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ABSTRACT

Effectively modeling cross-variate dependencies is a central, yet challenging, task in
multivariate time series forecasting. While attention-based methods have advanced
the state-of-the-art by capturing global cross-variate dependencies, their quadratic
complexity with respect to the number of variates severely limits their scalability.
In this work, we challenge the necessity of global dependency modeling. We
posit, through both theoretical analysis and empirical evidence, that modeling local
cross-variate interactions is not only sufficient but also more efficient for many
dense dependency systems. Motivated by this core insight, we propose VPNet, a
novel architecture that excels in both accuracy and efficiency. VPNet’s design is
founded on two key principles: a channelized reinterpretation of patch embeddings
into a higher-level variate-patch field, and a specialized VarTCNBlock that operates
upon it. Specifically, the model first employs a patch-level autoencoder to extract
robust local representations. In a pivotal step, these representations are then re-
conceptualized as a 2D field constructed over a "variates × patches" grid. The
VarTCNBlock then applies depthwise 2D convolutions across this field to efficiently
capture local spatio-temporal patterns (i.e., cross-variate and temporal dependencies
simultaneously), followed by pointwise convolutions for feature mixing. This
design ensures that the computational complexity scales linearly with the number
of variates. Finally, variate-wise prediction heads map the refined historical patch
representations to future ones, which are decoded back into the time domain.
Extensive experiments demonstrate that VPNet not only achieves state-of-the-art
performance across multiple benchmarks but also offers significant efficiency gains,
establishing it as a superior and scalable solution for high-dimensional forecasting.
Code is available at this repository: https://anonymous.4open.science/r/VPNet-
6353/

1 INTRODUCTION

Multivariate time series forecasting is a cornerstone of data-driven decision-making, with critical ap-
plications spanning a wide range of domains from energy grid management and traffic flow prediction
to meteorology and finance (Granger & Newbold, 2014; Martín et al., 2010; Qian et al., 2019; Chen
et al., 2001; Yin et al., 2021; Wu et al., 2023b). A key technical challenge is modeling cross-variate
dependencies: the complex, time-varying interactions among many co-evolving series (Zhang & Yan,
2023; Liu et al., 2024). Effective modeling of these dependencies is crucial for accurate long-horizon
forecasting in high-dimensional regimes.

Recent progress has been driven by channel-fusion architectures (Zhao & Shen, 2024), particularly
Transformer-based designs that explicitly model global cross-variate interactions (e.g., iTransformer
(Liu et al., 2024)). These models attain strong predictive performance by searching for dependencies
across all variates, but their expressivity comes at a steep computational and memory cost: the cost
of channel-mixing attention grows quadratically with the number of variates, making such models
impractical for systems with hundreds or thousands of variates. At the opposite end of the design
spectrum, channel-independent models (including PatchTST (Nie et al., 2023), TimeMixer (Wang
et al., 2024a), Dliner (Zeng et al., 2023)) are highly efficient, yet by construction they forgo explicit
cross-variate modeling and therefore struggle to exploit important inter-series predictive signals.
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Figure 1: Benchmarking model performance on eight datasets (left) and variate correlation analysis
on four high-dimensional datasets (right). For model performance, the average MAE across four
prediction tasks on each dataset is used as the comparison result.

This accuracy–scalability tension raises a fundamental question:

Is searching for global dependencies necessary for accurate forecasting in dense, high-dimensional systems?

In response, we formulate the Local Sufficiency Hypothesis: in many real-world dense systems,
the dependency graph is sufficiently rich that an appropriately chosen finite local neighborhood will
almost surely capture the key signals required for prediction. This makes exhaustive global search
not only computationally unnecessary but also potentially noise-amplifying.

We support this principle via two complementary pillars of evidence. First, we provide a probabilistic
analysis showing that under realistic dense-dependency regimes, a bounded local neighborhood
has a high probability of including informative neighbors (Theorem 1; Appendix C). Second, we
corroborate this theoretical insight empirically. Figure 1 (right) displays correlation heatmaps for four
high-dimensional benchmarks, which all exhibit the strong, dense inter-variate correlations that our
hypothesis relies upon. This evidence collectively validates our focus on developing an architecture
centered on local, rather than global, interactions.

Guided by this Local Sufficiency Hypothesis, we introduce VPNet, a principled architecture that
attains strong predictive accuracy while scaling linearly with the number of variates. The model
first employs a patch-level autoencoder, a technique proven effective in recent literature, to generate
robust representations of local temporal patterns. Building on these representations, VPNet rests
on two core ideas. (1) We reinterpret the patch embeddings as a higher-level variate–patch field
organized as a 2D grid over variates and temporal patches. This representation enables the model to
treat cross-variate and temporal structure jointly at a coarser, more robust abstraction level. (2) We
design the VarTCNBlock, a lightweight module that applies efficient depthwise 2D convolutions over
the variate–patch field to capture local spatio-temporal patterns. By restricting computation to local
neighborhoods and using depthwise operations, VPNet achieves linear complexity with the number
of variates. Finally, a variate-wise prediction head maps the refined historical patch representations
to future ones, which are then mapped back to the time domain by the autoencoder’s decoder. As
previewed in 1 (left), this principled design allows VPNet to achieve state-of-the-art performance
across eight forecasting benchmarks, consistently outperforming strong baselines while offering
substantial efficiency gains (see 4.1 for full analysis).

We summarize our main contributions as follows:

• We formulate the Local Sufficiency Hypothesis, providing both theoretical and empirical
evidence to challenge the necessity of global dependency modeling in dense systems.

• We introduce the variate-patch field and the VarTCNBlock, a novel representation and
architecture that operationalize our hypothesis and enable the efficient capture of cross-
variate dependencies with linear complexity.
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• We establish new state-of-the-art results across eight diverse forecasting benchmarks, demon-
strating that VPNet simultaneously achieves superior accuracy and linear scalability, effec-
tively resolving the critical accuracy-efficiency trade-off.

2 PRELIMINARIES

This section fixes the notations and describes the patch-level overcomplete autoencoder used as
input/output projection, so the Method section can focus on the novel components.

Notation and problem formulation. Let X ∈ RB×L×C denote a minibatch of B multivariate time
series samples, where L is the look-back window length and C is the number of variates (channels).
The forecasting objective is to predict the subsequent S time steps, denoted by Y ∈ RB×S×C , from
the history X . We denote the model by fθ and its prediction by Ŷ = fθ(X).

Let the patch length be p ∈ Z+. For simplicity we assume L is divisible by p and define the number of
non-overlapping patches P = L | p. For batch index b ∈ {1, . . . , B}, variate index c ∈ {1, . . . , C},
and patch index i ∈ {1, . . . , P}, the i-th temporal patch is denoted as xb,c,i ∈ Rp.

We adopt the mean absolute error (MAE, L1) as the prediction loss due to its robustness to outliers:

Lpred =
1

B S C

B∑
b=1

S∑
t=1

C∑
c=1

∥∥Ŷb,t,c − Yb,t,c

∥∥
1
. (1)

Patch-level overcomplete autoencoder. To obtain robust, locally informative representations of
non-stationary time series, we employ a patch-level overcomplete autoencoder (Liu et al., 2025) as
the input and output projection module. A shared encoder Enc : Rp → RH and shared decoder
Dec : RH → Rp are defined by

eb,c,i = Enc(xb,c,i) ∈ RH , x̃b,c,i = Dec(eb,c,i) ∈ Rp. (2)

The encoder output is followed by Layer Normalization:

ēb,c,i = LayerNorm(eb,c,i) ∈ RH . (3)

We typically choose an overcomplete latent dimension H > p to provide redundant capacity for
representing complex patch dynamics. The encoder and decoder are implemented as lightweight
MLPs (e.g., two linear layers with nonlinearity) and their parameters are shared across variates and
patches, yielding a universal patch basis. Applying the encoder + LayerNorm to every patch produces
the initial embedding tensor E ∈ RB×C×P×H .

