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Abstract

Membership inference attacks serves as useful tool for fair use of language
models, such as detecting potential copyright infringement and auditing
data leakage. However, many current state-of-the-art attacks require access
to models’ hidden states or probability distribution, which prevents inves-
tigation into more widely-used, API-access only models like GPT-4. In this
work, we introduce N-GRAM COVERAGE ATTACK, a membership inference
attack that relies solely on text outputs from the target model, enabling
attacks on completely black-box models. We leverage the observation that
models are more likely to memorize and subsequently generate text pat-
terns that were commonly observed in their training data. Specifically, to
make a prediction on a candidate member, N-GRAM COVERAGE ATTACK
first obtains multiple model generations conditioned on a prefix of the
candidate. It then uses n-gram overlap metrics to compute and aggregate
the similarities of these outputs with the ground truth suffix; high similari-
ties indicate likely membership. We first demonstrate on a diverse set of
existing benchmarks that N-GRAM COVERAGE ATTACK outperforms other
black-box methods while also impressively achieving comparable or even
better performance to state-of-the-art white-box attacks – despite having
access to only text outputs. Interestingly, we find that the success rate of
our method scales with the attack compute budget – as we increase the
number of sequences generated from the target model conditioned on the
prefix, attack performance tends to improve. Having verified the accuracy
of our method, we use it to investigate previously unstudied closed OpenAI
models on multiple domains. We find that more recent models, such as
GPT-4o, exhibit increased robustness to membership inference, suggesting
an evolving trend toward improved privacy protections1.

1 Introduction

While training data serves a central role in developing modern large language models,
model providers have increasingly withhold critical details of their datasets (Brown et al.,
2020; Touvron et al., 2023b; Jiang et al., 2023). The lack of data provenance is particularly
problematic, as models are often exposed to copyrighted data such as novels during training
(Henderson et al., 2023a; Carlini et al., 2022), which they may regurgitate in their generations
post-deployment (Chen et al., 2024; Biderman et al., 2023a). This has led to multiple lawsuits
from news providers like the New York Times, who assert that these model tendencies
decrease the utility of their protected works (Grynbaum & Mac, 2023; Bruell, 2025).

Membership inference attacks, methods to posit whether or not specific text documents were
in the training data of some model, are increasingly common strategies to audit the training

1We release our code and data at https://github.com/shallinan1/NGramCoverageAttack
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e.g. 50% of words were in 

2-grams found in the original text

Someone must have 
been telling lies about 
Josef K., he knew he 
had done nothing 
wrong and yet,  
one morning of April 
he was arrested.

1. Remove last K words 
of text to be analyzed

2. Generate M new 
diverse completions

3. Compute N-Gram 
Coverage Metrics

4. Aggregate

Someone must have 
been telling lies about 
Josef K., he knew he 
had done nothing 
wrong and yet,  
one morning of April 
he was arrested.

✓ Text seen 
during 
training

✗
Text not 
seen during 
training

or

Works with both open 
and close models! 

Someone must have 
been telling lies about 
Josef K., he knew he 
had done nothing 
wrong but, one 
morning, he was 
arrested.

Figure 1: A high-level overview of N-GRAM COVERAGE ATTACK, a cost-effective, white-box
membership inference attack effective for both open and closed models: (1) attain a short
prefix of the candidate document (2) sample continuations given the prefix from the target
model (3) compare to the original suffix (4) aggregate similarities to infer membership.

data of large language models (Carlini et al., 2020). However, many current methods require
access to the underlying model or logits (Yeom et al., 2017; Mattern et al., 2023; Shi et al.,
2023), limiting their scope to a narrow set of models. Notably, this excludes larger, more
capable, and more popular models like GPT-4 (Achiam et al., 2023) which restrict access to
this information, outputting only model generations.

In this work, we investigate whether membership inference attack can be done with only
the access to sampled model outputs, and if so, whether such an approach can perform
comparable to established white-box methods. We introduce N-GRAM COVERAGE ATTACK,
a family of membership inference attacks based on only the surface-form similarity of model
generations against the input document. Our approach, illustrated in Figure 1, is cost-
effective and applies to black-box models. It involves three steps: (1) sample multiple
reconstructions of the input document given a short prefix (2) measure the similarity of each
reconstruction against the original document’s suffix, and (3) aggregate the similarities to
infer membership.

Our analyses reveal that N-GRAM COVERAGE ATTACK substantially simplifies previous
MIA methods in the black-box setting (Duarte et al., 2024), yet surprisingly performs on-
par or even better than white-box methods that require model loss or token logits. We
also explore the effectiveness of our approach on models’ post-training data, an area under-
explored in the literature. Compared to recent membership inference methods for black-box
models (Duarte et al., 2024), our method is substantially compute-efficient (refer to specific
numbers), and importantly, scales better by increasing the size of repeated sampling. We
additionally collect and test our method on two new datasets for membership inference
and benchmark many new models such as TÜLU. Having verified the accuracy of our
method, we use it to investigate previously unstudied closed OpenAI models on multiple
domains. We find that more recent models, such as GPT-4o, exhibit increased robustness to
membership inference, suggesting an evolving trend toward improved privacy protections.

2 Background and Related Work

In this work, we propose a membership inference method that can work on both closed,
black-box models, and on open-weight models. We briefly summarize prior efforts in mem-
bership inference, memorization, training data extraction, and techniques for protection.

