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ABSTRACT

In this work, we explore the use of compact latent representations with
learned time dynamics (‘World Models’) to simulate physical systems. Draw-
ing on concepts from control theory, we propose a theoretical framework
that explains why projecting time slices into a low-dimensional space and
then concatenating to form a history (‘Tokenization’) is effective at learning
physics datasets, and characterise when exactly the underlying dynamics ad-
mit a reconstruction mapping from the history of previous tokenized frames
to the next. To validate these claims, we develop a sequence of models with
increasing complexity, starting with least-squares regression and progressing
through simple linear layers, shallow adversarial learners, and ultimately
full-scale generative adversarial networks (GANs). We evaluate these models
on a variety of datasets, including modified forms of the heat and wave
equations, the chaotic regime 2D Kuramoto-Sivashinsky equation, and a
challenging computational fluid dynamics (CFD) dataset of a 2D Karman
vortex street around a fixed cylinder, where our model is successfully able
to recreate the flow. Comparison to FNO and DeepONet show comparable
short term and improved long term accuracy of solutions generated by world
models.

1 INTRODUCTION

World models were introduced by Ha & Schmidhuber| (2018) as dynamical generative models
based on a latent representation of the world. Typically, a highly complex state of the
environment is encoded in a sequence of latent variables by some encoder or tokenization
map. |LeCun| (2022) explicitly demands an accurate representation of the world’s physical
laws by the world model output. Motivated from the success of large language models,
the latent state dynamics are then modelled in an autoregressive fashion, where the next
latent state is autoregressively predicted based on a history of prior latent states. Ultimately,
the full state is reconstructed by some super-resolution module, which takes a sequence of
latent variables as input. In this way, world models define the present state-of-the-art in the
generation of dynamic scenes. Computer vision applications of word models have produced
stunning success in video generation (Hu et al., 2023; Peng et al., [2025).

Neural operator learning, on the other hand, aims for an efficient generation of solutions to
physical systems governed by partial differential equations (Li et al., [2021} [Lu et al., [2021;
Kovachki et al.l [2023} [Zhang et al.l [2025)). Neural operators are trained on sample data
produced by numerical simulation and then generalise to new initial conditions, from which
solutions to the physical equations are generated.

Generative modelling of physical systems has been widely explored with an emphasis on
turbulent flows, see e.g. [Kim & Lee| (2020); |[Drygala et al.| (2022).

World models have been applied previously to simulate physical systems (Skorokhodov et al.,
2022; [Klemmer et al., [2022]), but their focus is on video generation, so they neither analyse
system-theoretic foundations nor compare with operator-learning approaches.

Our contributions in this paper are as follows:



(1) We introduce a system-theoretic framework to understand when world models can
reliably learn dynamics from tokenized observations. This is demonstrated through
experiments on a hierarchy of dynamical systems, starting from the heat and wave
equations to complex turbulent flow synthesis. The study is mathematically grounded,
explaining operator learning within world models, and proving that neural networks
struggle to capture the time-evolution operator in systems that lack observability.
Video visualisations of our solutions can be found in the supplementary material.

(2) We interpret world models as an operator learning method and compare this approach
to state of the art methods like FNO and DeepONet showing superior long time
stability of world models for in-distribution and out-of-distribution test data.

(3) We provide numerical studies on the length of token history in autoregressive predic-
tions and super-resolution reconstruction, which is a first study of autoregressive
model order reduction for dynamical systems.

(4) We show that world-model based simulation can achieve low error predictions in
capturing the key temporal correlations in the case of turbulence modelling even in
situations where the state cannot be fully observed, at significantly less computational
cost than traditional methods form computational fluid dynamics.

Section [2] discusses related work, Section [3] the theoretical setting, Section [f] datasets and
experiments, Section [5] our results, which we discuss in Section [f] We will publish our code
after acceptance.

2 RELATED WORK

Generative super-resolution reconstruction of turbulent flow A prominent applica-
tion of generative learning in turbulence is resolution reconstruction. GAN-based methods
dominate this area, with (Enhanced) Super-Resolution GAN (Wang et al., |2018) variants
widely used to recover high-resolution turbulent fields from low-resolution or noisy inputs,
often enhanced by physics-informed loss functions (Deng et al.l |2019; [Bode et al., |2023;
Chen et al.l [2024; |Zheng et all [2024). More recently, (Zhang et al.l [2025) proposed an
operator-learning approach that reconstructs high-resolution fields from sparse data using a
tokenizer and energy transformer.

Spatio-temporal generative modelling for turbulent flow. Moving beyond snapshot
reconstruction, recent studies have applied generative learning to spatio-temporal turbulence
modelling. Transformer-based frameworks encode temporal interactions into latent spaces,
guided by Navier—Stokes constraints (Xu et al., |2025) or spatial embeddings (Li et al.|
2022} |Alkin et al.l 2024). Recurrent neural networks integrate physics through boundary
conditions (Ren et al., 2023} 2025|) or pretrained modules (Wan et al., 2025). Residual
networks (Liu et al.| |2024)) and diffusion models (Riihling Cachay et al.l |2023) have also
been applied, with diffusion models notable for operating in a purely data-driven manner
(Kohl et al., [2024} [Yang et al., 2023), but limited by slower inference. Other directions
include autoregressive pretraining for surrogates (McCabe et al., [2024), GAN-Autoencoder
hybrids for next-step prediction (Afzali et al., 2021), and world models adapted from video
generation (Skorokhodov et al., |2022; Klemmer et al.| [2022]).

Operator learning focuses on approximating mappings between infinite-dimensional
function spaces, allowing models to capture entire solution operators rather than just
pointwise predictions. Approaches such as Physics-informed Neural Networks (PINN) (Raissi
et al., [2019) and Neural ODE (Chen et al., [2018]) utilise neural networks to solve specific
ordinary or partial differential equations (ODE/PDE), either by embedding physical laws
into the loss function or by parametrising continuous-time dynamics. These methods are
generalised by neural operator learning, which aims to efficiently generate solutions for
entire families of PDEs by instead learning solution operators, which take as input both the
problem specification (e.g. coefficients, forcing terms, boundary or initial conditions) and
the associated function space, and output the corresponding solution function. Within this
framework, Fourier Neural Operators (FNO) (Li et al 2021} [Kovachki et al.l |2023)) perform



convolutions in the spectral domain to capture long-range interactions, while DeepONets (Lu
et al., [2021)) employ a branch-trunk architecture to flexibly map input functions to outputs.
For a comprehensive overview of (neural) operator learning methods and frameworks, see

Cai et al.| (2021); Tanyu et al.| (2023)); Kovachki et al.| (2024])

3 THEORETICAL RESULTS

3.1 DYNAMICAL SYSTEMS, TOKENIZATION AND AUTOREGRESSIVE DYNAMICS

In this section we collect some facts from system theory for the mathematical understanding
of world models. We consider a dynamical system

i(t) = f(z(t)), z(0) =xp € X CR", (1)

where the state space X is compact with differentiable boundary and f: R™ — R™ is Lipschitz
with constant L > 0 and fulfils f(z) - v(z) = 0 for z € X, where dX is the boundary of
X and v(x) the outward normal vector field. The Picard-Lindel6f theorem (Teschl, 2012)
ensures global existence and uniqueness of solutions. Furthermore, as f(x) is tangential to
X at the boundary, the solution never leaves X'. If z(¢) and Z(t) start from z¢ and Zg, the
Gronwall estimate implies continuous dependence on initial data.

Let h: X — R™ (m < n) be a continuous tokenization map which maps the high dimensional
state € X into the latent representation y = h(z) € R™ with m < n. In system theory h
is known as the (system) output map. We define the tokenized (latent) dynamics

y(t) == h(z(t)) e R™. (2)
Denote by Sa: X — X the time-A flow (“propagator”) associated with :
Sa(z) = xz(A) when z(0) = . (3)

For a fixed integer k > 1 we collect k£ equidistant past outputs into the measurement sequence

k
Ysea(t) = (y(t = (k= 1DA), y(t = (k=2)A), ..., y(t)) € Y= (h(X))". (4

The following definition introduces the system theoretic and the world model perspectives

on the tokenized dynamics and .

Definition 1. (i) Given zo € X and A, T > 0 such that £ € N. A state i is indistinguish-

able (on I'r = {Aj: 5 €{0,1,..., %}}) from xg if the associated outputs coincide, i.e., if it

holds y(t;xo) = y(t; To) for t € T'p. The set of states which are indistinguishable from xg

is denoted by Z(xo). The pair (f,h) is observable if for any xg € X there exists A,T >0
s.t. T(xo) = {xo}-

(ii) An autoregressive dynamics on the latent space Y with history length k € N and time

step A > 0 is a mapping
g: VF =Y such that g(yseq(t)) = y(t + A). (5)

Observability concepts for nonlinear control systems have been rigorously analysed in, e.g.,
Hermann & Krener| (1977). Further details on observability in the standard, continuous
setting of control theory can be found in Appendix

In the context of world models, the reconstruction map G is also called a decoder or super-
resolution map (Fig. . Observability (i) and (ii) are closely related, as the following Lemma
shows:

Lemma 2. Suppose the dynamical system is observable in the sense of Definition |1] (i).
Then the autoregressive dynamics defined in Deﬁnition (i) exists.

