
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

H+: AN EFFICIENT SIMILARITY-AWARE AGGRE-
GATION FOR BYZANTINE RESILIENT FEDERATED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables decentralized model training without sharing raw
data. However, it remains vulnerable to Byzantine attacks, which can compromise
the aggregation of locally updated parameters at the central server. Similarity-
aware aggregation has emerged as an effective strategy to mitigate such attacks by
identifying and filtering out malicious clients based on similarity between client
model parameters and those derived from clean data, i.e., data that is uncorrupted
and trustworthy. However, existing methods adopt this strategy only in FL systems
with clean data, making them inapplicable to settings where such data is unavail-
able. In this paper, we propose H+, a novel similarity-aware aggregation approach
that not only outperforms existing methods in scenarios with clean data, but also
extends applicability to FL systems without any clean data. Specifically, H+ ran-
domly selects r-dimensional segments from the p-dimensional parameter vectors
uploaded to the server and applies a similarity check function H to compare each
segment against a reference vector, preserving the most similar client vectors for
aggregation. The reference vector is derived either from existing robust algorithms
when clean data is unavailable or directly from clean data. Repeating this process
K times enables effective identification of honest clients. Moreover, H+ maintains
low computational complexity, with an analytical time complexity of O(KMr),
where M is the number of clients and Kr ≪ p. Comprehensive experiments vali-
date H+ as a state-of-the-art (SOTA) method, demonstrating substantial robustness
improvements over existing approaches under varying Byzantine attack ratios and
multiple types of traditional Byzantine attacks, across all evaluated scenarios and
benchmark datasets.

1 INTRODUCTION

Federated Learning (FL) has emerged as a distributed paradigm to address challenges related to
large-scale data and privacy. It enables edge clients to collaboratively train a global model without
sharing raw data (Zuo et al., 2025; Konečnỳ et al., 2016; Wang et al., 2019). Within the FL frame-
work, a central server coordinates with clients by exchanging model parameters or gradient vectors
instead of raw data, thereby advancing the learning process (Guo et al., 2023; Xiao & Ji, 2023).
This privacy-preserving mechanism, combined with the growing capabilities of edge computing,
has made FL increasingly appealing in modern machine learning scenarios (Dorfman et al., 2023).

While the distributed nature of FL brings notable advantages in efficiency and privacy, it also in-
troduces robustness challenges that have drawn increasing attention due to the participation of nu-
merous clients (Yang et al., 2020; Pang et al., 2023; Vempaty et al., 2013). The vectors uploaded to
the central server may include irrelevant or erroneous information, arising from heterogeneous data
distributions, client-device inconsistencies, or even malicious behavior (So et al., 2020). Clients that
intentionally submit false or harmful information are referred to as Byzantine clients, while the rest
are considered honest participants (Chen et al., 2017). During training, Byzantine clients can adap-
tively generate and coordinate deceptive model updates, severely degrading the performance of the
global model (Cao & Lai, 2019). Therefore, enhancing the robustness of FL systems against Byzan-
tine attacks has become a pressing security concern in distributed learning frameworks (Kairouz
et al., 2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A key metric for evaluating robustness against Byzantine attacks in FL is the maximum Byzantine
client ratio that an aggregation method can tolerate while still achieving satisfactory model perfor-
mance, such as high test accuracy (Xie et al., 2018; Blanchard et al., 2017). In conventional FL
settings without assumed clean data, most existing defenses mitigate malicious clients by lever-
aging statistical or geometric properties of their updates (Pillutla et al., 2022; Karimireddy et al.,
2021). These methods typically require that the majority of clients be honest, limiting the tolerable
Byzantine ratio to under 0.5 (Luan et al., 2024). Once this threshold is exceeded, purely algorithmic
defenses based on parameter statistics often fail to provide reliable robustness guarantees. To relax
this fundamental limitation, recent approaches introduce the notion of clean data, which may reside
at the server or at subset of trusted clients (Regatti et al., 2020). Leveraging clean data enables the
system to evaluate the consistency of received updates and distinguish between benign and adversar-
ial behavior (Xie et al., 2020b). Among these techniques, similarity-aware aggregation has shown
promise by identifying and downweighting client updates that deviate from patterns observed in
clean data. This class of methods enhances robustness even under high Byzantine ratios, provided
that reliable reference data is accessible. Existing similarity-aware aggregation methods, such as
Xie et al. (2020b), which utilize cosine similarity to filter honest clients more efficiently than non-
similarity-aware counterparts, operating with computational complexity linear in the model parame-
ter dimension p, but may fail on large p due to the curse of dimensionality in similarity measurement
(Hastie et al., 2009).

Additionally, despite their effectiveness, such similarity-based strategies have not been widely
adopted in FL systems where clean data is unavailable. Some prior works attempt to detect and
exclude Byzantine clients through unsupervised techniques or client clustering (Blanchard et al.,
2017), but these methods often fail to achieve acceptable performance across various attack types
and under high Byzantine ratios.

The above limitations highlight the necessity for a unified robust aggregation framework that not
only overcomes the challenges faced by existing similarity-aware methods in clean data settings but
also extends their applicability to scenarios where clean data is unavailable. In this paper, we pro-
pose a novel similarity-aware aggregation method tailored for FL settings with or without access
to clean data. To reduce computational overhead, each uploaded p-dimensional model update is
randomly partitioned into multiple r-dimensional segments. These segments are then evaluated us-
ing a newly designed similarity metric, denoted as the H function, which measures their alignment
with a reference vector. The construction of the reference vector is adaptive to the availability of
clean data: when clean data is available, it is directly derived from the corresponding segments of
trusted sources; otherwise, it is obtained through existing robust aggregation techniques. By per-
forming similarity evaluations across multiple segments, the method identifies a stable intersection
set of clients whose updates consistently resemble the reference. Only these clients deemed poten-
tially honest are selected for final aggregation, enhancing robustness against Byzantine behaviors
while maintaining computational efficiency. The main contributions of our proposed H+ method are
summarized as follows:

• We propose H+, a novel Byzantine-resilient aggregation method that leverages similarity
awareness and is applicable to FL system both with and without access to clean data. H+
generalizes the core idea of identifying Byzantine clients based on similarity, from previ-
ously relying on clean data to scenarios where no clean data is available. In clean-data
settings, H+ operates as a standalone aggregation algorithm. In the absence of clean data,
H+ serves as a lightweight plug-in module that complements existing robust aggregation
methods by utilizing their outputs to construct reference vectors for similarity evaluation.

• From a computational perspective, H+ achieves a complexity of O(KMr), where Kr ≪
p, significantly reducing the overhead compared to existing similarity-aware aggregation
methods designed for settings with clean data. Moreover, in scenarios without clean data,
H+ introduces only minimal additional computation, as it reuses outputs from existing
robust algorithms. This lightweight design ensures scalability and makes H+ particularly
well-suited for large-scale FL models.