Membership Inference Tracing member data was first proposed in the context of genomic
privacy (Homer et al., 2008; Sankararaman et al., 2009) before later being explored for deep
neural networks (Shokri et al., 2016). For large language models, most previous work utilize
the prediction loss of a candidate sequence, with the intuition that models are likely to have
a lower loss on sequences that have been seen during training. Yeom et al. (2017) use a
simple threshold – the loss itself – while Carlini et al. (2020) additionally use a reference model,
a language model with less memorization, to remove the effect of the intrinsic sequence
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difficulty from the observed loss. While this technique has found widespread use (Mattern
et al., 2023; Mireshghallah et al., 2022; Ye et al., 2021; Fu et al., 2024), it is difficult to ascertain
whether the reference model itself has memorized the sequence. Carlini et al. (2020) instead
normalize sequences by their compressed size (entropy) via the zlib library, while Shi et al.
(2023) propose Min-K%, which uses the log-likelihood of the K% most unlikely tokens as a
membership signal. Zhang et al. (2024b) later extend this by leveraging statistics from the
entire vocabulary distribution to normalize token probabilities; the key intuition is changing
the membership signal from absolute to relative token probabilities.

However, none of these methods work with only model outputs. Fu et al. (2025) demonstrate
that fine-tuning large language models can enable effective membership inference detection;
however, this approach assumes that the model provider permits fine-tuning, besides
requiring supervision. Duarte et al. (2024) introduce an output-only attack which formulates
membership inference as a question-answering task: it paraphrases candidate documents,
then tests model preferences by presenting them alongside the ground truth; if a candidate
was truly trained on, its paraphrases are more likely to be favored above chance. Hisamoto
et al. (2020) demonstrate that n-gram features are effective for membership inference in
sequence-to-sequence models for machine translation.

Memorization There has also been work aimed at identifying memorization of training data
in black-box large language models (Carlini et al., 2022). These output-only approaches
typically either examine whether models can produce verbatim continuations for an input
sequence (Karamolegkou et al., 2023; Zhao et al., 2024; Freeman et al., 2024; Henderson et al.,
2023b), or if models can reproduce certain tokens in documents that are difficult without
memorization (Chang et al., 2023b; Ravichander et al., 2025). Zhang et al. (2024a) even
argue that such approaches could provide training data proofs with controlled false-positive
rates. However, these works typically only focus on identifying a subset of member data
that models can reproduce with high fidelity, whereas membership inference methods like
ours focus on a stricter regime: the distinguishability of all member and non-member data.
There have also been several efforts that aim to uncover memorization evidence, assuming
access to the model’s prediction loss over a sequence (Garg et al., 2024; Ravikumar et al.,
2024). In contrast, our work is based on the fully black-box setting, where we only assume
API-level access to the model.

Considerable prior efforts have also focused on the extraction setting for memorization,
aiming to reveal training data directly from model generations rather than via membership
queries (Carlini et al., 2021; Nasr et al., 2023a; Bai et al., 2024); our work differs as we aim
to determine the membership of any given input rather than just ones that can be elicited
from the model. Considerable work has also sought to prevent the success of any attack to
extract or identify training data from large language models (Siyan et al., 2025; Tang et al.,
2021; Jia et al., 2019). Our work contributes to this growing body of literature by providing
a previously unknown approach to identify membership in large language models.

Protection Methods Privacy-preserving training algorithms such as DP-SGD (Abadi et al.,
2016) provide provable guarantees about the extent of possible memorization. Post-training
methods such as unlearning (Cao & Yang, 2015) can also be used to certifiably “forget”
problematic data which was memorized (Sekhari et al., 2021). However, such theoretical
guarantees can be overly conservative and demand sacrificing too much utility. Instead,
empirical privacy auditing methods (Jagielski et al., 2020; Nasr et al., 2023b; Steinke et al.,
2023), which rely on membership inference attacks, form the basis of most production
privacy evaluations (Song & Marn, 2020). This makes designing reliable and consistent
membership inference techniques critical for privacy evaluations.

3 Method

In this section, we introduce N-GRAM COVERAGE ATTACK, a cost-effective method for
membership inference that only requires model-generated samples without relying on any
model internals like token logits. Below, we formalize the membership inference task (§3.1),
illustrate our framework that leverages n-gram statistics (§3.2), then discuss the design of
scoring function variants that comprises the family of N-GRAM COVERAGE ATTACK.
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Algorithm 1 Membership Inference with N-GRAM COVERAGE ATTACK

Require: Target model Mθ , input text x to test for membership, threshold ϵ, token index k, number of
outputs to sample d, similarity function sim

Ensure: Prediction: Member or Non-member
1: Sample d generations from model Mθ using part of x as the prompt:

{o(i)θ }
d
i=1 ← Mθ(x≤k)

2: Compute the similarities of the generations to the suffix of x unseen in step 1:

S(i)
θ ← sim

(
o(i)θ , x>k

)
, ∀i = 1, . . . , d

3: Aggregate the similarities using agg(x):

Sagg
θ ← agg

(
{S(i)

θ }
d
i=1

)
4: Predict Member if Sagg

θ > ϵ else Predict Non-member

3.1 Membership Inference Task

A language model Mθ is trained on a collection of data D, where each sample x+ ∈ D
denotes a member, and x− /∈ D denotes a non-member. Given some target model Mθ and a
corpus of candidate text documents C, a membership inference attack attempts to determine
C ∩ D: which, if any, samples x ∈ C were used in the training of Mθ .

3.2 N-GRAM COVERAGE ATTACK: Membership Inference using only Model Outputs

The goal of our algorithm is to assess if a model Mθ has likely been trained on a particular
sequence x. We achieve this through approximating how Mθ has memorized a specific
sequence x by empirically measuring how closely the model’s sampled outputs align with
that sequence. Our key intuition is that models should output text that is more similar to data
that they were trained on (member data) than data they were not trained on (non-member
data) (Carlini et al., 2022; Chen et al., 2024). Specifically, we prompt the model multiple
times with a prefix of x and assess how close its outputs are to naturally “regenerating” the
remaining suffix of x.