To enforce reconstruction fidelity we include an auxiliary reconstruction loss:

Lrec =
1

BC P

B∑
b=1

C∑
c=1

P∑
i=1

∥∥x̃b,c,i − xb,c,i

∥∥
1
. (4)

The total training objective balances prediction and reconstruction:

Ltotal = Lpred + Lrec, (5)

3 METHOD

Global cross-variate dependency search incurs prohibitive computational and memory costs, while
purely channel-independent models lack sufficient expressive power. Grounded in the local-sufficiency
hypothesis, we introduce VPNet (Variate–Patch Network), a scalable architecture for multivariate
time series forecasting that exploits localized structures without resorting to full global mixing. As
illustrated in Figure 2, VPNet is built upon the patch-level overcomplete autoencoder described in
Section 2 and follows a sequence-to-sequence paradigm operating on patch embeddings. Its core
pipeline consists of four stages: (1) an input projection module that encodes raw series into patch
embeddings via the patch autoencoder; (2) a channelization step that reinterprets patch embeddings as
a variate–patch field to expose cross-variate structure; (3) a stack of VarTCNBlocks that progressively

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐸 = 𝑠𝑡𝑎𝑐𝑘(𝑧1, 𝑧2, … , 𝑧𝑁) Ƹ𝑧𝑁+1, Ƹ𝑧𝑁+2, … , Ƹ𝑧𝑁+𝐻′

Patch-Level
Encoder 𝐸𝜙

Predictor 𝑓𝜃

Patch-Level
Decoder 𝐷𝜓

Patch-Level
Decoder 𝐷𝜓

𝑋past

෠𝑋past
෠𝑋future

Patchify

Adaptive
Normalization

Reconstruction Decode

Patchify

Predicted Patch
Representation

Patch
Representation

ℒrec ℒpred

Shared
Parameter

𝑋future

× 𝑁

Shared
Parameter

Per-variable Flatten

DepthwiseConv

BN+GELU

Pointwise-MLP

ResidualAdd

Channelize

𝑍(0)

𝑍(𝑛)

Figure 2: VPNet overall framework. Inputs are projected by the patch-level overcomplete autoencoder
and channelization to produce Z(0), which is processed by stacked VarTCNBlocks and finally decoded
to produce the forecast.

transform the channelized field through efficient local convolution; and (4) an output projection
module that decodes the refined patch representations into the final forecast.

Design Motivation: The Local Sufficiency Hypothesis. A core design principle of VPNet is that,
in dense systems where many variates are mutually informative, a small local neighborhood along
the variate axis suffices with high probability to include an informative neighbor for any given target
variate. We formalize this intuition in the following theorem; the detailed concentration proof is
deferred to Appendix C.
Theorem 3.1 (High-probability capture of informative neighbors). Fix a target variate. Suppose that
among the remaining C − 1 variates, exactly r variates belong to an information set I ⊂ {1, . . . , C}
(i.e., these r variates are truly informative for predicting the target). Assume the variate ordering is a
random permutation. Let Wk denote a contiguous window of width k centered (or centered as close
as boundary allows) on the target, and define the event

Ek =
{
|I ∩Wk| ≥ 1

}
, (6)

meaning the window contains at least one informative variate. Then

Pr
[
Ek

]
≥ 1− exp

(
− k r

C − 1

)
. (7)

Sketch. See Appendix C.2 for the full derivation. Intuitively, under random permutation the expected
number of informative variates inside Wk is µ = kr/(C − 1); a Chernoff/Poisson-style bound on the
tail yields the stated exponential lower bound.

Corollary 3.1 (practical kernel selection). To guarantee that Wk contains an informative variate
with probability at least 1− δ, it suffices to choose

k ≥ C − 1

r
ln
1

δ
. (8)

This provides a direct, interpretable guideline for initializing the variate-axis kernel width k, which
can then be fine-tuned empirically.

3.1 STRUCTURE OVERVIEW

Input projection. Inspired by AdaPatch, we leverage a patch-level overcomplete autoencoder to
handle potential distribution shifts and to extract local temporal patterns. Concretely, the input time

4
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series X ∈ RB×L×C is partitioned into P = L/p non-overlapping patches of length p. Denote the
i-th patch of batch b and variate c by xb,c,i ∈ Rp. A shared encoder Enc(·) maps each patch to a
high-dimensional latent vector:

eb,c,i = Enc
(
xb,c,i

)
∈ RH , i = 1, . . . , P. (9)

Stacking these latents for all b, c, i yields the initial patch representation tensor E ∈ RB×C×P×H ,
which serves as the input to the subsequent channelization.

Em
b
ed

d
in
g

Patches

…
…
…

…

VPField

Figure 3: (a) Traditional Convolution
(Yellow): Applying convolutional op-
erations directly on the original time
series. (b) Frequency-based 2D Con-
volution (Green): Reconstructing inde-
pendent variates into a two-dimensional
plane based on their frequency character-
istics. (c) Our Method (Purple)

Channelization and the Variate-Patch Field. This rein-
terpretation is central to our method and marks a con-
ceptual departure from prior TCN-based models. As illus-
trated in the figure, while prior works such as ModernTCN
and TimesNet treat the time series as a 2D input with a
single channel or reshape it into a 2D plane based on
periodicity to capture intra-series patterns, our approach
innovatively treats each patch as a holistic unit to con-
struct a high-dimensional Variate-Patch Field (VP-Field).
Specifically, the initial representation E is permuted to
create the channelized variate-patch field Z(0):

Z(0) = Permute(E) ∈ RB×H×C×P . (10)

This permutation recasts the patch embedding dimension
H as the channel dimension for a 2D operator, while the
variates C and patches P form a two-dimensional spatial
grid we term the variate-patch field. By applying convo-
lution directly on this high-level semantic field, we can
simultaneously and efficiently capture both cross-variate
and temporal dependencies.

VarTCNBlocks. The channelized tensor Z(0) is then pro-
cessed by a stack of N VarTCNBlocks, which iteratively
refine the patch representations. The abstract forward
propagation through the stack is defined as:

Z(l+1) = VarTCNBlock
(
Z(l)

)
, l = 0, . . . , N − 1, (11)

Each block operates on the channelized input Z(l) ∈ RB×H×C×P and produces an output of the
same shape, progressively capturing more complex dependencies across both variates and patches.

Output projection. After N blocks the stack produces the context-aware representation Z(N) ∈
RB×C×P×H . We apply a channel-independent prediction head Head(·) to map each variate’s
historical patch sequence to future patch embeddings. Concretely, for each variate c we flatten its
history

ub,c = vec
(
Z

(N)
b,c,:,:

)
∈ RHP , (12)

and a shared per-variate MLP Head : RHP → RHPp produces predicted patch coefficients

ûb,c = Head(ub,c) ∈ RHPp , (13)

which we reshape into predicted future patch embeddings Ẑ ∈ RB×C×Pp×H (here Pp is the number
of predicted patches and the forecast horizon is S = Pp · p). Finally, the shared decoder Dec(·)
maps each predicted patch embedding back to the time domain and we concatenate these patch-level
reconstructions to obtain the final forecast

Ŷ = Concat
Pp

i=1 Dec
(
Ẑ:,:,i,:

)
∈ RB×S×C . (14)

Remarks. The prediction head is channel-independent (shared across variates) but operates on
per-variate flattened patch histories; this design preserves parameter efficiency while allowing each
variate to leverage mixed information aggregated by the VarTCN stack. The decoder is reused from
the autoencoder (weight sharing) to regularize predicted embeddings and improve reconstruction
fidelity.
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3.2 THE VARTCNBLOCK

The VarTCNBlock is the core computational engine of VPNet, designed to efficiently process the
channelized variate-patch field Z(l) ∈ RB×H×C×P . Each block refines these representations by
capturing dependencies across both variates and time, and its design is centered around a residual
connection that wraps two main components: a depthwise convolution for local spatial mixing and a
pointwise feed-forward network for feature transformation.

Depthwise Convolution for Local Mixing.
Motivated by our probabilistic analysis that local interactions are sufficient for capturing salient
signals in systems with dense dependencies, we employ a depthwise 2D convolution over the variate-
patch field. Unlike standard convolution, a depthwise convolution applies a distinct 2D kernel
W(h) ∈ Rkv×kp to each input channel Z(l)

:,h,:,: independently. This operation is formulated as:

Ydw
h = DWConv2D

(
Z

(l)
:,h,:,:, W

(h)
)
, h = 1, . . . ,H. (15)

This step effectively aggregates information from a local neighborhood of size kv × kp on the variate-
patch field, explicitly modeling temporally-local cross-variate dependencies. Crucially, as advocated
in our introduction, this is achieved with a computational cost and parameter count that scale linearly
with the number of variates C, making it exceptionally suitable for high-dimensional forecasting.

Pointwise Feed-Forward Network for Feature Transformation.
Following the spatial mixing, the resulting features Ydw are passed through a normalization layer
and an activation function before being processed by a feed-forward network (FFN). The FFN is
implemented with pointwise (1× 1) convolutions and serves to mix information across the feature
channels at each position on the variate-patch field. It follows an inverted bottleneck structure, first
expanding the channel dimension by a factor of rff and then projecting it back. The full sequence of
operations is:

Yact = GELU
(
BN(Ydw)

)
, Yffn = FFN(Yact). (16)

The FFN module itself consists of two pointwise convolutions, activations, and dropout for regular-
ization. The output of this entire sequence is then added to the block’s original input via a residual
connection:

Z(l+1) = Z(l) +Yffn. (17)
This residual design is essential for stabilizing the training of deep models by allowing gradients to
flow more freely.