• Extensive experiments on benchmark datasets with heterogeneous data distributions show
that H+ consistently achieves state-of-the-art (SOTA) performance in terms of test accuracy
across a wide range of Byzantine attack types and attack ratios, under both clean-data

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and no-clean-data settings. These results demonstrate the superior robustness of H+ over
existing aggregation methods in diverse and adversarial federated learning environments.

2 RELATED WORK

2.1 ROBUST AGGREGATION METHODS WITHOUT CLEAN DATA

In this area, existing methods generally fall into two categories: selection-based approach repre-
sented by Krum that aims to identify and exclude Byzantine clients, and aggregation-based ap-
proaches that mitigate their influence without explicit client selection, including point-wise median,
geometric median (GM), and some others. Detailed description of them are as follows: Krum (the
selection-based approach): Blanchard et al. (2017) proposes selecting the uploaded vector with
the shortest Euclidean distance to all others for global updates; it also introduces Multi Krum, which
applies Krum iteratively to counter attacks.

In the context of aggregation-based approaches, existing methods include Median: The earliest
work using median to resist Byzantine attacks is Xie et al. (2018), which computes the point-
wise median of uploaded vectors as the aggregation vector for global model updates. Building
on this, Yin et al. (2018) selectively aggregates via point-wise trimmed mean or median to enhance
Byzantine robustness. GM: Robust Federated Aggregation (RFA) (Pillutla et al., 2022), Byzantine-
resilient distributed Stochastic Average Gradient Algorithm (Byrd-SAGA) (Wu et al., 2020), and
Byzantine-RObust Aggregation with gradient Difference Compression And STochastic variance re-
duction (BROADCAST) (Zhu & Ling, 2023) all adopt GM to boost FL robustness. RFA uses the
tail-average of local parameters as uploaded vectors; Byrd-SAGA leverages the SAGA method (De-
fazio et al., 2014) for global updates; BROADCAST extends Byrd-SAGA by incorporating quan-
tization. Other methods: Robust Stochastic Aggregation (RSA) (Li et al., 2019) uses l-norm to
penalize differences between local and global parameters, isolating Byzantine clients. Maximum
Correntropy Aggregation (MCA) (Luan et al., 2024) aggregates vectors via maximum correntropy.
Centered Clipping (CClip) (Karimireddy et al., 2021) clips the magnitude of uploaded vectors using
previously aggregated vectors.

2.2 ROBUST AGGREGATION METHODS WITH CLEAN DATA

Non-similarity-aware method: Zeno (Xie et al., 2019) formulates a stochastic descent score, which
calculated from the global model and clean data, to filter honest vectors, while Zeno+ (Xie et al.,
2020b) extends Zeno to asynchronous settings. Cao & Lai (2019) uses a vector derived from clean
data to filter honest uploads via a modulus-bounded approach. By contrast, ByGARS (Regatti et al.,
2020) leverages a vector generated by clean data to adjust reputation scores, differing slightly from
Cao & Lai (2019). Similarity-aware method: FLTrust (Cao et al., 2021) utilizes the cosine simi-
larity between a reference vector (calculated from clean data) and the uploaded vectors to aggregate
these uploaded vectors via a weighted average. And Zeno++ (Xie et al., 2020b) further refine this
method by improving stochastic descent score generation with cosine similarity for asynchronous
settings, outperforming non-similarity-aware methods in efficiently and effectively boosting FL per-
formance and robustness. However, cosine similarity is computationally expensive and may still fail
to detect honest clients for large p, as it tends to zero in high dimensions.

3 PROBLEM SETUP

3.1 FL OPTIMIZATION PROBLEM

Consider an FL system with one central server and M clients, which form the set M ≜
{1, 2, 3, · · · ,M}. For any participating client, say the mth client, it has a local dataset Sm con-
taining Sm elements. The ith element of Sm is a ground-truth sample sm,i = {xm,i, ym,i}. Here,
xm,i ∈ Rin represents the input vector, and ym,i ∈ Rout denotes the output vector. Using the
datasets Sm for m = 1, 2, 3, · · · ,M , the learning task is to train a p-dimensional model parameter
w ∈ Rp to minimize the global loss function, denoted as F (w). Specifically, we aim to solve the
following optimization problem:

min
w∈Rp

F (w) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 FL WITHOUT CLEAN DATA

For FL without clean data, the central server does not have any data, and the entire FL training
optimization process relies on clients’ private datasets. Hence, the global loss function F (w) in (1)
can be defined as

F (w) ≜
1∑

m∈M Sm

∑
m∈M

∑
sm,i∈Sm

f(w, sm,i) (2)

where f(w, sm,i) denotes the loss function to evaluate the error for approximating ym,i given the
input xm,i. For convenience, we define the local loss function of the mth client as

Fm(w) ≜
1

Sm

∑
sm,i∈Sm

f(w, sm,i) (3)

and the weight coefficient of the mth client as αm = Sm/(
∑

m′∈M Sm′),m ∈ M. The global loss
function F (w) is then rewritten as

F (w) =
∑

m∈M
αmFm(w) (4)

3.3 FL WITH CLEAN DATA

The central server has clean data: Consider that the central server possesses some clean data
(to enhance training performance and improve robustness), forming a dataset S0 with S0 elements.
Similarly, we define the sever loss function of the central server as

F0(w) ≜
1

S0

∑
s0,i∈S0

f(w, s0,i) (5)

and the weight coefficient for the central server and the M clients as α′
m =

Sm/(
∑

m′∈M† Sm′),m ∈ M†,M† = {0} ∪ M. The global loss function F (w) in (1) is
then rewritten as

F (w) =
∑

m∈M†

α′
mFm(w) (6)

The central server is aware that some clients possess clean data (a subset of honest clients is
known): Consider that the central server knows a subset of honest clients (even just one); in this
case, the global loss function F (w) is the same as in (4), written as follow,

F (w) =
∑

m∈M
αmFm(w) (7)

3.4 BYZANTINE ATTACKS

Based on the above FL frameworks, assume there are B Byzantine clients among the M total clients,
forming the set B. Any Byzantine client can send an arbitrary vector ⋆ ∈ Rp to the central server. Let
gtm denote the actual vector uploaded by the mth client to the central server during the FL training
process, then we have

gtm = ⋆,m ∈ B (8)

For ease of representing the ratio of Byzantine clients, we denote the intensity level of the Byzantine
attacks as C̄, defined by the weight coefficient of Byzantine clients as

C̄ ≜


∑
m∈B

α′
m, where the central server has clean data∑

m∈B
αm, other cases

(9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 METHODOLOGY

In this section, we first introduce the similarity check function H , which forms the basis of our
robust method. We then explain the application of the similarity check function H and our method
H+ to the two FL frameworks described above.