Formally, N-GRAM COVERAGE ATTACK consists of three steps, detailed below and in
Algorithm 1. First, given some prompt p and a prefix of x as input of size k, x≤k, we sample
d diverse completions with Mθ using standard language modeling (Sample from Target
Model). p will usually contain an instruction prompt to reconstruct text.{

o(i)θ

}d

i=1
∼ Mθ(·|p, x≤k)

We then assess the similarity of the sampled generations o(i)θ to the original suffix of x, x>k,
where sim(x1, x2) computes the similarity between two texts x1 and x2 (higher is better)
(Compute Similarities of Outputs with Original Document):

S(i)
θ ← sim(o(i)θ , x>k), ∀i = {1, . . . , d}

Finally, we condense the d-dimensional vector of scores into a single value using an aggre-
gation function agg(x) : Rd → R. We predict x to be a member if and only if agg(x) > ϵ for
some pre-defined value ϵ (Aggregate).

3.3 N-GRAM COVERAGE ATTACK Function Choices

Our method naturally allows for using different similarity metrics sim(·) and aggregation
functions agg(·) depending on the use-case; we detail these below.

Similarity Metrics We consider three distinct sim(x1, x2) function options to be used with
N-GRAM COVERAGE ATTACK: Coverage, Creativity Index (Lu et al., 2024), and Longest
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Common Substring (LCS) Notably, these are all simple, n-gram coverage metrics, which
are both interpretable and efficient to compute.

Coverage (Cov) quantifies the overlap between two documents x1 and x2 by computing the
proportion of tokens in x2 covered by matching n-grams of at least length L from x1.

CovL(x1, x2) =
∑w∈x2

1
(
∃ n-gram g ⊆ x1, ∥g∥ ≥ L s.t. w ∈ g

)
∥x2∥

∈ [0, 1]

Creativity Index (Cre; Lu et al., 2024) measures textual novelty by penalizing repeated
content from reference materials at multiple N-gram lengths. It sums 1 - coverage over
increasing N-gram sizes, rewarding texts with lower and shorter-span overlaps:

Creativity Index(x1, x2) =
B

∑
L=A

1−CovL(x1, x2) ∈ [0, B− A]

In practice, we use −Creativity Index so higher scores indicate more similarity.

Longest Common Substring (LCS) computes the length of the longest common contiguous
substring between x1 and x2. This can be done on multiple granularities, such as on the
character or word level (LCSC and LCSW). Unlike coverage and creativity index, we do not
include length normalization here.

Aggregation Function We consider four simple agg(x) functions: maximum, minimum,
mean and median. Since false positives – true non-members which can be accurately
reproduced by the model – are unlikely, the max metric is particularly appealing, as it
effectively surfaces the strongest membership signals, even if they are sparse.

4 Experiments

We perform comprehensive experiments across four datasets, multiple model families across
scale, and several baselines, demonstrating that N-GRAM COVERAGE ATTACK is a versatile
and effective attack, despite its simplicity. For all experiments, we perform an initial sweep
with a small 5% validation set to finalize hyperparameters before reporting test set results.
See Appendix §B for more details and §A for additional results on the Pile and Dolma.

4.1 Models

We consider a diverse set of models to attack, which vary in size and model access. For open-
weight models, we include LLaMa 1 (Touvron et al., 2023a), a set of decoder-only language
models with sizes of 7B, 13B, 30B, and 65B respectively released by Meta in February 2023.

We also include a large suite of closed, API-access OpenAI models offering only access
to output texts2, largely understudied for membership inference. We start with GPT-
3.5 Instruct (gpt-3.5-turbo-instruct) (Brown et al., 2020), designed to replace the now-
deprecated text-davinci-003, OpenAI’s first instruction-following model (Ouyang et al.,
2022). We also include two GPT-3.5 Turbo (OpenAI, 2022) models, the first set of chat-specific
OpenAI language models: gpt-3.5-turbo-0125 and gpt-3.5-turbo-1106. All three GPT-3.5
models have a knowledge cutoff of Aug 31, 2021. We also consider GPT-4 Turbo (Achiam
et al., 2023) the follow-up to GPT-3.5 Turbo, GPT-4o (OpenAI, 2024), a contemporary,
flagship OpenAI model released in mid-2024, and GPT-4o mini (OpenAI, 2024), the cost-
efficient, smaller version released shortly after. These all have a cutoff date of late 2023.

Finally, we also consider TÜLU (Wang et al., 2023), a suite of varying-scale, models converted
from base to instruction-tuned variants by training on a curated human + machine-generated
data mixture. We use TÜLU 1 (base models of LLaMa 7B, 13B, 30B, and 65B (Touvron et al.,
2023a) and TÜLU 1.1 (base models of LLaMA-2 7B, 13B, and 70B (Touvron et al., 2023b)).

2Some output limited output text probabilities, but they are not used by existing baselines
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4.2 Datasets

We use a set of five diverse datasets — three existing, and two we construct — to comprehen-
sively evaluate membership inference attacks. While most of the datasets are used to assess
pretraining membership, we also construct a new dataset to assess fine-tuning membership.
See Appendix §D for more details on all datasets and our data creation procedure.

BookMIA (Shi et al., 2023) consists of 512-word snippets sampled from 100 books. Half
of the data comes from famous literature presumed to be in the training corpus of older
OpenAI models like GPT-3.5 (Chang et al., 2023a). The other half is comprised of books
published after 2023. We use the GPT-3.5 family as the target models.