Proof. Composing G with the flow and measurement functions yields g: Y* — Y via
g:=hoSxoG. As G, Sa and h are continuous, so is g. In fact,

9(Yseq(t)) = h o Sa 0 G(yseq(t)) = h(Sa(x(t)) = h(x(t + A)) = y(t + A). u
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Figure 1: The full-state time-series data zi—g.: = (x(t — k),...,2z(t)) is tokenized via yseq(t) =
h(z¢—k:t), yielding a low-dimensional representation. The next observation is predicted by y(¢t+1) =
9(Yseq(t)), then appended—dropping the oldest entry— to form yseq(t + 1), and finally the full state
is reconstructed via z(t + 1) = G(Yseq(t + 1)).

System theory gives us sufficient conditions for the existence of a reconstruction map G and
hence an autoregressive dynamics g in the latent space.

In our experiments we distinguish two cases: linear observability and nonlinear observability.

A linear dynamical system is given by Sa(z) = e®“4x where A € R"*" is the generator of

the dynamics, i.e. in we have f(z) = Az. In this easy case, we can drop the compactness
condition for the state space X' and identify it with R™. If we additionally have a linear
observation h: R™ — R™ h(x) = hx with h € R™*"  observability is well-known to be
equivalently characterized in terms of algebraic rank conditions 11998, Chapter 6).
In particular, the seminal work of related observability to the (Kalman)
observability matrix which for & € N is defined as

Oz(hT (hA)T ... (hA”*l)T)TeR"mX". (6)

Then the following theorem characterizes linear observability.

Theorem 3. The following are equivalent. (i) The linear dynamical system is linearly
observable; (ii) The observability matriz has full rank n; (i) For all eigenvectors v of A we
have hv # 0.

Proof. For the proof of this standard result see, e.g., 1998, Chapter 3). Note
that the third condition is typically referred to as the (Popov-Belevitch-)Hautus test for

observability. O

Unfortunately, the situation in the non-linear case is less well understood. We refer to
Appendix [B] for a detailed discussion of the state of research.

3.2 OPERATOR LEARNING USING THE WORLD MODEL APPROACH

On the basis of the assumption of global observability through a reconstruction map G: Y* —
X, we develop the statistical learning theory for the autoregressive map ¢, the reconstruction
map G and the dynamics operator Sa. As G is only assumed to be continuous, we refrain
to qualitative results of PAC learnability and do not aim to give rates of convergence.

The training data is given by a set of N trajectories m(t;x(gj )) with initial conditions
x(();xé])) = xé]), j =1,...,N, where xé]) ~ 1t are drawn independently from some dis-
tribution 1 on X with continuous density function du(z) = f,.(x)dz such that f,(x) > 0
on X. The training data is observed at times ¢t € 'y = {Al : k € N, Al < T} so that we

have % + 1 time steps. Applying the tokenization map h, we furthermore have access to

y(t;xéj)) = h(x(t;xé))), t € T'y. Suppose that k is sufficiently high such that histories of
length k, yseq(t;20) = (y(t — (K — 1)A;z0),y(t — (k — 1)A;20), ..., y(t; 20)), t € I'p suffice

to reconstruct z(t; xg) = G(ys(é)é) (t)). We consider the risk functions for g and G given by

'CQ,T(nQ) = E$ONH7tNU(FT\(FA(k71)U{T})) “|779(yseq(t; "TO)) - y(t + A; $0)||2] y (7&)
EG,T(WZJ) = E$ONH7tNU(FT\FA(k71)) [HnG(yseq(t; l’o)) - ‘T(t; 330)H2] ; (7b)



where 7, : Y** - Y and ng : Y**¥ — X are represented by neural networks from hypothesis
spaces Hy n,1 and He n 1, respectively and U(A) stands for the uniform distribution on the
finite set A. Let ﬁN’T’g (ng) and ﬁNyT’G(ﬂg) be the corresponding empirical risk function
learning from N trajectories of length T, and 7y n 7, i Where they take their respective
minimums. See Appendix [A] for definitions.

We obtain the following theorem on probably approximately correct (PAC) learning, see
Appendix [A] for the proofs in this section.

Theorem 4 (PAC-learning of g and G). Lete,d > 0 be arbitrary. Then there exist hypothesis
spaces Hg N1, Ha N of neural networks and a function N (g, ) such that

P(Ly N(e5),17(Ng,Nes),1) <€) =21 =0 and P(Lg N(es),r(aNEs)r) <€) >1-30  (8)

Let us next consider a random state z¢ ~ p and its past token sequence ypast (o) of length
k and ypast— (x0) on length (k — 1). We define the risk function measuring the error in the
autoregressive update of the full state Sa(X) as follows

Ls(1g:1c) = Eagmp [IISA(xo) = 116 (Ypast— (20): 7y (Ypast (0)) || - 9)

We then get:

Theorem 5 (Autoregressive PAC-Learning of Sa). Let €,6 > 0, then there exits €',8 > 0
such that

P(Ls(Ng,n(e 61,1 NG,N( 60),1) <€) > 1 —0.

The autoregressive approach can also be trained variationally in GAN-fashion, see Appendix
for the details.

3.3 EXAMPLES

The examples we consider are spatially or spatio-temporally discretized partial differential
equations (PDE) on a quadratic lattice, see Appendix [E] In all cases we utilize a simple
tokenizer map h(z) used e.g. in Brooks et al|(2022), taking the average on patches of pixel
size v/k X y/k with v/k € Nand m =n/k € N.

Linear equations. Let a(§) > 0, £ € T, be a thermal conductivity coefficient, which is
constant in ¢ but not necessarily constant in space. The heat and wave equation, respectively,
is given by

ou 0%u

— =V (aVu), =

ot ( ) ot?
In the heat equation, the state x(t) in equation then consists of the pixel values z(t) =
(u(t,€))eer and the dimension is n = |I'|, the number of points in I". The linear dynamics
then can be written as 4(t) = Apa(t) with A, =V - (aV) the lattice Laplace operator with
conductivity a.

=V (aVu), (10)

In the latter wave equation, y/a(€) > 0 stands for the local wave propagation speed. As the
wave equation is second order, the state of the dynamical system x(t) = (u(t,£),v(t,§))eer
not only contains the wave amplitudes u(t, ) but also the momentum degrees of freedom
v(t,€) = Zu(t,€) and we have n = 2|T| as state dimension. the dynamical system can then
be written in a first order formulation as follows:

. 7& u o\ 0 1 u o\ .

The token map h employed averages wave amplitudes u(t, £) over squared regions containing
k pixels &.

The following theorem provides a warning that situations exist where world models will
generally fail to learn the dynamical system due to the lack of observability.



Theorem 6. Let the coefficient function a = a(§) be constant for the heat and wave equation.
Then the respective dynamical system is not observable.

See Appendix [A] for the proof. Our experiments in Fig. [2] show a significant deterioration
of operator learning with world models for the case of the heat equation with constant
coefficients. To produce positive results, we thus perturb the lattice Laplacian using a non
constant eigenfunction a(§) = exp(Z(£)), where Z(§) is a restriction of a realization of a
Gaussian random field to I'. Numerical tests based on diagonalization of the so-obtained
matrix show that generally the eigenvectors are not annihilated by the tokenizer h for non
constant coefficients. Correspondingly, numerical errors are much reduced.

Nonlinear equations. The Kuramoto—Sivashinsky equation (KSE) is considered one of
the simplest PDEs with chaotic behavior and is given by

0
871; +uVu + Vu + (V?)2u = 0, (12)
where V2 is the Laplace operator V - V. Observability of the KSE is discussed in Appendix

[E

As a second experiment with non-linear dynamics, we consider the flow around a circular
cylinder at a Reynolds number of 3900 presents a complex fluid dynamic behaviour since the
flow exhibits characteristics of both laminar and turbulent regimes, with vortex shedding
forming a Karman vortex street downstream of the cylinder. The viscous fluid is governed
by the Navier Stokes equations (NSE), which stem from the conservation laws of mass,
momentum, and energy where the mass simplifies to the divergence-free nature of the velocity
field. Moreover the energy equation can be neglected since the flow in the present scenario is
incompressible and isothermal. Given the velocity vector u = (u, v, z) we can write the NSE
in Cartesian coordinates as

Ju
ot

where p is the fluid density, v is the kinematic viscosity, and p denotes the pressure field.

1
V-u=0, +(u-V)u= —;Vp—i—vVQu, (13)

Following Drygala et al.| (2022) Eq. (24), in this experiment, we use a non-linear tokenization
which only observes the turbulence strength, which measures the deviation of the absolute
velocity from the long time average. This gives a scalar turbulence field, to which thereafter
the standard tokenizer of LongVideoGAN (Brooks et al.,[2022) is applied. The reconstruction
map G is not considered for the full state, but for the full state projected to the turbulence
strength, which is a continuous mapping. Observability of this projected state follows
from the observability of the full state, which is unknown. The quality of the world model
reconstructions thus has to serve as experimental evidence of observability.

