1)+1,\cdots,in)$ $\triangleright p \in \mathbb{R}^n$ $y \leftarrow y + \Phi\Delta(e_{[i(n-1)+1,in]} \circ (A_2)_{*,j})/p$ 7: $\triangleright \Phi_1$ is decided by h_1, σ_1 386 8: else $y_2 \leftarrow y_2 + \Phi_2 e_i \Delta$ 9: $\triangleright \Phi_2$ is decided by h_2, σ_2 387 10: end if 388 11: 389 12: end procedure 390

391 392

393

394

402

407 408 409

428 429 In the following Lemma, we state a streaming algorithm to solve tensor related sampling problem. We consider the situation that one of A_1 and A_2 is fixed, and the other one is updated in streaming fashion. We show the following estimation guarantees using the standard CountSketch analysis, c.f., Charikar et al. (2004); Jowhari et al. (2011).

Lemma 7.4 (Tensor ℓ_2 Tail Estimation). Let $y = (A_1 \otimes A_2)x \in \mathbb{R}^{n^2}$. Let only one of A_1 and A_2 be updated in streaming. Let $w = \frac{y_i}{\sqrt{u_i}}$ for a constant $u_i \in [0, 1]$ generated uniformly at random. There is an algorithm A that that uses $O(nd) + \text{poly}(\frac{1}{\epsilon}, \log n)$ space, uses O(n) update time, and estimates each element of w up to additive error $\epsilon \cdot ||z||_2$, where z denotes the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude. Specifically, for all $i \in [n^2]$, we have $|\hat{w}_i - w_i| \le \epsilon \cdot ||z||_2$.

403 *Proof.* Consider hash function $h_1, h_2 : [n] \to [b]$. Consider random sign functions $\sigma_1, \sigma_2 : [n] \to \{-1, +1\}$. We consider a fixed index $i_1, i_2 \in [n]$. Let $j = h_1(i_1) + h_2(i_2) \pmod{b}$. Let $h^{-1}(j)$ 405 denote the all the pairs $(i_1, i_2) \in [n] \times [n]$ such that $h_1(i_1) + h_2(i_2) \pmod{b} = j$. Note that \hat{y}_i 406 induced by h is

$$\widehat{w}_i = w_i + \sum_{l \in h^{-1}(j) \setminus \{i\}} s_i s_l w_{l_1} w_{l_2},$$

For ease of presentation, we write $\sigma_i = \sigma_{1,i_1}\sigma_{2,i_2}$ and $\sigma_l = \sigma_{1,l_1}\sigma_{2,l_2}$.

$$\mathbb{E}[\widehat{w}_i] = \mathbb{E}\left[w_i + \sum_{l \in h^{-1}(j) \setminus \{i\}} \sigma(i)\sigma(l)w_l\right]$$

$$= \mathbb{E}[w_i] + \sum \mathbb{E}[\sigma(i) \cdot \sigma(l)] \cdot w_l$$

$$= w_i + \sum_{l \in h^{-1}(j) \setminus \{i\}} \mathbb{E}[\sigma(i)] \cdot \mathbb{E}[\sigma(l)] \cdot w_l = w_i,$$

where the first step follows from definition, the second step follows from linearity of expectation, the third step follows from $\sigma(i)$ and $\sigma(l)$ are independent, the forth step follows from $\mathbb{E}[\sigma(l)] = 0$.

 $l \in h^{-1}(j) \setminus \{i\}$

423 We now upper bound the variance of $\hat{w}_i - y_i$ by analyzing $\mathbb{E}[(\hat{y}_i)^2]$. Let \mathcal{H} be the set of the top $\frac{1}{\epsilon^2}$ 424 items and let \mathcal{E} be the event that none of the items in \mathcal{H} are mapped to h(i), i.e., $h(a) \neq h(i)$ for all 425 $a \in \mathcal{H}$.

