Visual Backtracking Teleoperation: A Data
Collection Protocol for Offline Image-Based RL

David Brandfonbrener* Stephen Tu' Avi Singh' Stefan Welker!
Chad Boodoo' Nikolai Matni'-f Jake Varley'
Abstract

We consider how to most efficiently leverage teleoperator time to collect data for
learning robust image-based value functions and policies for sparse reward robotic
tasks. To accomplish this goal, we modify the process of data collection to include
more than just successful demonstrations of the desired task. Instead we develop
a novel protocol that we call Visual Backtracking Teleoperation (VBT), which de-
liberately collects a dataset of visually similar failures, recoveries, and successes.
VBT data collection is particularly useful for efficiently learning accurate value
functions from small datasets of image-based observations. We demonstrate VBT
on a real robot to perform continuous control from image observations for the
deformable manipulation task of T-shirt grasping. We find that by adjusting the
data collection process we improve the quality of both the learned value functions
and policies over a variety of baseline methods for data collection. Specifically,
we find that offline reinforcement learning on VBT data outperforms standard be-
havior cloning on successful demonstration data by 13% when both methods are
given equal-sized datasets of 60 minutes of data from the real robot.

1 Introduction

A common approach to control from im-
ages is to collect demonstrations of task
success and train a behavioral cloning
(BC) agent [1, 2, 3]. This can lead to poli-
cies that are able to succeed on many tasks,
particularly when mistakes do not cause
the policy to move too far from the dis-
tribution of state-action transitions seen in
the dataset of successful demonstrations.
But, for many tasks (like T-shirt grasping)
a mistake will take the policy out of this
distribution and then the learned BC pol-
icy will fail to recover [4].

Such failures occur in part because a
dataset of only successes does not contain
enough information to recognize failures
or learn recovery behaviors. To remedy
this issue, we propose a novel data col-
lection method called Visual Backtracking

1] €
‘B

Recover Successful-Grasp Successful-Lift

! fLEVLE
s

Approach

Figure 1: An illustration of our VBT method on a T-
shirt grasping task. The method asks the teleoperator to
demonstrate failure (red), recovery (blue), and success
(green) within each trajectory. This provides the neces-
sary coverage of failure and recovery to learn accurate
value functions and robust policies while also prevent-
ing overfitting by ensuring that failures and successes
are visually similar except for the task-relevant details.

*New York University, TRobotics at Google, ¥University of Pennsylvania

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Teleoperation (VBT). Specifically, VBT leverages the teleoperator to collect visually similar fail-
ures, recoveries, and successes (Fig. 1).

VBT data collection is designed to combine well with offline reinforcement learning (OffRL) rather
than BC. VBT data contains the necessary coverage of the state action space to learn accurate value
functions as well as recovery behaviors. Then OffRL can leverage sparse rewards to automatically
emulate the advantageous actions (including recovery behaviors) while avoiding the sub-optimal
actions that led to the initial task failure.

It is crucial to the VBT method that the failures, recoveries, and successes are visually similar.
Without this visual similarity, the OffRL learner can overfit to non-task-relevant elements of the
image such as background clutter, leading to useless value functions. To easily maintain visual
similarity, VBT collects each of failure, recovery, and success within the same trajectory (Fig. 1).
Thus, VBT avoids overfitting, even on small, image-based datasets, by ensuring that differences
between observations of failure and success are task-relevant.

Concretely, our contributions are:

1. We propose the novel VBT protocol for data collection to leverage human teleoperation to
collect image-based datasets for use with OffRL. VBT resolves the two main issues with
naive methods: (a) lack of coverage of failures and recoveries and (b) overfitting caused by
visually dissimilar failures and successes.

2. We discuss how and why VBT can enable better policy learning via learning more accurate
@ functions and present empirical evidence of the improvement in) functions learned
from VBT data compared to several baselines for data collection.

3. We present real robot results on a deformable grasping task to demonstrate the effectiveness
of VBT data. When training from scratch on just one hour of robot time for data collection
and image-based observations, a policy trained with OffRL on VBT data succeeds 79% of
the time while BC trained on successful demonstrations has a success rate of 66%.