4 EXPERIMENTS

In this section, we conduct a comprehensive empirical evaluation to validate the efficacy and efficiency
of VPNet. We begin by benchmarking VPNet against a diverse suite of state-of-the-art models on
several public datasets to establish its overall performance (Section 4.2). Subsequently, we perform
a series of detailed ablation studies to dissect the model and verify the contributions of its core
design principles, particularly the local cross-variate convolution mechanism (Section 4.3). Finally,
we analyze the model’s practical properties, focusing on its computational and memory efficiency
(Section 4.5).

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate VPNet on eight widely-used public benchmarks for long-term time series
forecasting: Weather, Traffic, Electricity, Solar-Energy, and four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2). Detailed statistics for each dataset are provided in Appendix B. We particularly
focus on the high-dimensional datasets (Electricity, Traffic) which contain hundreds of variates,
making them ideal for assessing the model’s ability to handle cross-variate dependencies. All datasets
are partitioned into training, validation, and testing sets following a 6:2:2 ratio for ETT datasets and
7:1:2 for the others. This aligns with prior benchmarks set by (Zhou et al., 2021; Liu et al., 2022).

Baseline Details. To provide a robust comparative analysis, we evaluate VPNet against a carefully
curated collection of strong baselines that together represent the principal modelling paradigms for
long horizon multivariate time series forecasting. This collection comprises KAN based models

6
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exemplified by TimeKAN (2025), MLP centric architectures exemplified by TimeMixer (2024a),
TiDE (2023) and DLinear (2023), Transformer variants designed for long sequence forecasting
exemplified by iTransformer (2024), PatchTST (2023), Pathformer (2024), Crossformer (2023) and
FEDformer (2022), and convolutional approaches exemplified by MICN (2023) and TimesNet (2023a).
Together these baselines span complementary inductive biases and computational tradeoffs, thereby
providing a stringent benchmark for assessing VPNet’s capacity to capture interactions across variates
and to scale to high dimensional settings.

Implementation Details. All experiments were implemented in PyTorch and conducted on a single
NVIDIA A100 40GB GPU. Following standard long-term forecasting protocols, we use a fixed
input sequence length of L = 96 to predict future horizons of S ∈ {96, 192, 336, 720}. For a
comprehensive list of all model hyperparameters and training configurations for each dataset, please
refer to Appendix B.

4.2 MAIN RESULTS ON LONG-TERM FORECASTING

Table 1 reports the long-term forecasting results, with averages summarized in the main paper for
clarity. VPNet achieves the best overall performance, outperforming all baselines on most datasets
and metrics.

On high-dimensional datasets (Weather, Solar-Energy, Electricity, and Traffic), where cross-variate
dependencies are dense, VPNet demonstrates substantial gains. For example, on Electricity, it reduces
MSE by 9.0% compared with iTransformer (0.162 vs. 0.178), and on Traffic, it achieves a 26%
improvement over TimeKAN (0.421 vs. 0.572). These results strongly support our proposed Local
Sufficiency Hypothesis.

On the ETT benchmarks with lower dimensionality, VPNet remains competitive, frequently ranking
first or second. For instance, it outperforms all baselines on ETTm2 and ETTh2, and is only marginally
behind TimeKAN on ETTh1. This consistency across both high-dimensional and low-dimensional
regimes highlights the robustness and general applicability of VPNet without requiring dataset-
specific adaptations.

Table 1: Long-term forecasting results. We average the results across 4 prediction lengths:
{96, 192, 336, 720}. The best performance is highlighted in red, and the second-best is underlined.
Full results can be found in Appendix K.

Models VPNet TimeKAN TimeMixer iTransformer Pathformer PatchTST Crossformer MICN TiDE TimesNet DLinear FEDformer
(Ours) (2025) (2024a) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.238 0.261 0.243 0.272 0.240 0.272 0.258 0.278 0.239 0.263 0.265 0.286 0.264 0.320 0.268 0.321 0.271 0.320 0.259 0.287 0.265 0.315 0.309 0.360

Solar-Energy 0.204 0.207 0.276 0.310 0.216 0.280 0.233 0.262 0.241 0.250 0.287 0.333 0.406 0.442 0.283 0.358 0.347 0.417 0.403 0.374 0.330 0.401 0.328 0.383

Electricity 0.162 0.251 0.197 0.286 0.182 0.273 0.178 0.270 0.182 0.269 0.216 0.318 0.244 0.334 0.196 0.309 0.252 0.344 0.193 0.304 0.225 0.319 0.214 0.327

Traffic 0.421 0.273 0.572 0.372 0.485 0.298 0.428 0.282 0.501 0.299 0.529 0.341 0.667 0.426 0.593 0.356 0.761 0.473 0.620 0.336 0.625 0.383 0.610 0.376

ETTh1 0.434 0.427 0.426 0.431 0.447 0.440 0.454 0.447 0.455 0.429 0.507 0.472 0.529 0.522 0.475 0.481 0.541 0.507 0.458 0.450 0.461 0.458 0.498 0.484

ETTh2 0.356 0.383 0.391 0.409 0.365 0.395 0.383 0.407 0.374 0.395 0.391 0.412 0.942 0.684 0.574 0.531 0.611 0.550 0.414 0.427 0.563 0.519 0.437 0.449

ETTm1 0.376 0.382 0.386 0.398 0.381 0.396 0.410 0.410 0.382 0.386 0.402 0.406 0.513 0.495 0.423 0.422 0.419 0.419 0.400 0.406 0.404 0.408 0.448 0.452

ETTm2 0.270 0.312 0.277 0.322 0.275 0.323 0.288 0.332 0.271 0.314 0.290 0.334 0.757 0.611 0.353 0.402 0.358 0.404 0.291 0.333 0.354 0.402 0.305 0.349

4.3 ABLATION STUDIES

To dissect our model and validate its core design principles, we conduct a series of targeted ablation
studies.

Effectiveness of Cross-variate Convolution. To quantify the impact of our local cross-variate
mechanism, we conduct an ablation on the kernel size kv. We evaluate the model with a range
of kernel sizes: kv ∈ {1, 3, 7, 17, 27}, where kv = 1 represents the channel-independent baseline.
As shown in Table 2, performance improves dramatically when moving from kv = 1 to kv = 3,
confirming that local variate mixing is crucial. However, we observe that further increasing the kernel
size to 7, 17, and beyond offers diminishing returns and can even slightly degrade performance. This
result provides strong empirical validation for our local-sufficiency hypothesis: for dense dependency
systems, a compact local receptive field across variates already contains sufficient auxiliary predictive
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signals. attempting to model wider, quasi-global interactions, validating the probabilistic motivation
outlined in our introduction.

Table 2: Ablation study on the cross-variate kernel size kv. We report the average MSE over all
prediction lengths for each benchmark. The case kv = 1 is the channel-independent baseline. Lower
is better.

VPNET ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic Weather Solar

kv = 1 0.437 0.362 0.375 0.282 0.184 0.443 0.254 0.224
kv = 3 0.435 0.362 0.378 0.275 0.171 0.431 0.250 0.203
kv = 7 0.434 0.355 0.375 0.273 0.167 0.435 0.248 0.204
kv = 17 - - - - 0.162 0.423 0.239 0.204
kv = 27 - - - - 0.160 0.422 0.243 0.204

Effect of variate Reordering. Our model’s reliance on local convolutions suggests that the ordering
of variates could influence performance. To investigate this, we conduct a rigorous experiment
across all eight benchmark datasets. We fix the model configuration to have a small cross-variate
kernel size (kv = 3) and a stack of two VarTCNBlocks, resulting in an effective receptive field of 5
across the variate axis. This constrained setup is designed to be highly sensitive to the local variate
neighborhood. We compare the model’s performance under four distinct ordering strategies: Original
Ordering, Random Ordering, Degree Ordering, and Spectral Ordering (see Appendix I for details).

The results, summarized in Table 3, are counter-intuitive yet illuminating. The model exhibits a
surprising degree of robustness to the variate ordering, as all four strategies yield remarkably similar
performance. This finding suggests that correlation-based sorting methods, which operate by grouping
highly similar variates, may not provide the most effective dependency signals. The dependencies
captured by VPNet appear to be more complex than simple instantaneous correlations, implying that
other factors, such as time-lagged relationships, may play a more critical role.

Table 3: Ablation study on variate reordering strategies. We report the average MSE across four
prediction lengths 96, 192, 336, 720 for each of the eight benchmarks, with a fixed input length of 96.
All models use a fixed configuration (kv = 3, N = 2 layers). Lower is better.

VPNET ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic Weather Solar

Original 0.435 0.362 0.378 0.275 0.171 0.431 0.247 0.205
Spectral 0.436 0.366 0.374 0.275 0.174 0.428 0.246 0.209
Degree 0.436 0.365 0.378 0.276 0.173 0.433 0.247 0.209
Random 0.439 0.362 0.378 0.275 0.171 0.431 0.247 0.205

4.4 LOCAL MODELING MECHANISMS ANALYSIS

To further investigate the efficacy of local cross-variate modeling, we implemented two Transformer-
based variants: LANet (Local-Window Attention) and SANet (Sparse Attention). The quantitative
results across eight benchmark datasets are summarized in Table 4. As shown in the table, while VP-
Net generally outperforms the attention-based variants (particularly on dense datasets like Electricity
and Traffic), the variants achieve competitive performance on datasets with different characteristics,
prompting a deeper analysis of the trade-offs between TCN-based and Attention-based approaches.