426 427 Observe that for $b = \frac{100}{\epsilon^2}$, we have that $\Pr[\mathcal{E}] \ge 0.9$. Then we have:

$$\mathbb{E}[(\widehat{w}_i - w_i)^2 \mid \mathcal{E}] = \mathbb{E}[(\sum_{l \in [n]^2 \setminus \mathcal{H}, l \in h^{-1}(j)} \sigma(i)\sigma(l)w_l)^2]$$

431
$$= \mathbb{E}\left[\sum_{l \in [n]^2 \setminus \mathcal{H}, l \in h^{-1}(j)} w_l^2\right]$$

 $\begin{array}{l} \textbf{432} \\ \textbf{433} \\ \textbf{434} \\ \textbf{435} \\ \textbf{436} \\ \textbf{436} \\ \textbf{437} \\ \textbf{438} \end{array} = \frac{1}{b} \cdot \sum_{l \in [n]^2 \setminus \mathcal{H}, l \in h^{-1}(j)} w_l^2 \\ \leq \frac{1}{b} \cdot (w_1^2 + \ldots + w_{n^2}^2 - \sum_{l \in \mathcal{H}} w_l^2) \\ = 100\epsilon^2 \cdot \|z\|_2^2, \end{array}$

for $b = \frac{100}{\epsilon^2}$, since z is the vector corresponding to y that removes the entries in \mathcal{H} . By Chebyshev's inequality, we have that

$$\Pr[|\widehat{w}_i - w_i| \ge \epsilon \cdot ||z||_2 \mid \mathcal{E}] \le \frac{1}{10}$$

Since $\Pr[\mathcal{E}] \ge 0.9$, then

$$\Pr\left|\widehat{w}_i - w_i\right| \ge \epsilon \cdot \|z\|_2 \le 0.2$$

for a fixed hash function h. By taking the median of $O(\log n)$ estimations corresponding to $O(\log n)$ different hash functions h, we have that

$$\Pr[|\widehat{w}_i - w_i| \ge \epsilon \cdot ||z||_2] \le \frac{1}{n^{10}}$$

Thus by a union bound over $i \in [n] \times [n]$, we have that with probability at least $1 - \frac{1}{n^5}$, we have for all $i \in [n], |\widehat{w}_i - w_i| \ge \epsilon \cdot ||z||_2$.

We state the following lemma as a structural property that will allow us to achieve our tenor product sampler. We remark that the proof is a simple adaptation of existing proofs for approximate ℓ_p sampling (Jowhari et al., 2011). Thus we defer the proof to Appendix B.

Lemma 7.5. Let $y = (A_1 \otimes A_2)x \in \mathbb{R}^{n^2}$ and let $w \in \mathbb{R}^{n^2}$ so that $w_i = \frac{y_i}{\sqrt{u_i}}$ for a constant $u_i \in [0, 1]$ generated uniformly at random. Let z denote the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude. Let \widehat{Z} be a 2-approximation to $||z||_2$ and \widehat{Y} be a 2-approximation to $||y||_2$. Then

$$\Pr\left[\widehat{Z} > \sqrt{\frac{C\log n}{\epsilon}} \cdot \widehat{Y}\right] \le O(\epsilon) + \frac{1}{\operatorname{poly}(n)}.$$

Finally, we describe the guarantees of our tensor-based sampler, deferring the proof to Appendix C. **Theorem 7.6.** Let $y = (A_1 \otimes A_2)x \in \mathbb{R}^{n^2}$ and let $w \in \mathbb{R}^{n^2}$ so that for each $i \in [n^2]$, $w_i = \frac{y_i}{\sqrt{u_i}}$ for a constant $u_i \in [0, 1]$ generated uniformly at random. Let z denote the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude. Suppose there exists:

1. An algorithm \mathcal{A}_1 that provides a 2-approximation to $\|y\|_2$ with probability $1 - \frac{1}{n^2}$.

2. An algorithm \mathcal{A}_2 that provides a 2-approximation to $||z||_2$ with probability $1 - \frac{1}{n^2}$.

3. An algorithm A_3 that estimates each element of w up to additive error $\epsilon \cdot ||z||_2$, $|\widehat{w}_i - w_i| \le \epsilon \cdot ||z||_2$, for all $i \in [n^2]$.

Then there exists a data structure that uses poly $(\frac{1}{\epsilon}, \log n)$ bits of space and outputs each index i with probability p_i , such that

$$(1-\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} - \frac{1}{\text{poly}(n)} \le p_i \le (1+\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} + \frac{1}{\text{poly}(n)}$$

We remark that the algorithms A_1 and A_2 in the context of Theorem 7.6 can be achieved using the standard AMS ℓ_2 norm estimator (Alon et al., 1999). Moreover, algorithm A_3 in the context of Theorem 7.6 can be achieved using the standard CountSketch algorithm (Charikar et al., 2004).

