

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARE GLOBAL DEPENDENCIES NECESSARY? SCAL- ABLE TIME SERIES FORECASTING VIA LOCAL CROSS- VARIATE MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Effectively modeling cross-variate dependencies is a central, yet challenging, task in multivariate time series forecasting. While attention-based methods have advanced the state-of-the-art by capturing global cross-variate dependencies, their quadratic complexity with respect to the number of variates severely limits their scalability. In this work, we challenge the necessity of global dependency modeling. We posit, through both theoretical analysis and empirical evidence, that modeling local cross-variate interactions is not only sufficient but also more efficient for many dense dependency systems. Motivated by this core insight, we propose VPNet, a novel architecture that excels in both accuracy and efficiency. VPNet's design is founded on two key principles: a channelized reinterpretation of patch embeddings into a higher-level variate-patch field, and a specialized VarTCNBlock that operates upon it. Specifically, the model first employs a patch-level autoencoder to extract robust local representations. In a pivotal step, these representations are then re-conceptualized as a 2D field constructed over a "variates \times patches" grid. The VarTCNBlock then applies depthwise 2D convolutions across this field to efficiently capture local spatio-temporal patterns (i.e., cross-variate and temporal dependencies simultaneously), followed by pointwise convolutions for feature mixing. This design ensures that the computational complexity scales linearly with the number of variates. Finally, variate-wise prediction heads map the refined historical patch representations to future ones, which are decoded back into the time domain. Extensive experiments demonstrate that VPNet not only achieves state-of-the-art performance across multiple benchmarks but also offers significant efficiency gains, establishing it as a superior and scalable solution for high-dimensional forecasting. Code is available at this repository: <https://anonymous.4open.science/r/VPNet-6353/>

1 INTRODUCTION

Multivariate time series forecasting is a cornerstone of data-driven decision-making, with critical applications spanning a wide range of domains from energy grid management and traffic flow prediction to meteorology and finance (Granger & Newbold, 2014; Martín et al., 2010; Qian et al., 2019; Chen et al., 2001; Yin et al., 2021; Wu et al., 2023b). A key technical challenge is modeling *cross-variate* dependencies: the complex, time-varying interactions among many co-evolving series (Zhang & Yan, 2023; Liu et al., 2024). Effective modeling of these dependencies is crucial for accurate long-horizon forecasting in high-dimensional regimes.

Recent progress has been driven by channel-fusion architectures (Zhao & Shen, 2024), particularly Transformer-based designs that explicitly model global cross-variate interactions (e.g., iTransformer (Liu et al., 2024)). These models attain strong predictive performance by searching for dependencies across all variates, but their expressivity comes at a steep computational and memory cost: the cost of channel-mixing attention grows quadratically with the number of variates, making such models impractical for systems with hundreds or thousands of variates. At the opposite end of the design spectrum, channel-independent models (including PatchTST (Nie et al., 2023), TimeMixer (Wang et al., 2024a), Dliner (Zeng et al., 2023)) are highly efficient, yet by construction they forgo explicit cross-variate modeling and therefore struggle to exploit important inter-series predictive signals.

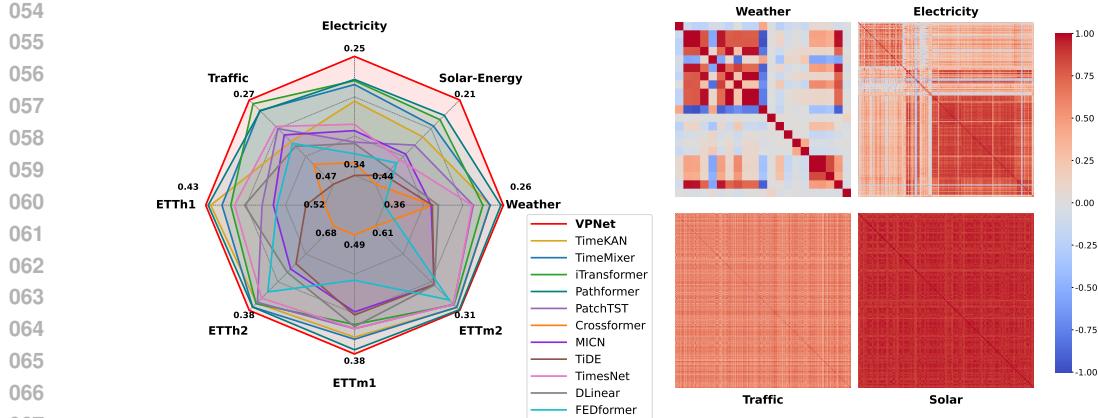


Figure 1: Benchmarking model performance on eight datasets (left) and variate correlation analysis on four high-dimensional datasets (right). For model performance, the average MAE across four prediction tasks on each dataset is used as the comparison result.

This accuracy–scalability tension raises a fundamental question:

Is searching for global dependencies necessary for accurate forecasting in dense, high-dimensional systems?

In response, we formulate the **Local Sufficiency Hypothesis**: in many real-world dense systems, the dependency graph is sufficiently rich that an appropriately chosen finite local neighborhood will almost surely capture the key signals required for prediction. This makes exhaustive global search not only computationally unnecessary but also potentially noise-amplifying.

We support this principle via two complementary pillars of evidence. First, we provide a probabilistic analysis showing that under realistic dense-dependency regimes, a bounded local neighborhood has a high probability of including informative neighbors (Theorem 1; Appendix C). Second, we corroborate this theoretical insight empirically. Figure 1 (right) displays correlation heatmaps for four high-dimensional benchmarks, which all exhibit the strong, dense inter-variate correlations that our hypothesis relies upon. This evidence collectively validates our focus on developing an architecture centered on local, rather than global, interactions.

Guided by this Local Sufficiency Hypothesis, we introduce **VPNet**, a principled architecture that attains strong predictive accuracy while scaling linearly with the number of variates. The model first employs a patch-level autoencoder, a technique proven effective in recent literature, to generate robust representations of local temporal patterns. Building on these representations, VPNet rests on two core ideas. (1) We reinterpret the patch embeddings as a higher-level *variate-patch field* organized as a 2D grid over *variates* and *temporal patches*. This representation enables the model to treat cross-variate and temporal structure jointly at a coarser, more robust abstraction level. (2) We design the *VarTCNBlock*, a lightweight module that applies efficient depthwise 2D convolutions over the variate-patch field to capture local spatio-temporal patterns. By restricting computation to local neighborhoods and using depthwise operations, VPNet achieves linear complexity with the number of variates. Finally, a variate-wise prediction head maps the refined historical patch representations to future ones, which are then mapped back to the time domain by the autoencoder’s decoder. As previewed in 1 (left), this principled design allows VPNet to achieve state-of-the-art performance across eight forecasting benchmarks, consistently outperforming strong baselines while offering substantial efficiency gains (see 4.1 for full analysis).

We summarize our main contributions as follows:

- We formulate the Local Sufficiency Hypothesis, providing both theoretical and empirical evidence to challenge the necessity of global dependency modeling in dense systems.
- We introduce the variate-patch field and the VarTCNBlock, a novel representation and architecture that operationalize our hypothesis and enable the efficient capture of cross-variate dependencies with linear complexity.

108 • We establish new state-of-the-art results across eight diverse forecasting benchmarks, demon-
 109 strating that VPNet simultaneously achieves superior accuracy and linear scalability, effec-
 110 tively resolving the critical accuracy-efficiency trade-off.

112 **2 PRELIMINARIES**

114 This section fixes the notations and describes the patch-level overcomplete autoencoder used as
 115 input/output projection, so the Method section can focus on the novel components.

117 **Notation and problem formulation.** Let $X \in \mathbb{R}^{B \times L \times C}$ denote a minibatch of B multivariate time
 118 series samples, where L is the look-back window length and C is the number of variates (channels).
 119 The forecasting objective is to predict the subsequent S time steps, denoted by $Y \in \mathbb{R}^{B \times S \times C}$, from
 120 the history X . We denote the model by f_θ and its prediction by $\hat{Y} = f_\theta(X)$.

121 Let the patch length be $p \in \mathbb{Z}_+$. For simplicity we assume L is divisible by p and define the number of
 122 non-overlapping patches $P = L \mid p$. For batch index $b \in \{1, \dots, B\}$, variate index $c \in \{1, \dots, C\}$,
 123 and patch index $i \in \{1, \dots, P\}$, the i -th temporal patch is denoted as $x_{b,c,i} \in \mathbb{R}^p$.

124 We adopt the mean absolute error (MAE, L_1) as the prediction loss due to its robustness to outliers:

$$126 \quad \mathcal{L}_{\text{pred}} = \frac{1}{B S C} \sum_{b=1}^B \sum_{t=1}^S \sum_{c=1}^C \|\hat{Y}_{b,t,c} - Y_{b,t,c}\|_1. \quad (1)$$

129 **Patch-level overcomplete autoencoder.** To obtain robust, locally informative representations of
 130 non-stationary time series, we employ a patch-level overcomplete autoencoder (Liu et al., 2025) as
 131 the input and output projection module. A shared encoder $\text{Enc} : \mathbb{R}^p \rightarrow \mathbb{R}^H$ and shared decoder
 132 $\text{Dec} : \mathbb{R}^H \rightarrow \mathbb{R}^p$ are defined by

$$134 \quad e_{b,c,i} = \text{Enc}(x_{b,c,i}) \in \mathbb{R}^H, \quad \tilde{x}_{b,c,i} = \text{Dec}(e_{b,c,i}) \in \mathbb{R}^p. \quad (2)$$

135 The encoder output is followed by Layer Normalization:

$$137 \quad \bar{e}_{b,c,i} = \text{LayerNorm}(e_{b,c,i}) \in \mathbb{R}^H. \quad (3)$$

139 We typically choose an *overcomplete* latent dimension $H > p$ to provide redundant capacity for
 140 representing complex patch dynamics. The encoder and decoder are implemented as lightweight
 141 MLPs (e.g., two linear layers with nonlinearity) and their parameters are shared across variates and
 142 patches, yielding a universal patch basis. Applying the encoder + LayerNorm to every patch produces
 143 the initial embedding tensor $\mathbf{E} \in \mathbb{R}^{B \times C \times P \times H}$.

144 To enforce reconstruction fidelity we include an auxiliary reconstruction loss:

$$145 \quad \mathcal{L}_{\text{rec}} = \frac{1}{B C P} \sum_{b=1}^B \sum_{c=1}^C \sum_{i=1}^P \|\tilde{x}_{b,c,i} - x_{b,c,i}\|_1. \quad (4)$$

148 The total training objective balances prediction and reconstruction:

$$150 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{pred}} + \mathcal{L}_{\text{rec}}, \quad (5)$$

152 **3 METHOD**

154 Global cross-variate dependency search incurs prohibitive computational and memory costs, while
 155 purely channel-independent models lack sufficient expressive power. Grounded in the *local-sufficiency*
 156 *hypothesis*, we introduce **VPNet** (Variate–Patch Network), a scalable architecture for multivariate
 157 time series forecasting that exploits localized structures without resorting to full global mixing. As
 158 illustrated in Figure 2, VPNet is built upon the patch-level overcomplete autoencoder described in
 159 Section 2 and follows a sequence-to-sequence paradigm operating on patch embeddings. Its core
 160 pipeline consists of four stages: (1) an *input projection* module that encodes raw series into patch
 161 embeddings via the patch autoencoder; (2) a *channelization* step that reinterprets patch embeddings as
 a variate–patch field to expose cross-variate structure; (3) a stack of *VarTCNBlocks* that progressively

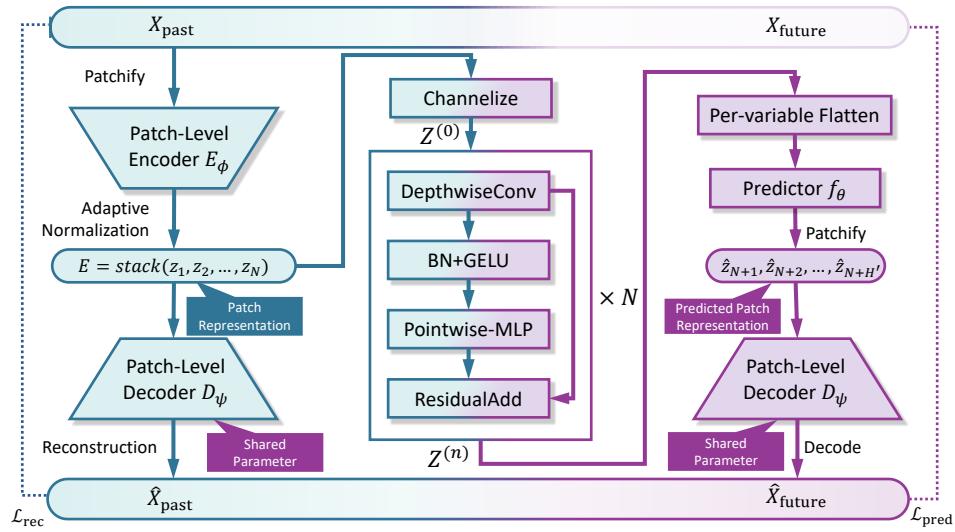


Figure 2: VPNet overall framework. Inputs are projected by the patch-level overcomplete autoencoder and channelization to produce $Z^{(0)}$, which is processed by stacked VarTCNBlocks and finally decoded to produce the forecast.

transform the channelized field through efficient local convolution; and (4) an *output projection* module that decodes the refined patch representations into the final forecast.