A detailed discussion of related work can be found in Appendix A, and a detailed discussion of the
motivation behind our method can be found in Appendix B. For conciseness, we will refer to the
estimates of Q™ and V™ learned by the critic of an OffRL algorithm like IQL [5] as @) and V.

2 Our Method: Visual Backtracking Teleoperation (VBT)

Our main contribution is a novel method for data collection called Visual Backtracking Teleoperation
(VBT). This method is particularly suited to collecting small image based datasets. The main idea
is that in order to learn useful () functions and robust policies, we need a dataset that contains
failures and recoveries as well as successes. Moreover, when learning from visual inputs we need
the failures and recoveries to be as visually similar to the successes as possible to prevent overfitting
and to encourage () functions and policies to use only the task-relevant information in the images.

Explicitly, VBT data collection consists of three steps for the teleoperator within each trajectory:

1. Failure: the teleoperator first fails at the desired task.
2. Recovery: the teleoperator recovers from the failure and begins to attempt the task again.

3. Success: the teleoperator successfully finishes the task.

The data is labeled with a sparse reward of 1 for the final transition and a small penalty otherwise.

VBT is a general recipe that can be applied to any sparse-reward task that has well-defined failure
modes and is amenable to teleoperation. The failure modes need not be unique and the data could
consist of several different types of failures. For our example task of deformable grasping these
steps can be implemented as depicted in Fig. 1.

Compared to a dataset that contains only demonstrations of success, VBT contains better coverage
of failure and recovery behaviors. As explained in Appendix B, this coverage is necessary to learn
robust policies capable of recovery and () functions that can recognize failure.

Compared to a dataset that naively mixes failures and successes that are collected separately, VBT
has the benefit of visually similar failures and successes. As explained in Appendix B, this prevents

the learned (@ functions and policies from overfitting based on visual details that are not task-relevant
and instead forces the models to learn the task-relevant features that can generalize better.

3 Experimental Setup: baselines

The full details about our experimental setup can be found in Appendix C, here we define the base-
lines for our experiments. To understand the performance of VBT, we collect several different base-
line datasets of robotic T-shirt grasping by human teleoperators. Each dataset contains 60 minutes
of data from the real robot which equates to approximately 10, 000 steps in the environment.

Success demonstrations (Success): The success dataset consists of demonstrations of task suc-
cess. These episodes demonstrate efficient successful executions of the task with minimal recovery
behaviors collected by a human teleoperator instructed to complete the task successfully.

Success mixed with failures and recoveries (Coverage+Success): This dataset is a mixture of
two datasets containing 30 minutes of robot data from each one. The first is the Success dataset
described above. The second is a dataset containing repeated failures and recoveries and intended
to provide coverage of task-relevant failure and recovery behaviors. Importantly, the coverage and
success trajectories are collected independently.

Success mixed with learning from play (LfP+Success): This dataset is also a mixture of two
datasets containing 30 minutes of robot data from each one. The first is again the Success dataset.
The second is a learning from play [6] dataset which contains data of the robot demonstrating rich
interactions such as rolling lifting, dragging, and pushing, between the robot arm and a variety of
different objects beyond the T-shirt.

Visual Backtracking Teleoperation (VBT-Ours): Each episode in this dataset demonstrates fail-
ure, then recovery, and then task success as described in Section 2.

4 Experimental Results

We now present experimental results on our deformable grasping task that attempt to answer:

1. Are) functions trained on VBT data more accurate than those trained on other datasets?

2. Are policies trained on VBT data more successful than those trained on other datasets?

Failure Recovery Success
(missed grasp) (open gripper) (grasp)
Y

)

I

0.9
Emm Success Q

|
. . I
v : | ‘ I Success V
208 Coverage+Success Q
2 ‘ ‘ ‘ ‘ Coverage+Success V
mmm | fP+Success Q
0.7 I LfP+Success V
== VBT Q
I VBTV
0.6 -

Missed Grasp Open Gripper Grasp

g
=]
~

4
©

1

]