486 8 CONCLUSION

Our research introduces a transformative approach to enhancing the efficiency of attention-based deep learning models, crucial in fields like natural language processing and computer vision. By developing an innovative sampling framework, we've effectively reduced the computational demands while
 preserving or enhancing model performance. This balance is a significant advancement, particularly for deploying complex models in resource-limited environments.

Our methods not only lower computational needs but also maintain or improve model accuracy and
 robustness. These results highlight the practicality and adaptability of our approach across different
 architectures and data types. Additionally, our framework's scalability ensures its relevance in the
 face of ever-growing model and dataset sizes.

In summary, our contribution addresses a key challenge in attention-based AI models, opening the
door to more efficient, scalable, and sustainable AI technologies. This work lays the groundwork for
future advancements in the field, catering to the increasing computational demands of modern AI
applications.

- 502 DEEE
 - References
- Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
 Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 141–160.
 SIAM, 2020.
- Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent structure models with many observed variables. *The Annals of Statistics*, 37(6A), dec 2009a. doi: 10.1214/09-aos689. URL https://doi.org/10.1214%2F09-aos689.
- Elizabeth S. Allman, Sonja Petrović, John A. Rhodes, and Seth Sullivant. Identifiability of 2-tree
 mixtures for group-based models, 2009b. URL https://arxiv.org/abs/0909.1854.
- Josh Alman and Zhao Song. Fast attention requires bounded entries. In *NeurIPS*. arXiv preprint arXiv:2302.13214, 2023.
- Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
 attention to kronecker computation. In *ICLR*. arXiv preprint arXiv:2310.04064, 2024.
- Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
- Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
 sampling. In *IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS*, pp. 363–372, 2011.
- Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hinting.
 arXiv preprint arXiv:2310.00726, 2023.
- Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. *J. Comput. Syst. Sci.*, 68(4):702–732, 2004.
- Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. In *arXiv preprint*. https://arxiv.org/pdf/1502.05023, 2015.
- Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention maintenance in large language models. *arXiv preprint arXiv:2304.02207*, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- 539 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams. *Theor. Comput. Sci.*, 312(1):3–15, 2004.

- 540 Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying 541 sparse and low-rank attention. Advances in Neural Information Processing Systems (NeurIPS), 34: 542 17413-17426, 2021. 543 Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re. 544 Pixelated butterfly: Simple and efficient sparse training for neural network models. In International Conference on Learning Representations (ICLR), 2022. 546 547 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse 548 transformers. arXiv preprint arXiv:1904.10509, 2019. 549 Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, pp. 550 1296-1304, 2014. 551 552 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: 553 Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. 554 555 Edith Cohen and Ofir Geri. Sampling sketches for concave sublinear functions of frequencies. In 556 Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 1361–1371, 2019. 558 Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings 559 of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington, 560 VA, USA, January 10-12, 2016, pp. 278-287, 2016. 561 562 Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix 563 multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC). https://arxiv.org/pdf/1810.07896.pdf, 2019. 564 565 Graham Cormode and Hossein Jowhari. l_p samplers and their applications: A survey. ACM Comput. 566 Surv., 52(1):16:1–16:31, 2019. 567 568 Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse distributions on data streams via dynamic inverse sampling. In Proceedings of the 31st International 569 Conference on Very Large Data Bases, pp. 25–36. ACM, 2005. 570 571 Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention 572 using asymmetric clustering. Advances in Neural Information Processing Systems (NeurIPS), 33: 573 6476-6489, 2020. 574 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal 575 transformers. arXiv preprint arXiv:1807.03819, 2018. 576 577 Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsifiers. 578 *arXiv preprint arXiv:2211.14825*, 2022a. 579 Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any 580 symmetric norm. arXiv preprint arXiv:2205.14816, 2022b. 581 582 Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. arXiv preprint arXiv:2304.06594, 2023a. 583 584 Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for softmax 585 attention optimization. arXiv preprint arXiv:2307.08352, 2023b. 586 587 Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv preprint arXiv:2304.10411, 2023c. 588 589 Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi-590 cation algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426, 2023d. 592
- 593 Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear units. *arXiv preprint arXiv:2308.08358*, 2023e.