Design Motivation: The Local Sufficiency Hypothesis. A core design principle of VPNet is that, in dense systems where many variates are mutually informative, a small local neighborhood along the variate axis suffices with high probability to include an informative neighbor for any given target variate. We formalize this intuition in the following theorem; the detailed concentration proof is deferred to Appendix C.

Theorem 3.1 (High-probability capture of informative neighbors). *Fix a target variate. Suppose that among the remaining $C - 1$ variates, exactly r variates belong to an information set $\mathcal{I} \subset \{1, \dots, C\}$ (i.e., these r variates are truly informative for predicting the target). Assume the variate ordering is a random permutation. Let \mathcal{W}_k denote a contiguous window of width k centered (or centered as close as boundary allows) on the target, and define the event*

$$\mathcal{E}_k = \{ |\mathcal{I} \cap \mathcal{W}_k| \geq 1 \}, \quad (6)$$

meaning the window contains at least one informative variate. Then

$$\mathcal{P}_{\mathcal{I}}[\mathcal{E}_k] \geq 1 - \exp\left(-\frac{k r}{C - 1}\right). \quad (7)$$

Sketch. See Appendix C.2 for the full derivation. Intuitively, under random permutation the expected number of informative variates inside \mathcal{W}_k is $\mu = kr/(C - 1)$; a Chernoff/Poisson-style bound on the tail yields the stated exponential lower bound. \square

Corollary 3.1 (practical kernel selection). *To guarantee that \mathcal{W}_k contains an informative variate with probability at least $1 - \delta$, it suffices to choose*

$$k \geq \frac{C - 1}{r} \ln \frac{1}{\delta}. \quad (8)$$

This provides a direct, interpretable guideline for initializing the variate-axis kernel width k , which can then be fine-tuned empirically.

3.1 STRUCTURE OVERVIEW

Input projection. Inspired by AdaPatch, we leverage a patch-level overcomplete autoencoder to handle potential distribution shifts and to extract local temporal patterns. Concretely, the input time

series $X \in \mathbb{R}^{B \times L \times C}$ is partitioned into $P = L/p$ non-overlapping patches of length p . Denote the i -th patch of batch b and variate c by $x_{b,c,i} \in \mathbb{R}^p$. A shared encoder $\text{Enc}(\cdot)$ maps each patch to a high-dimensional latent vector:

$$e_{b,c,i} = \text{Enc}(x_{b,c,i}) \in \mathbb{R}^H, \quad i = 1, \dots, P. \quad (9)$$

Stacking these latents for all b, c, i yields the initial patch representation tensor $\mathbf{E} \in \mathbb{R}^{B \times C \times P \times H}$, which serves as the input to the subsequent channelization.

Channelization and the Variate-Patch Field. This reinterpretation is central to our method and marks a conceptual departure from prior TCN-based models. As illustrated in the figure, while prior works such as ModernTCN and TimesNet treat the time series as a 2D input with a single channel or reshape it into a 2D plane based on periodicity to capture intra-series patterns, our approach innovatively treats each patch as a holistic unit to construct a high-dimensional Variate-Patch Field (VP-Field). Specifically, the initial representation \mathbf{E} is permuted to create the channelized variate-patch field $\mathbf{Z}^{(0)}$:

$$\mathbf{Z}^{(0)} = \text{Permute}(\mathbf{E}) \in \mathbb{R}^{B \times H \times C \times P}. \quad (10)$$

This permutation recasts the patch embedding dimension H as the channel dimension for a 2D operator, while the variates C and patches P form a two-dimensional spatial grid we term the *variate-patch field*. By applying convolution directly on this high-level semantic field, we can simultaneously and efficiently capture both cross-variety and temporal dependencies.

VarTCNBlocks. The channelized tensor $\mathbf{Z}^{(0)}$ is then processed by a stack of N VarTCNBlocks, which iteratively refine the patch representations. The abstract forward propagation through the stack is defined as:

$$\mathbf{Z}^{(l+1)} = \text{VarTCNBlock}(\mathbf{Z}^{(l)}),$$

Each block operates on the channelized input $\mathbf{Z}^{(l)} \in \mathbb{R}^{B \times H \times C \times P}$ and produces an output of the same shape, progressively capturing more complex dependencies across both variates and patches.

Output projection. After N blocks the stack produces the context-aware representation $Z^{(N)} \in \mathbb{R}^{B \times C \times P \times H}$. We apply a channel-independent prediction head $\text{Head}(\cdot)$ to map each variate's historical patch sequence to future patch embeddings. Concretely, for each variate c we flatten its history

$$u_{b,c} = \text{vec}(Z_{b,c,:,:}^{(N)}) \in \mathbb{R}^{HP}, \quad (12)$$

and a shared per-variety MLP Head : $\mathbb{R}^{HP} \rightarrow \mathbb{R}^{HP_p}$ produces predicted patch coefficients

$$\hat{u}_{b,c} = \text{Head}(u_{b,c}) \in \mathbb{R}^{HP_p}, \quad (13)$$

which we reshape into predicted future patch embeddings $\hat{Z} \in \mathbb{R}^{B \times C \times P_p \times H}$ (here P_p is the number of predicted patches and the forecast horizon is $S = P_p \cdot p$). Finally, the shared decoder $\text{Dec}(\cdot)$ maps each predicted patch embedding back to the time domain and we concatenate these patch-level reconstructions to obtain the final forecast

$$\hat{Y} = \text{Concat}_{i=1}^{P_p} \text{Dec}(\hat{Z}_{:, :, :, i}) \in \mathbb{R}^{B \times S \times C}. \quad (14)$$

Remarks. The prediction head is *channel-independent* (shared across variates) but operates on per-variety flattened patch histories; this design preserves parameter efficiency while allowing each variate to leverage mixed information aggregated by the VarTCN stack. The decoder is reused from the autoencoder (weight sharing) to regularize predicted embeddings and improve reconstruction fidelity.

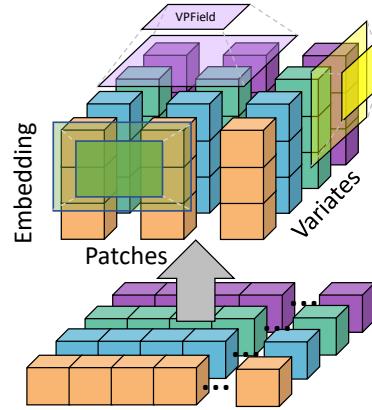


Figure 3: (a) Traditional Convolution (Yellow): Applying convolutional operations directly on the original time series. (b) Frequency-based 2D Convolution (Green): Reconstructing independent variates into a two-dimensional plane based on their frequency characteristics. (c) Our Method (Purple)

$$l = 0, \dots, N - 1, \quad (11)$$

270 3.2 THE VARTCNBLOCK
271

272 The VarTCNBlock is the core computational engine of VPNet, designed to efficiently process the
273 channelized variate-patch field $\mathbf{Z}^{(l)} \in \mathbb{R}^{B \times H \times C \times P}$. Each block refines these representations by
274 capturing dependencies across both variates and time, and its design is centered around a residual
275 connection that wraps two main components: a depthwise convolution for local spatial mixing and a
276 pointwise feed-forward network for feature transformation.

277 **Depthwise Convolution for Local Mixing.**

278 Motivated by our probabilistic analysis that local interactions are sufficient for capturing salient
279 signals in systems with dense dependencies, we employ a depthwise 2D convolution over the variate-
280 patch field. Unlike standard convolution, a depthwise convolution applies a distinct 2D kernel
281 $\mathbf{W}^{(h)} \in \mathbb{R}^{k_v \times k_p}$ to each input channel $\mathbf{Z}_{:,h,:,:}^{(l)}$ independently. This operation is formulated as:

$$282 \quad \mathbf{Y}_h^{\text{dw}} = \text{DWConv2D}(\mathbf{Z}_{:,h,:,:}^{(l)}, \mathbf{W}^{(h)}), \quad h = 1, \dots, H. \quad (15)$$

283 This step effectively aggregates information from a local neighborhood of size $k_v \times k_p$ on the variate-
284 patch field, explicitly modeling temporally-local cross-variante dependencies. Crucially, as advocated
285 in our introduction, this is achieved with a computational cost and parameter count that scale *linearly*
286 with the number of variates C , making it exceptionally suitable for high-dimensional forecasting.

287 **Pointwise Feed-Forward Network for Feature Transformation.**

288 Following the spatial mixing, the resulting features \mathbf{Y}^{dw} are passed through a normalization layer
289 and an activation function before being processed by a feed-forward network (FFN). The FFN is
290 implemented with pointwise (1×1) convolutions and serves to mix information across the feature
291 channels at each position on the variate-patch field. It follows an inverted bottleneck structure, first
292 expanding the channel dimension by a factor of r_{ff} and then projecting it back. The full sequence of
293 operations is:

$$294 \quad \mathbf{Y}^{\text{act}} = \text{GELU}(\text{BN}(\mathbf{Y}^{\text{dw}})), \quad \mathbf{Y}^{\text{ffn}} = \text{FFN}(\mathbf{Y}^{\text{act}}). \quad (16)$$

295 The FFN module itself consists of two pointwise convolutions, activations, and dropout for regular-
296 ization. The output of this entire sequence is then added to the block’s original input via a residual
297 connection:

$$298 \quad \mathbf{Z}^{(l+1)} = \mathbf{Z}^{(l)} + \mathbf{Y}^{\text{ffn}}. \quad (17)$$

299 This residual design is essential for stabilizing the training of deep models by allowing gradients to
300 flow more freely.

303 4 EXPERIMENTS
304

305 In this section, we conduct a comprehensive empirical evaluation to validate the efficacy and efficiency
306 of VPNet. We begin by benchmarking VPNet against a diverse suite of state-of-the-art models on
307 several public datasets to establish its overall performance (Section 4.2). Subsequently, we perform
308 a series of detailed ablation studies to dissect the model and verify the contributions of its core
309 design principles, particularly the local cross-variante convolution mechanism (Section 4.3). Finally,
310 we analyze the model’s practical properties, focusing on its computational and memory efficiency
311 (Section 4.5).

313 4.1 EXPERIMENTAL SETUP
314

315 **Datasets.** We evaluate VPNet on eight widely-used public benchmarks for long-term time series
316 forecasting: *Weather*, *Traffic*, *Electricity*, *Solar-Energy*, and four *ETT* datasets (ETTh1, ETTh2,
317 ETTm1, ETTm2). Detailed statistics for each dataset are provided in Appendix B. We particularly
318 focus on the high-dimensional datasets (*Electricity*, *Traffic*) which contain hundreds of variates,
319 making them ideal for assessing the model’s ability to handle cross-variante dependencies. All datasets
320 are partitioned into training, validation, and testing sets following a 6:2:2 ratio for ETT datasets and
321 7:1:2 for the others. This aligns with prior benchmarks set by (Zhou et al., 2021; Liu et al., 2022).

322 **Baseline Details.** To provide a robust comparative analysis, we evaluate VPNet against a carefully
323 curated collection of strong baselines that together represent the principal modelling paradigms for
long horizon multivariate time series forecasting. This collection comprises KAN based models

324 exemplified by TimeKAN (2025), MLP centric architectures exemplified by TimeMixer (2024a),
 325 TiDE (2023) and DLinear (2023), Transformer variants designed for long sequence forecasting
 326 exemplified by iTransformer (2024), PatchTST (2023), Pathformer (2024), Crossformer (2023) and
 327 FEDformer (2022), and convolutional approaches exemplified by MICN (2023) and TimesNet (2023a).
 328 Together these baselines span complementary inductive biases and computational tradeoffs, thereby
 329 providing a stringent benchmark for assessing VPNet’s capacity to capture interactions across variates
 330 and to scale to high dimensional settings.