1

1
Los E (b) Visualization of the average () and V' values at each
307 i ot rang bataset of the three key steps highlighted in Fig. 2a across a
i coverage+success held-out test set of 35 trajectories that are all similar
06 ! \LIET*S“CC“S to the one in subfigure (a). Error bars show standard
0.5 ! error. Note that VBT has much lower @ than V' for the
0 20 40 60 80 100 missed grasp, while the baseline datasets have much

Step
. . . . lower @ than V' for the open gripper, meaning the VBT
(a) Evaluation of various @ functions on a single held y,1ue functions are more accurate.

out evaluation trajectory that is not seen during training.
The trajectory consists of a failure followed by recovery
and a successful grasp. Notice that the VBT-trained @
function is the only one to drop precisely at the point of
the missed grasp instead of the open gripper action that
is necessary for recovery.

Figure 2: Visualizations of () functions trainde with IQL on various datasets.

4.1 VBT data leads to improved value functions

To see the improvement in () functions when training on VBT data we present examples of the
learned @ functions on representative trajectories. From these examples we show that training)
functions on VBT data resolves each of the issues raised in Section B. Namely, the () functions
trained on VBT data (1) correctly identify failures while those trained on Success data do not and
(2) resolve the overfitting issues that can arise when using Coverage+Success data.

First, we will show how () functions trained on VBT data correctly identify failures and recoveries.
To do this we illustrate the () functions trained on Success, Coverage+Success, LfP+Success and
VBT data on a single trajectory that contains failure, recovery, and success in Fig. 2a. As explained
in Section B, the Success dataset does not provide sufficient information to understand failures.
As a result, the @) function trained on Success does not use the image observation to recognize
failure. Instead it uses the proprioceptive state to correlates “gripper closed and moving up” with
higher values regardless of whether the shirt is in hand. Training on VBT data resolves this issue
by forcing the () function to attend to the information in the image to recognize when a failure has
occurred. Thus, the @ function trained on VBT drops precisely when the missed grasp happens.

To ensure that these results generalize beyond this single trajectory, we compute averages of the
relevant value functions across a held-out test of VBT-style trajectories. The results are shown in
Fig. 2b. The key observations are that as in Fig. 2a, the value functions trained on VBT correctly
identify that the () value of the missed grasp is substantially lower than the V' value of the state
from which the grasp occurs. This means that the OffRL algorithms using these value functions will
correctly learn to avoid missed grasps. In contrast, training on any of the baseline datasets leads to
@ values that are above the V' value for the missed grasp (meaning they will learn to miss). And
similarly, training IQL on the baseline datasets yields () values for the recovery behavior that are
substantially below the V' values while training on VBT does not.

An evaluation of the overfitting problems when using Coverage+Success is in Appendix D.

4.2 VBT data leads to improved policies

To measure the impact of switching to VBT data on policy performance we perform an AB test.
Specifically, we train policies using each of the three learning algorithms (BC, AWAC, IQL) on each
of the four types of datasets (Success, Coverage+Success, LfP+Success, VBT-Ours), but exclud-
ing BC on the datasets that contain episodes that do not terminate in success (Coverage+Success,
LfP+Success). For the AB test, each episode a policy is chosen at random and executed until either
the policy sends the “terminate” action or the maximum number of steps per episode is reached.
Success is determined by the majority vote out of three human labelers based on the final image in
the episode. The randomness of the AB test ensures a valid comparison between all of the trained
policies. Results are reported in Table 1.

There are several takeaways from these results: Dataset Policy Task Success
Success BC 66 + 4%
1. Training IQL on VBT outperforms stan- Success AWAC 67+ 3%
dard BC on Success data by 13% Success IQL 69 + 3%

and outperforms IQL on Success data

by 10%. These are significant gains, Coverage+Success ~ AWAC 52 & 4%

Coverage+Success IQL 64 + 3%

especially given that we are training

each policy from scratch on very small ~ LfP+Success AWAC 62+ 4%
datasets with image-based observations. ~ LfP+Success IQL 58 + 4%
2. Due to overfitting, OffRL algorithms VBT-Ours BC 73+ 3%
trained on Coverage+Success and VBT-Ours AWAC 73+ 3%
LfP+Success underperform those same VBT-Ours IQL 79 + 3%

algorithms trained on Success alone.