4.1 SIMILARITY CHECK FUNCTION

To distinguish Byzantine attacks, we introduce a similarity check function H . For ∀X,Y ∈ Rp, the
function H(X,Y) is defined as

H(X,Y) ≜
1

p

p∑
i=1

|xi|
|yi − xi|+ |xi|

(10)

where X = (x1, x2, · · · , xp)
T and Y = (y1, y2, · · · , yp)T . From the above definition of the sim-

ilarity check function H , we can easily see that 0 ≤ H ≤ 1: the closer H is to 1, the greater the
similarity between X and Y . However, when p is large, the cost and complexity of calculating H
are very high. Thus, direct application is not conducive to training current large models. Repeated
slicing of the X and Y vectors for dimension reduction not only drastically reduces computa-
tional overhead but also mitigates the curse of dimensionality in similarity measurement. Here
we design H+ method based on the similarity check function H for the two FL frameworks, which
are described in detail as follows.

4.2 H+ ON FL WITHOUT CLEAN DATA

For FL without clean data, to defend against Byzantine attacks with C̄ < 0.5, we design the H+
method, whose procedure is shown as follows:

Local Training: In the tth iteration, after receiving the global model parameter wt broadcast by the
central server, all honest clients m ∈ M \ B select a subdataset ξtm from their own dataset Sm to
calculate their local training gradients ∇F (wt, ξtm). Meanwhile, all Byzantine clients m ∈ B may
send arbitrary vectors or other malicious vectors based on their datasets, the global model parameter
wt, and other clients’ local training gradients. Let gtm denote the vector (either the local training
gradient or the malicious vector) uploaded to the central server by client m, then we have

gtm =

{
∇F (wt, ξtm), m ∈ M \ B
⋆, m ∈ B

(11)

Aggregation and Broadcasting: In the tth iteration, upon receiving all vectors gtm from clients, the
central server aggregates these vectors using existing aggregation algorithms (e.g., GM or MCA).
We abbreviate such aggregation algorithms as AGG(·), and the the reference vector gt can be cal-
culated by

gt = AGG(α1, α2, · · · , αM ;wt
1, w

t
2, · · · , wt

M) (12)

To enhance the robustness of these existing aggregation algorithms, we calculate the similarity check
function H between all uploaded vectors and gt, respectively. However, for large models, a direct
use of H function on reference and uploaded vectors incurs a computational complexity O(pM), not
to mention such operations has to be performed in every training round. To mitigate this overhead,
we randomly select r-dimensional segments from the reference and uploaded vectors to compute
the similarity check function H , denotes as {gt}r and {gtm}r. Additionally, to quickly filter outliers
and occasional useless vectors in environments with heterogeneous data, we introduce a penalty
term max{normm, τ/normm}, where normm denotes the modulus of {gtm}r and τ is a tunable
hyperparameter. Based on the above discussion, the final anomaly score is defined as

scorem = H({gt}r, {gtm}r)− ρ ·max{normm,
τ

normm
} (13)

where ρ is a tunable hyperparameter.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The above operation will be repeated K times, and for the kth operation, we select the N uploaded
vectors with highest scores to form the client index set It

k. Finally, we take the intersection of these
K sets as It, as follows:

It = It
1 ∩ It

2 ∩ It
3 ∩ · · · ∩ It

K (14)

After that, using learning rate ηt, the global model parameter wt+1 can be updated by

wt+1 = wt − ηt
∑
m∈It

αm∑
m′∈It αm′

· gtm (15)

Then, the central server broadcasts the global model parameter wt+1 to all clients in preparation for
the calculation in the t+ 1th iteration. The detailed algorithm workflow is shown in Algorithm 1.

4.3 H+ ON FL WITH CLEAN DATA

For the FL with clean data, to defend against Byzantine attacks with C̄ ≥ 0.5, we enhance the
application of the similarity check function H in this framework, and its procedure is shown as
follows.

Local Training: In the tth iteration, all clients do the same as in the classic FL framework, and we
have

gtm =

{
∇F (wt, ξtm), m ∈ M \ B
⋆, m ∈ B

(16)

Aggregation and Broadcasting: In the tth iteration, if the central server has clean data, it gener-
ates the server gradient vector ∇F0(w

t, ξt0) by training on the subdataset ξt0 from dataset S0. The
reference vector gt in the two cases (where the central server has clean data and where a subset of
honest clients, denotes as T , is known) can then be calculated by

gt =


∇F0(w

t, ξt0), central server has clean data∑
m∈T

αm∑
m′∈T αm′

· gtm, T is known (17)

After obtaining the reference vector gt, the central server performs the same operations as in the FL
without clean data to form the sets {It

k} and It. Subsequently, the global model parameter wt+1

can be updated by

wt+1 = wt − ηt
∑
m∈It

α′
m∑

m′∈It α′
m′

· gtm (18)

with the central server has clean data or

wt+1 = wt − ηt
∑
m∈It

αm∑
m′∈It αm′

· gtm (19)

when the clean data is on some participating clients.

Upon completing iteration t, the central server broadcasts the global model parameter wt+1 to all
clients in preparation for the calculation in the t+ 1th iteration. The detailed algorithm workflow is
shown in Algorithm 2.

4.4 TIME COMPLEXITY OF H+

From Algorithm 1, the overall time complexity of the complete algorithm is O(existing methods)+
O(KMr) + O(M logM) (e.g., O(Median) = O(pM logM), O(Krum) = O(pM2), and
O(GM) = O(pM log3(MC̄−1)) (Cohen et al., 2016)). As shown in Algorithm 2, the time com-
plexity of the H+ method when used independently is O(KMr) +O(M logM). Consequently, its
computational cost can be expressed as O(KMr) + O(M logM). Since Kr ≫ logM in most
practical scenarios, the overall complexity is approximated by O(KMr), which is significantly
lower than O(Mp), confirming the efficiency of the H+ method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The maximum test accuracy (%) for the H+ method and baselines without clean data. The
best results are in bold, and improvements brought by H+ over the original robust methods are
underlined.