331 **Implementation Details.** All experiments were implemented in PyTorch and conducted on a single
 332 NVIDIA A100 40GB GPU. Following standard long-term forecasting protocols, we use a fixed
 333 input sequence length of $L = 96$ to predict future horizons of $S \in \{96, 192, 336, 720\}$. For a
 334 comprehensive list of all model hyperparameters and training configurations for each dataset, please
 335 refer to Appendix B.

336

337 4.2 MAIN RESULTS ON LONG-TERM FORECASTING

338

339 Table 1 reports the long-term forecasting results, with averages summarized in the main paper for
 340 clarity. VPNet achieves the best overall performance, outperforming all baselines on most datasets
 341 and metrics.

342 On high-dimensional datasets (*Weather*, *Solar-Energy*, *Electricity*, and *Traffic*), where cross-variate
 343 dependencies are dense, VPNet demonstrates substantial gains. For example, on *Electricity*, it reduces
 344 MSE by **9.0%** compared with iTransformer (0.162 vs. 0.178), and on *Traffic*, it achieves a **26%**
 345 improvement over TimeKAN (0.421 vs. 0.572). These results strongly support our proposed Local
 346 Sufficiency Hypothesis.

347 On the *ETT* benchmarks with lower dimensionality, VPNet remains competitive, frequently ranking
 348 first or second. For instance, it outperforms all baselines on *ETTm2* and *ETTh2*, and is only marginally
 349 behind TimeKAN on *ETTh1*. This consistency across both high-dimensional and low-dimensional
 350 regimes highlights the robustness and general applicability of VPNet without requiring dataset-
 351 specific adaptations.

352

353

354 Table 1: Long-term forecasting results. We average the results across 4 prediction lengths:
 355 $\{96, 192, 336, 720\}$. The best performance is highlighted in **red**, and the second-best is underlined.
 356 Full results can be found in Appendix K.

Models	VPNet (Ours)		TimeKAN (2025)		TimeMixer (2024a)		iTransformer (2024)		Pathformer (2024)		PatchTST (2023)		Crossformer (2023)		MICN (2023)		TIDE (2023)		TimesNet (2023a)		DLinear (2023)		FEDformer (2022)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Weather	0.238	0.261	0.243	0.272	0.240	0.272	0.258	0.278	<u>0.239</u>	<u>0.263</u>	0.265	0.286	0.264	0.320	0.268	0.321	0.271	0.320	0.259	0.287	0.265	0.315	0.309	0.360
Solar-Energy	0.204	0.207	0.276	0.310	<u>0.216</u>	0.280	0.233	0.262	0.241	<u>0.250</u>	0.287	0.333	0.400	0.442	0.283	0.358	0.347	0.417	0.403	0.374	0.330	0.401	0.328	0.383
Electricity	<u>0.162</u>	<u>0.251</u>	0.197	0.286	0.182	0.273	<u>0.178</u>	0.270	0.182	<u>0.269</u>	0.216	0.318	0.244	0.334	0.196	0.309	0.252	0.344	0.193	0.304	0.225	0.319	0.214	0.327
Traffic	0.421	0.273	0.572	0.372	0.485	0.298	<u>0.428</u>	<u>0.282</u>	0.501	0.299	0.529	0.341	0.667	0.426	0.593	0.356	0.761	0.473	0.620	0.336	0.625	0.383	0.610	0.376
ETTh1	<u>0.434</u>	<u>0.427</u>	0.426	0.431	0.447	0.440	0.454	0.447	0.455	<u>0.429</u>	0.507	0.472	0.529	0.522	0.475	0.481	0.541	0.507	0.458	0.450	0.461	0.458	0.498	0.484
ETTh2	<u>0.356</u>	<u>0.383</u>	0.391	0.409	<u>0.365</u>	<u>0.395</u>	0.383	0.407	0.374	<u>0.395</u>	0.391	0.412	0.942	0.684	0.574	0.531	0.611	0.550	0.414	0.427	0.563	0.519	0.437	0.449
ETTm1	<u>0.376</u>	<u>0.382</u>	0.386	0.398	<u>0.381</u>	0.396	0.410	0.410	0.382	<u>0.386</u>	0.402	0.406	0.513	0.495	0.423	0.422	0.419	0.419	0.400	0.406	0.404	0.408	0.448	0.452
ETTm2	0.270	0.312	0.277	0.322	0.275	0.323	0.288	0.332	<u>0.271</u>	<u>0.314</u>	0.290	0.334	0.757	0.611	0.353	0.402	0.358	0.404	0.291	0.333	0.354	0.402	0.305	0.349

366

367

4.3 ABLATION STUDIES

368

369 To dissect our model and validate its core design principles, we conduct a series of targeted ablation
 370 studies.

371

372 **Effectiveness of Cross-variate Convolution.** To quantify the impact of our local cross-variate
 373 mechanism, we conduct an ablation on the kernel size k_v . We evaluate the model with a range
 374 of kernel sizes: $k_v \in \{1, 3, 7, 17, 27\}$, where $k_v = 1$ represents the channel-independent baseline.
 375 As shown in Table 2, performance improves dramatically when moving from $k_v = 1$ to $k_v = 3$,
 376 confirming that local variate mixing is crucial. However, we observe that further increasing the kernel
 377 size to 7, 17, and beyond offers diminishing returns and can even slightly degrade performance. This
 378 result provides strong empirical validation for our local-sufficiency hypothesis: for dense dependency
 379 systems, a compact local receptive field across variates already contains sufficient auxiliary predictive

378 signals, attempting to model wider, quasi-global interactions, validating the probabilistic motivation
 379 outlined in our introduction.
 380

381
 382 Table 2: Ablation study on the cross-variate kernel size k_v . We report the average MSE over all
 383 prediction lengths for each benchmark. The case $k_v = 1$ is the channel-independent baseline. Lower
 384 is better.

VPNET	ETTh1	ETTh2	ETTm1	ETTm2	ECL	Traffic	Weather	Solar
$k_v = 1$	0.437	0.362	0.375	0.282	0.184	0.443	0.254	0.224
$k_v = 3$	0.435	0.362	0.378	0.275	0.171	0.431	0.250	0.203
$k_v = 7$	0.434	0.355	0.375	0.273	0.167	0.435	0.248	0.204
$k_v = 17$	-	-	-	-	0.162	0.423	0.239	0.204
$k_v = 27$	-	-	-	-	0.160	0.422	0.243	0.204

391
 392 **Effect of variate Reordering.** Our model’s reliance on local convolutions suggests that the ordering
 393 of variates could influence performance. To investigate this, we conduct a rigorous experiment
 394 across all eight benchmark datasets. We fix the model configuration to have a small cross-variate
 395 kernel size ($k_v = 3$) and a stack of two VarTCNBlocks, resulting in an effective receptive field of 5
 396 across the variate axis. This constrained setup is designed to be highly sensitive to the local variate
 397 neighborhood. We compare the model’s performance under four distinct ordering strategies: Original
 398 Ordering, Random Ordering, Degree Ordering, and Spectral Ordering (see Appendix I for details).

399 The results, summarized in Table 3, are counter-intuitive yet illuminating. The model exhibits a
 400 surprising degree of robustness to the variate ordering, as all four strategies yield remarkably similar
 401 performance. This finding suggests that correlation-based sorting methods, which operate by grouping
 402 highly similar variates, may not provide the most effective dependency signals. The dependencies
 403 captured by VPNet appear to be more complex than simple instantaneous correlations, implying that
 404 other factors, such as time-lagged relationships, may play a more critical role.

405
 406 Table 3: Ablation study on variate reordering strategies. We report the average MSE across four
 407 prediction lengths 96, 192, 336, 720 for each of the eight benchmarks, with a fixed input length of 96.
 408 All models use a fixed configuration ($k_v = 3, N = 2$ layers). Lower is better.

VPNET	ETTh1	ETTh2	ETTm1	ETTm2	ECL	Traffic	Weather	Solar
Original	0.435	0.362	0.378	0.275	0.171	0.431	0.247	0.205
Spectral	0.436	0.366	0.374	0.275	0.174	0.428	0.246	0.209
Degree	0.436	0.365	0.378	0.276	0.173	0.433	0.247	0.209
Random	0.439	0.362	0.378	0.275	0.171	0.431	0.247	0.205

4.4 LOCAL MODELING MECHANISMS ANALYSIS

416 To further investigate the efficacy of local cross-variate modeling, we implemented two Transformer-
 417 based variants: **LANet (Local-Window Attention)** and **SANet (Sparse Attention)**. The quantitative
 418 results across eight benchmark datasets are summarized in **Table 4**. As shown in the table, while VP-
 419 Net generally outperforms the attention-based variants (particularly on dense datasets like Electricity
 420 and Traffic), the variants achieve competitive performance on datasets with different characteristics,
 421 prompting a deeper analysis of the trade-offs between TCN-based and Attention-based approaches.

422 **Structural Prior vs. Content-Based Addressing.** The fundamental distinction lies in the depen-
 423 dependency capture mechanism. Transformer-based variants rely on *content-based addressing*, dynamically
 424 computing attention weights ($\text{Softmax}(QK^T)$) to learn instance-specific relationships. Theoretically,
 425 this offers a higher representational ceiling by capturing arbitrary dependencies without geometric
 426 constraints. Conversely, VPNet (TCN-based) enforces a strong *inductive bias* through fixed convo-
 427 lutional kernels, treating the multivariate input as a topological grid. While this “static” modeling
 428 appears less flexible, our results suggest that this strong structural prior acts as an effective regular-
 429 izer. It leads to superior optimization stability and generalization on dense datasets, whereas fully
 430 data-driven attention mechanisms often struggle with optimization or require larger data regimes to
 431 converge effectively.

432 **Robustness and Variate Ordering.** In the **Dense-Dependency Scenario** (e.g., datasets such as
 433 Traffic and Electricity with dense correlations and high information redundancy), VPNet exhibits
 434 pronounced robustness to variate ordering. This is because even under random permutations of the
 435 variables, each local neighborhood can still cover multiple subsets of correlated variates. As a result,
 436 in such settings, VPNet serves as a robust and efficient modeling strategy.

437 In contrast, in the **Sparse-Dependency Scenario** (e.g., Hetero-Mix or datasets with sparse dependency
 438 structures), variate ordering has a much more significant impact on VPNet’s performance. In these
 439 cases, if the correlation structure among variates is ignored and the ordering is randomly permuted, a
 440 single local receptive field is likely to contain many irrelevant or weakly correlated variates, which
 441 reduces the concentration of informative signals. By adopting **correlation-aware or structure-
 442 aware ordering strategies**, one can “compress” more useful dependencies into each receptive field,
 443 substantially improving the local signal-to-noise ratio and allowing the convolutional kernels to
 444 enhance VPNet’s performance *without increasing the number of parameters*.

445
 446
 447 **Table 4:** Long-term forecasting performance comparison for horizons of $\{96, 192, 336, 720\}$. We
 448 compare three variants: **VPNet** (Raw), **LANet** (Local), and **SANet** (Sparse). The input sequence
 449 length is fixed to 96. The best results are highlighted in **bold**.