4  DATASETS AND NUMERICAL SETTINGS

In order to verify the theoretical results of Section [3] we created datasets for the heat, wave,
and KS equations. To verify the methodology on a standard computational fluid dynamics
problem, we also included a published dataset for flow around a cylinder at Reynolds number
3900, a well-studied case in the literature. More details are given in Section [G] The datasets
are learned with a variety of methods, starting with a simple least squares regression model,
to gradient descent methods, through to full DCGAN methods employed by NVIDIA’s
LongVideoGAN (Brooks et al.l 2022).

It is important to point out that all of the datasets used in this work are fundamentally
dynamical, i.e. they are videos. We give some static snapshots (Figs. |§|7 but in
order to get a proper impression of the both the dataset and model outputs, the reader is
strongly encouraged to examine the videos in the supplementary material.

The heat, wave and KS datasets use a Gaussian random field as the initial condition of
the flow field u. Where applicable, the initial velocity field v was identically set to 0. All
three datasets use periodic boundary conditions. The precise numerical parameters used to
generate the Gaussian random field are listed as Table [f] in Appendix [G}



5 EMPIRICAL RESULTS

5.1 LINEAR EQUATIONS

Run
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Figure 2: Average Lj residues of our low-res heat equa- Figure 3: Full model L2 error results,
tion model against epoch, for the test set. Each x-axis for the heat and wave equations. Each
unit represents 2000 epochs. Data is normalised be- low-res model is fed the first 16 frames
tween [—1,1]. The unmodified (non-observable) heat from the test set, and is left to generate
equation has history size 16. the next 100 using its own output. The

result is then fed to the super-res model.

Here we present the results of the training on the data produced for the heat and wave
equations, as in Eq. We learn the operator both by using modern gradient descent
learning methods and traditional multivariate linear regression, to verify the machine learning
methods. Thm. [7] guarantees the reconstruction map exists; it remains to check it can be
found in practice.

Least-Squares Regression. We begin in a fully specified statistical model for the low
resolution model, where the learning is done by multivariate least squares regression. FiglT3|
shows the average absolute error of the residues when the history length of the model is
varied, whilst Fig. shows the maximum error across all pixels in all 2000 frames. Each
point is sampled 100 times. The shaded area represents a 1o range. Note the significant drop
in error; we are guaranteed by Lemma |2 that this occurs as the supplied history length to
the model exceeds the compression factor k. We can see that in this ‘ideal’ case (optimality
given by Gauss-Markov theorem) the drop actually happens much earlier.

Autoregressive Learning. Fig. [2]shows how the error evolves against steps for stochastic
gradient descent via the Adam (Kingma & Bal), 2017) optimiser. The model shows a clear
improvement as history size increases, but past the compression factor of 16, increasing the
history size provides no benefit, as discussed in Section 3] In particular, the lines representing
a history size of 16 and 20 have converged by the end of training. Note also that the model
performs poorly for an unmodified (non-observable) heat operator. This demonstrates that
observability is a necessary condition for learning, as stated in Section [3| and adding more
information beyond simply satisfying observability doesn’t change the end result.

Full Pipeline Error. The same analysis can be carried out for the super-resolution model,
where again the theory guarantees the existence of the reconstruction map. Fig. [3]shows the
full model error for 100 frames of generated video. As expected, the error increases with
time for the wave equation, but in fact decreases in time for the heat equation, due to both
the model and the ground truth decaying to the low entropy state. Note that the error
decreases faster (increases slower) for the heat (wave) curve whilst the model still has access
to at least a few of the ground-truth low-res initial frames.

5.2 NON-LINEAR EQUATIONS

Loss curves for frame-wise L; and Lo residue loss can be found in Fig. @] We computed
p(At) (See Section [H.3) for 15 generated and 15 real 300 frame videos from the test set. We
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Figure 4: (Left) Residues of our KSE model against epoch, for the low-res test set. For data
normalised between [—1, 1], We obtain a minimum average L loss of 4 x 107 and minimum average
L+ loss of 0.0014.

Figure 5: (Right) Temporal correlations at the point (128, 128) for the trained model and ground
truth. The shaded areas show a 1o range. 15 videos were produced as in Fig. [3} the low-res and
super-res models are concatenated.

compare the sample means and standard deviation in Fig. Note the model has learned
this statistic well for early times, but appears to ‘desync’ at longer time horizons.

Comparison to Existing Models. A direct comparison of our method with [Li et al.
(2021) and |Lu et al.| (2021) can be found in Table [l Both were trained in a data-driven
manner; the DeepONet uses an FNO as the branch network and an FCN as the trunk. For
the linear equations, we compute the MSE and L1 (error) norm for a 1, 200, and 1000
frame look-ahead prediction. Initial conditions were sampled random fields distinct from the
training data, but with the same distribution (in-distribution). For out-of-distribution initial
conditions, see Table 3]in the Appendix. The KSE also includes a 1 frame look-ahead MSE
and L1 norm, as well as a metric measuring the distance between the correograms (x-axis
1-200 frames) of the model and ground truth data (Table . Here, ‘diverged’ refers to a
value larger than float precision. We note that our model obtains better performance metrics
in the majority of cases. This is especially true of long time horizons, which underlines the
stabilising effect of our history based autoregressive approach. Further comparisons can be
found in Section

We omit a comparison to PINNs (Raissi et al., 2019), as PINNs need to be retrained for new
initial conditions, which affects robustness and speed at generation time. Additionally, the
KVS dataset contains partial information of the state, and thus the data driven case is more
general. Current experimental methods (e.g. as in |Ghazijahani & Cierpkal (2024))) also only
give a partial measurement. The theoretical guarantees given by Theorems [4] and [5] make
sure that despite this, assuming observability, the physics is learned accurately.

5.3 FLOW AROUND A CYLINDER.

We computed p(At) for At € {1,...,100} and for 4 different choices of P for 100 non-
overlapping videos with a length of 301 frames of the original data, as well as for 50 different
generated videos with a length of 301 frames. We then computed the sample means and
standard deviations of the correlation coefficients to compare our generated videos to the
original ones. Pixels 1, 2, 3 and 4 used for comparison are given in Fig.

The results in Fig. [f] indicate that, overall, the generated videos exhibit temporal dynamics
consistent with the real videos, as the mean correlations almost always fall within one
standard deviation of the real data. However, the model tends to exaggerate short-term
correlations, particularly for points 1, 2 and 3. Whilst long-term correlations are captured
effectively, there are notable deviations at late times at point 4, suggesting difficulty in
replicating more non-periodic behaviours. An analysis of all four coordinate points and
longer, 1000 frame videos is given in Section [K]
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Figure 6: At vs p(At) with At € 1,...,100 for pixel 1 (left), and pixel 3 (right). The shaded areas
show a lo range. The mean and standard deviation of the correlation are calculated across 50
generated videos containing 301 frames, and for the real videos were across 100 real videos with 301
frames.

Ours (full model DeepONet FNO .
o ( T ) ol P D i D Computational Cost.
The motivation to
Heat (1) 0.0370 0.0021 0.2754  0.1181 0.2753  0.1180 generate dynamical
Heat (200)  0.0243 0.0009 0.?%204 0.}603 0.?546 0.9996 systems using GANs
Heat (1000) 0.0051 4.27 x 10~° Diverged Diverged Diverged Diverged . .
stems in part from their
Wave (1) 0.0921 0.0133 0.2587  0.1090 0.2588  0.1090 abilitv  to  sienificant]
Wave (200)  0.3181  0.1600 5.1761 2787.4028 0.2741  0.1186 q Y 8 tati }{
Wave (1000) 0.4676 0.3420 Diverged Diverged Diverged Diverged reduce ,C(;,mpu a lo.na
KSE (1) 0.0095  0.0005 0.0259  0.0005  0.0190  0.0094 costs at inference time

compared to LES. Exact

Table 1: Comparison of our model’s performance to state-of-the-art (IARINg tlmgs and
neural operator methods across our datasets. Performance after 1, 200 hardware are listed for
and 1000 frames of continuous generation is given. Best results for each model in Section [Il
each metric are highlighted in bold.

6 CONCLUSIONS AND LIMITATIONS

Conclusion. We have introduced a system-theoretic operator learning framework for
understanding when ‘world models’ can faithfully learn dynamics from tokenized observations.
With observability, we explained when concatenated token histories suffice for reconstruction
in both linear and nonlinear settings. Empirically, our sequence of models from analytic
least-squares to full GANs validated this theory across four benchmark problems. In each
case, world-model reconstructions achieved low prediction error and captured key temporal
correlations. Compared to traditional LES, inference with our generative models is orders of
magnitude faster. Compared to existing neural operator methods, our models perform much
better for longer time horizons.