Structural Prior vs. Content-Based Addressing. The fundamental distinction lies in the depen-
dency capture mechanism. Transformer-based variants rely on content-based addressing, dynamically
computing attention weights (Softmax(QKT )) to learn instance-specific relationships. Theoretically,
this offers a higher representational ceiling by capturing arbitrary dependencies without geometric
constraints. Conversely, VPNet (TCN-based) enforces a strong inductive bias through fixed convo-
lutional kernels, treating the multivariate input as a topological grid. While this “static” modeling
appears less flexible, our results suggest that this strong structural prior acts as an effective regular-
izer. It leads to superior optimization stability and generalization on dense datasets, whereas fully
data-driven attention mechanisms often struggle with optimization or require larger data regimes to
converge effectively.
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Robustness and Variate Ordering. In the Dense-Dependency Scenario (e.g., datasets such as
Traffic and Electricity with dense correlations and high information redundancy), VPNet exhibits
pronounced robustness to variate ordering. This is because even under random permutations of the
variables, each local neighborhood can still cover multiple subsets of correlated variates. As a result,
in such settings, VPNet serves as a robust and efficient modeling strategy.

In contrast, in the Sparse-Dependency Scenario (e.g., Hetero-Mix or datasets with sparse dependency
structures), variate ordering has a much more significant impact on VPNet’s performance. In these
cases, if the correlation structure among variates is ignored and the ordering is randomly permuted, a
single local receptive field is likely to contain many irrelevant or weakly correlated variates, which
reduces the concentration of informative signals. By adopting correlation-aware or structure-
aware ordering strategies, one can “compress” more useful dependencies into each receptive field,
substantially improving the local signal-to-noise ratio and allowing the convolutional kernels to
enhance VPNet’s performance without increasing the number of parameters.

Table 4: Long-term forecasting performance comparison for horizons of {96, 192, 336, 720}. We
compare three variants: VPNet (Raw), LANet (Local), and SANet (Sparse). The input sequence
length is fixed to 96. The best results are highlighted in bold.

DataSets Weather Solar-Energy Electricity Traffic ETTh1 ETTh2 ETTm1 ETTm2

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

V
PN

et

96 0.157 0.192 0.177 0.178 0.135 0.224 0.384 0.258 0.374 0.386 0.284 0.330 0.313 0.342 0.169 0.244
192 0.207 0.239 0.196 0.206 0.151 0.239 0.406 0.266 0.428 0.418 0.357 0.376 0.362 0.371 0.233 0.288
336 0.258 0.281 0.216 0.219 0.166 0.257 0.429 0.275 0.464 0.439 0.392 0.406 0.385 0.389 0.291 0.327
720 0.330 0.333 0.228 0.225 0.196 0.284 0.466 0.294 0.471 0.465 0.391 0.418 0.444 0.424 0.387 0.387

Avg 0.238 0.261 0.204 0.207 0.162 0.251 0.421 0.273 0.434 0.427 0.356 0.383 0.376 0.382 0.270 0.312

L
A

N
et

96 0.157 0.193 0.185 0.196 0.144 0.230 0.392 0.257 0.377 0.388 0.288 0.330 0.313 0.340 0.177 0.249
192 0.211 0.245 0.194 0.207 0.158 0.243 0.413 0.265 0.430 0.420 0.356 0.377 0.369 0.372 0.243 0.294
336 0.277 0.293 0.216 0.222 0.173 0.259 0.429 0.272 0.468 0.441 0.393 0.407 0.396 0.394 0.300 0.333
720 0.353 0.342 0.225 0.229 0.208 0.291 0.462 0.293 0.485 0.468 0.415 0.431 0.456 0.428 0.393 0.389

Avg 0.250 0.268 0.205 0.214 0.171 0.256 0.424 0.272 0.440 0.429 0.363 0.386 0.384 0.384 0.278 0.316

SA
N

et

96 0.158 0.193 0.183 0.197 0.149 0.233 0.394 0.259 0.376 0.388 0.284 0.329 0.313 0.340 0.175 0.248
192 0.213 0.246 0.194 0.206 0.162 0.245 0.413 0.267 0.430 0.420 0.354 0.377 0.367 0.371 0.241 0.293
336 0.277 0.291 0.217 0.222 0.175 0.259 0.429 0.274 0.468 0.442 0.392 0.407 0.398 0.393 0.301 0.334
720 0.361 0.345 0.227 0.230 0.207 0.288 0.465 0.295 0.486 0.473 0.412 0.430 0.457 0.428 0.392 0.388

Avg 0.252 0.269 0.205 0.214 0.173 0.256 0.425 0.274 0.440 0.431 0.361 0.386 0.384 0.383 0.277 0.316

4.5 MODEL EFFICIENCY ANALYSIS

For practical deployment in high-dimensional forecasting, computational and memory efficiency are
as critical as predictive accuracy. We therefore evaluate efficiency on the two datasets with the largest
number of variates, Electricity (C = 321) and Traffic (C = 862), comparing VPNet with leading
baselines including iTransformer, PatchTST, TimeMixer, Crossformer, and Pathformer. Our analysis
considers the joint trade-off among accuracy (MSE), training time per batch, and GPU memory
usage.

Figure 4 summarizes the results, revealing a clear accuracy–efficiency frontier. VPNet consistently
achieves the most favorable balance, delivering state-of-the-art accuracy at competitive computational
cost. On both datasets, VPNet attains the lowest MSE, demonstrating the effectiveness of its local
cross-variate modeling.

A direct comparison with iTransformer illustrates the difference in scaling behavior. iTransformer
achieves the fastest training times due to its simple design, but its reliance on variate-wise attention
induces quadratic memory scaling. As the number of variates grows from 321 to 862, its peak
memory nearly doubles (+99%, from 2174MB to 4376MB). In contrast, VPNet’s memory footprint
increases by only 67% (from 3308MB to 5520MB), consistent with its linear complexity in the
variate dimension.
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Figure 4: Efficiency comparison on Electricity (C = 321) and Traffic (C = 862). We report mean
squared error (MSE), training time per batch, and peak GPU memory usage for VPNet and baseline
models.

At the opposite extreme, global dependency models such as Crossformer and Pathformer incur
prohibitive costs in both computation and memory, rendering them impractical for large-scale
use. Conversely, TimeMixer achieves strong efficiency but sacrifices accuracy due to its channel-
independent design, underperforming on complex, high-dimensional datasets.

VPNet establishes itself at the accuracy–efficiency Pareto frontier. By grounding its design in The
Local Sufficiency Hypothesis, it delivers both superior forecasting accuracy and scalable efficiency,
making it a practical solution for real-world, large-scale forecasting tasks.

5 RELATED WORK

Channel Independence. Channel independence has emerged as a simple yet effective strategy for
multivariate time series forecasting. The core idea is to model each variate independently, thereby
avoiding the “negative transfer” that may arise from noisy or spurious cross-variate correlations.
PatchTST (Nie et al., 2023) exemplifies this paradigm by combining a patching strategy with a
channel-independent Transformer architecture. Similarly, lightweight models such as TimeMixer
and DLinear (Zeng et al., 2023) have shown that accurate univariate forecasting can achieve strong
performance with high computational efficiency. However, these methods often underperform in
high-dimensional settings where cross-variate dependencies are critical.

Channel Fusion. In contrast, channel fusion aims to explicitly capture dependencies across variates.
Representative approaches include Crossformer (Zhang & Yan, 2023), Pathformer (Chen et al.,
2024), iTransformer (Liu et al., 2024), and CARD (Wang et al., 2024b). While such methods
generally outperform channel-independent models on high-dimensional datasets, their computational
and memory costs grow rapidly with the number of variates, limiting scalability. To address this
challenge, we propose the local sufficiency hypothesis. By focusing on capturing local cross-
variate dependencies, our proposed method reconciles the trade-off between modeling expressiveness
and computational cost. It achieves new state-of-the-art (SOTA) performance while ensuring that
computational complexity scales linearly with the number of variates, making it a practical and
effective solution for high-dimensional forecasting tasks.

6 CONCLUSION

In this work, we revisit the long-standing assumption that global dependency modeling is indispens-
able for high-dimensional time series forecasting. We formalize the Local Sufficiency Hypothesis,
which posits that local cross-variate interactions are often sufficient to retain predictive power while
avoiding the inefficiencies of global mixing. Building on this principle, we introduce VPNet, a new
architecture that leverages a variate–patch field representation and the VarTCNBlock to model local
dependencies with linear scalability. Through comprehensive evaluation on eight public benchmarks,
VPNet achieves new state-of-the-art results. These findings demonstrate that focusing on local
sufficiency provides a principled and scalable solution to the critical accuracy–efficiency trade-off in
multivariate forecasting.
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ETHICS STATEMENT

This research is based on publicly available, anonymized datasets commonly used for benchmarking
in the time series forecasting community. The work focuses on foundational modeling techniques for
general forecasting tasks, such as predicting electricity consumption and traffic patterns. We do not
foresee any direct negative societal impacts or ethical concerns arising from our methodology or its
applications. Our research adheres to the principles of ethical academic conduct.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our results, we provide the following resources.