DataSets	Weather		Solar-Energy		Electricity		Traffic		ETTh1		ETTh2		ETTm1		ETTm2		
	Metric	MSE	MAE														
VPNet	96	0.157	0.192	0.177	0.178	0.135	0.224	0.384	0.258	0.374	0.386	0.284	0.330	0.313	0.342	0.169	0.244
	192	0.207	0.239	0.196	0.206	0.151	0.239	0.406	0.266	0.428	0.418	0.357	0.376	0.362	0.371	0.233	0.288
	336	0.258	0.281	0.216	0.219	0.166	0.257	0.429	0.275	0.464	0.439	0.392	0.406	0.385	0.389	0.291	0.327
	720	0.330	0.333	0.228	0.225	0.196	0.284	0.466	0.294	0.471	0.465	0.391	0.418	0.444	0.424	0.387	0.387
	Avg	0.238	0.261	0.204	0.207	0.162	0.251	0.421	0.273	0.434	0.427	0.356	0.383	0.376	0.382	0.270	0.312
LANet	96	0.157	0.193	0.185	0.196	0.144	0.230	0.392	0.257	0.377	0.388	0.288	0.330	0.313	0.340	0.177	0.249
	192	0.211	0.245	0.194	0.207	0.158	0.243	0.413	0.265	0.430	0.420	0.356	0.377	0.369	0.372	0.243	0.294
	336	0.277	0.293	0.216	0.222	0.173	0.259	0.429	0.272	0.468	0.441	0.393	0.407	0.396	0.394	0.300	0.333
	720	0.353	0.342	0.225	0.229	0.208	0.291	0.462	0.293	0.485	0.468	0.415	0.431	0.456	0.428	0.393	0.389
	Avg	0.250	0.268	0.205	0.214	0.171	0.256	0.424	0.272	0.440	0.429	0.363	0.386	0.384	0.384	0.278	0.316
SANet	96	0.158	0.193	0.183	0.197	0.149	0.233	0.394	0.259	0.376	0.388	0.284	0.329	0.313	0.340	0.175	0.248
	192	0.213	0.246	0.194	0.206	0.162	0.245	0.413	0.267	0.430	0.420	0.354	0.377	0.367	0.371	0.241	0.293
	336	0.277	0.291	0.217	0.222	0.175	0.259	0.429	0.274	0.468	0.442	0.392	0.407	0.398	0.393	0.301	0.334
	720	0.361	0.345	0.227	0.230	0.207	0.288	0.465	0.295	0.486	0.473	0.412	0.430	0.457	0.428	0.392	0.388
	Avg	0.252	0.269	0.205	0.214	0.173	0.256	0.425	0.274	0.440	0.431	0.361	0.386	0.384	0.383	0.277	0.316

4.5 MODEL EFFICIENCY ANALYSIS

471 For practical deployment in high-dimensional forecasting, computational and memory efficiency are
 472 as critical as predictive accuracy. We therefore evaluate efficiency on the two datasets with the largest
 473 number of variates, **Electricity** ($C = 321$) and **Traffic** ($C = 862$), comparing VPNet with leading
 474 baselines including iTransformer, PatchTST, TimeMixer, Crossformer, and Pathformer. Our analysis
 475 considers the joint trade-off among accuracy (MSE), training time per batch, and GPU memory
 476 usage.

477 Figure 4 summarizes the results, revealing a clear accuracy–efficiency frontier. VPNet consistently
 478 achieves the most favorable balance, delivering state-of-the-art accuracy at competitive computational
 479 cost. On both datasets, VPNet attains the lowest MSE, demonstrating the effectiveness of its local
 480 cross-variate modeling.

481 A direct comparison with **iTransformer** illustrates the difference in scaling behavior. iTransformer
 482 achieves the fastest training times due to its simple design, but its reliance on variate-wise attention
 483 induces quadratic memory scaling. As the number of variates grows from 321 to 862, its peak
 484 memory nearly doubles (+99%, from 2174MB to 4376MB). In contrast, VPNet’s memory footprint
 485 increases by only 67% (from 3308MB to 5520MB), consistent with its linear complexity in the
 variate dimension.

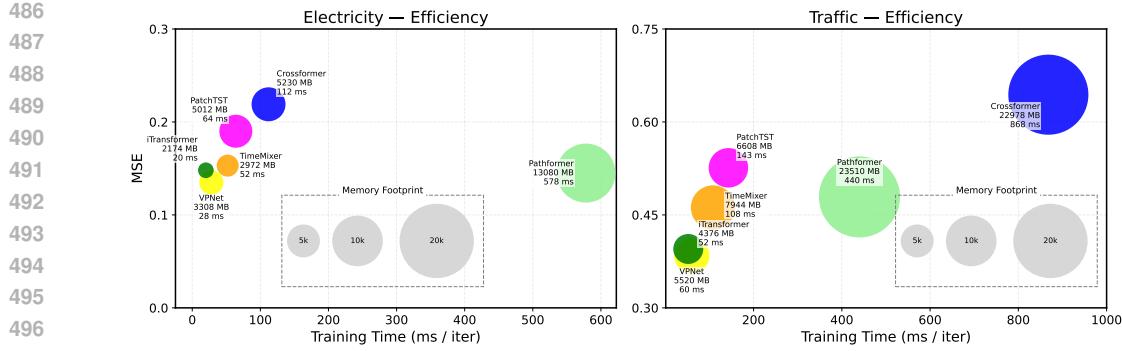


Figure 4: Efficiency comparison on **Electricity** ($C = 321$) and **Traffic** ($C = 862$). We report mean squared error (MSE), training time per batch, and peak GPU memory usage for VPNet and baseline models.

At the opposite extreme, global dependency models such as Crossformer and Pathformer incur prohibitive costs in both computation and memory, rendering them impractical for large-scale use. Conversely, TimeMixer achieves strong efficiency but sacrifices accuracy due to its channel-independent design, underperforming on complex, high-dimensional datasets.

VPNet establishes itself at the accuracy–efficiency Pareto frontier. By grounding its design in The Local Sufficiency Hypothesis, it delivers both superior forecasting accuracy and scalable efficiency, making it a practical solution for real-world, large-scale forecasting tasks.

5 RELATED WORK

Channel Independence. Channel independence has emerged as a simple yet effective strategy for multivariate time series forecasting. The core idea is to model each variate independently, thereby avoiding the “negative transfer” that may arise from noisy or spurious cross-variate correlations. PatchTST (Nie et al., 2023) exemplifies this paradigm by combining a patching strategy with a channel-independent Transformer architecture. Similarly, lightweight models such as TimeMixer and DLinear (Zeng et al., 2023) have shown that accurate univariate forecasting can achieve strong performance with high computational efficiency. However, these methods often underperform in high-dimensional settings where cross-variate dependencies are critical.

Channel Fusion. In contrast, channel fusion aims to explicitly capture dependencies across variates. Representative approaches include Crossformer (Zhang & Yan, 2023), Pathformer (Chen et al., 2024), iTransformer (Liu et al., 2024), and CARD (Wang et al., 2024b). While such methods generally outperform channel-independent models on high-dimensional datasets, their computational and memory costs grow rapidly with the number of variates, limiting scalability. To address this challenge, we propose the local sufficiency hypothesis. By focusing on capturing local cross-variate dependencies, our proposed method reconciles the trade-off between modeling expressiveness and computational cost. It achieves new state-of-the-art (SOTA) performance while ensuring that computational complexity scales linearly with the number of variates, making it a practical and effective solution for high-dimensional forecasting tasks.

6 CONCLUSION

In this work, we revisit the long-standing assumption that global dependency modeling is indispensable for high-dimensional time series forecasting. We formalize the *Local Sufficiency Hypothesis*, which posits that local cross-variate interactions are often sufficient to retain predictive power while avoiding the inefficiencies of global mixing. Building on this principle, we introduce **VPNet**, a new architecture that leverages a variate–patch field representation and the VarTCNBlock to model local dependencies with linear scalability. Through comprehensive evaluation on eight public benchmarks, VPNet achieves new state-of-the-art results. These findings demonstrate that focusing on local sufficiency provides a principled and scalable solution to the critical accuracy–efficiency trade-off in multivariate forecasting.

540 ETHICS STATEMENT
541

542 This research is based on publicly available, anonymized datasets commonly used for benchmarking
543 in the time series forecasting community. The work focuses on foundational modeling techniques for
544 general forecasting tasks, such as predicting electricity consumption and traffic patterns. We do not
545 foresee any direct negative societal impacts or ethical concerns arising from our methodology or its
546 applications. Our research adheres to the principles of ethical academic conduct.

548 REPRODUCIBILITY STATEMENT
549

550 To ensure the full reproducibility of our results, we provide the following resources.
551

552 **Code** The complete source code for VPNet, along with scripts to run all experiments reported in
553 this paper, is provided in the Supplementary Materials. The code is also available at this repository:
554 <https://anonymous.4open.science/r/VPNet-6353/>.

556 **Data** All eight datasets used in our evaluation (Weather, Traffic, Electricity, Solar-Energy, and ETT
557 benchmarks) are publicly available and can be downloaded from the dataset links provided in the
558 official TimeMixer (Wang et al., 2024a) source code.

560 REFERENCES
561

562 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
563 Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation. *arXiv
564 preprint arXiv:2410.10393*, 2024.

566 Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
567 mance measurement system: mining loop detector data. *Transportation research record*, 1748(1):
568 96–102, 2001.

569 Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang, and
570 Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series fore-
571 casting. In *The Twelfth International Conference on Learning Representations*. OpenReview.net,
572 2024. URL <https://openreview.net/forum?id=1JkOCMP2aW>.

574 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
575 forecasting with tide: Time-series dense encoder. *Transactions on Machine Learning Research*,
576 2023, 2023. URL <https://openreview.net/forum?id=pCbC3aQB5W>.

577 Clive William John Granger and Paul Newbold. *Forecasting economic time series*. Academic press,
578 2014.

580 Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decompositon
581 learning architecture for long-term time series forecasting. In *The Thirteenth International
582 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wTLC79YNbh>.

584 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
585 <https://arxiv.org/abs/1412.6980>.

587 Kun Liu, Zhongjie Duan, Cen Chen, Yanhao Wang, Dawei Cheng, and Yuqi Liang. Adapatch:
588 Adaptive patch-level modeling for non-stationary time series forecasting. In *Proceedings of the
589 34th ACM International Conference on Information and Knowledge Management*, pp. 1882–1891,
590 2025.

592 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
593 Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural
Information Processing Systems*, 35:5816–5828, 2022.

594 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 595 iTransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth*
 596 *International Conference on Learning Representations*). OpenReview.net, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.
 597

598 Luis Martín, Luis F Zarzalejo, Jesus Polo, Ana Navarro, Ruth Marchante, and Marco Cony. Prediction
 599 of global solar irradiance based on time series analysis: Application to solar thermal power plants
 600 energy production planning. *Solar energy*, 84(10):1772–1781, 2010.
 601

602 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 603 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference*
 604 *on Learning Representations*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.
 605

606 Zheng Qian, Yan Pei, Hamidreza Zareipour, and Niya Chen. A review and discussion of
 607 decomposition-based hybrid models for wind energy forecasting applications. *Applied energy*,
 608 235:939–953, 2019.
 609

610 Oleksandr Shchur, Abdul Fatir Ansari, Caner Turkmen, Lorenzo Stella, Nick Erickson, Pablo Guerron,
 611 Michael Bohlke-Schneider, and Yuyang Wang. fev-bench: A realistic benchmark for time series
 612 forecasting. *arXiv preprint arXiv:2509.26468*, 2025.
 613

614 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN:
 615 Multi-scale local and global context modeling for long-term series forecasting. In *The Eleventh*
 616 *International Conference on Learning Representations*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=zt53IDUR1U>.
 617

618 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 619 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting.
 620 In *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=7oLshfEIC2>.
 621

622 Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. CARD: Channel
 623 aligned robust blend transformer for time series forecasting. In *The Twelfth International Conference*
 624 *on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=MJksrOhurE>.
 625

626 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 627 with auto-correlation for long-term series forecasting. *Advances in Neural Information Processing*
 628 *Systems*, 34:22419–22430, 2021.
 629

630 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
 631 Net: Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International*
 632 *Conference on Learning Representations*. OpenReview.net, 2023a. URL https://openreview.net/forum?id=ju_Uqw3840q.
 633

634 Haixu Wu, Hang Zhou, Mingsheng Long, and Jianmin Wang. Interpretable weather forecasting for
 635 worldwide stations with a unified deep model. *Nature Machine Intelligence*, 5(6):602–611, 2023b.
 636

637 Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. Deep learning on
 638 traffic prediction: Methods, analysis, and future directions. *IEEE Transactions on Intelligent*
 639 *Transportation Systems*, 23(6):4927–4943, 2021.
 640

641 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 642 forecasting? *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(9):11121–11128,
 643 2023.
 644

645 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 646 for multivariate time series forecasting. In *The Eleventh International Conference on Learning*
 647 *Representations*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=vSVLM2j9eie>.
 648

648 Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series fore-
 649 casting: Learning from leading indicators. In *The Twelfth International Conference on Learning*
 650 *Representations*, 2024. URL <https://openreview.net/forum?id=JiTVtCUOpS>.

651
 652 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 653 Informer: Beyond efficient transformer for long sequence time-series forecasting. *Proceedings of*
 654 *the AAAI Conference on Artificial Intelligence*, 35(12):11106–11115, 2021.

655 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 656 enhanced decomposed transformer for long-term series forecasting. In *Proceedings of the 39th*
 657 *International Conference on Machine Learning*, pp. 27268–27286. PMLR, 2022.

660 A THE USE OF LARGE LANGUAGE MODELS

661
 662 In the preparation of this manuscript, we utilized Large Language Models (LLMs) as writing assistants.
 663 The use of these tools was strictly limited to improving the clarity, grammar, and overall style of the
 664 text. No part of the core scientific contributions, including the formulation of the hypothesis, the
 665 design of the model architecture, the implementation of the code, the generation of experimental
 666 results, or the analysis of those results, was produced by LLMs. All suggestions from these tools
 667 were critically reviewed, edited, and manually incorporated by the authors to ensure the final text
 668 accurately reflects our own work and ideas.