WikiMIA (Shi et al., 2023) consists of snippets from Wikipedia articles written before 2017
and articles written after 2023; for models released in this time span, these are members and
non-members respectively 3. Following prior work (Shi et al., 2023), we use base LLaMa 7B,
13B, 30B and 65B (Touvron et al., 2023a) and GPT-3.5 as the target models.

WikiMIA2024 Hard is a new dataset we construct which builds upon the original WikiMIA
format with two key modifications for more robust evaluation. (1) First, to minimize tempo-
ral distributional differences between members and non-members, we identify Wikipedia
summaries whose content has changed from their version at the end of 2016 to versions
updated in 2024 or later. Following WikiMIA’s core assumption, we treat pre-2017 summary
versions as likely members of model training sets, as these were presumably scraped into
massive pretraining corpora, while non-members are the most recent versions of these same
summaries, edited after most models’ knowledge cutoff dates. By using different versions
of the same articles, we minimize topical differences between members and non-members,
unlike the original WikiMIA, where members and non-members cover entirely different
topics and time periods. (2) Second, our target models include not only GPT-3.5 and the
LLaMa family (as in the original WikiMIA), but now also extend to more recent models
such as GPT-4o and GPT-4, which have knowledge cutoff dates near the end of 2023.

We also note that we filter article pairs for a minimum edit distance (Levenshtein, 1965),
ensuring the newer (non-member) version differs meaningfully from the older (member)
one. This makes the benchmark challenging but not impossible, so that observed model
performance reflects actual memorization capability rather than the inability to detect
imperceptible differences. Finally, we also constrain length variations between versions to
within 20% to avoid spurious length features in members and non-members.

WikiMIA-24 (Fu et al., 2025) follows the original WikiMIA (Shi et al., 2023) collection
methodology with an updated cutoff for non-members; members are still Wikipedia articles
written before 2017, while non-members are now articles written after March 1, 20244. The
target models are the same as WikiMIA2024 Hard.

TÜLU Mix (Wang et al., 2023) is a new membership dataset we construct to assess fine-
tuning membership attack effectiveness. Since most previous work investigates pre-training
membership, we seek to understand how well existing strategies transfer to fine-tuning. The
TÜLU Mix was used to train both the TÜLU 1 and 1.1 suite of models, which are the natural
target models. The authors test a variety of candidate instruction-tuning datasets across
domains, unifying the format before selecting a subset as the best mixture. We use these data
points as members and data from the instruction datasets not-selected as non-members.

4.3 Baselines

We detail the baselines we run for all the membership inference tasks:

3As Duan et al. (2024) note, this collection methodology may result in spurious, temporal distri-
bution shift between members and non-members. However, given that these are among the only
available benchmarks that can be used for closed-access OpenAI models (due to a lack of publicly-
known training data) (Shi et al., 2023), we believe it is important to include them, even with their
known limitations, to enable broader evaluation and comparison.

4As WikiMIA-24 only updates the temporal boundary without modifying the underlying data col-
lection procedure, it likely inherits the same temporal distribution shift vulnerabilities as in WikiMIA
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Model N-GRAM COVERAGE ATTACK White-Box Attacks

Cov. Cre. LCSc LCSw D-C Loss R-Loss zlib MinK

WikiMIA (Shi et al., 2023)
GPT-3.5-0125 0.64 0.63 0.61 0.60 0.55 - - - -
GPT-3.5 Inst. 0.62 0.61 0.58 0.58 0.54 - - - -
GPT-3.5-1106 0.64 0.62 0.61 0.60 0.52 - - - -
LLaMa-7B 0.60 0.59 0.56 0.55 0.48 0.62 - 0.63 0.64
LLaMa-13B 0.62 0.59 0.57 0.54 0.52 0.64 0.63 0.65 0.66
LLaMa-30B 0.63 0 62 0.57 0.58 0.49 0.66 0.69 0.67 0.69
LLaMa-65B 0.65 0.64 0.61 0.58 0.50 0.68 0.74 0.69 0.70

WikiMIA-24 (Fu et al., 2025)
GPT-3.5-0125 0.67 0.67 0.64 0.66 0.48 - - - -
GPT-3.5 Inst. 0.65 0.64 0.62 0.64 0.50 - - - -
GPT-3.5-1106 0.68 0.67 0.66 0.68 0.49 - - - -
GPT-4 0.84 0.82 0.76 0.79 0.56 - - - -
GPT-4o-1120 0.83 0.82 0.77 0.79 0.50 - - - -
GPT-4o Mini 0.73 0.74 0.66 0.69 0.44 - - - -
LLaMA-7B 0.59 0.59 0.60 0.59 0.53 0.67 - 0.67 0.69
LLaMA-13B 0.63 0.63 0.61 0.61 0.50 0.68 0.60 0.69 0.71
LLaMA-30B 0.67 0.66 0.64 0.64 0.48 0.72 0.69 0.72 0.74
LLaMA-65B 0.64 0.65 0.65 0.65 0.50 0.74 0.74 0.75 0.76

WikiMIA2024 Hard
GPT-3.5-0125 0.59 0.56 0.54 0.55 0.47 - - - -
GPT-3.5 Inst. 0.64 0.63 0.61 0.61 0.45 - - -
GPT-3.5-1106 0.58 0.58 0.56 0.57 0.49 - - - -
GPT-4 0.57 0.58 0.55 0.57 0.44 - - - -
GPT-4o-1120 0.55 0.55 0.54 0.52 0.51 - - - -
GPT-4o Mini 0.55 0.53 0.52 0.51 0.43 - - - -
LLaMa-7B 0.55 0.54 0.53 0.52 0.47 0.51 - 0.50 0.52
LLaMa-13B 0.59 0.58 0.53 0.53 0.51 0.53 0.57 0.51 0.54
LLaMa-30B 0.61 0.61 0.55 0.57 0.50 0.56 0.61 0.53 0.60
LLaMa-65B 0.64 0.63 0.59 0.60 0.51 0.57 0.57 0.54 0.58

Table 1: Results for different models and attacks on WikiMIA, WikiMIA-24, and WikiMIA2024
Hard. Bold denotes the best performance in the black-box attacks, while underline denote
the best performance for the white-box attacks. The columns in blue are from N-GRAM
COVERAGE ATTACK, while the columns in gray are loss-based baselines as a reference.