Code The complete source code for VPNet, along with scripts to run all experiments reported in
this paper, is provided in the Supplementary Materials. The code is also available at this repository:
https://anonymous.4open.science/r/VPNet-6353/.

Data All eight datasets used in our evaluation (Weather, Traffic, Electricity, Solar-Energy, and ETT
benchmarks) are publicly available and can be downloaded from the dataset links provided in the
official TimeMixer (Wang et al., 2024a) source code.
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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized Large Language Models (LLMs) as writing assistants.
The use of these tools was strictly limited to improving the clarity, grammar, and overall style of the
text. No part of the core scientific contributions, including the formulation of the hypothesis, the
design of the model architecture, the implementation of the code, the generation of experimental
results, or the analysis of those results, was produced by LLMs. All suggestions from these tools
were critically reviewed, edited, and manually incorporated by the authors to ensure the final text
accurately reflects our own work and ideas.

B IMPLEMENTATION DETAILS

Dataset Details. This section provides a detailed description of the public benchmark datasets
used for the empirical evaluation of our model in multivariate time series forecasting. For data
preprocessing, splitting, and normalization, we adhere to the standard protocols established in widely-
recognized previous works (Zhou et al., 2021; Wu et al., 2021). A summary of the key statistical
properties of each dataset is presented in Table 5. The evaluation suite includes several standard
benchmarks. The ETT (Electricity Transformer Temperature) collection contains data from two
electricity transformers with 7 variates, recorded at hourly (ETTh1, ETTh2) and 15-minute intervals
(ETTm1, ETTm2) from 2016 to 2018. The Electricity (ECL) dataset contains the hourly power
consumption of 321 clients from 2016 to 2019. The Weather dataset comprises 21 meteorological
indicators from Germany, collected every 10 minutes during 2020. The Traffic dataset documents
hourly road occupancy rates from 862 sensors in the San Francisco Bay Area from 2015 to 2016.
Finally, the Solar-Energy dataset records solar power generation from 137 photovoltaic (PV) plants at
10-minute intervals during 2006.

Experiment Details. All experiments were implemented in PyTorch and conducted on a single
NVIDIA A100 40GB GPU. For model optimization, we employ the Adam optimizer (Kingma &
Ba, 2017) with an initial learning rate of 1× 10−4 and a batch size of 32. To remain consistent with
prior works, we use a fixed look-back window of L = 96. For the core model hyperparameters,
we select the number of VarTCNBlocks N from {1, 2, 3}, the patch length p from {8, 16}, and the
hidden dimension H from {64, 128, 256} based on validation set performance for each dataset. Mean
Squared Error (MSE) and Mean Absolute Error (MAE) are used as the primary evaluation metrics.
For baselines where the experimental settings align with our main study, we directly report the results
from TimeMixer (Wang et al., 2024a). In other cases, we reproduced the baseline results using the
benchmark framework from the Time-Series Library 1.

C PROOFS AND PROBABILISTIC DESIGN RULES

We formalize the probabilistic statement used in the introduction and provide proofs.

Theorem C.1 (Hypergeometric exact probability for zero hits). Let C ≥ 2 be the total number
of variates and suppose that for a fixed target variate there are exactly r “informative” variates

1https://github.com/thuml/Time-Series-Library
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Table 5: Statistics of the benchmark datasets.
Dataset Dim Series Length Dataset Size Frequency Information
ETTh1 7 {96, 192, 336, 720} (34465, 11521, 11521) Hourly Temperature
ETTh2 7 {96, 192, 336, 720} (34465, 11521, 11521) Hourly Temperature
ETTm1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature
ETTm2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature
Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation
Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min Electricity

Table 6: Probability Analysis for Different Parameters

Info. Variate Ratio Probability for Ek

(r/C) k=1 k=3 k=7 k=17
10% 0.095 0.259 0.799 0.999
30% 0.259 0.593 0.996 1.000
50% 0.393 0.777 1.000 1.000
70% 0.503 0.878 1.000 1.000
90% 0.593 0.931 1.000 1.000

among the other C − 1 variates (i.e., 0 ≤ r ≤ C − 1). Consider selecting a subset of k distinct
variates uniformly at random from the C − 1 non-target variates (this models the set of variates
falling into a fixed contiguous window under a uniformly random permutation). Let X be the number
of informative variates in the chosen subset. Then

Pr[X = 0] =

(
C − 1− r

k

)
(
C − 1

k

) . (18)

Proof. There are
(
C−1
k

)
equally likely ways to choose a k-subset from the C − 1 non-target variates.

The number of choices that contain zero informative variates is the number of ways to choose all k
elements from the C − 1− r non-informative variates, which is

(
C−1−r

k

)
. Dividing the favorable

count by the total count yields equation 18.

Corollary C.1 (Exponential upper bound). Under the same notation as Theorem C.1, the zero-hit
probability satisfies

Pr[X = 0] ≤
(
1− r

C − 1

)k

≤ exp
(
− kr

C − 1

)
. (19)

Table 7: Confidence Intervals for Different Parameters

Info. Variate Ratio k=7 k=17
(r/C) 95% 99% 95% 99%
10% [0, 2] [0, 3] [0, 4] [0, 5]
30% [0, 5] [0, 6] [1, 9] [0, 10]
50% [1, 6] [0, 7] [3, 14] [2, 15]
70% [2, 7] [1, 7] [7, 16] [6, 17]
90% [5, 7] [4, 7] [12, 17] [12, 17]
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Proof. Starting from equation 18 we write the ratio form

Pr[X = 0] = Prodk−1
i=0

C − 1− r − i

C − 1− i
.

For each factor we have
C − 1− r − i

C − 1− i
= 1− r

C − 1− i
≤ 1− r

C − 1
,

because the denominator C − 1− i is at most C − 1 for i ≥ 0. Taking the product yields the first
inequality in equation 19. The second inequality follows from (1− x) ≤ e−x applied to x = r

C−1

and exponentiation to the power k.

Corollary C.2 (Design rule for at-least-one hit). If we require that a randomly chosen window of
width k contains at least one informative variate with probability at least 1− δ, i.e.

Pr[X ≥ 1] ≥ 1− δ,

then it suffices to choose k satisfying

k ≥ C − 1

r
ln
1

δ
. (20)

Proof. From Corollary C.1 we have

Pr[X ≥ 1] = 1−Pr[X = 0] ≥ 1− exp
(
− kr

C − 1

)
.

Requiring 1−exp(−kr/(C−1)) ≥ 1−δ is equivalent to exp(−kr/(C−1)) ≤ δ, which rearranges
to equation 20.

Concentration around the mean. Let µ = E[X] = k · r
C−1 denote the hypergeometric mean.

Standard concentration bounds for the hypergeometric distribution (which can be derived from
Hoeffding’s inequality or by coupling to an appropriate binomial distribution) give that for any
0 < ε < 1,

Pr
[
X ≤ (1− ε)µ

]
≤ exp

(
− ε2µ

2

)
. (21)

A corresponding upper tail bound holds:

Pr
[
X ≥ (1 + ε)µ

]
≤ exp

(
− ε2µ

3

)
.

These inequalities quantify that once µ is moderate, the number of informative variates inside a
random window concentrates tightly around µ.

D EMPIRICAL ANALYSIS OF DATASET CHARACTERISTICS

To empirically validate the Local Sufficiency Hypothesis, we analyzed the intrinsic properties of all
benchmark datasets. We focus on three key aspects: (1) Granger Dependency Density, measured
by the ratio of significant Granger Causal edges (p < 0.01, lag=3) after differencing and global
mean removal; (2) Information Redundancy, quantified by Principal Component Analysis (PC1
variance and Effective Dimension Compression Ratio); and (3) Correlation Strength, measured by
the distribution of pairwise Pearson correlation coefficients. The quantitative results are summarized
in Table 8:

• Large-scale datasets with high redundancy. The Solar, Traffic, and Electricity datasets
exhibit distinct characteristics of dense regimes. They possess high effective dimension
compression ratios (> 3.7×) and strong variate correlations. Notably, Electricity maintains
an exceptionally high causal density (89.19%) even after removing global trends, suggesting
a ubiquitous local interaction network. This justifies the superior performance of VPNet on
these datasets, as local kernels can efficiently aggregate the redundant and dense information.
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Table 8: Statistical analysis of dataset characteristics. Granger Density indicates the ratio of
significant causal pairs. PC1 Var denotes the variance explained by the first principal component.
Compression Ratio is the total number of variates divided by the number of components required to
explain 95% variance. Correlation metrics show the percentage of variate pairs exceeding absolute
correlation thresholds. Bold highlights the highest values indicating extreme density.