669 B IMPLEMENTATION DETAILS

670
 671 **Dataset Details.** This section provides a detailed description of the public benchmark datasets
 672 used for the empirical evaluation of our model in multivariate time series forecasting. For data
 673 preprocessing, splitting, and normalization, we adhere to the standard protocols established in widely-
 674 recognized previous works (Zhou et al., 2021; Wu et al., 2021). A summary of the key statistical
 675 properties of each dataset is presented in Table 5. The evaluation suite includes several standard
 676 benchmarks. The ETT (Electricity Transformer Temperature) collection contains data from two
 677 electricity transformers with 7 variates, recorded at hourly (ETTh1, ETTh2) and 15-minute intervals
 678 (ETTm1, ETTm2) from 2016 to 2018. The Electricity (ECL) dataset contains the hourly power
 679 consumption of 321 clients from 2016 to 2019. The Weather dataset comprises 21 meteorological
 680 indicators from Germany, collected every 10 minutes during 2020. The Traffic dataset documents
 681 hourly road occupancy rates from 862 sensors in the San Francisco Bay Area from 2015 to 2016.
 682 Finally, the Solar-Energy dataset records solar power generation from 137 photovoltaic (PV) plants at
 683 10-minute intervals during 2006.

684
 685 **Experiment Details.** All experiments were implemented in PyTorch and conducted on a single
 686 NVIDIA A100 40GB GPU. For model optimization, we employ the Adam optimizer (Kingma &
 687 Ba, 2017) with an initial learning rate of 1×10^{-4} and a batch size of 32. To remain consistent with
 688 prior works, we use a fixed look-back window of $L = 96$. For the core model hyperparameters,
 689 we select the number of VarTCNBlocks N from $\{1, 2, 3\}$, the patch length p from $\{8, 16\}$, and the
 690 hidden dimension H from $\{64, 128, 256\}$ based on validation set performance for each dataset. Mean
 691 Squared Error (MSE) and Mean Absolute Error (MAE) are used as the primary evaluation metrics.
 692 For baselines where the experimental settings align with our main study, we directly report the results
 693 from TimeMixer (Wang et al., 2024a). In other cases, we reproduced the baseline results using the
 694 benchmark framework from the Time-Series Library ¹.

695 C PROOFS AND PROBABILISTIC DESIGN RULES

696
 697 We formalize the probabilistic statement used in the introduction and provide proofs.

698 **Theorem C.1** (Hypergeometric exact probability for zero hits). *Let $C \geq 2$ be the total number*
 699 *of variates and suppose that for a fixed target variate there are exactly r “informative” variates*

700
 701 ¹<https://github.com/thuml/Time-Series-Library>

702

703

Table 5: Statistics of the benchmark datasets.

Dataset	Dim	Series Length	Dataset Size	Frequency	Information
ETTh1	7	{96, 192, 336, 720}	(34465, 11521, 11521)	Hourly	Temperature
ETTh2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	Hourly	Temperature
ETTm1	7	{96, 192, 336, 720}	(8545, 2881, 2881)	15 min	Temperature
ETTm2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	15 min	Temperature
Electricity	321	{96, 192, 336, 720}	(18317, 2633, 5261)	Hourly	Electricity
Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	10 min	Weather
Traffic	862	{96, 192, 336, 720}	(12185, 1757, 3509)	Hourly	Transportation
Solar-Energy	137	{96, 192, 336, 720}	(36601, 5161, 10417)	10 min	Electricity

711

712

713

Table 6: Probability Analysis for Different Parameters

Info. Variate Ratio (r/C)	Probability for \mathcal{E}_k			
	k=1	k=3	k=7	k=17
10%	0.095	0.259	0.799	0.999
30%	0.259	0.593	0.996	1.000
50%	0.393	0.777	1.000	1.000
70%	0.503	0.878	1.000	1.000
90%	0.593	0.931	1.000	1.000

722

723

724

among the other $C - 1$ variates (i.e., $0 \leq r \leq C - 1$). Consider selecting a subset of k distinct variates uniformly at random from the $C - 1$ non-target variates (this models the set of variates falling into a fixed contiguous window under a uniformly random permutation). Let X be the number of informative variates in the chosen subset. Then

$$\mathcal{P}_r[X = 0] = \frac{\binom{C-1-r}{k}}{\binom{C-1}{k}}. \quad (18)$$

734

735

Proof. There are $\binom{C-1}{k}$ equally likely ways to choose a k -subset from the $C - 1$ non-target variates. The number of choices that contain zero informative variates is the number of ways to choose all k elements from the $C - 1 - r$ non-informative variates, which is $\binom{C-1-r}{k}$. Dividing the favorable count by the total count yields equation 18. \square

739

740

Corollary C.1 (Exponential upper bound). *Under the same notation as Theorem C.1, the zero-hit probability satisfies*

742

$$\mathcal{P}_r[X = 0] \leq \left(1 - \frac{r}{C-1}\right)^k \leq \exp\left(-\frac{kr}{C-1}\right). \quad (19)$$

745

746

747

748

Table 7: Confidence Intervals for Different Parameters

Info. Variate Ratio (r/C)	k=7		k=17	
	95%	99%	95%	99%
10%	[0, 2]	[0, 3]	[0, 4]	[0, 5]
30%	[0, 5]	[0, 6]	[1, 9]	[0, 10]
50%	[1, 6]	[0, 7]	[3, 14]	[2, 15]
70%	[2, 7]	[1, 7]	[7, 16]	[6, 17]
90%	[5, 7]	[4, 7]	[12, 17]	[12, 17]

756 *Proof.* Starting from equation 18 we write the ratio form
 757

$$758 \quad \mathcal{P}_{\mathcal{R}}[X = 0] = \mathcal{P}_{\mathcal{R}} \text{od}_{i=0}^{k-1} \frac{C - 1 - r - i}{C - 1 - i}.$$

760 For each factor we have
 761

$$762 \quad \frac{C - 1 - r - i}{C - 1 - i} = 1 - \frac{r}{C - 1 - i} \leq 1 - \frac{r}{C - 1},$$

764 because the denominator $C - 1 - i$ is at most $C - 1$ for $i \geq 0$. Taking the product yields the first
 765 inequality in equation 19. The second inequality follows from $(1 - x) \leq e^{-x}$ applied to $x = \frac{r}{C-1}$
 766 and exponentiation to the power k . \square

767 **Corollary C.2** (Design rule for at-least-one hit). *If we require that a randomly chosen window of
 768 width k contains at least one informative variate with probability at least $1 - \delta$, i.e.*

$$769 \quad \mathcal{P}_{\mathcal{R}}[X \geq 1] \geq 1 - \delta,$$

771 *then it suffices to choose k satisfying*

$$772 \quad k \geq \frac{C - 1}{r} \ln \frac{1}{\delta}. \quad (20)$$

775 *Proof.* From Corollary C.1 we have
 776

$$777 \quad \mathcal{P}_{\mathcal{R}}[X \geq 1] = 1 - \mathcal{P}_{\mathcal{R}}[X = 0] \geq 1 - \exp\left(-\frac{kr}{C - 1}\right).$$

779 Requiring $1 - \exp(-kr/(C - 1)) \geq 1 - \delta$ is equivalent to $\exp(-kr/(C - 1)) \leq \delta$, which rearranges
 780 to equation 20. \square

781 **Concentration around the mean.** Let $\mu = \mathbb{E}[X] = k \cdot \frac{r}{C-1}$ denote the hypergeometric mean.
 782 Standard concentration bounds for the hypergeometric distribution (which can be derived from
 783 Hoeffding’s inequality or by coupling to an appropriate binomial distribution) give that for any
 784 $0 < \varepsilon < 1$,

$$785 \quad \mathcal{P}_{\mathcal{R}}[X \leq (1 - \varepsilon)\mu] \leq \exp\left(-\frac{\varepsilon^2 \mu}{2}\right). \quad (21)$$

788 A corresponding upper tail bound holds:

$$789 \quad \mathcal{P}_{\mathcal{R}}[X \geq (1 + \varepsilon)\mu] \leq \exp\left(-\frac{\varepsilon^2 \mu}{3}\right).$$

791 These inequalities quantify that once μ is moderate, the number of informative variates inside a
 792 random window concentrates tightly around μ .
 793

794 D EMPIRICAL ANALYSIS OF DATASET CHARACTERISTICS

797 To empirically validate the *Local Sufficiency Hypothesis*, we analyzed the intrinsic properties of all
 798 benchmark datasets. We focus on three key aspects: (1) **Granger Dependency Density**, measured
 799 by the ratio of significant Granger Causal edges ($p < 0.01$, lag=3) after differencing and global
 800 mean removal; (2) **Information Redundancy**, quantified by Principal Component Analysis (PC1
 801 variance and Effective Dimension Compression Ratio); and (3) **Correlation Strength**, measured by
 802 the distribution of pairwise Pearson correlation coefficients. The quantitative results are summarized
 803 in Table 8:

- 805 • **Large-scale datasets with high redundancy.** The Solar, Traffic, and Electricity datasets
 806 exhibit distinct characteristics of *dense regimes*. They possess high effective dimension
 807 compression ratios ($> 3.7 \times$) and strong variate correlations. Notably, Electricity maintains
 808 an exceptionally high causal density (89.19%) even after removing global trends, suggesting
 809 a ubiquitous local interaction network. This justifies the superior performance of VPNet on
 these datasets, as local kernels can efficiently aggregate the redundant and dense information.

810
 811 Table 8: Statistical analysis of dataset characteristics. **Granger Density** indicates the ratio of
 812 significant causal pairs. **PC1 Var** denotes the variance explained by the first principal component.
 813 **Compression Ratio** is the total number of variates divided by the number of components required to
 814 explain 95% variance. **Correlation** metrics show the percentage of variate pairs exceeding absolute
 815 correlation thresholds. **Bold** highlights the highest values indicating extreme density.

Dataset	Granger	PCA (Redundancy)			variate Correlation (Pearson $ r $)			
		Density	PC1 Var	95% Comps	Comp. Ratio	Avg $ r $	> 0.3	> 0.5
Solar	51.87%	91.77%	4 / 136	34.00x	0.9167	100.0%	100.0%	100.0%
Traffic	69.45%	57.67%	202 / 862	4.27x	0.5638	89.92%	66.84%	25.67%
Electricity	89.19%	54.68%	86 / 321	3.73x	0.4893	68.29%	46.37%	32.49%
Weather	64.52%	42.44%	9 / 21	2.33x	0.2956	35.71%	25.24%	20.95%
ETTh1	64.29%	34.39%	5 / 7	1.40x	0.2221	19.05%	9.52%	9.52%
ETTh2	52.38%	43.10%	5 / 7	1.40x	0.3246	42.86%	28.57%	4.76%
ETTm1	47.62%	34.57%	5 / 7	1.40x	0.2243	19.05%	9.52%	9.52%
ETTm2	30.95%	43.08%	5 / 7	1.40x	0.3245	42.86%	28.57%	4.76%

825
 826
 827 • **Lower-dimensional datasets with weaker cross-variate dependencies.** Conversely, the
 828 ETT datasets show significantly lower redundancy (Compression Ratio $\approx 1.4\times$) and weaker
 829 correlations (strong correlations $|r| > 0.5$ are generally $< 10\%$).

830
 831
 832
 833 **E EVALUATION ON VARIATE ORDERING USING A HETEROGENEOUS**
 834 **COMPOSITE DATASET**

835
 836 To examine how variate ordering affects local modeling in datasets with heterogeneous dependency
 837 patterns, we constructed a composite dataset named **Hetero-Mix** by concatenating the variates from
 838 three benchmark datasets—Traffic, Electricity, and Weather—along the channel dimension. Unlike
 839 homogeneous datasets where dense correlations reduce sensitivity to ordering, Hetero-Mix brings
 840 together variables with distinct statistical characteristics, making it suitable for testing how ordering
 841 influences local receptive field models.

842 We evaluated VPNet and a local-attention variant (LANet) under two ordering conditions: (1)
 843 **Clustered**, where variates are grouped according to their dataset of origin; and (2) **Shuffled**, where
 844 all variates are randomly permuted. As shown in Table 9, both models achieve better accuracy under
 845 the Clustered setting. This demonstrates that when correlations vary substantially across groups
 846 of variables, aligning the input ordering with the underlying dependency patterns improves the
 847 effectiveness of localized modeling.

848
 849
 850 Table 9: Performance comparison on the **Hetero-Mix** dataset. “Clustered” preserves the original
 851 grouping [Traffic \oplus Electricity \oplus Weather], while “Shuffled” randomly permutes variates. The results
 852 show that both models benefit from topology-aware ordering (Clustered).