Loss (Yeom et al., 2017) uses the likelihood of a candidate member under the target model
as a proxy for membership; higher likelihood (lower loss) samples are likely members.

Reference Loss (R-loss; Carlini et al. 2020) builds on the naive loss by subtracting the loss
from a reference model – a smaller language model with general language ability and minimal
memorization – to identify loss differences due to memorization rather than fluency.

zlib (Carlini et al., 2020) divides the loss by the compressed file size of the candidate
member using the zlb library. The idea is that more compressible sequences – typically
those with higher redundancy or lower entropy – should naturally have lower loss,

Min-K% (Shi et al., 2023) measures the likelihood of the k% least-likely tokens (outlier
tokens) in the given text under the target model.

DE-COP (D-C; Duarte et al. 2024) formulates membership inference as question-answering
task, where a model is prompted to infer the plausible completion to the input text.
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Model N-GRAM COVERAGE ATTACK White-Box Attacks

Cov. Cre. LCSc LCSw D-C Loss R-Loss zlib MinK

GPT-3.5-0125 0.84 0.85 0.84 0.83 0.84 - - - -
GPT-3.5 Inst. 0.91 0.91 0.92 0.93 0.68 - - - -
GPT-3.5-1106 0.84 0.85 0.83 0.84 0.85 - - - -

Table 2: Results for BookMIA. Bold denotes the best performance in the black-box attacks.
The columns in gray are white-box baselines which cannot be computed for these models.

Model N-GRAM COVERAGE ATTACK White-Box Attacks

Cov. Cre. LCSc LCSw D-C Loss R-Loss zlib MinK

TÜLU-7B 0.79 0.79 0.73 0.74 0.48 0.84 - 0.81 0.84
TÜLU-13B 0.80 0.80 0.74 0.76 0.47 0.87 0.63 0.83 0.87
TÜLU-30B 0.82 0.82 0.76 0.77 0.52 0.87 0.54 0.84 0.87
TÜLU-65B 0.85 0.86 0.80 0.80 0.45 0.92 0.68 0.90 0.92
TÜLU-1.1-7B 0.72 0.73 0.70 0.71 0.47 0.77 - 0.74 0.76
TÜLU-1.1-13B 0.76 0.75 0.71 0.72 0.43 0.81 0.58 0.78 0.81
TÜLU-1.1-70B 0.79 0.78 0.75 0.77 0.45 0.86 0.64 0.84 0.86

Table 3: Results for TÜLU. Bold denotes the best performance in the output-only methods,
while underline denote the best performance for the loss-based methods.

4.4 N-GRAM COVERAGE ATTACK Generation Main Details

An important part of our pipeline is how much of the candidate member to use as the prefix.
In our main experiments, we use 50% of the words from the candidate as the prefix. We also
limit the generation length to be to the number of tokens removed, ensuring our input +
output token budget is always O(n), if the original text is length n. For BookMIA, the final
results are reported with 100 generations per candidate; for everything else, we report with
50 generations due to computational constraints. See Appendix §C for more details.

4.5 Evaluation

Following prior work (Shi et al., 2023; Duan et al., 2024), we evaluate attack effectiveness
using the area under the ROC curve (AUROC), rather than classification accuracy at a fixed
threshold. AUROC provides a threshold-independent measure of how well an attack can
distinguish between member and non-members – higher values indicate stronger attacks.

4.6 Main Results

Our comprehensive set of experiments shown in Table 1 – Table 3 demonstrate that N-
GRAM COVERAGE ATTACK is consistently effective across datasets, beating other black-box
baselines for closed-models, and even performing close to white-box baselines

N-GRAM COVERAGE ATTACK consistently outperforms black-box baselines We find N-
GRAM COVERAGE ATTACK performs better than or equal to the other black-box baseline,
DE-COP, in all datasets. The closest comparison is shown in Table 2 for BookMIA: on the
GPT-3.5 models, both black-box attacks perform well, but our method has a strong improve-
ment over DE-COP on GPT-3.5 Instruct. Everywhere else, DE-COP struggles significantly
behind N-GRAM COVERAGE ATTACK, with near random performance, especially on the
open-weight models like LLaMA 1 and TÜLU in Table 3. We hypothesize that this large
drop-off in performance is due to the naive method assumption that the target model is
a faithful question-answering model, which may not apply to weaker models. Simple
n-gram coverage metrics can perform comparably to white-box attacks Surprisingly, we
find that N-GRAM COVERAGE ATTACK also performs comparatively – or even better – to
white-box attacks across all datasets as well. Specifically, it performs on average 95% as
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well as the white-box baselines on the LLaMA models with WikiMIA in Table 1, and 91%
as well with WikiMIA-24. Furthermore, we find that on WikiMIA2024 Hard, our method
outperforms white-box attacks on all models. Further results on the Pythia and OLMo
models corroborate these results and are in Appendix §A.

Coverage and Creativity consistently outperform LCS We find that in general, the three
n-gram similarity metrics we propose for N-GRAM COVERAGE ATTACK perform well.
However, we find that across datasets, coverage and creativity consistently outperform
the longest common substring, except for one model in BookMIA. We hypothesize this
is because the coverage and creativity metrics 1) explicitly account for multiple matches,
unlike LCS and 2) normalize by length, to contextualize the match length. Creativity and
coverage, perform nearly equally otherwise, with coverage performing better on WikiMIA
and WikiMIAhard 2024, where there are fewer matches in general, and creativity working
better for BookMIA and TULU, which have more positive span matches to disambiguate.