Limitations. Our analysis relies on a strong global observability assumption: the output
map and underlying flow must admit a continuous, invertible reconstruction operator. In
practice, certain coefficient choices violate observability under patch averaging. Moreover,
accuracy of World Models can degrade over very long rollouts. We see this occur for the
chaotic regimes, but this is not necessarily an issue since small variations in initial conditions
lead to large variations later in time, a problem even the LES (and neural operators) suffer
from. However, we still see a breakdown in the time correlation for longer roll outs, especially
in the KSE case. Finally, since observability is a binary conditions, further research is
required to characterise when exactly a dataset may satisfy the formal assumptions set out
in Section [3| but in practice still be difficult to learn i.e. in some sense be ‘close’ to being
non-observable.
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A  EXTRANEOUS PROOFS

Here we give detail on some proofs of Section [3| We first formally define the empirical risk
functions defined in Section

Lonr(ng) = Z ST Inglusea(t i) =yt + Ayad)|%,

] LteTr\(TagU{T})
Lonring) = Z > Ino(ea(tih) — altiag)|>
J 1telr\Iag
Here T stands for the observation time of the trajectory, A for the time steps of the evolution

and observation, and N is the number of initial conditions xéi) sampled from some distribution

pon X. They take their minimums when

fg.nr € argmin Ly n7(ny), fic € argmin Lanr(ne), (14)
Ng€MHg,N,T ne€Ha,N,T

Clearly,
EvomulLNT,g(Ng)] = L1 g(ng) and By p[Lr 6 (n6)] = L1.6(16)-

Proof of Theorem [J). We give the proof for the autoregressive map g : ¥ — J); the proof of
PAC-learnability for G : Y* — X is completely analogous.

We start with the usual error decomposition formula. Let n, € Hgy n 7, then
0 < Ly(g,n,1) = Lg(ng) + [ﬁg,N,ng,N,T) - ﬁg7N,T(ng)}
+ {ﬁg(ﬁgyN,T) - ﬁg,N,T(ﬁg,NyT)} + {ﬁgyN,G(ng) - ﬁg(ng)]

< Ly(ng) + [ﬁg,N,T(ﬁg,N,T) - ﬁg,N,T(Ug)} +2 ~ GS?LJP ﬁg,N,G(ﬁg) — Ly(7g)
Ng g9,N,T

< Eg(ng) +2 sup ﬁg,N,G(ﬁg) - Cg(ﬁg)

Ng€Hg N, T

)

where the second term in the second last line is smaller or equal to zero by the ERM
assumption . Taking the infimum of the right hand side over n, € H4 n, 1, we obtain

0<Ly(gnT) < inf  Ly(ng) +2 sup
Nng€Hg,N,T ng€HN,T

ﬁg,N,T(ng) - ﬁg(’?g) ) (15)

where the first term stands for the model error and the second for the generalization error.

Furthermore, the autoregessive map ¢ exists and is continuous by the representation given
in the proof of Lemma 2]

Let 6, > 0 arbitrary. Let H. be a space of fully connected neural networks of width W (e)
and depth L(e) and with weights 6 in weight space ©. uniformly bounded by M (e) such
that the first term on the right hand side of is bounded by £. Without loss of generality
we can assume O. to closed and thus compact.

That this hypothesis space exists follows from the universal approximation property of neural
networks, see e.g. |Cybenko| (1989); Yarotsky| (2017); |Kidger & Lyons| (2020) which guarantee

g — glloe < /5 for some ny € Hc. From this and by (7a)).

Lg1(ng) < lIng _gHio = inf  L,y(n,) <
ng€Hg, N, T

w\m

Not that all summands occurring in £, x.7(n,) are uniformly bounded for 7 € H. and
continuous in the neural networks’ weights 6§ € ©.. By the uniform law of large numbers
(Ferguson, 2017)) it follows that the second term in converges to zero P-almost surely
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when H n r is replaced by H.. As almost sure convergence implies convergence in probability,
there exists a N (e, ) sufficiently large such that for N > N(g, ¢)

P (Ly(Ng,n7) >€) <P ( sup

ngEHN,T

p €
ngN7T(779) - ‘Cg(ng)‘ > 4> < 0.

Now the first inequality from Theorem [ follows from passing over to the complementary
events, provided we set Hy n(c.5),7 = He- O

Here we have given the proof of Theorem [ in the large sample limit N — oo for i.i.d.
sampling of the initial conditions xéj )~ w. For ergodic dynamic systems, by application of
Birkhoff| (1931)’s ergodic theorem, this limit can be replaced by the large time limit T — oo
and only one observed trajectory N = 1, when xg ~ p and g is the invariant measure of the

dynamic system, see Drygala et al.| (2022) for a similar argument.

Proof of Theorem[5 We consider @D and estimate

Ls(fg,nT:T6,NT)

[N

= Eqgmn |19 (20) = i1 (Ypast— (0), g v.7 (past (20) |
= By [ |G (st (20), 9(Upast (#0)) — i1 (st (0), g vt (e o)) (16)
< 3Bape |G Wpast— (@0), 9(0past (20)) — 1.7 (past— (20), 9 s (v0))
+ 3By [[6.37 (Ypast— (20), 9 (Wpast (20)) = 6 3.7 (past— (20): g .1 (st (0))

Here we used the triangular inequality for the L?-norm and the fact that \/c < \/a + Vb

= ¢ < 3a+3bfor a,b,c > 0. In the next step we apply the substitution z¢ — S;k(:ro) = x|
we then obtain for the second term on the right hand side

N|=

Eeomn hmG,N,T(ypastf(xO)ag(ypast(xo)) - ﬁG,N,T(ypastf(xO)vng(ypast(mo))nz (17)
1
3

<Lt Boraron | 19(Wpast (20)) = 7.1 (Ut (0))

where Ly, . is the maximal Lipshitz constant of neural networks ng in Hg. Let us apply
the change of variables z,— x), = Sx"(20). Under this substitution we get

Ezgnp {Hg(ypast(mo)) - ﬁgW,T(ypast(JUO))Hﬂ
- ]E%N(S;k)*u {Hg(yseq(A(k - 1),:E6)) - ﬁg,N,T(yseq(A(k —1); (Eé))”ﬂ

—k
—E.., [ng(yseqm(k 1)) — gz (trea (A (K — 1) 2)] C“Sd““@a)]
H (18)

d(Sx"). 5

< | BB g [l A0 = 1) i mea( Ak = i) ]
d(SAF)up T .
AL (S k) Lol )

Here for a measurable set A C X, (Sx7).pu(A) = (S (A)) is the image probability measure
“k
of p under k steps in the backward dynamics and % is the Radon-Nikodym derivative

of S(1F).p with respect to .
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By a similar calculation we obtain for the first term on the right hand side in
1

Evomse |16 Wpast—(@0): 9 (Upast (20)) = 3,7 (Wpast— (@0): 9 past (@) I

d(S5")p
dp

(19)

IN

T .
(A - k) Ler(ha,nT)

END!

Let us assume that T“H is finite and £, > 0 be given. We now choose hypothesis

oo
spaces and sample sizes according to the following recipe. Making use of the second assertion
in Theorem EL we see that the can choose Hg n,7 such that

3

<

| 9

P|L i
G,T(’UG,N,T) 6Hd(SA Vet

_(E-#)
€ )
2

for N > Ng TR ,
o524, (& -0

By ., we have that the first term on the right hand side of (| is larger than § with

probability at most 5 . We keep this hypothesis space for G fixed and thus Ly, v, is fixed
as well. Using the ﬁrst assertion in Theorem [4] we can further choose a hypothesis space
and a natural number N, such that

™
IN
| >

P EQ’T(ﬁg’NﬁT) > (20)

for N > N, < g

—k ’
o ol MEED)

Using this along with (17) and (18), we also see that the second term on the right hand
side of is larger $ 9 w1th probablhty at most g and for N > N,. Therefore, for
N > max{ ,Ng}, we obtaln the assertion of Theorem [5| I from . the union bound for

probabilities and equations (20) and (| .

(21)
6LHG,N,T

d(S

To conclude our proof, we identify generic conditions under which H H is finite. To

this aim let du(z) = f,.(z) dz on X where the density f,(z) > 0 for all x € X is continuous.
As X is compact, Kmin = Mingey fu(x) > 0 and Kmax = maxzex fu(x) < oo.

As already mentioned in Section Spa = (S&l’“)_1 is Lipshitz by the Gronwall lemma. Thus,
the Jacobian DSga(z) exists dz almost everywhere on X and furthermore it is element wise
essentially bounded by the global Lipshitz constant of DSia (z). Hence || det(DSka)||co < 00.

From the change of variables formula of densities, we get
d(Sx")sn(p) = |det(DSka(@p)] fu(Ska(ap)) dag.
Therefore,

d(S5").p
dp

D t t max
‘det( SkA(l‘ONIfM(SkA(xO)) S K ||det(DSkA)Hoo < 0. D
f,u(wo) Rmin

0<

(z0) =

Proof of Theorem [ Let I' be the quadratic lattice with lattice constant § > 0, edge length

L and vk = L lattice points on the edge. Eigenvectors of Ay for a = const. are those of
the standard lattlce Laplacian, which are well known. In fact, the trigonometric functions
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(sin(w - &))eer, (cos(w - §))eer diagonalise A, where w = (wi,w2) and w; € {2%5 1] €
{0,...,VEk—1}}.