Ordering Setting	Horizon	VPNet		LANet	
		MSE	MAE	MSE	MAE
Clustered (Ordered)	96	0.345	0.264	0.347	0.264
	192	0.368	0.274	0.369	0.274
	336	0.390	0.286	0.387	0.284
	720	0.435	0.313	0.432	0.314
	Avg	0.385	0.284	0.384	0.284
Shuffled (Random)	96	0.349	0.270	0.352	0.268
	192	0.369	0.278	0.371	0.275
	336	0.393	0.288	0.389	0.286
	720	0.440	0.317	0.433	0.314
	Avg	0.388	0.288	0.386	0.286

864

865

866

867

F STRESS TEST UNDER EXTREME NOISE AND SPARSE DEPENDENCIES

868

869 To rigorously evaluate model robustness in scenarios dominated by sparse or long-range cross-
 870 variate dependencies, we conducted a stress test using the Electricity dataset injected with **10** \times
 871 **Gaussian noise** ($10 \times \sigma_{\text{noise}}$). This setup creates an extremely low signal-to-noise ratio (SNR) regime,
 872 effectively disintegrating dense local correlations. To compensate for the high noise level and capture
 873 dispersed signals, we adjusted the VPNet configuration to use a larger receptive field (Kernel Size=27,
 874 Layers=2).

875

876 We tested VPNet using two variable orderings: (1) **Clustered**, where variates follow their original
 877 dataset indexing; and (2) **Shuffled**, where the ordering is randomized. Table 10 shows that VPNet
 878 performs consistently better with the original ordering. This indicates that when the signal is weak,
 879 variable orderings that place moderately correlated variates closer together help local models extract
 meaningful structure more effectively.

880

881 Additionally, the large-kernel configuration allows VPNet to approach the behavior of broader-
 882 receptive-field models, suggesting that increasing the receptive field is a practical adaptation strategy
 883 when dependency patterns become weak or diffuse.

884

885 Table 10: Stress test on Electricity + $10 \times$ Noise. The model configuration is fixed at [Layers=2,
 886 Kernel=27]. “Ordered” denotes structural prior-based clustering, while “Shuffled” denotes random
 887 permutation. **Bold** indicates the best performance.

Horizon	Electricity _{Noise} (Ordered)		Electricity _{Noise} (Shuffled)	
	MSE	MAE	MSE	MAE
96	0.137	0.232	0.148	0.239
192	0.153	0.248	0.161	0.252
336	0.174	0.270	0.178	0.270
720	0.199	0.295	0.224	0.312
Avg	0.166	0.261	0.178	0.268

888

889

890

891

892

893

894

895

G VISUALIZATION OF LEARNED DEPENDENCIES AND RECEPTIVE FIELDS

896

897 To better illustrate the dependencies learned by VPNet and verify its capability to capture local
 898 cross-variate interactions, we conducted a **gradient-based saliency analysis**. We computed the
 899 absolute gradients of the prediction output with respect to the input ($|\partial \hat{y} / \partial \mathbf{X}|$), averaged over 64
 900 samples for stability.

901

902

903

904 **Methodology.** We present three complementary visualizations: (1) a **saliency heatmap** showing
 905 the spatio-temporal receptive field, (2) **global variate importance** summarizing cross-variate
 906 contributions, and (3) **temporal importance** reflecting how historical information is utilized.

907

908

909

910

911

912

913 **Analysis.** The visualizations reveal dataset-specific dependency patterns, summarized as follows:
 914

915

916

917

- 918 • **ETTh1: Predominantly Auto-Regressive Behavior.** As shown in Figure 5, when pre-
 919 dicting variate 2 at the first step, gradients concentrate almost entirely on the variate’s own
 920 history. Neighboring variates contribute minimally. This aligns with our earlier statistical
 921 findings indicating weak cross-variate correlations in ETTh1. The temporal importance plot
 922 also shows periodic spikes, demonstrating that VPNet captures seasonal patterns even when
 923 cross-variate signals are limited.

- **Electricity: Discovery of Dataset-Specific Couplings.** In Figure 6, when predicting variate 200, the model assigns substantial importance to the history of variate 182, rather than relying only on auto-regression. This indicates that VPNet can detect meaningful cross-variate relationships within its receptive field and exploit them for prediction.
- **Traffic: Utilization of Local Neighborhood Clusters.** In the Traffic dataset (Figure 7), the prediction of variate 400 activates a wide band of nearby variates. This reflects a collective neighborhood influence, where VPNet aggregates information from a group of highly correlated variates to infer near-future behavior, which is consistent with the strongly correlated structure observed in Traffic.

In summary, these visualizations demonstrate that VPNet adapts naturally to the dependency characteristics of each dataset: it behaves auto-regressively when cross-variate signals are weak (ETTh1), identifies meaningful pairwise couplings when present (Electricity), and aggregates rich local neighborhoods when the data exhibit strong spatial correlations (Traffic).

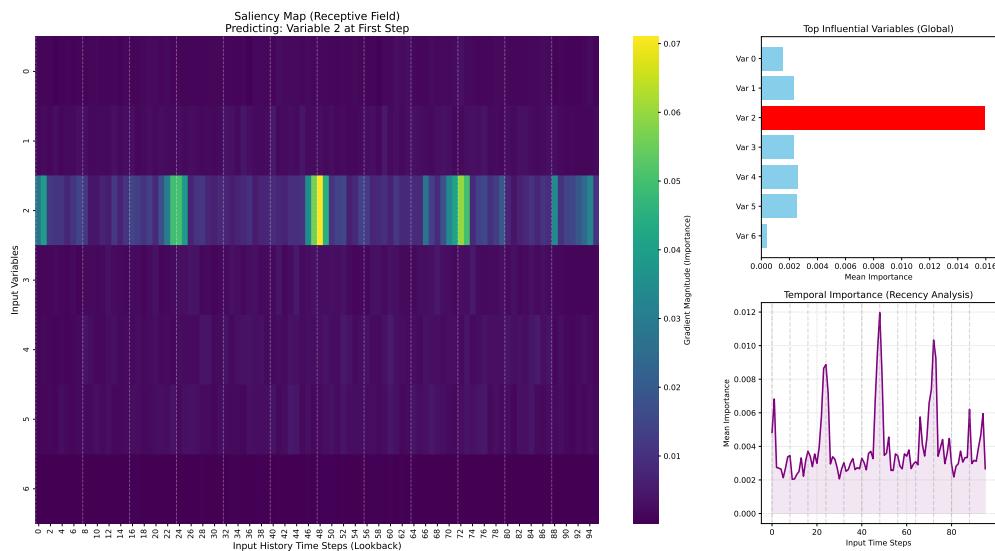


Figure 5: **Interpretability Analysis on ETTh1.** Visualization for predicting variate 2 at the first step. The saliency heatmap and variate importance indicate that the model primarily relies on the variate’s own temporal history, with minimal cross-variate contribution. This is consistent with the weak inter-variate correlations observed in ETTh1. The temporal importance curve also exhibits clear periodicity.

H ADDITIONAL EVALUATION ON GIFT-EVAL BENCHMARK

H.1 EXPERIMENTAL SETUP AND IMPLEMENTATION

We acknowledge the recent emergence of comprehensive benchmarks aimed at standardizing the evaluation of forecasting models, such as the **FEV-benchmark** (Shchur et al., 2025) and **GIFT-Eval** (Aksu et al., 2024). To further assess the generalization capability of VPNet in a unified evaluation environment, we extended our experiments to the **GIFT-Eval** benchmark.

To ensure compatibility with the benchmark protocol, we integrated VPNet into the `gluonts` framework and added a probabilistic projection head to support both point and probabilistic forecasting.

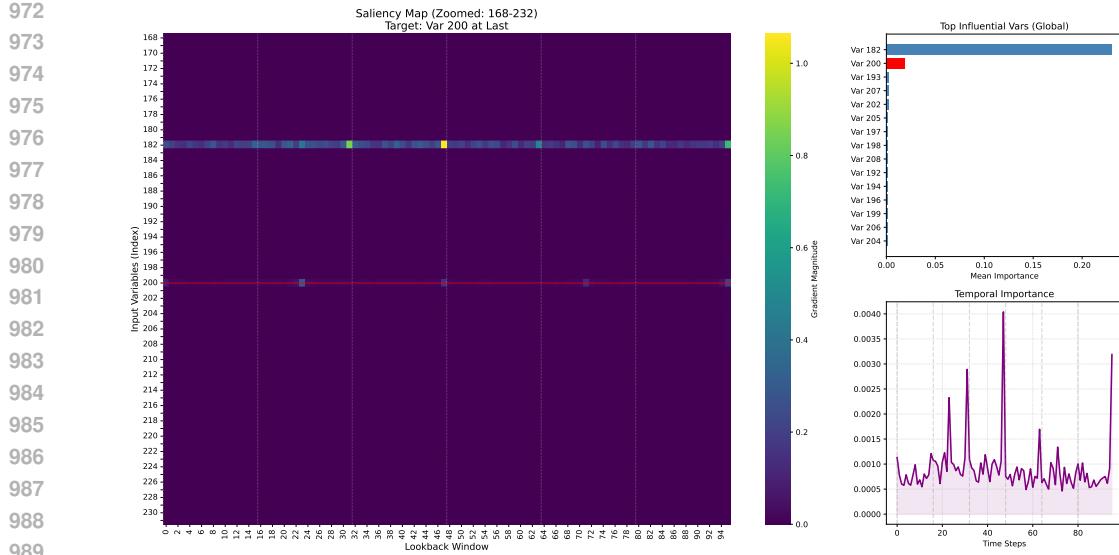


Figure 6: **Interpretability Analysis on Electricity.** Visualization for predicting variate 200. The global variate importance plot shows that **variate 182** contributes more significantly than the target variate itself, demonstrating that VPNet successfully identifies strong and meaningful cross-variate dependencies within its receptive field.

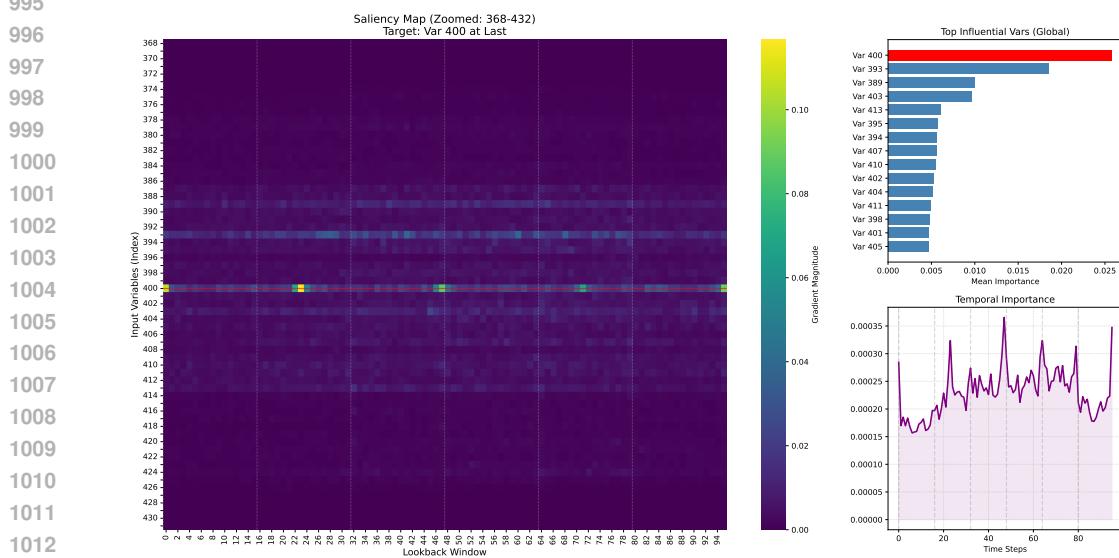


Figure 7: **Interpretability Analysis on Traffic.** Visualization for predicting variate 400. The heatmap exhibits strong activations across a wide group of highly correlated variates, indicating that the prediction relies on the collective information from multiple related variables rather than any single one. This highlights VPNet’s ability to effectively utilize locally correlated patterns in datasets with rich cross-variate structure.

H.2 PERFORMANCE COMPARISON

We compared VPNet against ITransformer, a state-of-the-art baseline under the GIFT-Eval setup. The evaluation metric is the Mean Absolute Percentage Error (MAPE).

The results presented in Table 11 show that VPNet achieves competitive performance under a standardized evaluation pipeline, outperforming ITransformer on **17 out of 33** datasets/settings.