N-GRAM COVERAGE ATTACK is more efficient than black-box baselines We compare
the computational requirements of N-GRAM COVERAGE ATTACK to the existing black-box
baseline, DE-COP (Duarte et al., 2024). Let x be a candidate member of length n. DE-COP
first generates three paraphrases of x, with an input length of ≈ n tokens and an output
length of ≈ 3n tokens. The next step, multiple-choice question-answering, requires 24
generations of input length ≈ 4n and output length 1. The final token budget is ≈ 97n
input and ≈ 3n output or approximately 100n total per sequence. In addition, it requires
access to a powerful paraphraser model like Claude (Anthropic, 2023) for the initial stage,
which further limits accessibility and incurs even more cost. On the other hand, N-GRAM
COVERAGE ATTACK is more flexible, enabling a cost-performance tradeoff. Specifically,
if we use index k to construct a prefix x≤k, we can constrain our generation to be n − k
tokens. With d generations, the total token budget becomes d× n. We also make no use
of external models, only relying on the target model itself for generation. Empirically,
tested on WikiMIA2024 Hard with LLaMA models and d = 50, DE-COP is computationally
expensive, taking on average 2.6× longer than our method despite performing much worse.

Fine-tuning Membership Inference is Effective Table 3 shows the detailed results for
TÜLU. Across all model variants, most attacks, including N-GRAM COVERAGE ATTACK,
can effectively determine membership with high accuracy; the notable exclusion is DE-COP.
We also find the TÜLU 1.1 models display more resilience to attack compared to their
equal-sized TÜLU 1 counterparts. We also find that reference models perform much poorer.

4.7 Ablation

We conduct additional experiments using BookMIA and GPT-3.5-0125 to further explore the
impact of different hyperparameters, with important scaling conclusions.

N-GRAM COVERAGE ATTACK scales with the number of sequences The top of Figure 2
shows how performance scales with different N-Gram overlap metrics from N-GRAM
COVERAGE ATTACK as we increase the number of sequences generated. For all metrics,
scaling the size of the generations increases the attack performance. Intuitively, as we sample
more generations from the model, we obtain a increasingly accurate output distribution
representative of the true model probabilities. We also observe a similar scaling trend in
other datasets, highlighting the versatility of our method.

Given a fixed token budget, requesting the model to regenerate the last 50% of the
sequence is best for performance The middle of Figure 2 shows N-GRAM COVERAGE
ATTACK performance as different proportions of the candidate document are used as the
prefix. This is with a fixed token budget (which we use in main experiments), where the model
can generate only as many tokens as exist in the suffix. Across n-gram overlap metrics, the
best performing proportion is consistently at 50%. While more context is in-general helpful,
since we have a fixed budget, using too large of a prefix limits both the suffix size and the
generation length, which may harm performance.

Temperature near 1.0 is consistently the best We find that a temperature near 1.0 is impor-
tant for the performance of N-GRAM COVERAGE ATTACK across metric. Though it might be
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Figure 2: Scaling of N-GRAM COVERAGE ATTACK performance on BookMIA with differ-
ent n-gram overlap metrics with GPT-3.5-0125 and max aggregation. We vary number of
sequences generated (top), proportion of text used as prefix (mid.), and temperature (bot.).

expected that higher temperatures are in general more favorable, there is an intuitive trade-
off between encouraging diversity to elicit harder-to-surface memorization and maintaining
an accurate representation of the underlying distribution.

5 Conclusion

In this work, we introduce N-GRAM COVERAGE ATTACK, a membership inference attack
that relies solely on text outputs from the target model, enabling attacks on completely
black-box models. We demonstrate on a diverse set of benchmarks that N-GRAM COV-
ERAGE ATTACK outperforms other black-box methods while also impressively achieving
comparable or even better performance than state-of-the-art white-box attacks. We also find
that our method is highly compute-efficient, scales well with increased repeated sampling,
and its versatility allows us to investigate previously unstudied closed OpenAI models.
Our findings reveals the vulnerability of language models, even in a fully black-box setting,
underscoring the need for stronger privacy safeguards for large language models.

Overall, N-GRAM COVERAGE ATTACK provides a practical auditing tool for detecting
problematic memorization, such as PII leakage or copyrighted content reproduction – critical
concerns as models are trained on web-scale data of uncertain provenance. The method’s
efficiency and black-box nature make it valuable for monitoring deployed models and
proactively identifying memorization risks. We hope this work encourages broader adoption
of membership inference testing as part of responsible AI development.
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Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s
transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.
URL https://api.semanticscholar.org/CorpusID:273551589.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, and R. Shokri. Enhanced mem-
bership inference attacks against machine learning models. Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, 2021. URL https:
//api.semanticscholar.org/CorpusID:244345608.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine
learning: Analyzing the connection to overfitting. 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pp. 268–282, 2017. URL https://api.semanticscholar.
org/CorpusID:2656445.

Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Membership inference at-
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A Additional Experiments

We also conduct additional experiments for membership inference attacks on two datasets
and families of open-access models. The same conclusions from the main text hold: N-GRAM
COVERAGE ATTACK performs better than DE-COP and comparatively to the white-box
baselines.

A.1 Models

We use the following models:

Pythia (Biderman et al., 2023b) is a suite of decoder-only models from 70M to 12B parameters
released by Eleuther AI. We use the 1.4B, 2.8B, 6.9B, and 12B models.