β 0.6 0.2

Attack Name
Dataset Tiny-ImageNet CIFAR-100 CIFAR-10 Tiny-ImageNet CIFAR-100 CIFAR-10

C̄ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

Gaussian Attack

H+Median 54.67 53.23 55.14 54.52 68.02 67.79 53.03 51.40 54.22 53.29 67.20 63.15
Median 47.16 46.36 49.00 48.55 68.34 66.93 21.60 23.41 22.83 23.95 59.52 58.51

H+Krum 54.81 53.45 54.97 54.46 67.80 67.36 54.16 51.37 54.44 53.05 66.96 66.09
Krum 32.16 32.20 30.09 29.98 49.88 51.71 26.10 25.85 22.18 22.27 56.00 52.02

Sign-flip Attack

H+GM 54.30 53.05 54.75 53.72 67.99 67.34 52.65 51.31 53.71 52.65 66.02 64.87
GM 42.76 0.33 35.34 3.29 49.47 33.24 29.64 0.06 23.04 3.18 36.63 26.70

H+MCA 54.20 53.39 54.85 53.81 67.47 67.88 52.76 51.34 53.78 53.16 66.97 65.51
MCA 0.50 0.50 1.00 1.00 10.00 10.00 0.51 0.50 1.00 1.00 10.00 10.00

H+CClip 54.42 53.39 54.98 54.41 68.70 65.86 52.58 52.54 54.35 53.72 68.58 66.12
CClip 36.16 0.43 22.25 1.17 11.45 11.62 13.92 0.41 2.52 1.09 10.75 12.35

LIE Attack

H+Median 54.61 53.95 54.66 54.44 68.09 67.36 53.86 52.45 54.83 53.01 65.74 64.61
Median 46.71 46.76 48.76 48.95 66.80 65.45 22.75 22.21 25.27 28.74 62.24 63.39

H+CClip 54.28 53.63 54.91 53.94 68.25 66.57 53.71 51.81 54.78 53.16 65.55 63.78
CClip 45.51 40.96 45.06 40.99 28.65 26.89 41.98 31.79 40.21 32.50 20.82 18.24

FoE Attack

H+Krum 54.65 54.56 54.96 54.51 68.28 68.81 53.37 51.48 54.51 53.33 68.27 68.27
Krum 0.33 0.34 16.81 8.19 37.11 12.09 0.35 0.36 16.38 5.74 28.73 11.32

H+GM 54.04 53.77 54.78 54.00 67.66 67.48 53.07 49.48 54.16 14.39 67.94 60.03
GM 42.58 0.34 35.37 0.74 12.98 12.54 29.78 0.35 1.67 0.70 15.23 12.22

H+MCA 53.91 54.02 54.76 54.14 67.85 68.03 53.43 49.79 54.26 8.73 68.00 60.66
MCA 0.50 0.50 1.00 1.00 10.00 10.00 0.51 0.50 1.00 1.00 10.00 10.00

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Datasets, models and hyperparameters: We conduct experiments on Tiny-ImageNet, CIFAR-
100, and CIFAR-10 datasets, utilizing the MobileNetV3 (Howard et al., 2019), VGG16 (Simonyan
& Zisserman, 2014), and ResNet18 (He et al., 2016) models. For the non-IID settings, we adopt the
Dirichlet (β) distribution, where the label distribution on each device follows a Dirichlet distribution
and the concentration parameter β takes values 0.6 and 0.2. And all models use the default pre-
training parameters. We set M = 50 and fix the batch size at 32 across all experiments. The number
of iterations is configured as 100 for these three datasets. More detailed are provide in Appendix D.

Byzantine attacks: The ratio of Byzantine attacks, C̄, is set to 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. We
select four types of Byzantine attacks (Gaussian attack, Sign-flip attack, LIE attack (Baruch et al.,
2019), and FoE attack (Xie et al., 2020a)) to verify the robustness of H+ method and baselines. Ad-
ditionally, we design a specific attack (referred to as “our attack”) to further validate the conclusions
drawn from the ablation study. More details about these attacks are provided in Appendix D.

Baselines: The performance of eight methods (Our method H+, Median, Krum (Blanchard et al.,
2017), GM, MCA (Luan et al., 2024), CClip (Karimireddy et al., 2021), FLTrust (Cao et al., 2021),
and Zeno++ (Xie et al., 2020b)) is compared. Among these, Median, Krum, GM, MCA, and CClip
utilize coordinate-wise median, Krum, geometric median, maximum correntropy aggregation, and
centered clipping, respectively, to update the global model parameters over the uploaded vectors on
FL without clean data. FLTrust and Zeno++ utilize the clean data on the central server. Note that
Cao & Lai (2019) and ByGARS are excluded from comparison due to the lack of open-source code
and their relative obsolescence. Among Zeno, Zeno+ and Zeno++, Zeno++ is evaluated as it is the
latest improved version. Our H+ method is evaluated under both frameworks with and without clean
data, denoted as H+(X), where X specifies the algorithm to generate the reference vector.

5.2 COMPARISON WITH BASELINES

In this section, we evaluate our H+ method and baselines on the Tiny-ImageNet, CIFAR-100, and
CIFAR-10 datasets. Table 1 and Table 2 show that H+ improves upon existing robust methods and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The maximum test accuracy (%) for the H+ method and Zeno++ with clean data on β = 0.6.
The best results are in bold.

Attack Name
Datasets Tiny-ImageNet CIFAR-10

C̄ 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

Gaussian Attack
H+Clean data 53.00 52.90 49.11 45.95 42.39 67.05 68.29 62.20 53.38 52.45

FLTurst 32.15 31.33 30.51 29.52 29.64 45.67 46.43 46.34 47.13 46.07
Zeno++ 39.22 36.14 37.38 35.36 33.13 46.09 54.83 42.58 57.42 8.76

Sign-flip Attack
H+Clean data 53.16 52.22 49.15 45.07 42.65 66.94 63.95 59.93 59.75 54.64

FLTurst 22.89 22.51 23.04 25.14 25.48 40.60 34.76 34.89 31.48 39.93
Zeno++ 35.58 34.30 35.25 32.82 32.84 37.36 56.46 54.50 56.65 8.76

LIE Attack
H+Clean data 53.63 52.24 49.44 45.67 42.61 67.01 68.05 67.39 65.60 55.75

FLTurst 31.45 30.92 29.81 29.92 29.59 46.21 46.30 46.32 45.98 45.43
Zeno++ 34.59 35.10 37.13 36.18 36.40 45.40 49.45 57.57 41.15 8.76

FoE Attack
H+Clean data 53.41 52.43 50.27 46.67 41.21 66.45 67.77 63.85 68.26 50.19

FLTurst 22.78 22.63 22.66 24.66 26.17 26.75 31.12 54.60 34.18 36.41
Zeno++ 34.83 32.65 35.29 35.12 14.01 56.72 57.88 32.07 48.29 8.76

achieves SOTA performance across the three benchmarks. Figure 1 illustrates the performance of
H+ with clean data (for β = 0.6 and β = 0.2) across four attack types on Tiny-ImageNet and
CIFAR-100 dataset. More detailed results are provided in Appendix D.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Byzantine Ratio

35

40

45

50

Te
st

 A
cc

ur
ac

y

Gaussian Attack, β=0.6
Sign-flip Attack, β=0.6
LIE Attack, β=0.6
FoE Attack, β=0.6
Gaussian Attack, β=0.2
Sign-flip Attack, β=0.2
LIE Attack, β=0.2
FoE Attack, β=0.2

(a) Tiny-ImageNet.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Byzantine Ratio

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

Gaussian Attack, β=0.6
Sign-flip Attack, β=0.6
LIE Attack, β=0.6
FoE Attack, β=0.6
Gaussian Attack, β=0.2
Sign-flip Attack, β=0.2
LIE Attack, β=0.2
FoE Attack, β=0.2

(b) CIFAR-100.