Let A(&:) be a square region in I over which the tokenizer map h averages. Let ¢ € N,
1 < g < /K, be the length of the side of A(;) measured in grid pixels. Suppose that w; or
wy is from the set {QW—LJ‘S :j =lg,1 € N}. Then, cos(w-¢) and sin(w - £) vanish when averaged
over A(&;), as either in the first or the second direction these functions complete a full period.
As this is valid for all centres of the token squares &, the projection h sends these eigen
functions to zero. From Theorem [3| (iii) it then follows that the dynamical system is not
linearly observable.

The proof for the wave equation is similar, as A,- eigen vectors of the form (sin(w -
§); Mw) sin(w - §)) are annihilated by the tokenizer by averaging over A(&), if w1 or wy are
in the set {Q’T—Lj‘S :j =1q,l € N}. Here A(w) the Ap-eigen value to sin(w - £). O

In the case that defines an ergodic dynamical system with invariant measure u, we can
replace the large sample limit in the number of trajectories N(e,d) — oo as €,6 | 0 with
the large time limit T'(¢,0) — oo keeping N = 1 fixed, see [Drygala et al.| (2022)) for this
approach in a related situation based on Birkhoff’s ergodic theorem.

B ConTINuOoUSs TIME CONTROL THEORY

In continuous time control theory, Definition [1| (i) is changed by demanding y(¢; xo) = y(t; o)
for t € [0,T] instead of only for ¢ € I'y. Note that the dynamical system is a special
case of Hermann & Krener| (1977)) since the distinguishing control is assumed to be the
trivial one. Let us emphasize that for nonlinear systems this generally diminishes otherwise
existent observability properties, cf. (Castil [1982, Section 5). On the other hand, considering
uncontrolled systems has the advantage of characterizing observability equivalently in terms
of the injectivity of the so-called output map

H: X — L*(0,T;R™), H(xo):= h(z(-;20)) = y(-; z0)

which assigns to a given initial state its corresponding output trajectory. As a consequence,
observability of (f, h) implies the existence of an inverse H—1: H(X) — X. Composing this
function with the flow of moreover allows us to define a reconstruction map

G: H(X) = L*(0,T3R"), G(y) = (SpoH ")(y) = (s H '(y))

for any 7' > 0. Note that in the case of linear dynamics with a linear output map, the inverse
H~! as well as the reconstruction map G have the explicit representations

T T
Hly=Q()™* / eATthTy(t) dt, Gy=e*Q(T)™! / eATthTy(t) dt
0 0
where the positive definiteness of the observability Gramian Q(T) := fOT eA shTheAs ds is
ensured by the observability of the system, see (Sontag, [1998] Section 6.3).

In [Hermann & Krener| (1977)), other notions of observability have been discussed. Among
those notions, the concept of weak observability relaxes classical observability in the sense of
requiring invertibility of the output map only in a neighbourhood of a given state. One of
the strengths of this notion is that it is particularly amenable to algebraic (rank) conditions
which generalize the Kalman rank conditions for (6] available in the linear case. Let us
briefly recall the discussions from Hermann & Krener| (1977)); (Casti (1982)) with slight
adjustments to account for the simplified setup considered here and define the Lie derivative
of a scalar (component) function h;: M — R,i = 1,...,m along the uncontrolled vector
field f: M — M as
Lyhi(x) = Vhi(z)" f(2).

We then define G as the smallest vector space that is generated by the component functions
h; and which is closed under iterated Lie differentiation along the vector field f. Given
x € M and denoting

dG(z) :={2 €eR" | 2 =V¢(x),¢ € G},
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Ours (full model) DeepONet FNO

KSE (200) 5.7109 6.1465 6.6150

Table 2: Results on the KSE dataset for the time correlation metric. The Euclidean distance between
each point of the time correlation curves of the simulations and the model is measured and summed,
up to 200 frames.

we have the following well-known results, see (Hermann & Krener}, (1977, Theorem 3.1,
Theorem 3.12).

Theorem 7. If the dynamical system is analytic, then it is weakly observable at xo € S
under the observation map (tokenizer) h if and only if dim(dG(zg)) = n.

Unfortunately, the above rank conditions are not easily verifiable in all but the simplest
examples. Moreover, the conditions only imply weak observability and therefore generally
do not ensure invertibility of the output map, see (Hermann & Krener} (1977, Example 3.3).
Even in the case of an invertible output map, explicit reconstruction formulas in terms
of (nonlinear) observability Gramians do not exist in the general nonlinear case. On the
other hand, it is known that observability is a generic property that is guaranteed to hold
almost surely if arbitrarily smooth vector fields are considered (Aeyels, [1981)). The latter
reference further shows that observability can be achieved in a (practically relevant) setup
where only finitely many output samples rather than a continuous output trajectory are
available. In particular, it is shown that the number of samples has to be at least 2n + 1
for an n-dimensional state space. Finally, we also point to |Zeng| (2018) which considers
potential extensions of linear observability measures in terms of local generalisations of the
observability Gramian and related cost functionals.

C COMPARISON TO OTHER METHODS

We include a table below to compare the performance of the models on OOD initial conditions.
We tested on three OOD initial conditions:

1. The field z = (z(1 — 2)y(y — 1))?, 0 < z,y < 1, with 2z normalised to [—1,1],
labelled as ‘eq’ in the table. This gives a smooth, non-trivial initial condition with
zero values at the boundaries of the domain;

2. A single central point source ‘point’, where the centre of the grid is set to 1 and
everywhere else left as 0. This tests a highly discontinuous initial condition;

3. A sin wave ‘sin’, given by z = sin (27z) sin (27y), 0< z,y <1
All three conditions are evaluated on a meshgrid, discretised to the resolution required by

the dataset. The initial conditions are evolved using the same numerical techniques given in

Section [E]

Our model is the most consistent, but is occasionally beaten on the 1-frame ahead metrics.
However, as the models roll out to further time horizons, our model is generally the best. As
with the in-distribution metrics, none of the alternative models survive to 1000 frames.

D AUTOREGRESSIVE TRAINING WITH GANS

Adversarial training methods are often superior to regression by the fidelity of fine grained
details. The idea behind adversarial training is the variational representation of norms or
other measures of divergence. In the simplest case, consider two vectors a,b € R™ a # b,
then by the Cauchy-Schwartz inequality ||a — bl| = supyegm |jy=1 v (@ — b).

Let us consider the slightly modified risk functions for the autoregressive update step

18



Dataset Condition Frame DeepONet FNO Ours

L1 MSE L1 MSE L1 MSE
Heat eq 1 0.01217 0.0002134 0.005122 5.544 x 107°% 0.1145 0.02102
Heat eq 200 7.133 1397 7.175 x 10°  4.264 x 102 0.2148  0.08548
Heat eq 1000 Diverged Diverged Diverged Diverged 0.669 0.7396
Heat point 1 0.00401 2.559 x 10~°  0.005657 6.812x 107> 0.04133  0.009935
Heat point 200 10.74 2707 0.2952 0.1134 0.4876 0.4414
Heat point 1000 Diverged Diverged Diverged Diverged 1.525 3.84
Heat sin 1 0.007225 0.0001037 0.004157 2.608 x 1075 0.1241 0.02409
Heat sin 200 4.219 x 10°  8.944 x 10t 1.6 x 107 1.242 x 10'° 0.03128 0.001517
Heat sin 1000 Diverged Diverged Diverged Diverged 0.01401 0.0003164
Wave eq 1 0.02106 0.0004665 0.009501  0.0001064 0.04258  0.003717
Wave eq 200 0.7729 0.6937 4.55 x 107 1.4 x 106 1.4 4.243
Wave eq 1000 Diverged Diverged Diverged Diverged 6.786 64.6
Wave point 1 0.003903 2.37 x 107° 0.001271 3.376 x 10°¢  0.0446 0.008845
Wave point 200 5.508 x 106 2.211 x 10*®  7.155 x 106 3.807 x 10**  1.026 17.74
Wave point 1000 Diverged Diverged Diverged Diverged 13.81 3353
Wave sin 1 0.007625 8.853 x 107°  0.004253  3.937 x 10> 0.04471  0.003131
Wave  sin 200 6.538 x 10° 2.076 x 101 3.475x 10° 1.028 x 10'*  0.8098 1
Wave sin 1000 Diverged Diverged Diverged Diverged 3.57 19.5
KSE eq 1 0.0111 0.000147 0.02004 0.0005884 0.2302 0.1113
KSE eq 200 2.516 8.534 0.02438 0.0008629 0.3907 0.2384
KSE point 1 0.01244 0.0001977 0.07488 0.01854 0.1859 0.1057
KSE point 200 2.584 10.24 2.197 8.133 0.3008 0.1318
KSE sin 1 0.0111 0.000147 0.02006 0.0005886 0.1696 0.1217
KSE sin 200 2.514 8.527 0.02792 0.001137 0.2992 0.132