3. Even BC on VBT data outperforms BC
on Successes for this task since training
BC on VBT leads to retrying behaviors. OffRL provides further benefits beyond BC by
effectively filtering out the suboptimal actions that are present in VBT data.

Table 1: Results of an AB test of 1437 total
episodes. Error bars report standard error.

The discussion section is deferred to Appendix E

References

[1] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NIPS, 1988.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[3] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning, pages 991-1002. PMLR, 2022.

[4] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627-635. JIMLR Workshop and
Conference Proceedings, 2011.

[5] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

[6] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine,
and Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pages
1113-1132. PMLR, 2020.

[7] Stefan Schaal. Learning from demonstration. Advances in neural information processing
systems, 9, 1996.

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

[9] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[10] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning with-
out exploration. In International conference on machine learning, pages 2052-2062. PMLR,
2019.

[11] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[12] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforce-
ment learning or behavioral cloning? In Deep RL Workshop NeurIPS 2021, 2021. URL
https://openreview.net/forum?id=iQibgAN7mT.

[13] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

[14] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-
dagger: Interactive imitation learning with human experts. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8077-8083. IEEE, 2019.

[15] Ajay Mandlekar, Danfei Xu, Roberto Mart’in-Mart’in, Yuke Zhu, Li Fei-Fei, and Sil-
vio Savarese. Human-in-the-loop imitation learning using remote teleoperation. ArXiv,
abs/2012.06733, 2020.

[16] Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S Brown, Daniel
Seita, Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. Lazydagger: Reducing con-
text switching in interactive imitation learning. In 2021 IEEE 17th International Conference
on Automation Science and Engineering (CASE), pages 502-509. IEEE, 2021.

[17] Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, Karthik Dharmarajan, Brijen Thanan-
jeyan, Pieter Abbeel, and Ken Goldberg. Fleet-dagger: Interactive robot fleet learning with
scalable human supervision. arXiv preprint arXiv:2206.14349, 2022.

[18] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learn-
ing. In International Conference on Machine Learning, pages 1042—1051. PMLR, 2019.

[19] Adrian Wong, Andy Zeng, Arnab Bose, Ayzaan Wahid, Dmitry Kalashnikov, Ivan Krasin, Jake
Varley, Johnny Lee, Jonathan Tompson, Maria Attarian, Pete Florence, Robert Baruch, Sichun
Xu, Stefan Welker, Vikas Sindhwani, Vincent Vanhoucke, and Wayne Gramlich. Pyreach

[20]

[21]

[22]

[23]

- python client sdk for robot remote control. https://github.com/google-research/
pyreach, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, An-
dreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX,
2020. URL http://github.com/google/flax.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770-778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

A Related Work

Our work falls into the broader category of learning from demonstrations [7]. But, rather than taking
a more traditional approach of BC from demonstrations of success [1, 2, 3, 8], we propose a novel
method for collecting demonstrations of failure and recovery as well as success. The inclusion of
failures in our dataset leads us to use OffRL [9, 10] to ensure that we do not imitate the failures.
Specifically, we use the IQL [5] and AWAC [11] algorithms for OffRL. Some theoretical motivation
for the use of OffRL rather than BC when learning from suboptimal data can be found in [12].

The insight that observations of failures is useful for policy learning has been made before in work
on using success detectors to compute rewards in RL [13]. In contrast, VBT does not attempt to learn
an explicit success detector, but provides a mechanism for collecting data that is especially useful for
learning policies by capturing the salient differences between failure and success in visually similar
observations.

While we consider a setting where training happens entirely offline (i.e., the data collection step is
separated from the policy learning), there is a related line of work that collects examples of failures
and recoveries by moving to an interactive setting where actions from partially trained policies are
executed on the robot and judged by the human teleoperator. In particular the DAgger line of work
exemplifies this pattern [4, 14, 15, 16, 17]. In contrast, VBT operates completely offline and does
not require the teleoperator to interact with the learning process or to deploy learned policies on the
robot during training.

VBT also is particularly suited to efficiently learn image-based value functions for sparse reward
tasks. This capability could be especially useful in architectures like SayCan [2] that require image-
based affordances for a variety of manipulation tasks, and it is an interesting direction for future
work to use VBT as a component in training such larger systems.