594 595 596	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i> , 2018.
597 598	Huaian Diao, Zhao Song, Wen Sun, and David P. Woodruff. Sketching for kronecker product regression and p-splines. In <i>AISTATS</i> . https://arxiv.org/pdf/1712.09473, 2018.
599 600 601 602	Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching for kronecker product regression and low rank approximation. <i>Advances in neural information processing systems</i> , 32, 2019.
603 604	Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable creation in self-attention mechanisms. <i>arXiv preprint arXiv:2110.10090</i> , 2021.
605 606 607	Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm. <i>arXiv</i> preprint arXiv:2208.05395, 2022.
608 609	Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. <i>arXiv</i> preprint arXiv:2303.16504, 2023a.
610 611 612	Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions regression. <i>arXiv preprint arXiv:2305.00660</i> , 2023b.
613 614	Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. <i>arXiv preprint arXiv:2211.06033</i> , 2022.
616 617	Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust alternating minimization in nearly linear time. <i>arXiv preprint arXiv:2302.11068</i> , 2023.
618 619 620	Insu Han, Rajesh Jarayam, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh. Hyperattention: Long-context attention in near-linear time. <i>arXiv preprint arXiv:2310.05869</i> , 2023.
621 622 623	Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an" explanatory" multimodal factor analysis. 1970.
624 625 626 627	Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand- kumar. Fast detection of overlapping communities via online tensor methods on gpus. <i>CoRR</i> , abs/1309.0787, 2013.
628	Adobe Inc. Adobe firefly. https://www.adobe.com/sensei/generative-ai/firefly.html, 2023.
629 630 631	Rajesh Jayaram and David P. Woodruff. Perfect l_p sampling in a data stream. SIAM J. Comput., 50 (2):382–439, 2021.
632 633 634	Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and sliding windows. In <i>PODS '22: International Conference on Management of Data</i> , pp. 29–40, 2022.
635 636 637	Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for faster lps. In <i>STOC</i> . arXiv preprint arXiv:2004.07470, 2021.
638 639 640	Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates in streams, and related problems. In <i>Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART</i> <i>Symposium on Principles of Database Systems, PODS</i> , pp. 49–58, 2011.
641 642 643	Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via sketches for polynomial kernels. <i>arXiv preprint arXiv:2310.01655</i> , 2023.
644 645	Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set intersection. <i>SIAM J. Discret. Math.</i> , 5(4):545–557, 1992.
046 647	U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling tensor analysis up by 100 times - algorithms and discoveries. In <i>KDD</i> , pp. 316–324, 2012.

648 649 650	Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In <i>International conference on machine</i> <i>learning</i> , pp. 5156–5165, PMLR, 2020.
651 652	Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. <i>arXiv</i> preprint arXiv: 2001.04451, 2020.
653 654 655	Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity. <i>Comput. Complex.</i> , 8(1):21–49, 1999.
656 657 658 659 660	Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. <i>Linear Algebra and its Applications</i> , 18(2):95–138, 1977. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(77)90069-6. URL https://www.sciencedirect.com/science/article/pii/0024379577900696.
661 662	Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix multiplication time. In <i>COLT</i> . https://arxiv.org/pdf/1905.04447.pdf, 2019.
663 664	Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems. <i>arXiv preprint arXiv:2303.15725</i> , 2023.
666 667 668	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. <i>arXiv preprint arXiv:1907.11692</i> , 2019.
669 670 671	Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou. Non-adaptive adaptive sampling on turnstile streams. In <i>Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC</i> , pp. 1251–1264, 2020.
672 673 674 675	Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. Adaptive sketches for robust regression with importance sampling. In <i>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM</i> , pp. 31:1–31:21, 2022.
676 677	Arvind V Mahankali, David P Woodruff, and Ziyu Zhang. Near-linear time and fixed-parameter tractable algorithms for tensor decompositions. <i>arXiv preprint arXiv:2207.07417</i> , 2022.
678 679 680	James Manyika. An overview of bard: an early experiment with generative ai. Technical report, Tech. rep., Technical report, Google AI, 2023.
681 682	Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. <i>arXiv</i> preprint arXiv:2204.13807, 2022.
683 684 685	Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error l_p -sampling with applications. In <i>Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA</i> , pp. 1143–1160. SIAM, 2010.
687 688 689	Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science, pp. 117–126. IEEE, 2013.
690 691	Noam Nisan. Pseudorandom generators for space-bounded computation. <i>Comb.</i> , 12(4):449–461, 1992.
692 693 694	Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory (TOCT), 5(3):1–17, 2013.
695 696 697	Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss-newton algorithms for candecomp/parafac. <i>SIAM Journal on Matrix Analysis and Applications</i> , 34(1): 126–147, 2013.
698 699	Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore: Differentially oblivious relational database operators. <i>VLDB</i> , 2022a.
700	Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic multi-resolution hashing for pairwise summations. <i>arXiv preprint arXiv:2212.11408</i> , 2022b.