Table 3: Performance comparison between DeepONet, FNO, and our model across datasets, initial
conditions, and generation horizon (frame). Best values in each row are highlighted in bold.
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0.7(M9) = EagmptnU @\ age1,0{T})) Mg (Yseq (t, w0)) — y(t + A;20)]]]

= Eopmp tn U (Cr\(Cage- 1 ULTY)) e (Mg (Ysea (t; 20)) — y(t + As o))
veR™ ||v||=

= sup  E[vg(Yseq(t; 0)) - (Mg (Yseq(t : T0)) — y(t + Asx0)] .

vg: Y Xk —R™

where the last step is possible as v, = norm(ng(yseq) — 9(¥seq)) is an explicit point wise

maximizer, where norm(v) = Mo v € R™\{0}. Note that here again we used existence of g

and hence observability of the dynamic system. The idea of adversarial training is to learn
the function v, with a neural network from a sufficiently large hypothesis space H; ,, 1 of
neural networks with norm activation in the last layer. Consider the min-max optimisation
problem

Ny € argmin ,max EmoNM7tNU(FT\(FA(k—1)U{T})) [n;(yseq(t§$0)) 'Ug(yseq(t;xo))]
Ng€Hg,v,7 g eHg,'v,T

_ECEON}L,tNU(FT\(FA(k_l)U{T})) [77;] (yseq(t§ xo)) ' y(t + A; xo)} .
As yseq(t; zo) can’t be solved for all 29 € X, we sample xéj )
over t and j to obtain the empirical risk function

~pu,j=1,...,N, and average

N

AU v 1 v j j

Lonr(ng:g) = —Fm—— > > 12 (Yseq (£ 257)) - 19 (yseq (t; 25))
N (A - k) J=1 el \(TyaU{T}))

777;) (yscq(t; l’())) : y(t + A; xO)}

Given ﬁ;, the training of the ‘critic’ network 7y and the generator 7, is done in the usual
adversarial fashion

g n.7(1g) € argmax Ly y 1(ng,1,)
ng€HY N1

flg. N1 € argmin Ly 7 (ng, 7, (1)) = argmin  max Ly n 7(1g, 1)
ng€Hg N, T ng€Hy N7 MM N T

For ne we can set up an analogous adversarial training scheme. Using the decomposition
for adversarial learning (Asatryan et all 2020; Biau et al., [2021} Drygala et al., |2025) an
adversarial treatment of PAC-learning is feasible as well. This however goes beyond the scope
of this article. We also note that in the LongVideoGAN (Brooks et al.l [2022) experiments,
adversarial training is performed with respect to a ‘discriminator’ instead of a ‘censor’
network, see [Arjovsky et al.| (2017)) for the difference.

E DISCRETIZATION OF THE PDE

In this section we aim to discretise the PDEs (Eqs. [10] and [12]) and give an account of our
numerical solvers.

E.1 LINEAR EQUATIONS

We discretize the spatial domain using a uniform Cartesian grid with periodic boundaries
and spacing Ax in both the z- and y-directions. Fix the total number of grid steps in each
direction as n. Let u] ; = (u; j), = uj, with k = ni + j denote the numerical approximation
of u(z;,y;,t7), where z; = iAz, y; = jAz, and t™ = TAL.

The left and right discrete derivatives are (in the z-direction) (Strikwerdal [2004)

Uij — Ui-1,j

D — Ui 1,5 /U/i,j
ui,j _
Am

Ax y Dw ui,j =
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which are linear maps and therefore have matrix representations. Then to form the modified
Laplacian we write

~ (D7), ax (Dm)ijr (Dy)., ax (Dy)k}j u;
Jj=1 | k=1 k=1
n2
k=1

For an appropriately generated positive definite vector a; see Section [G] In the case a is
a vector of ones, this expression reduces to the standard five-point stencil. We write u; ;
which lives in the torus defined on [—1,1]? as a vector uy,, with dimension n?, and as such a
mapping (with appropriately wrapping indices) (7, j) — (ni + j) is required to perform the
matrix multiplications defined in Eq.

Applying the explicit (forward) Euler method for the time derivative:

T+1 —uT.

i,J ] A T
— = = ApU, .
At 2,37

we obtain the update formula:

T+1 _ T T
up it = At (Apui;) +uf

Periodic boundary conditions are imposed by wrapping indices modulo the grid size. Numer-
ical parameters (Ax, At) are listed in Table

The discretisation for the wave equation is similar, but instead requires the first order

formulation which gives the update rule for the full state space u; ; = (u,v); ; as

T T T O ]]-
u/i;rl — At (Awu'i7j) Jru,i,ja Ay = < A, 0 >

Again, relevant numerical parameters can be found in Table [4]

E.2 NONLINEAR EQUATIONS

The KS dataset was generated by numerically integrating the governing partial differential
equation using a fourth-order Exponential Time Differencing Runge-Kutta method
(ETDRK4), as described in [Kassam & Trefethen| (2005). This method is particularly
well-suited for stiff PDEs such as the KS equation due to its ability to handle the linear
stiff components analytically while treating the nonlinear terms explicitly. The spatial
discretization was performed using Fourier spectral methods under periodic boundary
conditions. The scheme uses a precomputed set of coefficients derived from contour integrals
in the complex plane, which helps resolves some numerical instability issues.

The large-eddy simulation (LES) dataset was generated on a computational fluid dynamics
(CFD) mesh and subsequently interpolated to a uniform compute grid. The LES resolves the
large-scale turbulent structures explicitly while modelling the effect of unresolved subgrid-
scale motions through a suitable turbulence closure. The interpolation step ensures that the
data is represented on a regular grid compatible with spectral or finite-difference analysis,
and can be represented in pixel-space for training with machine-learning methods.
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F  LocAL OBSERVABILITY OF THE KS EQUATION

Even local observability according to Theorem [7] is hard to assess for the given equation, as
for the minimal compression factor applied k = 16 this would require the computation of
16-th order lie derivatives. However, we give some numerical evidence for the simpler, one
dimensional KSE with compression factor of 5.

For Theorem [7} we will verify a sufficient condition for local weak observability by selecting a
subset of finitely many iterated Lie derivatives Llfhi for k=1,...,k— 1, approximating each
derivative via finite differences of the sampled outputs, assembling the resulting gradients
into a numerical observability matrix O(x;), and confirming that it has full rank, ensuring
dim(dG(z;)) = n and hence local weak observability.

The KSE in one spatial dimension % +ud 4 % + % = 0 with periodic boundary
conditions is solved via the ETDRK2-Method (Cox & Matthews, [2002). We define a tokenized
state y(t) € R™ by averaging u(z,t) over sliding spatial windows with stride p = 5. After
an initial buffer of snapshots sufficient to approximate Lie derivatives up to order p =5 via
forward finite differences, the observability matrix O(tx) is constructed by stacking these
Lie-derivative approximations.

This yields a local linear approximation of the observability matrix O(z;) at x; whose
sign-preserving log det(O(z)) remains finite, indicating full rank of the observability matrix
O(z) over the time interval and hence local weak observability of the dynamical system
after a burn-in period which can be interpreted as the time of transition from an initially
almost constant state to the onset of the chaotic dynamics.

Log-Determinant

Time

Figure 7: Time trace of log(det O(z:)) and its centered 50-step rolling average. Here L = 80,
u(z,0) = sin(7mx/L); spectral discretization with N = 200 modes and ETDRK2 time stepping
(At = 0.01, T = 10000 steps); coarse state y € RN/P via averaging over sliding spatial windows of
size p = 5 (N/p = 40); first p = 5 time-derivatives by forward differences. The bounded log det
indicates rank O(z;) = N.

G  FURTHER DATASET DETAILS

Here we list the additional details important to the production of the datasets, but too
superfluous for the main text.

G.1 LINEAR EQUATIONS

The heat and wave equation solutions are constructed by forward Euler, an explicit method.
This scheme, while simple, is known to converge for appropriately small time steps for these
equations (LeVequel [2007). Since the Laplacian V2 is not observable under the tokenization
operator (Theorem [6]) we generate a modified Laplacian V(aV) where a is a stochastically
generated positive definite diagonal matrix. Examples of the low-res (super-res) heat (wave)
dataset can be found in the left hand column of Fig. [10] (Fig. [11]), in the Appendix. The
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Name Heat (low-res) Heat (super-res) Wave (low-res) Wave (super-res)

Resolution 32 x 32 128 x 128 32 x 32 128 x 128
Compression factor 16 16 16 16
History size 16 7 16 7

No. of init conditions 100 75 100 75
Frames (per init. cond.) 2000 1000 2000 1000

At 0.4 0.4 0.05 0.05

Table 4: Summary of the parameter settings for the heat and wave datasets. All datasets in this
table used a test-train split ratio of 0.9, and a grid step (Az) of 1.

Name KSE (low-res) KSE (super-res)
Resolution 64 x 64 256 x 256
Compression factor 16 16

History size 16 7

Frames (per init. cond.) 2000 2000

No. of init. cond. (train) 28 28

No. of init. cond. (test) 5 5

Frame skip 10 10

Burn-in frames 500 500

At 0.01 0.01

Table 5: Parameter settings of the KSE datasets.

compression factor was selected to roughly match that of the LongVideoGAN model. Table
[ gives further details on the production of these datasets.