B Motivation Success Only Coverage + Success

VBT is designed to solve two issues

that arise from simpler data collection Key

methods: (1) lack of coverage of fail- A Initial states

ure and recovery behaviors, and (2) ®

overfitting i.ssues. that a{ise in the low- > L _/ Bl i

data and high-dimensional observa-

tion setting. Here we describe both LfP + Success VBT - Ours oo

of these issues in more detail before trajectories

explaining how VBT resolves them. A
Agent

B.1 Coverage \Juring eval)

of failure and recovery /

Any offline learning algorithm will
be fundamentally limited by the qual-
ity of the dataset. We can only ex-
pect the algorithm to reproduce the
best behaviors in the dataset, not to
reliably extrapolate beyond them. So,
when collecting datasets for offline
learning of value functions and poli-
cies, we want to ensure sufficient
coverage of the relevant states and ac-
tions. We argue that for sparse reward
robotics tasks this requires including failures and recoveries in the dataset.

Figure 3: An illustration of each of the four types of datasets
that we consider in a gridworld environment with a sparse
reward for reaching the green goal. The Success Only
dataset contains two successful trajectories. The Cover-
age+Success and LfP+Success datasets each contain one
success and one failure. Our VBT dataset contains one tra-
jectory that fails, then recovers, and then succeeds. Full de-
scriptions of the datasets are in Section 3.

Value functions require coverage. Most OffRL algorithms involve estimating the () and V' value
functions of a learned policy 7 that is different from the policy (in our case the teleoperator) that
collected the dataset. Explicitly, letting v € [0, 1) be a discount factor and 7 be the reward function
they estimate Q7 (s,a) = Eﬂ[zzo vir(st,ai)s0 = s,a0 = a] and V™ (s) = Eqrs[@7 (s, a)],

where expectations are taken over actions sampled from 7. For the rest of the paper we will omit
the superscript 7 when clear from context.

The key issue with learning value functions for a policy 7 that did not collect the data is that we
can only reliably estimate value functions at states and actions that are similar to those seen in
the training set [9]. This is born out by theoretical work which often requires strong coverage
assumptions to learn accurate value functions, such as assuming that the data distribution covers all
reachable states and actions [18].

While this sort of assumption is too strong to satisfy in practice, we argue that for the sparse reward
robotic tasks that we consider, the relevant notion of coverage is to include failures and recoveries,
as well as successes, in the dataset. These failures and recoveries can provide coverage of the task-
relevant states and behaviors necessary to learn useful value functions. Without failures the learned
value functions will not be able to identify the “decision boundary” between failure and success
that is necessary for reliably accomplishing the specified task. Much as in supervised learning it is
difficult to train a binary classifier without any examples of the negative class, we conjecture that it
is difficult to learn accurate @) functions for sparse reward tasks without any failures.

Consider the example datasets shown in Fig. 3. If we use the Success Only dataset to train a)
function and then query the @ function at the location of the red agent during evaluation we will get
inaccurate () values. The learned () function does not have any indication that the presence of the
wall between the agent and the goal exists since there is no training data from the left side of the
wall. In contrast, any of the other datasets that contain failure examples where the agent enters the
room to the left of the wall will allow the learned @ function to assign lower values to states left of
the wall compared to those right of the wall.

Policies require coverage. Much as with value functions, learned policies should not be expected to
produce behaviors that are not present in the training set. This can be seen by looking at the policy
loss function used in OffRL algorithms like IQL [5] and AWAC [11] which take the following form
(where D is the distribution that generates the dataset and @,V are the learned @) and V' value
functions):

L(m) = Esa~plexp(Q(s, a) = V(s)) - (—log m(als))] (D

Notice that this is simply the standard negative log likelihood loss that is used for BC, except that
each term is weighted by the exponentiated advantage function. This loss leads to policies that
imitate actions with high advantages and ignore actions with low advantages. The key takeaway
is that OffRL can only produce policies that choose actions that are already covered by the data
distribution. So, if we want a robust policy that can recover from failures, we need to see recovery
actions in the training set.