702 703 704	Lianke Qin, Zhao Song, and Yitan Wang. Fast submodular function maximization. <i>arXiv preprint arXiv:2305.08367</i> , 2023a.
705 706 707	Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for projection matrix vector multiplication with application to empirical risk minimization. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 101–156. PMLR, 2023b.
708 709 710	Lianke Qin, Zhao Song, and Ruizhe Zhang. A general algorithm for solving rank-one matrix sensing. <i>arXiv preprint arXiv:2303.12298</i> , 2023c.
711 712	Alexander A. Razborov. On the distributional complexity of disjointness. <i>Theor. Comput. Sci.</i> , 106 (2):385–390, 1992.
713 714 715	Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. <i>arXiv preprint arXiv:2210.03961</i> , 2022.
716 717	John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. <i>Bulletin of mathematical biology</i> , 74:212–231, 2012.
718 719 720	Elina Robeva. Orthogonal decomposition of symmetric tensors. <i>SIAM Journal on Matrix Analysis and Applications</i> , 37(1):86–102, 2016.
721 722	Elina Robeva and Anna Seigal. Singular vectors of orthogonally decomposable tensors. <i>Linear and Multilinear Algebra</i> , 65(12):2457–2471, 2017.
723 724 725	Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head attention learns. <i>arXiv preprint arXiv:2103.07601</i> , 2021.
726 727 728	Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain, pp. 793–801, 2016.
730 731	Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In <i>SODA</i> . arXiv preprint arXiv:1704.08246, 2019a.
732 733 734	Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In <i>Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms</i> , pp. 2772–2789. SIAM, 2019b.
736 737 738	Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of polynomial degree. In <i>International Conference on Machine Learning</i> , pp. 9812–9823. PMLR, 2021a.
739 740 741	Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network in subquadratic time. <i>arXiv preprint arXiv:2112.07628</i> , 2021b.
742 743	Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search data structures. <i>arXiv preprint arXiv:2204.03209</i> , 2022a.
744 745 746 747	Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: Fast algorithm for dynamic kronecker projection maintenance. <i>arXiv preprint arXiv:2210.11542</i> , 2022b.
748 749	Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: $o(\sqrt{n})$ passes, small space and fast runtime. <i>Manuscript</i> , 2023.
750 751 752 753	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. <i>arXiv preprint arXiv:2302.13971</i> , 2023a.
754 755	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. <i>arXiv preprint arXiv:2307.09288</i> , 2023b.

756 757 758	Charalampos E. Tsourakakis. MACH: fast randomized tensor decompositions. In <i>SDM</i> , pp. 689–700, 2010.
759 760 761	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in neural information processing systems</i> , 30, 2017.
762 763	James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of attention. <i>arXiv preprint arXiv:2007.02876</i> , 2020.
765 766	Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Scalable moment-based inference for latent dirichlet allocation. In <i>ECML-PKDD</i> , pp. 290–305, 2014.
767 768	Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. <i>arXiv preprint arXiv:2006.04768</i> , 2020.
769 770 771 772	Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed tensor decomposition via sketching. In <i>Advances in Neural Information Processing Systems (NIPS)</i> , pp. 991–999. https://arxiv.org/pdf/1506.04448, 2015.
773 774	Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on approximating turing machines with transformers. <i>arXiv preprint arXiv:2107.13163</i> , 2021.
776 777 778	Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. <i>Advances in neural information processing systems</i> , 32, 2019.
779 780	Guanghao Ye. Fast algorithm for solving structured convex programs. <i>The University of Washington, Undergraduate Thesis</i> , 2020.
781 782 783	Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. In <i>ICML</i> . arXiv preprint arXiv:2302.02451, 2023.
784 785 786	Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? <i>Advances in Neural Information Processing Systems</i> , 33:15383–15393, 2020.
787 788 789	Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance. Master's thesis, Carnegie Mellon University, 2022.
790 791 792	Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. <i>arXiv preprint arXiv:2205.01068</i> , 2022.
793 794 795	Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while predicting the masked word? <i>arXiv preprint arXiv:2303.08117</i> , 2023.
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	

Roadmap. In Section A, we briefly discuss the background on ℓ_2 sampler. In Section B, we show that how to use the tail bound to obtain sampling result. In Section C, we present the tensor sampling result.