Dataset Granger PCA (Redundancy) variate Correlation (Pearson |r|)
Density PC1 Var 95% Comps Comp. Ratio Avg |r| > 0.3 > 0.5 > 0.7

Solar 51.87% 91.77% 4 / 136 34.00x 0.9167 100.0% 100.0% 100.0%
Traffic 69.45% 57.67% 202 / 862 4.27x 0.5638 89.92% 66.84% 25.67%
Electricity 89.19% 54.68% 86 / 321 3.73x 0.4893 68.29% 46.37% 32.49%
Weather 64.52% 42.44% 9 / 21 2.33x 0.2956 35.71% 25.24% 20.95%

ETTh1 64.29% 34.39% 5 / 7 1.40x 0.2221 19.05% 9.52% 9.52%
ETTh2 52.38% 43.10% 5 / 7 1.40x 0.3246 42.86% 28.57% 4.76%
ETTm1 47.62% 34.57% 5 / 7 1.40x 0.2243 19.05% 9.52% 9.52%
ETTm2 30.95% 43.08% 5 / 7 1.40x 0.3245 42.86% 28.57% 4.76%

• Lower-dimensional datasets with weaker cross-variate dependencies. Conversely, the
ETT datasets show significantly lower redundancy (Compression Ratio ≈ 1.4×) and weaker
correlations (strong correlations |r| > 0.5 are generally < 10%).

E EVALUATION ON VARIATE ORDERING USING A HETEROGENEOUS
COMPOSITE DATASET

To examine how variate ordering affects local modeling in datasets with heterogeneous dependency
patterns, we constructed a composite dataset named Hetero-Mix by concatenating the variates from
three benchmark datasets—Traffic, Electricity, and Weather—along the channel dimension. Unlike
homogeneous datasets where dense correlations reduce sensitivity to ordering, Hetero-Mix brings
together variables with distinct statistical characteristics, making it suitable for testing how ordering
influences local receptive field models.

We evaluated VPNet and a local-attention variant (LANet) under two ordering conditions: (1)
Clustered, where variates are grouped according to their dataset of origin; and (2) Shuffled, where
all variates are randomly permuted. As shown in Table 9, both models achieve better accuracy under
the Clustered setting. This demonstrates that when correlations vary substantially across groups
of variables, aligning the input ordering with the underlying dependency patterns improves the
effectiveness of localized modeling.

Table 9: Performance comparison on the Hetero-Mix dataset. “Clustered” preserves the original
grouping [Traffic⊕Electricity⊕Weather], while “Shuffled” randomly permutes variates. The results
show that both models benefit from topology-aware ordering (Clustered).

Ordering Setting Horizon VPNet LANet
MSE MAE MSE MAE

Clustered (Ordered)

96 0.345 0.264 0.347 0.264
192 0.368 0.274 0.369 0.274
336 0.390 0.286 0.387 0.284
720 0.435 0.313 0.432 0.314
Avg 0.385 0.284 0.384 0.284

Shuffled (Random)

96 0.349 0.270 0.352 0.268
192 0.369 0.278 0.371 0.275
336 0.393 0.288 0.389 0.286
720 0.440 0.317 0.433 0.314

Avg 0.388 0.288 0.386 0.286
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F STRESS TEST UNDER EXTREME NOISE AND SPARSE DEPENDENCIES

To rigorously evaluate model robustness in scenarios dominated by sparse or long-range cross-
variate dependencies, we conducted a stress test using the Electricity dataset injected with 10×
Gaussian noise (10×σnoise). This setup creates an extremely low signal-to-noise ratio (SNR) regime,
effectively disintegrating dense local correlations. To compensate for the high noise level and capture
dispersed signals, we adjusted the VPNet configuration to use a larger receptive field (Kernel Size=27,
Layers=2).

We tested VPNet using two variable orderings: (1) Clustered, where variates follow their original
dataset indexing; and (2) Shuffled, where the ordering is randomized. Table 10 shows that VPNet
performs consistently better with the original ordering. This indicates that when the signal is weak,
variable orderings that place moderately correlated variates closer together help local models extract
meaningful structure more effectively.

Additionally, the large-kernel configuration allows VPNet to approach the behavior of broader-
receptive-field models, suggesting that increasing the receptive field is a practical adaptation strategy
when dependency patterns become weak or diffuse.

Table 10: Stress test on Electricity + 10× Noise. The model configuration is fixed at [Layers=2,
Kernel=27]. “Ordered” denotes structural prior-based clustering, while “Shuffled” denotes random
permutation. Bold indicates the best performance.

Horizon ElectricityNoise(Ordered) ElectricityNoise(Shuffled)
MSE MAE MSE MAE

96 0.137 0.232 0.148 0.239
192 0.153 0.248 0.161 0.252
336 0.174 0.270 0.178 0.270
720 0.199 0.295 0.224 0.312

Avg 0.166 0.261 0.178 0.268

G VISUALIZATION OF LEARNED DEPENDENCIES AND RECEPTIVE FIELDS

To better illustrate the dependencies learned by VPNet and verify its capability to capture local
cross-variate interactions, we conducted a gradient-based saliency analysis. We computed the
absolute gradients of the prediction output with respect to the input (|∂ŷ/∂X|), averaged over 64
samples for stability.

Methodology. We present three complementary visualizations: (1) a saliency heatmap show-
ing the spatio-temporal receptive field, (2) global variate importance summarizing cross-variate
contributions, and (3) temporal importance reflecting how historical information is utilized.

Analysis. The visualizations reveal dataset-specific dependency patterns, summarized as follows:

• ETTh1: Predominantly Auto-Regressive Behavior. As shown in Figure 5, when pre-
dicting variate 2 at the first step, gradients concentrate almost entirely on the variate’s own
history. Neighboring variates contribute minimally. This aligns with our earlier statistical
findings indicating weak cross-variate correlations in ETTh1. The temporal importance plot
also shows periodic spikes, demonstrating that VPNet captures seasonal patterns even when
cross-variate signals are limited.
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• Electricity: Discovery of Dataset-Specific Couplings. In Figure 6, when predicting
variate 200, the model assigns substantial importance to the history of variate 182, rather
than relying only on auto-regression. This indicates that VPNet can detect meaningful
cross-variate relationships within its receptive field and exploit them for prediction.

• Traffic: Utilization of Local Neighborhood Clusters. In the Traffic dataset (Figure 7),
the prediction of variate 400 activates a wide band of nearby variates. This reflects a
collective neighborhood influence, where VPNet aggregates information from a group of
highly correlated variates to infer near-future behavior, which is consistent with the strongly
correlated structure observed in Traffic.

In summary, these visualizations demonstrate that VPNet adapts naturally to the dependency charac-
teristics of each dataset: it behaves auto-regressively when cross-variate signals are weak (ETTh1),
identifies meaningful pairwise couplings when present (Electricity), and aggregates rich local neigh-
borhoods when the data exhibit strong spatial correlations (Traffic).
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Figure 5: Interpretability Analysis on ETTh1. Visualization for predicting variate 2 at the first
step. The saliency heatmap and variate importance indicate that the model primarily relies on the
variate’s own temporal history, with minimal cross-variate contribution. This is consistent with the
weak inter-variate correlations observed in ETTh1. The temporal importance curve also exhibits clear
periodicity.

H ADDITIONAL EVALUATION ON GIFT-EVAL BENCHMARK

H.1 EXPERIMENTAL SETUP AND IMPLEMENTATION

We acknowledge the recent emergence of comprehensive benchmarks aimed at standardizing the
evaluation of forecasting models, such as the FEV-benchmark (Shchur et al., 2025) and GIFT-
Eval (Aksu et al., 2024). To further assess the generalization capability of VPNet in a unified
evaluation environment, we extended our experiments to the GIFT-Eval benchmark.

To ensure compatibility with the benchmark protocol, we integrated VPNet into the gluonts frame-
work and added a probabilistic projection head to support both point and probabilistic forecasting.
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Figure 6: Interpretability Analysis on Electricity. Visualization for predicting variate 200. The
global variate importance plot shows that variate 182 contributes more significantly than the target
variate itself, demonstrating that VPNet successfully identifies strong and meaningful cross-variate
dependencies within its receptive field.
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Figure 7: Interpretability Analysis on Traffic. Visualization for predicting variate 400. The
heatmap exhibits strong activations across a wide group of highly correlated variates, indicating that
the prediction relies on the collective information from multiple related variables rather than any
single one. This highlights VPNet’s ability to effectively utilize locally correlated patterns in datasets
with rich cross-variate structure.