1026 These findings indicate that VPNet maintains strong robustness and generalization capability across
 1027 diverse forecasting tasks, further supporting the effectiveness of its locality-driven modeling strategy.
 1028

1029
 1030
 1031 Table 11: Performance comparison on GIFT-Eval benchmark (Metric: MAPE). Best results are
 1032 highlighted in **bold**. VPNet achieves superior performance in 17 settings, demonstrating robustness
 even under univariate input conditions.

Dataset Setting	VPNet (Ours)	ITransformer	Winner
bitbrains_fast_storage/5T/short	2.178	1.689	ITransformer
bitbrains_fast_storage/H/short	3.272	2.962	ITransformer
bitbrains_rnd/5T/short	1.522	1.268	ITransformer
bitbrains_rnd/H/short	3.280	2.535	ITransformer
bizitobs_application/10S/long	0.054	0.065	VPNet
bizitobs_application/10S/medium	0.043	0.047	VPNet
bizitobs_application/10S/short	0.038	0.041	VPNet
bizitobs_12c/5T/long	0.463	0.537	VPNet
bizitobs_12c/5T/medium	0.461	0.567	VPNet
bizitobs_12c/5T/short	0.148	0.174	VPNet
bizitobs_12c/H/long	0.664	0.670	VPNet
bizitobs_12c/H/medium	0.602	0.586	ITransformer
bizitobs_12c/H/short	0.643	0.707	VPNet
bizitobs_service/10S/long	0.420	0.250	ITransformer
bizitobs_service/10S/medium	0.307	0.189	ITransformer
bizitobs_service/10S/short	0.147	0.161	VPNet
ett1/15T/long	0.797	0.787	ITransformer
ett1/15T/medium	0.735	0.749	VPNet
ett1/15T/short	0.641	0.622	ITransformer
ett1/D/short	1.697	1.623	ITransformer
ett1/H/short	0.511	0.506	ITransformer
ett1/W/short	0.882	0.770	ITransformer
ett2/15T/long	0.150	0.156	VPNet
ett2/15T/medium	0.144	0.152	VPNet
ett2/15T/short	0.139	0.162	VPNet
ett2/D/short	0.368	0.464	VPNet
ett2/H/long	0.220	0.219	ITransformer
ett2/H/medium	0.207	0.199	ITransformer
ett2/H/short	0.138	0.139	VPNet
ett2/W/short	0.159	0.292	VPNet
jena_weather/10T/short	0.519	0.416	ITransformer
jena_weather/D/short	0.887	1.120	VPNet
jena_weather/H/short	1.427	1.320	ITransformer

I VARIATE ORDERING STRATEGIES

1069 To investigate the impact of variate arrangement on locality-based architectures, we consider four
 1070 ordering strategies. Each strategy reflects a distinct principle for structuring the variate dimension:
 1071

- 1073 • **Original Ordering.** variates are preserved in the order provided by the dataset. This
 1074 ordering reflects any implicit structure imposed during data collection (e.g., spatial layout of
 1075 sensors or industry grouping of assets). It serves as a natural baseline.
- 1076 • **Random Ordering.** variates are permuted uniformly at random. This destroys any pre-
 1077 existing adjacency structure and thus provides a neutrality test. If a model still performs
 1078 well under random ordering, it suggests robustness to locality assumptions.
- 1079 • **Degree Ordering.** variates are ranked by their aggregate similarity (e.g., total correlation
 strength with others). The intuition is that highly connected variates are globally influential,

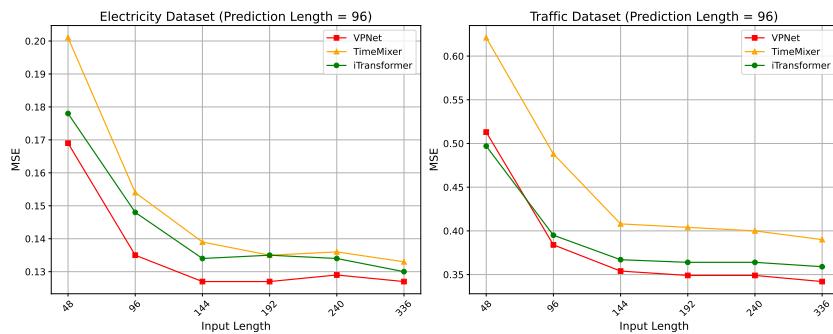
1080 and placing them adjacently increases the likelihood that local operators can capture their
 1081 dependencies.
 1082

- 1083 • **Spectral Ordering.** variates are arranged by the coordinates of the Fiedler vector of the
 1084 graph Laplacian built from pairwise similarities. This spectral seriation seeks to embed
 1085 variates onto a line such that strongly related variates appear contiguously. It provides a
 1086 principled way of linearizing high-dimensional dependency structures for local processing.
 1087

1088 J EFFECT OF LOOK-BACK WINDOW SIZE

1090 A model capable of capturing long-range temporal dependencies is expected to benefit from longer
 1091 historical contexts (Zeng et al., 2022; Nie et al., 2023). To examine VPNet’s ability to leverage
 1092 historical information, we conduct an ablation study on the input sequence length L . We evaluate
 1093 VPNet against two competitive baselines, iTransformer and TimeMixer, on the high-dimensional
 1094 Electricity and Traffic datasets. The prediction horizon is fixed at $S = 96$, while the input length
 1095 varies as $L \in \{48, 96, 144, 192, 240, 336\}$. Results are reported in Figure 8.

1096 All three models generally improve as the look-back window increases, with lower MSE at larger L .
 1097 However, their behaviors differ in how performance scales with context. iTransformer and TimeMixer
 1098 exhibit gradual and consistent improvements across the full range of input lengths, indicating a
 1099 steady reliance on longer histories. In contrast, VPNet reaches its best performance with substantially
 1100 shorter contexts: its error decreases rapidly when L increases from 48 to 144, after which further
 1101 gains are marginal. On Electricity, VPNet achieves an MSE of 0.127 at $L = 144$, outperforming
 1102 TimeMixer even at $L = 336$ (0.133). These results suggest that VPNet is able to extract the most
 1103 relevant predictive patterns from moderate-length histories, highlighting its efficiency in utilizing
 1104 contextual information without requiring excessively long sequences.
 1105



1116 Figure 8: The effect of look-back window size on forecasting performance (MSE). We compare
 1117 VPNet, iTransformer, and TimeMixer on the Electricity (left) and Traffic (right) datasets with a fixed
 1118 prediction horizon of $S = 96$.
 1119

1120 K FULL RESULTS

1121 Due to the space limitation of the main text, we place the full results of all experiments in the
 1122 following Table 12.
 1123

1124 L SHOWCASES

1125 For a qualitative assessment, we visualize the forecasts of a representative variate from the test set
 1126 for each dataset (Figures 9, 10, 11, 12, 13, 14, 15, 16). These visualizations illustrate that VPNet’s
 1127 predictions consistently align more closely with the ground truth, adeptly capturing complex dynamics
 1128 where other models falter.
 1129

1134 M FUTURE WORK

1136 Our findings open several promising avenues for future research. The surprising robustness of
 1137 VPNet to variate ordering suggests that the model captures complex, dynamic relationships that
 1138 transcend static correlations. A deeper theoretical investigation into the nature of these time-lagged
 1139 dependencies would be a valuable contribution. Another compelling direction is the development of
 1140 architectures with adaptive locality. While our work shows the efficacy of a fixed local neighborhood,
 1141 models that can learn to dynamically adjust the scope of their receptive field for different variates or
 1142 layers could unlock further performance gains. Finally, the variate–patch field representation itself
 1143 may prove to be a generalizable concept, and exploring its application to other multivariate sequence
 1144 modeling tasks (e.g., spatio-temporal forecasting) is a promising direction for future research.

1145
 1146 Table 12: Performance comparison on the long-term forecasting task for prediction horizons of
 1147 $\{96, 192, 336, 720\}$ and their average. The input sequence length is fixed to 96. The best and second-
 1148 best results on each dataset in each metric are highlighted in **bold red** and underlined blue fonts,
 1149 respectively.