Figure 1: The maximum test accuracy (%) for
H+Clean data over five Byzantine ratios on Tiny-
ImageNet and CIFAR-100 datasets.

Method without clean data: Under Gaussian
attacks, H+ improves the robustness of Median
and Krum in most scenarios. Table 1 shows
that H+Krum adapts better to Tiny-ImageNet,
with 0.14% – 0.22% higher accuracy than
H+Median when β = 0.6, while H+Median ex-
hibits stronger robustness on CIFAR-100 and
CIFAR-10. Notably, H+Median and H+Krum
significantly boost the original Median and
Krum on Tiny-ImageNet and CIFAR-100, re-
spectively, with accuracy gains of at least
5.97%. At β = 0.2, H+Median and H+Krum
perform comparably, both improving accuracy
by at least 4.64% over their base methods. For
Sign-flip attacks, H+ consistently enhances
GM, MCA, and CClip across datasets and data
heterogeneity levels. From Table 1, H+CClip outperforms H+GM and H+MCA in most cases (ex-
ceptions include C̄ = 0.4, β = 0.6 on CIFAR-10 and C̄ = 0.2, β = 0.2 on Tiny-ImageNet),
demonstrating greater stability against Sign-flip attacks. This suggests the CClip-generated refer-
ence vectors better assist H+ in filtering honest vectors. Compared to the original methods, H+
improves accuracy by at least 11.54% for GM, MCA, and CClip under both concentration parame-
ter settings. Under LIE attacks, H+Median outperforms H+CClip in most scenarios, particularly at
β = 0.2, indicating stronger adaptability to data heterogeneity. Table 1 confirms significant gains:
H+Median improves accuracy by at least 1.29% (at β = 0.6) and 1.22% (at β = 0.2) over Median,
while H+CClip achieves gains of at least 8.77% (at β = 0.6) and 11.79% (at β = 0.2) over CClip.
Finally, for FoE attacks, H+Krum outperforms H+GM and H+MCA across all three datasets and
concentration parameter settings (Table 1), with only a marginal 0.06% accuracy deficit to H+MCA
on Tiny-ImageNet at β = 0.2 and gains of at least 0.18% in all other cases. H+ consistently en-
hances the original methods: H+Krum improves Krum by at least 31.69%, H+GM improves GM
by 11.46%, and H+MCA improves MCA by 7.73%, validating H+’s ability to strengthen existing
robust aggregation methods.

In summary, while existing robust methods without clean data often struggle against certain Byzan-
tine attack types or high Byzantine ratios, our H+ method consistently outperforms them, effectively
enhancing robustness under these challenging conditions.

Methods with clean data: For Gaussian attacks, H+ with clean data achieves SOTA accuracy
across all five Byzantine ratio settings on Tiny-ImageNet dataset, improving accuracy by at least

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

9.26% over baselines (Table 2). On CIFAR-10 dataset, it outperforms in four settings, particularly
when C̄ = 0.9. Under Sign-flip attacks, H+ with clean data delivers SOTA performance on both
two datasets, with accuracy gains of at least 3.1% over baselines. Notably, it excels under high
Byzantine ratios (Table 2). In LIE attacks, H+ with clean data achieves SOTA accuracy on both
Tiny-ImageNet and CIFAR-10, improving test accuracy by at least 6.21% over baselines across all
five Byzantine ratios. For FoE attacks, H+ with clean data outperforms the baselines by at least
9.25% in accuracy, confirming its SOTA performance.

In summary, as shown in Figure 1 and Table 2, H+ with clean data remains robust across all Byzan-
tine attack types and ratios, while better handling data heterogeneity on simpler datasets. It achieves
SOTA performance on Tiny-ImageNet and outperforms baselines on CIFAR-10, especially under
high Byzantine ratios.

Table 3: The maximum test accuracy (%) for the
H+ method without clean data on β = 0.6 and
Tiny-ImageNet dataset. The best results are in
bold.

C̄ Our Attack Sign-flip Attack LIE Attack

H+GM 0.2 54.31 54.30 53.90
0.4 53.80 53.05 53.56

H+MCA 0.2 54.23 54.20 53.75
0.4 54.14 53.39 53.66

H+CClip 0.2 54.15 54.42 54.28
0.4 53.78 53.39 53.63

Table 4: The maximum test accuracy (%) for
the H+ method with clean data on C̄ = 0.6
and Tiny-ImageNet dataset for three setups of
N . The best results are in bold.

β 1.1 ∗M −B M −B 0.9 ∗M −B

Gaussian Attack 0.6 52.16 52.90 51.02
0.2 49.76 47.41 46.70

Sign-flip Attack 0.6 53.49 52.22 51.95
0.2 48.54 48.06 46.56

LIE Attack 0.6 52.43 52.24 51.44
0.2 46.93 48.03 44.97

FoE Attack 0.6 50.84 52.43 49.82
0.2 47.67 49.97 45.75

5.3 ABLATION EXPERIMENT

To evaluate the Byzantine robustness of the similarity check function H independently from the
penalty term max{normm, τ

normm
} used in the H+ method, we introduce a tailored Byzantine at-

tack, referred to as “our attack”. In this setting, malicious updates are crafted such that their mag-
nitudes closely match those of honest updates, thereby rendering the penalty term ineffective in
distinguishing malicious vectors. Details of the attack design are provided in the Appendix D. As
shown in Table 3, under “our attack” where the penalty term max{normm, τ

normm
} is rendered in-

effective and only the similarity check function H remains active, H+GM, H+MCA, and H+CClip
still achieve comparable or even superior performance compared to the cases under Sign-flip and
LIE attacks, whose test accuracy in Table 1 represents the mainstream robustness level.

To evaluate the sensitivity of the H+ method to hyperparameter N , we conduct an ablation study
with three N configurations: 1.1M −B, M −B, and 0.9M −B. These configurations correspond
to N being greater than, equal to, or less than the number of honest clients. As shown in Table 4,
the H+ method performs better when N is greater than or equal to the number of honest clients than
when N is less than this number; each of these two cases (N ≥ honest client count) exhibits distinct
strengths and weaknesses across different attacks. Notably, all three configurations outperform the
baselines reported in Tables 2 and 7. Thus, the range of valid N values is recommended to be relaxed
in practical applications.

In summary, Tables 3 and Table 4 demonstrate that the H+ method robustly defends against Byzan-
tine attacks across diverse complex scenarios.

6 CONCLUSION

This paper introduces H+, a similarity-aware aggregation method that enhances FL robustness
against Byzantine attacks. It improves performance of existing robust algorithms in the absence
of clean data and identifies honest clients when clean data is available. Experiments show that H+
outperforms SOTA methods, offering robust performance across various attack types and datasets,
while maintaining low computational complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. Advances in Neural Information Processing Systems, 32, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. Advances in neural information processing
systems, 30, 2017.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust feder-
ated learning via trust bootstrapping. In ISOC Network and Distributed System Security Sympo-
sium (NDSS), 2021.