These datasets are generated on the flat torus T? = [—1, 1] by employing index wrapping
i.e. circular boundary conditions. For all linear datasets, the data is linearly normalised to
the range [—1,1]. The seeds used to generate a for the operator V(aV) can be found in the
supplementary material, published with the paper. As noted in [B] observability is a generic
condition, and so we have observability for our modified operator almost surely.

G.2 KS EQUATION

A large amount of data was created by adopting the ETDRK4 (an exponential 4th order
Runge-Kutta method) (Kassam & Trefethen, [2005), which we modified to produce solutions
to the 2D equation. Notably, the Oth mode in Fourier space was zeroed out to prevent
the growth of the mean @ (see Eq. 2.2 in [Kalogirou et al.| (2015)). The precise numerical
parameters used can be found in Table [5] and still frames from the super-res dataset can be
found in the left column in Fig. [9]

For each initial condition, 25000 time steps are simulated, keeping all but 1 in 10. The first
500 frames are then discarded as burn-in, leaving each initial condition with 2000 frames for
use in the dataset. The initial conditions were selected so that the resulting solution displays
the desired chaotic behaviour. The low-res dataset is obtained by applying a low-resolution
mask to the super-res set.

G.3 INITIAL CONDITIONS

Initial conditions ug are generated on the flat torus T? = [—1,1]? via samples from a mean-
zero Gaussian random field with a Matérn kernel adapted to periodic boundary conditions.
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Parameter Value

Noise type Normal
Noise strength o 10
Inverse correlation length scale m in lattice step units 0.1

Smoothness of Matern function v 1

Table 6: Settings for generating Gaussian random fields for the initial conditions

The covariance function is defined

, 1 ein‘(a:—;v/)
Eluo(z)uo(2")] = 4 Z (Jx]2 + m?)u’
KETZ
where z, 2’ € T?, m > 0 is the inverse correlation length scale and v > 0 is the smoothness
parameter. Table |§| summarizes the values of (o, m,v) used in the datasets. The strength
of the noise depends linearly on ¢. This is a standard model of non trivial spatial random
structures that is widely used in e.g. geo-statistics or the theory of PDEs with random
coefficients. The resulting Gaussian random field is then transformed with the exponential
function to give positive values for the conductivity. This is implemented using the fast
Fourier transform on the discrete torus: First FTT the noise, then multiply with the FFT of
the square root of the Matern covariance operator, then apply the inverse FFT, and then
exponentiate.

G.4 FrLow AROUND A CYLINDER

For the experiments involving flow around a cylinder at Reynolds number 3900, we used a
publicly available dataset [Winhart & di Mare| (2024) provided by the authors of Drygala
et al.[(2022). The dataset consists of 100,000 greyscale images with a resolution of 1000 x 600
pixels, capturing the characteristic Karman vortex street - a coherent structure of alternating
vortices aligned with the cylinder’s axis. The data was generated using Large Eddy Simulation
(LES), and the resulting unsteady velocity fields were processed via a projection mapping
technique that preserves ergodicity (Peters|, |2019) in a reduced state space. For details on
the LES numerical setup, we refer to |Drygala et al.| (2022). The details on the setup and
configuration of neural network training can be found in Section [H]

H SETUP AND CONFIGURATION OF NEURAL NETWORK TRAINING

H.1 LINEAR EQUATIONS

Here, a single autoregressive linear layer is sufficient, with input and output sizes matching
the relevant dataset for each model. This has the added benefit of entirely preventing
over-fitting, since the number of degrees of freedom in the model matches exactly that of the
reconstruction map, when the history size is set to the compression factor, assuming there is
enough data to properly constrain the model. We used the Adam optimiser (Kingma & Bal
2017, and an ablation study was conducted to verify the optimality of the hyperparameters,
albeit with a coarse grid since the purpose of these examples is to empirically substantiate
the learning of the time evolution operator and confirm the theory, and each run represents
significant computational expense (I}). A learning rate of 1 x 10~° was used, and the number
of steps given in Section [l We employed Mean Squared Error (MSE) as the objective function
during training. Such a low learning rate and high number of steps is required due to the
ill-conditioned nature of these problems.
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H.2 KS EQUATION

Parameter Value

Features per block (Low-res) (64,128, 256, 512]
Features per block (Super-res) [64,128,256]
Learning rate 0.0005

Batch size 768

Table 7: Hyperparameter settings for KSE models

The KSE dataset was trained with a UNet in a GAN-like fashion. The generator comprises
four double 3D convolution blocks for the low-res case, which is the encoder, a bottleneck
(itself a double convolution block), and then five 3D double transpose convolution blocks
serve as the encoder. Between each block in the encoder and the respective block in the
decoder there exists a skip connection. The super-res case is the same, but with one less
block in the decoder and the encoder. A rough visual representation of the architecture is
given in Fig. [8 Both models were trained adversarially, but with a single tensor in the shape
of the model output as the discriminator network; equivalently, a neural network with a
single linear layer and without a bias vector. Further hyperparameters are listed in Table [7}

Figure 8: Architecture of the UNet in the low-res case, for the KS model. The very last layer is a
final convolution to send the output from history size x resolution — resolution. All layers use a
ReLu activation, and batch normalisation.

H.3 FLOW AROUND A CYLINDER

NVIDIA’s LongVideoGAN (Brooks et all) 2022) is designed to generate realistic video
sequences with temporal consistency. Its architecture comprises two key components: a
low-resolution GAN that captures time dynamics and a high-resolution GAN that enhances
vortex detail by upscaling turbulent flows synthesised by the low-resolution GAN. Together,
they ensure both the plausibility of individual frames and coherent motion throughout the
video. The low-resolution GAN generates video sequences with resolution 64 x 36 pixels. It
starts by sampling an 8-dimensional latent vector for each frame from a standard Gaussian
distribution. To enforce temporal consistency, these vectors are smoothed using Kaiser
low-pass filters , which reduce high-frequency noise while preserving long-term
patterns. Each value in the filtered sequence is influenced by the entire sequence, including
future frames. After smoothing, the vectors are processed through fully connected and 3D
convolutional layers to produce low-resolution frames that capture the essential dynamics
and structure of the video. The high-resolution GAN upsamples the low-resolution video to
resolutions such as 1024 x 576 pixels, using the latter as conditional input. To generate the
n-th high-resolution frame, it conditions on frames n — 4 to n + 4 from the low-resolution
sequence, preserving temporal consistency. Aside from this conditioning, its architecture
closely follows that of StyleGAN3 (Karras et all, [2021)), incorporating convolutional and
upsampling layers. During training, it is conditioned on real low-resolution videos aligned
with the target high-resolution outputs. DiffAug (Zhao et al., [2020)) is applied to improve
robustness through augmentations such as translation and cutout, while R1 regularisation
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(Mescheder}, |2018)) stabilises training by penalising the discriminator only on real samples.
Once trained, the low-resolution GAN generates a video, which is then refined and upscaled
by the high-resolution GAN to produce the final output.

Temporal Correlation Metric To assess how well VideoGAN and the KSE model
capture turbulent flow dynamics, we use a temporal correlation metric. For a video of length
T, we compute the Pearson correlation p(At) between the values of a specific pixel at time ¢
and t+ At for all t € 1,...,T — At. This measures how predictive a pixel’s value is over time.
High p(At) indicates strong temporal consistency. Additional evaluation metrics specific to
VideoGAN are provided in Appendix [K]

Training Configuration NVIDIA’s LongVideoGAN requires a 16 : 9 image format.
To reshape the data to 1024 x 576 resolution, we added 24 white columns to the left
side of the image and removed 12 rows from both the top and bottom. These images
were then downscaled to 64 x 36 using Python’s Pillow library for low-resolution input.
Grayscale images were converted to RGB by replicating the single channel three times. The
resulting 19,990 images were split into 11 directories, each forming a non-overlapping video
of approximately 1,817 frames for training. Both GANs were trained on 2 NVIDIA A100
GPUs with a batch size of 8 and gradient accumulation of 1. All other hyperparameters
followed those from the original LongVideoGAN paper and code.

I COMPUTATIONAL COST

1.1 LINEAR EQUATIONS

All models were trained on a single NVIDIA A100 GPU. The heat equation models ran
for approximately 54,000 epochs (low resolution, 10 hours 10 minutes) and 42,000 epochs
(high resolution, 21 hours 58 minutes). Generating the low-res heat dataset took 1 hour 12
minutes, whereas the super-res dataset took only 17 minutes 30 seconds. The wave equation
models ran for approximately 62,000 epochs (low resolution, 11 hours 45 minutes) and 35,000
epochs (high resolution, 18 hours 16 minutes), and the low-res wave dataset took 3 hours
35 minutes to produce, whilst the super-res dataset took 59 minutes. We note that we
did not use a performance tuned code to create these datasets, and in particular, sparse
multiplications could speed up these times significantly. However, of more relevance to a
real world application are the inference times. Since the models for both low-res datasets
are linear layers of the same size, they report similar inference times of 0.0002s per frame
(averaged across 10 batches of 512 frames), vs the 0.0216s per frame for the heat and 0.0645s
for the wave. That represents a speed up of about a factor of 100 in the heat case and even
more for the wave case. The super-res models take slightly longer at 0.0007s, averaged over
10 batches of 256 frames, vs a generation time of 0.014s in the heat case and 0.0472s in the
wave case. This is again an orders of magnitude speed up.