H.2 PERFORMANCE COMPARISON

We compared VPNet against ITransformer, a state-of-the-art baseline under the GIFT-Eval setup.
The evaluation metric is the Mean Absolute Percentage Error (MAPE).

The results presented in Table 11 show that VPNet achieves competitive performance under a
standardized evaluation pipeline, outperforming ITransformer on 17 out of 33 datasets/settings.
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These findings indicate that VPNet maintains strong robustness and generalization capability across
diverse forecasting tasks, further supporting the effectiveness of its locality-driven modeling strategy.

Table 11: Performance comparison on GIFT-Eval benchmark (Metric: MAPE). Best results are
highlighted in bold. VPNet achieves superior performance in 17 settings, demonstrating robustness
even under univariate input conditions.

Dataset Setting VPNet (Ours) ITransformer Winner
bitbrains_fast_storage/5T/short 2.178 1.689 ITransformer
bitbrains_fast_storage/H/short 3.272 2.962 ITransformer
bitbrains_rnd/5T/short 1.522 1.268 ITransformer
bitbrains_rnd/H/short 3.280 2.535 ITransformer
bizitobs_application/10S/long 0.054 0.065 VPNet
bizitobs_application/10S/medium 0.043 0.047 VPNet
bizitobs_application/10S/short 0.038 0.041 VPNet
bizitobs_l2c/5T/long 0.463 0.537 VPNet
bizitobs_l2c/5T/medium 0.461 0.567 VPNet
bizitobs_l2c/5T/short 0.148 0.174 VPNet
bizitobs_l2c/H/long 0.664 0.670 VPNet
bizitobs_l2c/H/medium 0.602 0.586 ITransformer
bizitobs_l2c/H/short 0.643 0.707 VPNet
bizitobs_service/10S/long 0.420 0.250 ITransformer
bizitobs_service/10S/medium 0.307 0.189 ITransformer
bizitobs_service/10S/short 0.147 0.161 VPNet
ett1/15T/long 0.797 0.787 ITransformer
ett1/15T/medium 0.735 0.749 VPNet
ett1/15T/short 0.641 0.622 ITransformer
ett1/D/short 1.697 1.623 ITransformer
ett1/H/short 0.511 0.506 ITransformer
ett1/W/short 0.882 0.770 ITransformer
ett2/15T/long 0.150 0.156 VPNet
ett2/15T/medium 0.144 0.152 VPNet
ett2/15T/short 0.139 0.162 VPNet
ett2/D/short 0.368 0.464 VPNet
ett2/H/long 0.220 0.219 ITransformer
ett2/H/medium 0.207 0.199 ITransformer
ett2/H/short 0.138 0.139 VPNet
ett2/W/short 0.159 0.292 VPNet
jena_weather/10T/short 0.519 0.416 ITransformer
jena_weather/D/short 0.887 1.120 VPNet
jena_weather/H/short 1.427 1.320 ITransformer

I VARIATE ORDERING STRATEGIES

To investigate the impact of variate arrangement on locality-based architectures, we consider four
ordering strategies. Each strategy reflects a distinct principle for structuring the variate dimension:

• Original Ordering. variates are preserved in the order provided by the dataset. This
ordering reflects any implicit structure imposed during data collection (e.g., spatial layout of
sensors or industry grouping of assets). It serves as a natural baseline.

• Random Ordering. variates are permuted uniformly at random. This destroys any pre-
existing adjacency structure and thus provides a neutrality test. If a model still performs
well under random ordering, it suggests robustness to locality assumptions.

• Degree Ordering. variates are ranked by their aggregate similarity (e.g., total correlation
strength with others). The intuition is that highly connected variates are globally influential,
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and placing them adjacently increases the likelihood that local operators can capture their
dependencies.

• Spectral Ordering. variates are arranged by the coordinates of the Fiedler vector of the
graph Laplacian built from pairwise similarities. This spectral seriation seeks to embed
variates onto a line such that strongly related variates appear contiguously. It provides a
principled way of linearizing high-dimensional dependency structures for local processing.

J EFFECT OF LOOK-BACK WINDOW SIZE

A model capable of capturing long-range temporal dependencies is expected to benefit from longer
historical contexts (Zeng et al., 2022; Nie et al., 2023). To examine VPNet’s ability to leverage
historical information, we conduct an ablation study on the input sequence length L. We evaluate
VPNet against two competitive baselines, iTransformer and TimeMixer, on the high-dimensional
Electricity and Traffic datasets. The prediction horizon is fixed at S = 96, while the input length
varies as L ∈ {48, 96, 144, 192, 240, 336}. Results are reported in Figure 8.

All three models generally improve as the look-back window increases, with lower MSE at larger L.
However, their behaviors differ in how performance scales with context. iTransformer and TimeMixer
exhibit gradual and consistent improvements across the full range of input lengths, indicating a
steady reliance on longer histories. In contrast, VPNet reaches its best performance with substantially
shorter contexts: its error decreases rapidly when L increases from 48 to 144, after which further
gains are marginal. On Electricity, VPNet achieves an MSE of 0.127 at L = 144, outperforming
TimeMixer even at L = 336 (0.133). These results suggest that VPNet is able to extract the most
relevant predictive patterns from moderate-length histories, highlighting its efficiency in utilizing
contextual information without requiring excessively long sequences.
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Figure 8: The effect of look-back window size on forecasting performance (MSE). We compare
VPNet, iTransformer, and TimeMixer on the Electricity (left) and Traffic (right) datasets with a fixed
prediction horizon of S = 96.

K FULL RESULTS

Due to the space limitation of the main text, we place the full results of all experiments in the
following Table 12.

L SHOWCASES

For a qualitative assessment, we visualize the forecasts of a representative variate from the test set
for each dataset (Figures 9, 10, 11, 12, 13, 14, 15, 16). These visualizations illustrate that VPNet’s
predictions consistently align more closely with the ground truth, adeptly capturing complex dynamics
where other models falter.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

M FUTURE WORK

Our findings open several promising avenues for future research. The surprising robustness of
VPNet to variate ordering suggests that the model captures complex, dynamic relationships that
transcend static correlations. A deeper theoretical investigation into the nature of these time-lagged
dependencies would be a valuable contribution. Another compelling direction is the development of
architectures with adaptive locality. While our work shows the efficacy of a fixed local neighborhood,
models that can learn to dynamically adjust the scope of their receptive field for different variates or
layers could unlock further performance gains. Finally, the variate–patch field representation itself
may prove to be a generalizable concept, and exploring its application to other multivariate sequence
modeling tasks (e.g., spatio-temporal forecasting) is a promising direction for future research.

Table 12: Performance comparison on the long-term forecasting task for prediction horizons of
{96, 192, 336, 720} and their average. The input sequence length is fixed to 96. The best and second-
best results on each dataset in each metric are highlighted in bold red and underlined blue fonts,
respectively.

Models VPNet TimeKAN TimeMixer iTransformer Pathformer PatchTST Crossformer MICN TiDE TimesNet DLinear FEDformer
(Ours) (2025) (2024a) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.157 0.192 0.162 0.208 0.163 0.209 0.174 0.214 0.156 0.192 0.186 0.227 0.195 0.271 0.198 0.261 0.202 0.261 0.172 0.220 0.195 0.252 0.217 0.296
192 0.207 0.239 0.207 0.249 0.208 0.250 0.221 0.254 0.206 0.240 0.234 0.265 0.209 0.277 0.239 0.299 0.242 0.298 0.219 0.261 0.237 0.295 0.276 0.336
336 0.258 0.281 0.263 0.290 0.251 0.287 0.278 0.296 0.254 0.282 0.284 0.301 0.273 0.332 0.285 0.336 0.287 0.335 0.280 0.306 0.282 0.331 0.339 0.380
720 0.330 0.333 0.338 0.340 0.339 0.341 0.358 0.347 0.340 0.336 0.356 0.349 0.379 0.401 0.351 0.388 0.351 0.386 0.365 0.359 0.345 0.382 0.403 0.428

Avg 0.238 0.261 0.243 0.272 0.240 0.272 0.258 0.278 0.239 0.263 0.265 0.286 0.264 0.320 0.268 0.321 0.271 0.320 0.259 0.287 0.265 0.315 0.309 0.360

So
la

r-
E

ne
rg

y 96 0.177 0.178 0.234 0.290 0.189 0.259 0.203 0.237 0.202 0.225 0.265 0.323 0.232 0.302 0.257 0.325 0.312 0.399 0.373 0.358 0.290 0.378 0.286 0.341
192 0.196 0.206 0.274 0.309 0.222 0.283 0.233 0.261 0.235 0.245 0.288 0.332 0.371 0.410 0.278 0.354 0.339 0.416 0.397 0.376 0.320 0.398 0.291 0.337
336 0.216 0.219 0.299 0.324 0.231 0.292 0.248 0.273 0.272 0.272 0.301 0.339 0.495 0.515 0.298 0.375 0.368 0.430 0.420 0.380 0.353 0.415 0.354 0.416
720 0.228 0.225 0.295 0.318 0.223 0.285 0.249 0.275 0.255 0.256 0.295 0.336 0.526 0.542 0.299 0.379 0.370 0.425 0.420 0.381 0.357 0.413 0.380 0.437