Xinyang Cao and Lifeng Lai. Distributed gradient descent algorithm robust to an arbitrary number
of byzantine attackers. IEEE Transactions on Signal Processing, 67(22):5850–5864, 2019.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial set-
tings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1–25, 2017.

Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric median
in nearly linear time. pp. 9–21. Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 27, 2014.

Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and Kfir Yehuda Levy. Docofl: downlink com-
pression for cross-device federated learning. pp. 8356–8388. PMLR, International Conference on
Machine Learning, 2023.

Yongxin Guo, Xiaoying Tang, and Tao Lin. Fedbr: Improving federated learning on heterogeneous
data via local learning bias reduction. pp. 12034–12054. PMLR, International Conference on
Machine Learning, 2023.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. pp. 770–778. Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. pp. 1314–
1324. Proceedings of the IEEE/CVF international conference on computer vision, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. pp. 5311–5319. PMLR, International conference on machine learning, 2021.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. RSA: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. volume 33,
pp. 1544–1551. Proceedings of the AAAI conference on artificial intelligence, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhirong Luan, Wenrui Li, Meiqin Liu, and Badong Chen. Robust federated learning: Maximum
correntropy aggregation against byzantine attacks. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

Qi Pang, Lun Wang, Shuai Wang, Wenting Zheng, and Dawn Song. Secure federated correlation
test and entropy estimation. pp. 26990–27010. PMLR, International Conference on Machine
Learning, 2023.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

Jayanth Regatti, Hao Chen, and Abhishek Gupta. Bygars: Byzantine sgd with arbitrary number of
attackers. arXiv preprint arXiv:2006.13421, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jinhyun So, Başak Güler, and A Salman Avestimehr. Byzantine-resilient secure federated learning.
IEEE Journal on Selected Areas in Communications, 39(7):2168–2181, 2020.

Aditya Vempaty, Lang Tong, and Pramod K Varshney. Distributed inference with byzantine data:
State-of-the-art review on data falsification attacks. IEEE Signal Processing Magazine, 30(5):
65–75, 2013.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource constrained edge computing systems. IEEE
journal on selected areas in communications, 37(6):1205–1221, 2019.

Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B Giannakis. Federated variance-reduced
stochastic gradient descent with robustness to byzantine attacks. IEEE Transactions on Signal
Processing, 68:4583–4596, 2020.

Peiyao Xiao and Kaiyi Ji. Communication-efficient federated hypergradient computation via aggre-
gated iterative differentiation. pp. 38059–38086. PMLR, International Conference on Machine
Learning, 2023.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant SGD. arXiv
preprint arXiv:1802.10116, 2018.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. pp. 6893–6901. PMLR, International Conference on Machine
Learning, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant
sgd by inner product manipulation. pp. 261–270. PMLR, Uncertainty in Artificial Intelligence,
2020a.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous sgd. pp. 10495–
10503. PMLR, International conference on machine learning, 2020b.

Zhixiong Yang, Arpita Gang, and Waheed U Bajwa. Adversary-resilient distributed and decen-
tralized statistical inference and machine learning: An overview of recent advances under the
byzantine threat model. IEEE Signal Processing Magazine, 37(3):146–159, 2020.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. pp. 5650–5659. PMLR, International Conference on
Machine Learning, 2018.

Heng Zhu and Qing Ling. Byzantine-robust distributed learning with compression. IEEE Transac-
tions on Signal and Information Processing over Networks, 2023.

Shiyuan Zuo, Xingrun Yan, Rongfei Fan, Han Hu, Hangguan Shan, Tony QS Quek, and Puning
Zhao. Federated learning resilient to byzantine attacks and data heterogeneity. IEEE Transactions
on Mobile Computing, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE

We leverage Large Language Model (LLM) to polish the textual content of this paper, including
refining sentence structures, enhancing linguistic fluency, and ensuring the accuracy and clarity of
academic expressions.

B DISCUSSIONS ABOUT H+ ON FL WITHOUT CLEAN DATA

For H+ on FL without clean data, its robustness to attacks depends on the base robustness. Specif-
ically, H+ does not extend the robustness limits of the base method, but when the base method
already has some robustness against certain attacks, stacking H+ can further improve the overall
system’s performance. For example, the base method fails under attacks, such as high Byzantine
client ratios, H+ provides no benefit. On the other hand, when the base method does not diverge
but has bad performance on some specific attacks, H+ can substantially mitigate this weakness, as
shown in Section 5.

C ALGORITHM WORKFLOW

Algorithm 1 H+ on FL without clean data

1: Input: Initial global model parameter w0, clients set M, and the number of iteration T .
2: Output: Updated global model parameter wT .
3: % % Initialization
4: Every client m establishes its own set Sm for m ∈ M \ B.
5: for t = 0, 1, 2, · · · , T − 1 do
6: for every client m ∈ M \ B in parallel do
7: Receive the global model wt. Select a subdataset ξtm from Sm to train local model and

evaluate the local training gradient ∇Fm(wt, ξtm). Set gtm = ∇Fm(wt, ξtm) and upload
gtm to the central server.

8: end for
9: for every client m ∈ B in parallel do

10: Receive the global model wt. Generate an arbitrary vector or malicious vector gtm based
on wt, dataset Sm and other clients. Upload this vector gtm to the central server.

11: end for
12: Receiver all uploaded vectors gtm,m ∈ M. Utilize robust aggregation methods, weight

coefficients, and uploaded vectors to calculate gt by (12).
13: for k = 1, 2, · · · ,K do
14: Randomly select r-dimensional segments from the gt and gtm. Utilize similarity check

function H to calculate the anomaly score by (13), and select N uploaded vectors with
highest scores to form set It

k.
15: end for
16: Take the intersection of these K sets as It, and update the global model parameter by (15).
17: Broadcast the model parameter wt+1 to all clients.
18: end for
19: Output the model parameter wT .

D EXPERIMENTAL SETUPS AND RESULTS IN DETAIL

To carry out experiments, we set up a machine learning environment in PyTorch 2.3.1 on Ubuntu
20.04, powered by two 3090 GPUs and two Intel Xeon Gold 6226R CPUs. Firstly, we describe the
datasets as below:

Datasets:

• Tiny-ImageNet: The Tiny-ImageNet dataset consists of a training set, a validation set, and
a test set. The training set includes 100,000 samples, while both the validation set and the
test set contain 10,000 samples each. Each sample is a 64 × 64 pixel color image.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 2 H+ on FL with clean data

1: Input: Initial global model parameter w0, clients set M, and the number of iteration T .
2: Output: Updated global model parameter wT .
3: % % Initialization
4: Every client m establishes its own set Sm for m ∈ M \ B and the central server establishes its

own set S0 if it has clean data.
5: for t = 0, 1, 2, · · · , T − 1 do
6: for every client m ∈ M \ B in parallel do
7: Receive the global model wt. Select a subdataset ξtm from Sm to train local model and

evaluate the local training gradient ∇Fm(wt, ξtm). Set gtm = ∇Fm(wt, ξtm) and upload
gtm to the central server.