OLMo (Groeneveld et al., 2024) is a set of 1B and 7B models released by Ai2. We use the
07-024 checkpoints5. Finally, we also use the SFT and Instruction-tuned variants, which are
further tuned to follow instructions and follow chat-style conversations respectively6.

A.2 Datasets

We use the following datasets:

Dolma (Soldaini et al., 2024) is a three-trillion token English corpus that was used to train
OLMo (Groeneveld et al., 2024). It consists of text from diverse sources including books,
scientific papers, code, and social media. We use the OLMo models as target models, as
they were trained on Dolma. For out-members, we consider the Paloma evaluation suite
(Magnusson et al., 2024), since passages that had an overlap with the Paloma evaluation
suite were deliberately excluded from the Dolma pretraining corpus. We use Dolma-1.7,
as it aligns with these OLMo checkpoints. Members are obtained from a random subset
of Dolma7, while non-members are obtained from the Paloma Dolma-v1.5 subset, which
is dedpulicated against Dolma-1.78. Our test set size is 1800 examples split evenly into
members and non-members (sampled from the two datasets).

The Pile (Gao et al., 2020) is a massive corpus of English text designed for pretraining
language models. Notably, it has been used to train the Pythia models (Biderman et al.,
2023b) and LLama 1 (Touvron et al., 2023a), which become our target models. Pythia
includes both training and test data, sampled from the same distribution independently,
which becomes the gold members and non-members respectively. Previous studies (Duan
et al., 2024) have found this to be a particularly challenging benchmark. Our test set size
is a random subset of 1800 Pile members and non-members from Duan et al. (2024)9, split
evenly.

A.3 Results

Our results are showm in Table 4 and Table 5. First, both tasks remain a challenging
benchmark for all tasks, as performance is relatively low across the board, particularly
with OLMo. N-GRAM COVERAGE ATTACK continues to outperform DE-COP even in this
challenging setting, demonstrating again the strength of using only model generations and
simple n-gram coverage metrics. N-GRAM COVERAGE ATTACK performs comparatively
to the Pythia models, with scores near the loss and MinK baselines. On Dolma, N-GRAM
COVERAGE ATTACK actually performs better in some cases – on OLMo-1B and OLMo-7B
– than all white-box baselines, while performing close to the best-performing loss-based
method, R-Loss, for the final two models.

5https://hf.co/allenai/OLMo-1B-0724-hf and https://hf.co/allenai/OLMo-7B-0724-hf
6https://hf.co/allenai/OLMo-7B-0724-Instruct-hf and https://hf.co/allenai/

OLMo-7B-0724-SFT-hf
7https://hf.co/datasets/emozilla/dolma-v1 7-3B
8https://hf.co/datasets/allenai/paloma/viewer/dolma-v1 5
9https://hf.co/datasets/iamgroot42/mimir
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Our conclusions here echo that in our main experiments: our method, particularly with
coverage and creativity as similarity metrics, is effective across domains, and is comparable
and sometimes even better than white-box attacks.

Model Output-Only Methods Loss-Based Methods

Cov. Cre. LCSc LCSw D-C Loss R-Loss zlib MinK

Pythia 1.4B 0.53 0.53 0.51 0.52 0.50 0.54 0.56 0.53 0.54
Pythia 2.8B 0.54 0.54 0.49 0.50 0.50 0.54 0.58 0.54 0.54
Pythia 6.9B 0.53 0.53 0.50 0.51 0.50 0.55 0.60 0.55 0.55
Pythia 12B 0.54 0.54 0.52 0.51 0.50 0.56 0.62 0.55 0.56

Table 4: Comparison of membership inference attack performance (AUROC) against the
Pythia suite of models on the Pile. Across Pythia model scale, membership inference with
the Pile remains challenging. Bold denotes the best performance in the output-only methods,
while underline denotes the best performance for the loss-based methods.

Model Output-Only Methods Loss-Based Methods Rand
Cov. Cre. LCSc LCSw D-C Loss R-Loss zlib MinK

OLMo-1B 0.54 0.54 0.51 0.50 0.49 0.47 - 0.51 0.45
0.49OLMo-7B 0.54 0.54 0.54 0.51 0.5 0.47 0.53 0.51 0.46

OLMo-7B-SFT 0.52 0.52 0.53 0.51 0.5 0.47 0.53 0.51 0.46
OLMo-7B-Instruct 0.52 0.52 0.52 0.51 0.5 0.47 0.52 0.51 0.46

Table 5: Results for OLMo attacked with the DOLMa corpus. Bold denotes the best perfor-
mance in the output-only methods, while underline denote the best performance for the
loss-based methods.

B Experiments Details

We list further details of our experiments here, including more in-depth descriptions of
loss-based baselines, hyperparemeters, and datasets.

B.1 Implementation Details

We use HuggingFace (Wolf et al., 2019) to compute loss-based baselines. For all generation,
including DE-COP and N-GRAM COVERAGE ATTACK, we use vllm for fast inference (Kwon
et al., 2023).

B.2 Baselines

We list further details of the baselines here, including hyperparemeters.

Reference Loss For reference loss, we use smallest model of the same model family as the
reference for the larger models. For example, for LLaMA 13B, 30B, and 65B, we use LLaMA
7B as the reference model. We do not run this baseline for the smallest model in the family.

Min-K% (Shi et al., 2023) measures the likelihood of the k% least-likely tokens (out-
lier tokens) in the given text under the target model, i.e., Min-K % PROB(x) =
1
E ∑xi∈Min-K %(x) log p (xi | x1, . . . , xi−1), where x is the input text and E is the size of
Min-K %(x) set. A higher score indicates the model assigns unusually high likelihoods even
to these rare tokens, suggesting potential memorization.