1150	Models	VPNet (Ours)	TimeKAN (2025)	TimeMixer (2024a)	iTransformer (2024)	Pathformer (2024)	PatchTST (2023)	Crossformer (2023)	MICN (2023)	TiDE (2023)	TimesNet (2023a)	DLinear (2023)	FEDformer (2022)	
1151	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
1152	Weather	96	<u>0.157</u> 0.192	0.162 <u>0.208</u>	0.163 0.209	0.174 0.214	<u>0.156</u> 0.192	0.186 0.227	0.195 0.271	0.198 0.261	0.202 0.261	0.172 0.220	0.195 0.252	0.217 0.296
1153		192	<u>0.207</u> 0.239	<u>0.207</u> 0.249	0.208 0.250	0.221 0.254	<u>0.206</u> 0.240	0.234 0.265	0.209 0.277	0.239 0.299	0.242 0.298	0.219 0.261	0.237 0.295	0.276 0.336
1154		336	0.258 0.281	0.263 0.290	0.251 0.287	0.278 0.296	<u>0.254</u> 0.282	0.284 0.301	0.273 0.332	0.285 0.336	0.287 0.335	0.280 0.306	0.282 0.331	0.339 0.380
1155		720	<u>0.330</u> 0.333	<u>0.338</u> 0.340	0.339 0.341	0.358 0.347	0.340 <u>0.336</u>	0.356 0.349	0.379 0.401	0.351 0.388	0.351 0.386	0.365 0.359	0.345 0.382	0.403 0.428
1156		Avg	<u>0.238</u> 0.261	0.243 0.272	0.240 0.272	0.258 0.278	<u>0.239</u> 0.263	0.265 0.286	0.264 0.320	0.268 0.321	0.271 0.320	0.259 0.287	0.265 0.315	0.309 0.360
1157	Solar-Energy	96	<u>0.177</u> 0.178	0.234 0.290	<u>0.189</u> 0.259	0.203 0.237	0.202 <u>0.225</u>	0.265 0.323	0.232 0.302	0.257 0.325	0.312 0.399	0.373 0.358	0.290 0.378	0.286 0.341
1158		192	<u>0.196</u> 0.206	0.274 0.309	<u>0.222</u> 0.283	0.233 0.261	0.235 <u>0.245</u>	0.288 0.332	0.371 0.410	0.278 0.354	0.339 0.416	0.397 0.376	0.320 0.398	0.291 0.337
1159		336	<u>0.216</u> 0.219	0.299 0.324	<u>0.231</u> 0.292	0.248 0.273	0.272 <u>0.272</u>	0.301 0.339	0.495 0.515	0.298 0.375	0.368 0.430	0.420 0.380	0.353 0.415	0.354 0.416
1160		720	<u>0.228</u> 0.225	0.295 0.318	<u>0.223</u> 0.285	0.249 0.275	0.255 <u>0.256</u>	0.295 0.336	0.526 0.542	0.299 0.379	0.370 0.425	0.420 0.381	0.357 0.413	0.380 0.437
1161		Avg	<u>0.204</u> 0.207	0.276 0.310	<u>0.216</u> 0.280	0.233 0.262	0.241 <u>0.250</u>	0.287 0.333	0.406 0.442	0.283 0.358	0.347 0.417	0.403 0.374	0.330 0.401	0.328 0.383
1162	Electricity	96	<u>0.135</u> 0.224	0.174 0.266	0.153 0.247	0.148 0.240	<u>0.145</u> 0.236	0.190 0.296	0.219 0.314	0.180 0.293	0.237 0.329	0.168 0.272	0.210 0.302	0.193 0.308
1163		192	<u>0.151</u> 0.239	0.182 0.273	0.166 0.256	<u>0.162</u> 0.253	0.167 0.256	0.199 0.304	0.231 0.322	0.189 0.302	0.236 0.330	0.184 0.322	0.210 0.305	0.201 0.315
1164		336	<u>0.166</u> 0.257	0.197 0.286	0.185 0.277	<u>0.178</u> 0.269	0.186 0.275	0.217 0.310	0.246 0.337	0.198 0.312	0.249 0.344	0.198 0.300	0.223 0.319	0.214 0.329
1165		720	<u>0.196</u> 0.284	0.236 0.320	0.225 0.310	0.225 0.317	0.231 <u>0.309</u>	0.258 0.352	0.280 0.363	<u>0.217</u> 0.330	0.284 0.373	0.220 0.320	0.258 0.350	0.246 0.355
1166		Avg	<u>0.162</u> 0.251	0.197 0.286	0.182 0.273	<u>0.178</u> 0.270	0.182 <u>0.269</u>	0.216 0.318	0.244 0.334	0.196 0.309	0.252 0.344	0.193 0.304	0.225 0.319	0.214 0.327
1167	Traffic	96	<u>0.384</u> 0.258	0.580 0.379	0.462 0.285	<u>0.395</u> 0.268	0.479 0.283	0.526 0.347	0.644 0.429	0.577 0.350	0.805 0.493	0.593 0.321	0.650 0.396	0.587 0.366
1168		192	<u>0.406</u> 0.266	0.550 0.363	0.473 0.296	<u>0.417</u> 0.276	0.484 0.292	0.522 0.332	0.665 0.431	0.589 0.356	0.756 0.474	0.617 0.336	0.598 0.370	0.604 0.373
1169		336	<u>0.429</u> 0.275	0.559 0.363	0.498 0.296	<u>0.433</u> 0.283	0.503 0.299	0.517 0.334	0.674 0.420	0.594 0.358	0.762 0.477	0.629 0.336	0.605 0.373	0.621 0.383
1170		720	<u>0.466</u> 0.294	0.600 0.381	0.506 0.313	<u>0.467</u> 0.302	0.537 0.322	0.552 0.352	0.683 0.424	0.613 0.361	0.719 0.449	0.640 0.350	0.645 0.394	0.626 0.382
1171		Avg	<u>0.421</u> 0.273	0.572 0.372	0.485 0.298	<u>0.428</u> 0.282	0.501 0.299	0.529 0.341	0.667 0.426	0.593 0.356	0.761 0.473	0.620 0.336	0.625 0.383	0.610 0.376
1172	ETTh1	96	<u>0.374</u> 0.386	<u>0.374</u> 0.397	<u>0.375</u> 0.400	0.386 0.405	0.390 <u>0.390</u>	0.460 0.447	0.423 0.448	0.426 0.446	0.479 0.464	0.384 0.402	0.397 0.412	0.395 0.424
1173		192	<u>0.428</u> 0.418	<u>0.416</u> 0.422	0.429 0.421	0.441 0.436	0.437 <u>0.419</u>	0.477 0.429	0.471 0.474	0.454 0.464	0.525 0.492	0.436 0.429	0.446 0.441	0.469 0.470
1174		336	<u>0.464</u> 0.439	<u>0.451</u> 0.443	0.484 0.458	0.487 0.458	0.497 0.445	0.546 0.496	0.570 0.546	0.493 0.487	0.565 0.515	0.491 0.469	0.489 0.467	0.530 0.499
1175		720	<u>0.471</u> 0.465	<u>0.463</u> 0.463	0.498 0.482	0.503 0.491	0.494 0.461	0.544 0.517	0.653 0.621	0.526 0.526	0.594 0.558	0.521 0.500	0.513 0.510	0.598 0.544
1176		Avg	<u>0.434</u> 0.427	<u>0.426</u> 0.431	0.447 0.440	0.454 0.447	0.455 <u>0.429</u>	0.507 0.472	0.529 0.522	0.475 0.481	0.541 0.507	0.458 0.450	0.461 0.458	0.498 0.484
1177	ETTh2	96	<u>0.284</u> 0.330	0.290 0.340	<u>0.289</u> 0.341	0.297 0.349	0.290 <u>0.336</u>	0.308 0.355	0.745 0.584	0.372 0.424	0.400 0.440	0.340 0.340	0.374 0.394	0.358 0.397
1178		192	<u>0.357</u> 0.376	0.379 0.396	<u>0.372</u> 0.390	0.380 0.400	<u>0.372</u> 0.385	0.393 0.405	0.877 0.656	0.492 0.492	0.528 0.509	0.402 0.414	0.482 0.479	0.429 0.439
1179		336	<u>0.392</u> 0.406	0.423 0.435	0.428 0.432	0.402 0.416	0.427 0.436	1.043 0.731	0.607 0.555	0.643 0.571	0.452 0.452	0.591 0.541	0.496 0.487	
1180		720	<u>0.391</u> 0.418	0.473 0.465	0.427 0.445	0.430 0.444	0.436 0.450	1.104 0.763	0.824 0.655	0.874 0.679	0.462 0.487	0.461 0.478	0.450 0.473	0.463 0.474
1181		Avg	<u>0.356</u> 0.383	0.391 0.409	<u>0.365</u> 0.395	0.383 0.407	0.374 <u>0.395</u>	0.391 0.412	0.942 0.684	0.574 0.531	0.611 0.550	0.414 0.427	0.563 0.519	0.437 0.449
1182	ETTm1	96	<u>0.313</u> 0.342	0.329 0.366	0.320 0.357	0.334 0.368	<u>0.318</u> 0.349	0.352 0.374	0.404 0.426	0.365 0.387	0.364 0.387	0.338 0.375	0.346 0.374	0.379 0.419
1183		192	<u>0.362</u> 0.371	0.363 0.380	<u>0.361</u> 0.381	0.390 0.393	0.365 <u>0.372</u>	0.374 0.387	0.450 0.451	0.403 0.408	0.398 0.404	0.374 0.387	0.382 0.391	0.426 0.441
1184		336	<u>0.385</u> 0.389	<u>0.390</u> 0.404	<u>0.390</u> 0.404	0.426 0.420	0.401 <u>0.397</u>	0.421 0.414	0.532 0.515	0.436 0.431	0.428 0.425	0.410 0.411	0.415 0.415	0.445 0.459
1185		720	<u>0.444</u> 0.424	0.460 0.443	<u>0.454</u> 0.441	0.491 0.459	0.460 <u>0.432</u>	0.462 0.449	0.666 0.589	0.489 0.462	0.487 0.461	0.478 0.450	0.473 0.451	0.543 0.490
1186		Avg	<u>0.376</u> 0.382	0.386 0.398	<u>0.381</u> 0.396	0.410 0.410	0.382 <u>0.386</u>	0.402 0.406	0.513 0.495	0.423 0.422	0.419 0.419	0.400 0.406	0.404 0.408	0.448 0.452
1187	ETTm2	96	<u>0.169</u> 0.244	0.174 0.255	0.175 0.258	0.180 0.264	<u>0.168</u> 0.247	0.183 0.270	0.287 0.366	0.197 0.296	0.207 0.305	0.187 0.267	0.193 0.293	0.203 0.287
1188		192	<u>0.233</u> 0.288	0.239 0.299	0.237 0.299	0.250 0.309	<u>0.234</u> 0.291	0.255 0.314	0.414 0.492	0.284 0.361	0.290 0.364	0.249 0.309	0.284 0.361	0.269 0.328
1189		336	<u>0.291</u> 0.327	0.301 0.340	0.298 0.340	0.311 0.348	<u>0.297</u> 0.333	0.309 0.347	0.597 0.542	0.381 0.429	0.377 0.422	0.321 0.351	0.382 0.429	0.325 0.366
1190		720	<u>0.387</u> 0.387	0.395 0.396	0.391 0.396	0.412 0.407	<u>0.386</u> 0.385	0.412 0.404	1.730 1.042	0.549 0.522	0.558 0.524	0.408 0.403	0.558 0.525	0.421 0.415
1191		Avg	<u>0.270</u> 0.312	0.277 0.322	0.275 0.323	0.288 0.332	<u>0.271</u> 0.314	0.290 0.334	0.757 0.611	0.353 0.402	0.358 0.404	0.291 0.333	0.354 0.402	0.305 0.349

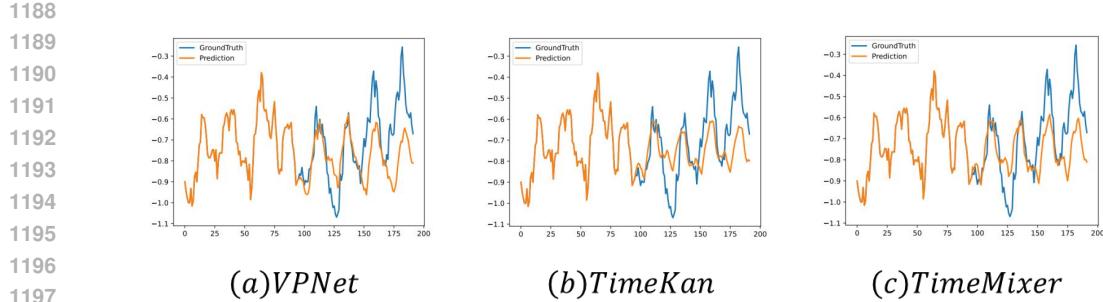


Figure 9: Showcases from ETTh1 by different models under the input-96-predict-96 settings.

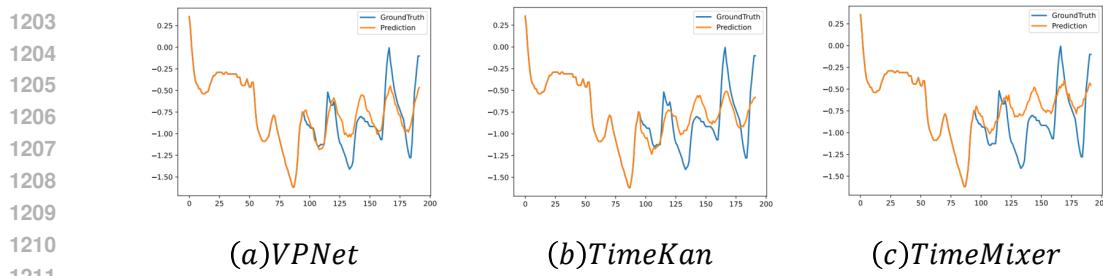


Figure 10: Showcases from ETTh2 by different models under the input-96-predict-96 settings.

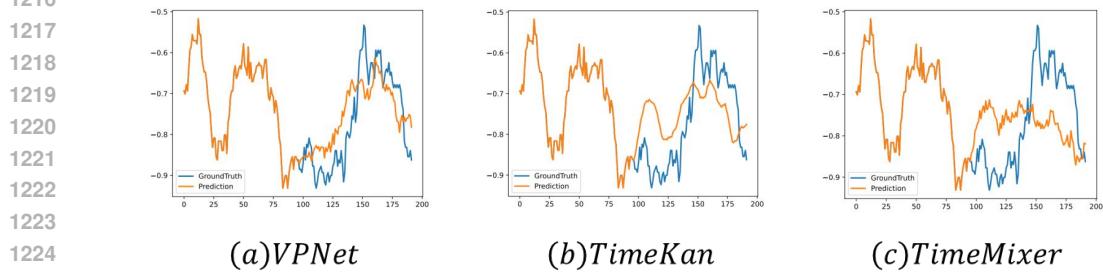


Figure 11: Showcases from ETTm1 by different models under the input-96-predict-96 settings.

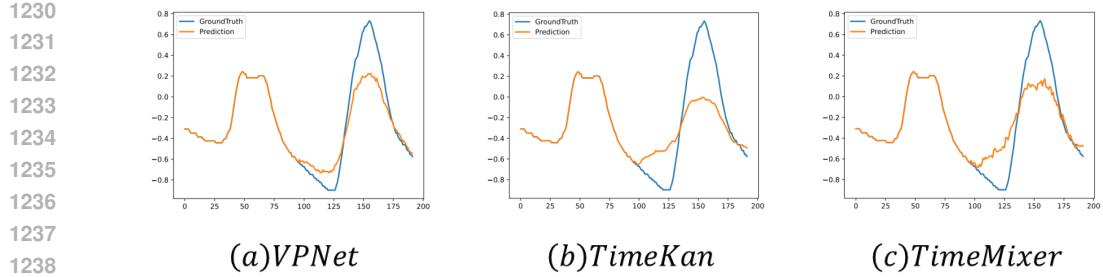


Figure 12: Showcases from ETTm2 by different models under the input-96-predict-96 settings.

(a) *VPNet* (b) *TimeKan* (c) *TimeMixer*

Figure 13: Showcases from Weather by different models under the input-96-predict-96 settings.

Figure 1 consists of three subplots labeled (a), (b), and (c), each showing a line graph with 'GroundTruth' (blue line) and 'Prediction' (orange line) over time (x-axis, 0 to 200). The y-axis ranges from -0.5 to 2.5. In all three cases, the prediction curve closely follows the ground truth curve, which shows a sharp peak around time 100.

Model	GroundTruth Peak (approx.)	Prediction Peak (approx.)
(a) VPNet	2.4	2.4
(b) TimeKan	2.4	2.4
(c) TimeMixer	2.3	2.3

Figure 14: Showcases from Solar-Energy by different models under the input-96-predict-96 settings.

Figure 15: Showcases from Electricity by different models under the input-96-predict-96 settings.

Figure 16: Showcases from Traffic by different models under the input-96-predict-96 settings.