A ℓ_2 SAMPLER

 We give the full details of the standard L_2 sampler from Jowhari et al. (2011); Mahabadi et al. (2020) in Algorithm 2. The proof of correctness is verbatim from Jowhari et al. (2011); Mahabadi et al. (2020). The challenge is how to implement the data structures of y, which is implicitly defined as $(A_1 \otimes A_2)x$. By comparison, in the standard setting of ℓ_2 samplers Monemizadeh & Woodruff (2010); Andoni et al. (2011); Jowhari et al. (2011); Jayaram & Woodruff (2021); Mahabadi et al. (2020), y is given as a data stream.

Algorithm 2 Standard ℓ_2 Sampler, e.g., extension of Jowhari et al. (2011) to p = 2

1: For each $i \in [n]$, let $u_i \in [0, 1]$ be chosen uniformly at random 2: $w_i \leftarrow \frac{y_i}{\sqrt{u_i}}$ 3: Let z denote the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude 4: Let \hat{Y} be a 2-approximation of $||y||_2$ 5: Let \hat{Z} be a 2-approximation of $||z||_2$ 6: $i \leftarrow \operatorname{argmax}_{i \in [n]} |\widehat{w_i}|$ 7: Let C > 0 be a large constant determined by the additive faliure probability $\frac{1}{\operatorname{poly}(n)}$ 8: if $\hat{Z} > \sqrt{\frac{C \log n}{\epsilon}} \cdot \hat{Y}$ or $|w_i| < \sqrt{\frac{C \log n}{\epsilon}} \cdot \hat{Y}$ then 9: Return FAIL 10: else 11: Return i with estimate $\sqrt{u_i} \cdot \widehat{w_i}$ 12: end if

B FROM TAIL TO SAMPLING

Lemma B.1 (Restatement of Lemma 7.5). Let $y = (A_1 \otimes A_2)x \in \mathbb{R}^{n^2}$ and let $w \in \mathbb{R}^{n^2}$ so that $w_i = \frac{y_i}{\sqrt{u_i}}$ for a constant $u_i \in [0, 1]$ generated uniformly at random. Let z denote the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude. Let \widehat{Z} be a 2-approximation to $||z||_2$ and \widehat{Y} be a 2-approximation to $||y||_2$. Then

$$\Pr\left[\widehat{Z} > \sqrt{\frac{C\log n}{\epsilon}} \cdot \widehat{Y}\right] \le O(\epsilon) + \frac{1}{\operatorname{poly}(n)}.$$

Proof. Let \mathcal{E}_1 denote the event that \widehat{Z} is a 2-approximation to $||z||_2$ and \widehat{Y} is a 2-approximation to $||y||_2$, so that

$$\Pr[\mathcal{E}_1] \ge 1 - \frac{1}{\operatorname{poly}(n)}.$$

Conditioned on \mathcal{E}_1 , it suffices to bound the probability that

$$4\|z\|_2 > \sqrt{\frac{C\log n}{\epsilon}} \cdot \|y\|_2.$$

Let $j \in [n^2]$ be a fixed index and let u_j be fixed.

Let $T = \sqrt{\epsilon} \cdot ||y||_2$ and for each $i \in [n^2]$, we define the indicator random variable $W_i = 1$ if $|w_i| > T$ and $W_i = 0$ otherwise, if $|w_i| \le T$. Note that W_i is an indicator random variable for whether the coordinate w_i in the vector w is "heavy" in magnitude. We then define

Let

$$Z_i = \frac{w_i^2}{T^2} \cdot (1 - W_i)$$

to be the scaled contribution of the small entries of z, and observe that $Z_i \in [0, 1]$.

$$W = \sum_{i \in [n^2], i \neq j} w_i$$

denote the total number of heavy indices besides possibly index j and $Z = \sum_{i \in [n^2], i \neq j} Z_i$ denote the total scaled contribution of the light indices besides possibly index j. Let v denote the vector containing the heavy indices, so that $v_i = w_i$ for $W_i = 1$ and $v_i = 0$ otherwise for $W_i = 0$. Note that v has sparsity at most Y + 1 and moreover $U^2 Z = ||w - v||_2^2$. We also have that $||z||_2 \le ||w - v||_2$ unless $W \geq \frac{2}{\epsilon^2}$.