8: end for
9: for every client m ∈ B in parallel do

10: Receive the global model wt. Generate an arbitrary vector or malicious vector gtm based
on wt, dataset Sm and other clients. Upload this vector gtm to the central server.

11: end for
12: Receiver all uploaded vectors gtm,m ∈ M. The central server calculates gt by (17).
13: for k = 1, 2, · · · ,K do
14: Randomly select r-dimensional segments from the gt and gtm. Utilize similarity check

function H to calculate the anomaly score by (13), and select N uploaded vectors with
highest scores to form set It

k.
15: end for
16: Take the intersection of these K sets as It, and update the global model parameter by (18) or

(19).
17: Broadcast the model parameter wt+1 to all clients.
18: end for
19: Output the model parameter wT .

• CIFAR-100: The CIFAR-100 dataset comprises a training set and a test set. The training
set contains 50,000 samples, and the test set contains 10,000 samples, with each sample
being a 32 × 32 pixel color image. It includes 100 fine-grained classes grouped into 20
broader superclasses, enabling more complex image classification tasks.

• CIAFR-10: The CIFAR10 dataset includes a training set and a test set. The training set
contains 50,000 samples, and the test set contains 10,000 samples, each of which is a 32 ×
32 pixel color image.

We split the above three datasets into M non-IID training sets, which is realized by letting the label
of data samples to conform to Dirichlet distribution. The extent of non-IID can be adjusted by tuning
the concentration parameter β of Dirichlet distribution.

Models: We adopt MobileNetV3 Howard et al. (2019), VGG16 Simonyan & Zisserman (2014),
and ResNet18 He et al. (2016) models, respectively. The introduction of these three models is as
follows:

• MobileNetV3: MobileNetV3 is a lightweight convolutional neural network (CNN) metic-
ulously optimized for mobile and embedded devices. It integrates depthwise separable
convolutions with Neural Architecture Search (NAS) to enable efficient feature extraction
and classification under strict computational constraints, with its detailed architectural de-
sign documented in Howard et al. (2019). For specific dataset adaptability, we conducted
fine-tuning to optimize its performance on the TinyImageNet dataset, ensuring robust fea-
ture learning across its 200-class image corpus.

• VGG16: The VGG16 model represents a seminal 16-layer convolutional neural network
architecture comprising 13 convolutional layers and 3 fully-connected (FC) layers. Each
convolutional stage utilizes cascaded 3×3 kernels with stride 1 and ReLU activation, in-
terspersed with 2×2 max-pooling operations that halve spatial resolution while preserving
depth. The fully-connected hierarchy consists of two 4,096-unit hidden layers (FC1-2) fol-
lowed by a 1,000-class output layer (FC3), totaling 138M trainable parameters Simonyan

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

& Zisserman (2014). For CIFAR-100 dataset adaptation, we implemented fine-tuning to
adapt to this dataset.

• ResNet18: ResNet18 is a deep convolutional neural network (CNN) featuring 18 weighted
layers, distinguished by its innovative residual blocks that alleviate the vanishing gradient
problem in deep networks. These blocks enable efficient training of deeper architectures
by introducing skip connections, which facilitate the propagation of gradients through the
network, as detailed in He et al. (2016). For CIFAR-10 dataset adaptability, we performed
fine-tuning to optimize its performance on target datasets, ensuring robust feature learning
across diverse image categories.

Hyperparameters: We set M = 50 and fix the batch size at 32 across all experiments. For numeri-
cally computing the GM and MCA, the error tolerance is defined as ϵ = 1×10−5. The concentration
parameter β takes values 0.6, and 0.2. In all experiments involving the H+ method, we set K = 3,
r = 50, and N = M − B for all experiments. The number of iterations is configured as 100 for
these three datasets.

Regarding ηt, ρ, and τ :

• On Tiny-ImageNet dataset, ηt = 0.01
0.006t+1 , ρ = 10, and τ = 0.1.

• On CIFAR-100 dataset, ηt = 0.004
0.006t+1 , ρ = 10, and τ = 0.1.

• On CIFAR-10 dataset, ηt = 0.001
0.006t+1 , ρ = 0.1, and τ = 100.

Byzantine Attacks: The ratio of Byzantine attacks, C̄, is set to 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.
And we select five types of Byzantine attacks, which are introduced as follows,

• Gaussian attack: All Byzantine attacks are selected as the Gaussian attack, which obeys
N (0, 90).

• Sign-flip attack: All Byzantine clients upload −3 ·
∑

m∈M\B gtm or −3 ·
∑

m∈M′\B gtm
to the central server on iteration number t.

• LIE attack Baruch et al. (2019): LIE attack adds small amounts of noise to each dimen-
sion of the benign gradients. The noise is controlled by a coefficient c, which enables the
attack to evade detection by robust aggregation methods while negatively impacting the
global model. Specifically, the attacker calculates the mean a and standard deviation ν of
the parameters submitted by honest users, calculates the coefficient c based on the total
number of honest and malicious clients, and finally computes the malicious update as a +
cν. We set c to 0.7.

• FoE attack Xie et al. (2020a): The FoE attack enables Byzantine clients to upload
q

M−B

∑
M\B gtm or q

M−B

∑
M′\B gtm to disrupt the FL training process. The coeffi-

cient q is configured differently based on the specific attack and algorithm. We set
q = −3 ∗ (M −B) for MCA method and q = −0.1 for other methods.

• Our attack: To ensure attack vectors are close to honest clients’ vectors while effectively
influencing the FL process, all Byzantine clients upload either − 1

M−B ·
∑

m∈M\B gtm or
− 1

M−B+1 ·
∑

m∈M′\B gtm to the central server at iteration t.

Baselines: The performance of eight methods (Our method H+, Median, Krum Blanchard et al.
(2017), GM, MCA Luan et al. (2024), CClip Karimireddy et al. (2021), FLTrust (Cao et al., 2021),
and Zeno++ Xie et al. (2020b)) is compared. Among these, Median, Krum, GM, MCA, and CClip
utilize coordinate-wise median, Krum, geometric median, maximum correntropy aggregation, and
centered clipping, respectively, to update the global model parameters over the uploaded vectors on
FL without clean data. FLTrust and Zeno++ utilizes the clean data on the central server. Note that
Cao & Lai (2019) and ByGARS are excluded from comparison due to the lack of open-source code
and their relative obsolescence. Among Zeno, Zeno+, and Zeno++, only Zeno++ is evaluated as it is
the latest improved version. Our H+ method is evaluated under both frameworks with and without
clean data, denoted as H+(X), where X specifies the algorithm to generate the reference vector.