We run 6 variants, with K set to 10% to 60% at 10% intervals, run these on our validation set
and pick the best K value before reporting the final test set.
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DE-COP (D-C; Duarte et al. 2024) formulates membership inference as question-answering
task. Given a text passage from a source of interest (e.g., book), the method first synthesizes
a set of QA pairs that ask which passage is a true excerpt from the source, juxtaposing
the original passage against 3 synthetic paraphrases. The test statistics for membership
inference is the accuracy of the target model on these QA tasks—intuitively, a model will
mark high accuracy if the model has been trained on the source of interest. While the
method works for black-box LLMs, it requires a strong paraphraser (e.g., Claude (Anthropic,
2023)).

Following their implementation, we generate paraphrases using a temperature of 0.1 and
with the prompts described in their paper; see Duarte et al. (2024). Since we do not have
API access to Claude, we instead use a competitively capable GPT-4o model (OpenAI, 2024).
For the multiple choice task, we use the same prompts for both closed and open source
models that they list in their paper and on their Github repository10.

B.3 Models

We use the OpenAI API to access models. Not listed in the main experiments, we
specifically use gpt-4-turbo-2024-04-09 for GPT-4. For GPT-4o and 4o-mini, we use
gpt-4o-2024-04-09 and gpt-4o-mini-0718 respectively.

B.4 Datasets

BookMIA we select a random subset of 494 random book snippets from BookMIA for
testing, due to extreme computational cost of the baseline and the cost of OpenAI models.

WikiMIA we select a random subset of 497 random article sumamries from WikiMIA testing,
due to extreme computational cost of the baseline and the cost of OpenAI models.

C N-GRAM COVERAGE ATTACK Details

We list further details of our method N-GRAM COVERAGE ATTACK here.

C.1 Method Parameters

For our main generations, we use nucleus sampling with a temperature of 1.0 and top p=0.95.
As mentioned above, we also constrain the max length of our generations to be the exact
length (in tokens) of the suffix. For our aggregation metric, we use max in all experiments,
as we find it to work the best in our small validation sets.

C.2 Prompts

We list the final prompts which we use for our datasets in Table 6. For TULU, we do not use
a prompt; we set the prefix to be the first user turn in chat, and allow the model to generate
the full completion without any part of the ground truth response as context.

D Dataset Construction

We detail our steps to construct our additional datasets released in this work.

D.1 WikiMIA2024 Hard

We use the Wikimedia API to scrape random articles from Wikipedia; we filter out stubs,
lists, and disambiguous pages. Next, we check to see 1) the page existed Dec 31, 2016 and
2) if there exists an edit in 2024 or later; if not, we discard. Next, we obtain the summaries

10https://github.com/LeiLiLab/DE-COP
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Prompt Templates for N-GRAM COVERAGE ATTACK

BookMIA

You will be shown a series of passages from famous literary works. After these examples,
you will receive a prefix from another passage and be asked to complete it based on
the text of a famous work. Provide only the continuation for the last given prefix
without any extra commentary, formatting, or additional text.

Complete the prefix: {prefix}

WikiMIA/WikiMIA-24/WikiMIA2024 Hard

Continue the generation as closely to verbatim as possible.

{prefix}

Pile and OLMo

Continue the text: {prefix}

Table 6: Prompts used for N-GRAM COVERAGE ATTACK across tasks. The {prefix} place-
holder indicates where the input text is inserted.

of the page and check if 1) both the old and new version are at least 25 words long 2) The
Levenshtein Edit Distance is above 0.5 (to ensure that there are sufficient differences and
3) The texts are no more than 20% different in their lengths. Following Shi et al. (2023), we
keep only the first 256 words of the Wikipedia summary.

We identify and scrape 27000 Wikipedia pages which match the first criteria (existing in
2016, and having a valid edit) in approximately 3 hours. After deduplication and filtering
for length and edit distance, we are left with 1040 instances, of which we randomly sample
1000. Overall, our final dataset consists of 2000 items, split evenly between members and
non-members11.

D.2 TÜLU Dataset

TÜLU (Wang et al., 2023) is a collection of instruction-tuning datasets. We construct an MIA
dataset by taking examples from the TÜLU Mix and examples from the datasets which were
tested but not included; the full list is enumerated in Wang et al. (2023) and in Table 8. We
use only the first-turn of these datasets.

We first attempt to randomly sample from both sets to create the dataset. However, the
lengths are not very similar so perform binned sampling to ensure they are more even in
length. First, we discard the bottom 5% shortest and top 5% longest sequences in both
members and non-members to get rid of extreme responses. Next, we set k = 10 bins,
evenly-space them, and sample from each dataset evenly in each bin to ensure that our
datasets lengths are similar, and avoid spurious length correlations.

The statistics before and after pruning are shown in Table 7. Overall, our test set composition
924 members (from TÜLU), and 928 non-members from the other instruction datasets. Exact
splits from each dataset is shown in Table 8

11We explore only Wikipedia in this case, but we could also construct a similar bookMIA 2024 set
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Length Type Original After Sampling

Member Nonmember Member Nonmember

User Length 39.6 29.5 34.2 32.1
Response Length 27.9 25.2 26.5 25.1
Total Length 67.5 54.7 60.8 57.3

Table 7: Length Statistics Before and After Sampling for More Length Matching

Member Nonmember

Category Count Category Count

GPT-4 Alpaca 133 Baize 197
OASST1 133 Self Instruct 201
Dolly 133 Stanford Alpaca 201
Code Alpaca 133 Unnatural Instructions 162
ShareGPT 133 Super NI 163
Flan V2 133
CoT 126

Table 8: Member and Nonmember Dataset Representation
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