Avg 0.204 0.207 0.276 0.310 0.216 0.280 0.233 0.262 0.241 0.250 0.287 0.333 0.406 0.442 0.283 0.358 0.347 0.417 0.403 0.374 0.330 0.401 0.328 0.383

E
le

ct
ri

ci
ty

96 0.135 0.224 0.174 0.266 0.153 0.247 0.148 0.240 0.145 0.236 0.190 0.296 0.219 0.314 0.180 0.293 0.237 0.329 0.168 0.272 0.210 0.302 0.193 0.308
192 0.151 0.239 0.182 0.273 0.166 0.256 0.162 0.253 0.167 0.256 0.199 0.304 0.231 0.322 0.189 0.302 0.236 0.330 0.184 0.322 0.210 0.305 0.201 0.315
336 0.166 0.257 0.197 0.286 0.185 0.277 0.178 0.269 0.186 0.275 0.217 0.319 0.246 0.337 0.198 0.312 0.249 0.344 0.198 0.300 0.223 0.319 0.214 0.329
720 0.196 0.284 0.236 0.320 0.225 0.310 0.225 0.317 0.231 0.309 0.258 0.352 0.280 0.363 0.217 0.330 0.284 0.373 0.220 0.320 0.258 0.350 0.246 0.355

Avg 0.162 0.251 0.197 0.286 0.182 0.273 0.178 0.270 0.182 0.269 0.216 0.318 0.244 0.334 0.196 0.309 0.252 0.344 0.193 0.304 0.225 0.319 0.214 0.327

Tr
af

fic

96 0.384 0.258 0.580 0.379 0.462 0.285 0.395 0.268 0.479 0.283 0.526 0.347 0.644 0.429 0.577 0.350 0.805 0.493 0.593 0.321 0.650 0.396 0.587 0.366
192 0.406 0.266 0.550 0.363 0.473 0.296 0.417 0.276 0.484 0.292 0.522 0.332 0.665 0.431 0.589 0.356 0.756 0.474 0.617 0.336 0.598 0.370 0.604 0.373
336 0.429 0.275 0.559 0.363 0.498 0.296 0.433 0.283 0.503 0.299 0.517 0.334 0.674 0.420 0.594 0.358 0.762 0.477 0.629 0.336 0.605 0.373 0.621 0.383
720 0.466 0.294 0.600 0.381 0.506 0.313 0.467 0.302 0.537 0.322 0.552 0.352 0.683 0.424 0.613 0.361 0.719 0.449 0.640 0.350 0.645 0.394 0.626 0.382

Avg 0.421 0.273 0.572 0.372 0.485 0.298 0.428 0.282 0.501 0.299 0.529 0.341 0.667 0.426 0.593 0.356 0.761 0.473 0.620 0.336 0.625 0.383 0.610 0.376

E
T

T
h1

96 0.374 0.386 0.374 0.397 0.375 0.400 0.386 0.405 0.390 0.390 0.460 0.447 0.423 0.448 0.426 0.446 0.479 0.464 0.384 0.402 0.397 0.412 0.395 0.424
192 0.428 0.418 0.416 0.422 0.429 0.421 0.441 0.436 0.437 0.419 0.477 0.429 0.471 0.474 0.454 0.464 0.525 0.492 0.436 0.429 0.446 0.441 0.469 0.470
336 0.464 0.439 0.451 0.443 0.484 0.458 0.487 0.458 0.497 0.445 0.546 0.496 0.570 0.546 0.493 0.487 0.565 0.515 0.491 0.469 0.489 0.467 0.530 0.499
720 0.471 0.465 0.463 0.463 0.498 0.482 0.503 0.491 0.494 0.461 0.544 0.517 0.653 0.621 0.526 0.526 0.594 0.558 0.521 0.500 0.513 0.510 0.598 0.544

Avg 0.434 0.427 0.426 0.431 0.447 0.440 0.454 0.447 0.455 0.429 0.507 0.472 0.529 0.522 0.475 0.481 0.541 0.507 0.458 0.450 0.461 0.458 0.498 0.484

E
T

T
h2

96 0.284 0.330 0.290 0.340 0.289 0.341 0.297 0.349 0.290 0.336 0.308 0.355 0.745 0.584 0.372 0.424 0.400 0.440 0.340 0.374 0.340 0.394 0.358 0.397
192 0.357 0.376 0.379 0.396 0.372 0.392 0.380 0.400 0.372 0.385 0.393 0.405 0.877 0.656 0.492 0.492 0.528 0.509 0.402 0.414 0.482 0.479 0.429 0.439
336 0.392 0.406 0.423 0.435 0.386 0.414 0.428 0.432 0.402 0.416 0.427 0.436 1.043 0.731 0.607 0.555 0.643 0.571 0.452 0.452 0.591 0.541 0.496 0.487
720 0.391 0.418 0.473 0.465 0.412 0.434 0.427 0.445 0.430 0.444 0.436 0.450 1.104 0.763 0.824 0.655 0.874 0.679 0.462 0.468 0.839 0.661 0.463 0.474

Avg 0.356 0.383 0.391 0.409 0.365 0.395 0.383 0.407 0.374 0.395 0.391 0.412 0.942 0.684 0.574 0.531 0.611 0.550 0.414 0.427 0.563 0.519 0.437 0.449

E
T

T
m

1

96 0.313 0.342 0.329 0.366 0.320 0.357 0.334 0.368 0.318 0.349 0.352 0.374 0.404 0.426 0.365 0.387 0.364 0.387 0.338 0.375 0.346 0.374 0.379 0.419
192 0.362 0.371 0.363 0.380 0.361 0.381 0.390 0.393 0.365 0.372 0.374 0.387 0.450 0.451 0.403 0.408 0.398 0.404 0.374 0.387 0.382 0.391 0.426 0.441
336 0.385 0.389 0.390 0.404 0.390 0.404 0.426 0.420 0.401 0.397 0.421 0.414 0.532 0.515 0.436 0.431 0.428 0.425 0.410 0.411 0.415 0.415 0.445 0.459
720 0.444 0.424 0.460 0.443 0.454 0.441 0.491 0.459 0.460 0.432 0.462 0.449 0.666 0.589 0.489 0.462 0.487 0.461 0.478 0.450 0.473 0.451 0.543 0.490

Avg 0.376 0.382 0.386 0.398 0.381 0.396 0.410 0.410 0.382 0.386 0.402 0.406 0.513 0.495 0.423 0.422 0.419 0.419 0.400 0.406 0.404 0.408 0.448 0.452

E
T

T
m

2

96 0.169 0.244 0.174 0.255 0.175 0.258 0.180 0.264 0.168 0.247 0.183 0.270 0.287 0.366 0.197 0.296 0.207 0.305 0.187 0.267 0.193 0.293 0.203 0.287
192 0.233 0.288 0.239 0.299 0.237 0.299 0.250 0.309 0.234 0.291 0.255 0.314 0.414 0.492 0.284 0.361 0.290 0.364 0.249 0.309 0.284 0.361 0.269 0.328
336 0.291 0.327 0.301 0.340 0.298 0.340 0.311 0.348 0.297 0.333 0.309 0.347 0.597 0.542 0.381 0.429 0.377 0.422 0.321 0.351 0.382 0.429 0.325 0.366
720 0.387 0.387 0.395 0.396 0.391 0.396 0.412 0.407 0.386 0.385 0.412 0.404 1.730 1.042 0.549 0.522 0.558 0.524 0.408 0.403 0.558 0.525 0.421 0.415

Avg 0.270 0.312 0.277 0.322 0.275 0.323 0.288 0.332 0.271 0.314 0.290 0.334 0.757 0.611 0.353 0.402 0.358 0.404 0.291 0.333 0.354 0.402 0.305 0.349
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Figure 9: Showcases from ETTh1 by different models under the input-96-predict-96 settings.

𝑎 𝑉𝑃𝑁𝑒𝑡 𝑏 𝑇𝑖𝑚𝑒𝐾𝑎𝑛 𝑐 𝑇𝑖𝑚𝑒𝑀𝑖𝑥𝑒𝑟

Figure 10: Showcases from ETTh2 by different models under the input-96-predict-96 settings.

Figure 11: Showcases from ETTm1 by different models under the input-96-predict-96 settings.

Figure 12: Showcases from ETTm2 by different models under the input-96-predict-96 settings.
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Figure 13: Showcases from Weather by different models under the input-96-predict-96 settings.

Figure 14: Showcases from Solar-Energy by different models under the input-96-predict-96 settings.

Figure 15: Showcases from Electricity by different models under the input-96-predict-96 settings.

Figure 16: Showcases from Traffic by different models under the input-96-predict-96 settings.
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