Let \mathcal{E}_2 denote the event that $W \geq \frac{2}{\epsilon^2}$ and let \mathcal{E}_3 denote the event that $Z \geq \frac{C \log n}{16T^2 \epsilon} \cdot \|y\|_2^2$. Observe that if neither \mathcal{E}_2 nor \mathcal{E}_3 occur, then we have $4\|z\|_2 \leq \sqrt{\frac{C \log n}{\epsilon}} \cdot \|y\|_2$, as desired. Thus it remains to bound the probability of the failure events \mathcal{E}_2 and \mathcal{E}_3 .

We have $\mathbb{E}[W_i] = \frac{\|W\|_2^2}{T^2}$, so that $\mathbb{E}[W] \leq \frac{1}{\epsilon}$. By Markov's inequality, we have that $\Pr[\mathcal{E}_2] \leq \frac{\epsilon}{2}$.

We now upper bound $\Pr[\mathcal{E}_3]$. Recall that $Z_i = \frac{w_i^2}{T^2} \cdot (1 - W_i) = \frac{w_i^2}{Tu_i^2} \cdot (1 - W_i)$, since $w_i = \frac{y_i}{\sqrt{u_i}}$. Observe that $Z_i > 0$ only if $|w_i| < T$, i.e., if $u_i \ge \frac{y_i^2}{\epsilon \cdot ||y||_2^2}$, since $T = \sqrt{\epsilon} \cdot ||y||_2$. For $\epsilon \in (0, 1)$, we thus have

$$\begin{split} \mathbb{E}[Z_i] &\leq \int_{y_i^2/\|y\|_2^2}^1 z_i \mathrm{d} u_i \\ &= \int_{u_i^2/\|y\|_2^2}^1 \frac{y_i^2}{u_i} \frac{1}{T^2} \mathrm{d} u_i. \end{split}$$

Now, let \mathcal{E}_4 be the event that $u_i \geq \frac{1}{n^{C/2}}$ for all $i \in [n^2]$, so that $\Pr[\mathcal{E}_4] \geq 1 - \frac{1}{n^{C/2-2}}$.

Then

$$\mathbb{E}[Z_i \mid \mathcal{E}_4] \le \frac{1}{1 - \frac{1}{n^{C/2-2}}} \int_{1/n^{C/2}}^1 \frac{y_i^2}{u_i} \frac{1}{T^2} \mathrm{d}u_i \\ \le \frac{C \log n}{T^2} y_i^2.$$

Thus, we have

$$\mathbb{E}[Z \mid \mathcal{E}_4] = \sum_{i \in [n^2]} \mathbb{E}[Z_i \mid \mathcal{E}_4]$$
$$= \sum_{i \in [n^2]} \frac{C \log n}{T^2} y_i^2$$
$$\leq \sum_{i \in [n^2]} \frac{C \log n}{\epsilon} \frac{y_i^2}{\|y\|_2^2}$$
$$= \frac{C \log n}{\epsilon}.$$

Thus by Markov's inequality, the probability that Z is larger than $\frac{C \log n}{16T^2\epsilon} \cdot \|y\|_2^2 = \frac{C \log n}{16\epsilon^2}$ is at most $\frac{\epsilon}{16}$. The claim then follows from taking a union bound over the events $\mathcal{E}_1, \neg \mathcal{E}_2, \neg \mathcal{E}_3, \neg \mathcal{E}_4$.

С **TENSOR SAMPLING**

Theorem C.1 (Restatement of Theorem 7.6). Let $y = (A_1 \otimes A_2)x \in \mathbb{R}^{n^2}$ and let $w \in \mathbb{R}^{n^2}$ so that for each $i \in [n^2]$, $w_i = \frac{y_i}{\sqrt{u_i}}$ for a constant $u_i \in [0, 1]$ generated uniformly at random. Let z denote the tail vector of w without the largest $\frac{1}{\epsilon^2}$ entries in magnitude. Suppose there exists:

1. An algorithm \mathcal{A}_1 that provides a 2-approximation to $\|y\|_2$ with probability $1 - \frac{1}{n^2}$.

2. An algorithm \mathcal{A}_2 that provides a 2-approximation to $||z||_2$ with probability $1 - \frac{1}{n^2}$.

3. An algorithm A_3 that estimates each element of w up to additive error $\epsilon \cdot ||z||_2$,

$$|\widehat{w_i} - w_i| \le \epsilon \cdot ||z||_2$$

for all $i \in [n^2]$.