Metric: A higher test accuracy indicates better performance and robustness of the robust methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

More detailed results: We show the detailed results about H+ method on different cases in Table
5, Table 6, Table 7 and Table 8.

Table 5: The maximum test accuracy (%) for the H+ method and baselines without clean data on
Tiny-ImageNet dataset with β = 0.6. The best results are in bold, and improvements brought by
H+ over the original robust methods are underlined.

Attack Name Gaussian Attack Sign-flip Attack LIE Attack FoE Attack

C̄ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

H+Median 54.67 53.23 54.39 53.17 54.61 53.95 54.31 53.34

Median 47.16 46.36 23.44 8.36 46.71 46.76 37.85 3.53

H+Krum 54.81 53.45 54.25 53.72 54.53 53.74 54.65 54.56

Krum 32.16 32.20 32.31 35.62 32.28 31.96 0.33 0.34

H+GM 54.22 53.77 54.30 53.05 54.90 54.56 54.04 53.77

GM 54.84 54.11 42.76 0.33 55.08 53.79 42.58 0.34

H+MCA 54.83 54.65 54.20 53.39 54.75 53.98 53.91 54.02

MCA 54.81 54.28 0.50 0.50 55.10 53.79 0.50 0.50

H+CClip 54.28 53.76 54.42 53.39 54.28 53.63 54.91 53.70

CClip 45.77 40.95 36.16 0.43 45.51 40.96 34.94 0.44

Table 6: The maximum test accuracy (%) for the H+ method and baselines without clean data on
Tiny-ImageNet dataset with β = 0.2. The best results are in bold, and improvements brought by
H+ over the original robust methods are underlined.

Attack Name Gaussian Attack Sign-flip Attack LIE Attack FoE Attack

C̄ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

H+Median 53.03 51.40 53.45 50.57 53.86 52.45 54.05 52.52

Median 21.60 23.41 0.75 16.52 22.75 22.21 14.95 3.02

H+Krum 54.16 51.37 54.01 51.06 54.17 51.64 53.37 51.48

Krum 26.10 25.85 26.37 25.93 25.58 26.21 0.35 0.36

H+GM 53.60 52.18 52.65 51.31 53.78 50.91 53.07 49.48

GM 53.59 52.76 29.64 0.06 53.57 51.42 29.78 0.35

H+MCA 54.04 53.71 52.76 51.34 53.02 50.61 53.43 49.79

MCA 53.46 52.89 0.51 0.50 53.70 51.45 0.51 0.50

H+CClip 53.61 51.74 52.58 52.54 53.71 51.81 53.35 51.94

CClip 39.37 36.56 13.92 0.41 41.98 31.79 14.15 0.43

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: The maximum test accuracy (%) for the H+ method and Zeno++ with clean data on β = 0.2.
The best results are in bold.

Attack Name
Datasets TinyImageNet CIFAR10

C̄ 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

Gaussian Attack
H+Clean data 50.36 47.41 44.93 38.23 33.56 63.79 56.94 59.16 52.63 43.09

FLTrust 18.91 18.95 18.96 19.27 19.26 41.54 42.37 42.38 42.20 43.21

Zeno++ 10.77 7.32 6.90 8.31 0.48 50.85 50.20 45.42 43.62 8.76

Sign-flip Attack
H+Clean data 50.46 48.06 45.64 38.67 32.75 68.25 56.93 56.86 62.43 44.79

FLTrust 8.88 9.27 9.91 11.67 14.91 31.88 31.96 33.58 38.38 38.89

Zeno++ 7.66 8.24 9.77 5.78 1.43 53.39 51.11 45.68 42.73 8.76

LIE Attack
H+Clean data 49.72 48.03 45.09 36.57 33.91 62.89 61.09 64.67 55.96 46.79

FLTrust 19.04 18.90 18.71 19.08 19.19 42.14 43.12 41.75 43.40 43.53

Zeno++ 16.21 10.47 8.68 0.48 1.38 50.32 45.54 48.25 43.64 8.76

FoE Attack
H+Clean data 49.55 49.97 43.86 34.43 33.40 61.92 72.06 68.62 37.21 12.89

FLTrust 9.18 9.07 9.96 11.72 15.45 33.75 31.75 34.95 36.30 40.36

Zeno++ 10.62 5.76 6.73 6.06 5.00 58.99 50.66 54.34 26.51 41.56

Table 8: The maximum test accuracy (%) for the H+ method and Zeno++ with clean data on CIFAR-
100 dataset. The best results are in bold.

Attack Name
β 0.6 0.2

C̄ 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

Gaussian Attack
H+Clean data 53.50 53.53 51.14 48.03 38.22 51.33 50.00 46.85 43.58 29.17

FLTrust 31.62 31.65 31.00 30.82 29.66 20.70 20.76 20.60 20.43 20.46

Zeno++ 39.73 37.95 41.73 39.37 38.63 30.79 29.26 31.20 28.82 25.10

Sign-flip Attack
H+Clean data 53.80 52.88 51.96 48.81 37.46 50.96 49.29 47.56 41.76 30.84

FLTrust 24.90 26.27 25.32 27.30 29.22 17.94 17.75 17.71 19.07 19.71

Zeno++ 37.58 37.87 34.09 38.37 37.16 30.08 24.51 27.02 29.82 31.68

LIE Attack
H+Clean data 53.47 52.67 51.76 46.03 38.73 50.97 50.65 47.61 40.43 28.64

FLTrust 31.45 31.04 31.33 30.18 29.50 20.71 20.92 20.47 20.46 20.34

Zeno++ 33.73 39.70 37.73 34.77 35.88 30.52 28.08 26.40 21.19 24.02

FoE Attack
H+Clean data 53.71 53.47 51.23 46.39 35.75 50.79 48.29 44.41 37.77 26.90

FLTrust 25.46 25.54 26.41 26.07 28.18 18.17 18.26 18.53 18.84 20.23

Zeno++ 40.59 40.07 38.09 36.61 38.84 26.32 31.71 27.68 28.84 25.07

16

	Introduction
	Related Work
	Robust Aggregation Methods without Clean Data
	Robust Aggregation Methods with Clean Data

	Problem Setup
	FL Optimization Problem
	FL without Clean Data
	FL with Clean Data
	Byzantine Attacks

	Methodology
	Similarity Check Function
	H+ on FL without Clean Data
	H+ on FL with Clean Data
	Time Complexity of H+

	Experiments
	Implementation Details
	Comparison with Baselines
	Ablation Experiment

	Conclusion
	LLM Usage
	Discussions about H+ on FL without Clean Data
	Algorithm Workflow
	Experimental Setups and Results in Detail