1.2 NON-LINEAR EQUATION

The KSE models were also trained on a single NVIDIA A100 GPU. The low-resolution model
ran for approximately 40,000 steps and was stopped after 17 hours 49 minutes, while the
high-resolution model ran for 18,000 steps and took 22 hours 46 minutes. In a similar vein as
the linear datasets, we see an orders of magnitude speed up at inference time. The dataset
used for both the low- and super- res case, which took a total time of 3 hours, 58 minutes.
The low-resolution model averages an inference time of 0.012s per frame, across 10 256-frame
batches. We compare this to a time of 0.216s per frame to produce the dataset. Again, we
see a speed up of over 18x, and this time, the data generation method is highly optimised.

1.3 LARGE EDDY SIMULATION

The LES was run on Intel Xeon "Skylake" Gold 6132 CPUs running at 2.6 GHz and
equipped with 96 GB of RAM. The simulation used 20 nodes, each with 28 cores, and ran
for approximately 20 days, for a total of 1,440 core weeks (Drygala et al., [2022).
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Figure 9: Examples from the KSE dataset, complete with the model predictions. This data is unseen
by the model at training time. Note the relatively quick divergence from the numerical solver when
generating forward in time, due to the chaotic nature of the equation.
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1.4 LoNGVIDEOGAN

Our training of the Video GAN using 2 A100 GPUs took about 7 days, and the generation of
a 1000 frame video takes about 32 seconds using one NVIDIA R6000. (On the Anonymous
University HPC cluster it then takes another 60 seconds to save a video of length 1000.) The
generation process is GPU RAM intensive and will require more than one GPU to generate
videos with more than 10,000 frames and/or higher resolution. We note that GANs are
particularly fast for this kind of dataset, see Drygala et al.| (2024) for more details. At 20
days for 100,000 frames, the CFD simulation produces 1 frame approximately every 17s. Our
model produces 1 frame every 0.032s, which is a speed up factor of over 500x. We emphasise
that this speed up is precisely the point of these experiments, and CFD simulations remain
prohibitively expensive.

J DATASET SNAPSHOTS

In this section we provide some snapshots of the datasets, together with respective result of
the model, and finally the difference between the two. All examples are taken from the test
sections of the dataset. Fig. [J] starts us with some examples from the super-res KS dataset,
with the model producing results via the full pipeline, that is, as with Fig. 8] Fig. [I0] also
shows results for the super-res full model dataset, but for the heat equation, and Fig.
are examples from the low-res wave dataset. Finally, we show a real and generated example
from the dataset of the flow around the cylinder in Fig. [I2}

K FURTHER EVALUATIONS

K.1 LEAST-SQUARES REGRESSION
Fig. [[3] and Fig. [[4] show how, when using a least-squares regression model, the history size

changes the average L1 and L., errors, together with a 1-o error bar. Details can be found
in Section
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Figure 10: Examples from the heat high-res (test-)dataset, together with the prediction of our model
and the difference between the two, at Frame 1 and Frame 200.
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Figure 11: Examples from the wave low-res (test-)dataset, together with the prediction of our model
and the difference between the two, at Frame 1 and Frame 200.
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Figure 12: Left: a real example from the LES Karman Vortex street dataset. Right: a still from a
video generated by LongVideoGAN.
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Figure 13: Average L; error as a function of Figure 14: Lo error as a function of the
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K.2 VIDEOGAN GENERALIZATION

To evaluate the generalization capability of the generative model, we compare the generated
videos with both our training data and unseen test data. The goal of this is to determine
whether the VideoGAN model is actually producing novel outputs that are representative
of the overall data distribution, rather than simply replicating the training data. Given a
generated video clip of length n, we measure its similarity to all possible sub-videos of length
n in the real videos. Specifically, for a sub-video g of a generated video, we compute the
minimum Euclidean distance to the real data as

d(g,V) = min |lg — vl ,

where V,, denotes the set of all consecutive sub-sequences of length n from a video V', and
|- ||2 is the Euclidean norm.

This distance d(g, V') quantifies how close the generated clip g is to the closest consecutive
sequence in the dataset V. We perform this calculation using both the training dataset V/train
and the unseen test datasets V/'Testl 1/ Test2 y/Testd of the same length V" using subvideos
of length 8. The intuition is that a well-generalising model should produce videos where the
distance d(g, V1) is comparable to d(g, V***). This would indicate that the model is not
overfitting the training data but instead is generating new data that is consistent with the
overall data distribution.

To evaluate the generalization capabilities of the LongVideoGAN model, we calculated

d(g,V) for 50 different choices of generated 8 frame-length clips ¢ and for all V €
{VTest VTrainl V’I‘rain2 VTrain.S}'
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Figure 15: Locations of the pixels used for the temporal correlation analysis using an image from
the training data.

v mingeg d(g, V) 14 [{g € G:V = argmin, ,,d(g,v)}|
y Train 40456.58 yTrain 18
yTestt 41750.72 yTestt 10
VTese2 42079.42 VTest? 10
VTests 42336.16 VTest 12
(a) (b)

Table 8: (a) The minimum Euclidean distance measured from each of the 4 video sets over all g € G
where G is the set of the 50 clips used for this evaluation. (b) Counts of how often each of the four
sets is the closest to a generated clip, where V = {/Train j/Testl 1y Test2 'y Test3

As the tables above show, the smallest distance between any of the generated clips and one
of the four video sets was achieved with the training data. Additionally, the training dataset
is also the closest match for the largest number of clips in the set G. These observations
indicate that the generated data is more similar to the training data than to the test data.
However, the minimum distances between any of the clips and the various datasets all fall
within a 5% range of the minimum distance achieved with the training set. This suggests
that the generated data is not simply a near-identical replication of the training data, as we
would expect the value of mingeg d(g, V") to be significantly lower if that were the case.
Given that the training data always biases the model towards replicating its distribution,
it is unsurprising that the training data is the closest match for 18 of the generated clips.
Nonetheless, the fact that 32 of the clips are closer to some of the unseen data further
indicates that the model is capable of generalizing effectively and producing videos that
represent the real data distribution.

K.3 FURTHER TEMPORAL CORRELATIONS

After analysing the 301-frame videos, we extended the correlation evaluation to 1000-frame
videos to assess the model’s ability to maintain temporal consistency when generating longer
videos. The results show that while the generated 1000-frame videos were still able to
replicate the general periodicity and long-term dynamics observed in the real videos, there
was a noticeable decline in the accuracy compared to the shorter 301-frame sequences.

For Pixel 1, the 1000-frame videos continued to exhibit periodic behaviour, but the correlations
were generally higher than those observed in the real videos for most values of At. The
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Figure 16: Temporal correlations of generated videos of length 301 (left) and 1000 (right) for pixels

1, 2, 3 and 4 (top to bottom).
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period length appeared shorter on average, leading to extreme values of the mean correlation
at different values of At compared to the real video data and also the 301-frame generated
videos. This suggests that while the model retains some level of periodicity, the ability to
accurately reproduce this declines when generating longer videos.

Overall, these results suggests that while the model is capable of generating video sequences
that capture a lot of the behaviour of the real flow, there is a trade-off between temporal
accuracy and generated video length.

L. NAVIER STOKES EQUATIONS FOR LARGE EDDY SIMULATION (LES)

In section [3:3] we introduced the Navier—Stokes equations, on which turbulent flows rely.
More specific we obtain our data by Large Eddy Simulation (LES) which is based on the
concept of scale separation in turbulent flows, allowing for the large, energy-containing eddies
to be resolved explicitly while modelling the effects of the smaller, subgrid-scale motions
(Sagaut, [2005)). This is achieved through a spatial filtering operation, which separates the
flow (x,t) into a filtered (resolved) component $(z,t) and a subgrid-scale component ¢(z, t),
such that

p(z,t) =P(z,t) + (. b). (23)

In implicit LES, the filtered flow ¢ is defined via a convolution integral in physical space:

Pz, t) = / / Glx — 2’ t —t (2, ') dt’ da’, (24)
— 00 —O0
where the filter function G is implicitly defined by the numerical discretization, with the
filter width corresponding to the local mesh size.

Applying this filtering operation to the NSE, where it is assumed (Sagaut} [2005) that the
filtering and differential operators commute, yields the filtered LES form:

ou 1
ot Re
where all quantities are the filtered versions of the original NSE and the Reynolds number is

defined as Re = U°;D with Uy, denoting the freestream velocity and D the diameter of the
cylinder.

1
V-u=0, +(ﬁ~V)ﬁ:75V§+ Vvia, (25)
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