 Then there exists a data structure that uses poly $(\frac{1}{\epsilon}, \log n)$ bits of space and outputs each index *i* with probability p_i , such that

$$(1-\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} - \frac{1}{\operatorname{poly}(n)} \le p_i \le (1+\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} + \frac{1}{\operatorname{poly}(n)}$$

Proof. Let *i* be fixed and let \mathcal{E} denote the event that $u_i < \frac{\epsilon}{C \log n} \frac{y_i^2}{\widehat{Y}^2}$, so that $|w_i| > \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$.

Let \mathcal{E}_1 denote the event that \widehat{Y} is a 2-approximation to $\|y\|_2$, \widehat{Z} is a 2-approximation to $\|z\|_2$, and $|\widehat{w}_i - w_i| \leq \epsilon \cdot \|z\|_2$ for all $i \in [n]$. Let \mathcal{E}_2 denote the event that $\widehat{Z} > \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$ and let \mathcal{E}_3 denote the event that multiple indices j satisfy $|w_j| > \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$. Finally, let \mathcal{E}_4 denote the event that $|\widehat{w}_i| < \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$.

941 Intuitively, \mathcal{E}_1 is a good event, i.e., correctness of the data structures, which we would like to hold. 942 On the other hand, $\mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ are bad events that distort the sampling probabilities, which we would 943 like to avoid.

We first note that \mathcal{E}_1 holds with high probability due to the correctness of the CountSketch and L₂-norm estimation data structures. We next note that by Lemma 7.5, the probability that \mathcal{E}_2 occurs is $O(\epsilon)$.

948 Next, note that the probability that for a fixed $j \in [n]$, u_j satisfies $\frac{y_j^2}{u_j} \ge \frac{C \log n}{\epsilon} \cdot \hat{Y}$ is at most 949 $\frac{\epsilon}{C' \log n} \frac{y_j^2}{\|y\|_2^2}$ for some constant C'. Thus summing over all $j \in [n]$, the probability that there exist 950 an additional $j \in [n]$ for which $|w_j| > \sqrt{\frac{C \log n}{\epsilon}} \cdot \hat{Y}$ is $O(\epsilon)$. Thus the probability that \mathcal{E}_3 occurs is 952 $O(\epsilon)$.

Finally, conditioned on $\neg \mathcal{E}_2$, we have that $\widehat{Z} \leq \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$. Then conditioning on \mathcal{E}_1 , we have $\|z\|_2 \leq \widehat{Z}$ and thus $|\widehat{w_i} - w_i| \leq \epsilon \widehat{Z} \leq \sqrt{C\epsilon \log n} \widehat{Y}$, so that \mathcal{E}_4 can only occur for $\sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y} \leq |w_i| \leq \sqrt{\frac{C \log n}{\epsilon}} \cdot \widehat{Y}$, which is at most probability $O\left(\frac{\epsilon^2}{C \log n} \frac{y_i^2}{\widehat{Y}^2}\right)$, over the randomness of u_i .

In summary, we observe that conditioned on some value being output, the probability that item *i* is selected is proportional to the event that the events \mathcal{E} and \mathcal{E}_1 occur, and none of the events $\mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ occur. The probability that \mathcal{E} occurs is $\frac{\epsilon}{C \log n} \frac{y_i^2}{Y^2}$, which u_i is chosen uniformly at random. Due to the event \mathcal{E}_1 , the sampling probability is distorted additively by $\frac{1}{\text{poly}(n)}$, while due to the events $\mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$, the sampling probability is distorted multiplicatively by $(1 + \epsilon)$. Thus conditioned on the event that some index is returned, the probability p_i that index *i* is returned satisfies

$$(1-\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} - \frac{1}{\operatorname{poly}(n)} \le p_i \le (1+\epsilon) \cdot \frac{y_i^2}{\|y\|_2^2} + \frac{1}{\operatorname{poly}(n)},$$

as desired.