Note the DAgger line of work [4] raises a similar issue and resolves it by introducing online learning
where the policy 7 is executed on the system to expand coverage. Instead, we are considering
an entirely offline setting where we want to produce the necessary coverage of failure states and
recovery behavior a priori from teleoperation.

To see an example of why coverage of failures and recoveries is necessary for robust policy learning,
again consider the datasets shown in Fig. 3. Imagine that at evaluation time, the agent reaches the
red triangle. If the agent was trained on the Success Only dataset, it must rely on extrapolation to
select an action, but there are never any examples of “down” in the dataset. As a result, the agent is
stuck in the room to the left of the wall and cannot recover. In contrast, the other datasets may allow
for the agent to learn a useful recovery behavior since they have better coverage.

B.2 Opverfitting in the low-data and image observation setting

When collecting data via teleoperation we are usually in the low-data regime since we are bottle-
necked by teleoperator time on the real robot. Moreover, in the tasks that we consider here, the
observation space is image-based and thus very high-dimensional. This combination of low-data
and high-dimensional observations makes overfitting likely.

As explained above, in sparse reward tasks it is important for the () functions and policies to accu-
rately represent the “decision boundary” between failure and success in the task. In simple obser-
vation spaces like the gridworld in Fig. 3, this may be fairly easy, e.g., as in identifying a failure
by recognizing that the (z,y) coordinated of the position are in the room to the left of the wall.

However, in high-dimensional image-based observation spaces that are encountered in real robotic
tasks, this can become much more challenging.

Fig. 4 illustrates the challenges of
image observations in our grasping
task. If successes and failures are
collected naively in separate episodes
(Dataset A), there will be many visual
differences between success and fail-
ure beyond the salient details about
the gripper and shirt. For example,
background clutter like the presence
of a pen or the exact configuration
of the folds of the shirt can spuri-
ously correlate with failure. In con-
trast, Dataset B reduces the chances
of overfitting by eliminating the spu-
rious correlations. Separating the ex-
amples in Dataset B requires learn-
ing a model that is attuned to the
subtle task-relevant visual differences
between failure and success that can

Successful
Grasp

Successful
Grasp

Visually different
failure

Visually similar
failure

hd e
Dataset A Dataset B

Figure 4: Datasets that include visually dissimilar successes
and failures like Dataset A can cause overfitting. For exam-
ple, a learned @ function could learn to attend background
distractions (like the pen) instead of the task-relevant de-
tails. In contrast, in Dataset B the only differences between
success and failure are task-relevant.

generalize well. Our method aims to collect data like Dataset B.

C Experimental details

C.1 Robot and Environment

Our setup consists of a reach-enabled
[19] URS arm with a pneumatic pow-
ered 3-fingered gripper. We control
the robot with a 5 dimensional action
space: displacements in (x,y, z) no
larger than Scm, a gripper toggle to
either an open or closed position, and
a termination indicator that immedi-
ately terminates an episode. The ori-
entation of the end-effector is fixed.
If the agent does not select the termi-
nate action within 100 steps, we au-
tomatically terminate the episode.

The workspace consists of the same
blue T-shirt, with various distrac-
tor objects and variations in light-
ing. The robot observation space con-
sists of 2 camera images (360x640x3)
from a wrist camera and overhead
camera, as well as the Cartesian posi-
tion of the end-effector (x,y, z) and
an indicator of whether the gripper is

+ Sparse Reward
(z,y,2)

Lgripper

Observation Agent

%

Figure 5: A description of the observation and actions
spaces we use for our real robot experiments. The agent re-
ceives an observation of 4 timesteps of images, cartesian co-
ordinates of the end effector, gripper status, and reward from
the robot and sends back a 5 dimensional action of cartesian
displacements and gripper and terminate commands.

Action

[(A, Ay A Tgrimper Lierminate)}

currently open or closed. We stack a sequence of 4 consecutive timesteps of observations as the

input for our learning algorithms.

The task is to lift the T-shirt more than 80% off a table. During training, as explained in Section
2, we automatically label each successful trajectory collected by the teleoperator with a terminal
reward of 1. We give all other transitions a reward of -0.01 to encourage faster completion of the
task. This environment is illustrated in Fig. 5.

C.2 Learning algorithms

We run several different policy learning algorithms to understand utility of our datasets. Behaviour
Cloning (BC) where policy is trained directly to imitate the actions in the dataset. AWAC [11]
where an advantaged weighted actor-critic method is used to train both a policy 7 and critic able to
evaluate V™ and Q™. IQL [5] where implicit Q-Learning is used to train both a policy 7 and critics
V™ and Q7.

All policies and value functions are parameterized by the same neural architecture and trained using
JAX [20] and Flax [21]. The image inputs are passed through a ResNet [22] encoder and then
the features are concatenated along with the Cartesian coordinates of the gripper and the gripper
indicator (as well as the action for () functions). These features are then passed through a simple
multi-layer perceptron to output either an action or value.

All policies and value functions are trained from 700K gradient steps using the Adam [23] optimizer.
During training images are aggressively augmented using changes in brightness, sharpness, color,
contrast, artificial shadows, rotation, and cropping. This allows us to train the encoders from scratch
on relatively small datasets. We use an inverse temperature of 0.1 for both IQL and AWAC, and we
use expectile 0.9 for IQL, following [5].

D Examining overfitting

The prior results indicate that the Cover-

age+Success does not resolve the coverage is- Train data Test data
sues that are preventing us from learning ac- Success

curate () functions. This may be somewhat
surprising since this dataset was designed to
have good coverage. We claim that this issue
. . . i 0.0 0.5 1.0 0.0 05 1.0
is due to overﬁttlng in our low-data and hlgh_ Q value (trained on Coverage+Success) Q value (trained on Coverage+Success)
dimensional observation setting. Essentially, Train data Test data
the @ function trained on Coverage+Success VBT

data uses the image observation to classify the
trajectory as either “success” or “failure”. If
the trajectory is classified as “success” then 00 s 10 00 o5 10
the Q fllIlCtiOIl behaves just hke a Q func- Q value (trained on VBT) Q value (trained on VBT)
tion trained only on Success and associates Figure 6: Histograms of the () values of IQL
“gripper closed and moving up” with higher trained on Coverage+Success (Top) and VBT
@ values. However, if the trajectory is clas- (Bottom) on both the data that the respective @
sified as “failure” then the () function trained functions were trained on (Left) and held out
on Coverage+Success data behaves differently test sets from the same distribution (Right). The
and assigns uniformly lower () values to the () function trained on Coverage+Success demon-
trajectory. Some hint of this can be seen in strates substantial overfitting in the mismatch be-
Fig. 2b where the values learned on Cover- tween the distribution of () values between train
age+Success have substantially higher variance and test while the one trained on VBT does not.
caused by some of the trajectories being classi-

fied as failures (note that LfP+Success behaves

much more like Success alone since the classification problem between the two datasets is easy
enough that the LfP data is completely ignored).

To isolate this issue, we plot histograms of the learned () values on the train datasets and held out
test datasets for both the Coverage+Success and VBT data in Fig. 6. The histograms confirm that
the) function trained on Coverage+Success assigns low values to Coverage transitions from the
training set and high values to Success transitions from the training set. But, these () functions
do not generalize. The test set yields a very different distribution of values. In contrast, VBT data
resolves the overfitting issue by ensuring that the only visual differences between failure and success
are task-relevant, which facilitates better generalization.

E Discussion

In this paper, we introduced VBT, a protocol for robot data-collection for offline policy learning.
We showed how value functions learned using VBT data tend to be more accurate, leading to robust
policy learning with OffRL. We compared VBT to a number of other data collection protocols, and
found that policies learned using VBT result in superior performance. We demonstrated these results
on a real world, vision-based deformable manipulation task.

While our method significantly outperforms other data-collection protocols, it has certain limita-
tions. VBT requires a teleoperator to understand the relevant failure modes for the task (in our
grasping task, this corresponds to narrowly missing the T-shirt), and the ability to recover and re-
attempt.

In future work, it would be interesting to apply VBT to tasks with more variety, such as collecting
a dataset consisting of interactions with many different objects, instead of just one object. Finally,
while we studied a relatively short-horizon task, future work can look into applying VBT to long-
horizon tasks.

