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Abstract
Despite their success on large datasets, GANs
have been difficult to apply in the few-shot set-
ting, where only a limited number of training
examples are provided. Due to mode collapse,
GANs tend to ignore some training examples,
causing overfitting to a subset of the training
dataset, which is small in the first place. A re-
cent method called Implicit Maximum Likelihood
Estimation (IMLE) is an alternative to GAN that
tries to address this issue. It uses the same kind
of generators as GANs but trains it with a dif-
ferent objective that encourages mode coverage.
However, the theoretical guarantees of IMLE hold
under a restrictive condition that the optimal like-
lihood at all data points is the same. In this pa-
per, we present a more generalized formulation of
IMLE which includes the original formulation as
a special case, and we prove that the theoretical
guarantees hold under weaker conditions. Us-
ing this generalized formulation, we further de-
rive a new algorithm, which we dub Adaptive
IMLE, which can adapt to the varying difficulty
of different training examples. We demonstrate
on multiple few-shot image synthesis datasets
that our method significantly outperforms exist-
ing methods. Our code is available at https:
//github.com/mehranagh20/AdaIMLE.

1. Introduction
Image synthesis has achieved significant progress over
the past decade with the emergence of deep learning.
Deep generative models such as GANs (Goodfellow et al.,
2014; Brock et al., 2019; Karras et al., 2019; 2020; 2021),
VAEs (Kingma & Welling, 2013; Vahdat & Kautz, 2020;
Child, 2021; Razavi et al., 2019), diffusion models (Dhari-
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wal & Nichol, 2021; Ho et al., 2020; Karras et al., 2022),
score-based models (Song et al., 2021; Song & Ermon,
2019), normalizing flows (Dinh et al., 2017; Kobyzev et al.,
2021; Kingma & Dhariwal, 2018), and autoregressive mod-
els (Salimans et al., 2017; van den Oord et al., 2016b;a) have
made incredible improvements in generated image quality,
which makes it possible to generate photorealistic images
using these models.

Many of these deep generative models require training on
large-scale datasets to produce high-quality images. How-
ever, there are many real-life scenarios in that only a limited
number of training examples are available, such as orphan
diseases in the medical domain and rare events for train-
ing autonomous driving agents. One way to address this
issue is by fine-tuning a model pre-trained on large aux-
iliary datasets from similar domains (Wang et al., 2020;
Zhao et al., 2020a; Mo et al., 2020). Nonetheless, a large
auxiliary dataset with a sufficient degree of similarity to
the task at hand may not be available in all domains. If
an insufficient similar auxiliary dataset were used regard-
less, image quality may be adversely impacted, as shown in
(Zhao et al., 2020b). Therefore, there have been efforts in
tackling the challenging setting of few-shot unconditional
image synthesis without auxiliary pre-training (Liu et al.,
2021; Kong et al., 2022; Li et al., 2022), and we will focus
on this setting.

The scarcity of training data in this setting makes it espe-
cially important for generative models to make full use of
all training examples. This requirement sets it apart from
the many-shot setting with abundant training data, where
ignoring some training examples does not cause as big an
issue. As a result, despite achieving impressive performance
in the many-shot setting, GANs are challenging to apply to
the few-shot setting due to the well-known problem of mode
collapse, where the generator only learns from a subset of
the training images and ignores the rest. A recent work (Li
& Malik, 2018) proposed an alternative technique called
Implicit Maximum Likelihood Estimation (IMLE) for un-
conditional image synthesis. Similar to GAN, IMLE uses a
generator, but rather than adopting an adversarial objective
which encourages each generated image to be similar to
some training images, IMLE encourages each training im-
age to have some similar generated images. Therefore, the
generated images could cover all training examples without
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Figure 1: Schematic illustration that compares vanilla IMLE (Li & Malik, 2018) (top row) with the proposed algorithm,
Adaptive IMLE (bottom row). While IMLE treats all training examples (denoted by the squares on the left) equally and
pulls the generated samples (denoted by the circles on the left) towards them at a uniform pace, Adaptive IMLE adapts to
the varying difficulty of each training example and pulls the generated samples towards them at an individualized pace that
depends on the training example. The dashed line on the left figure illustrates the progression towards three data points at
four comparable epochs (denoted as t0 to t3) with the starting positions highlighted. The corresponding generated samples
are shown on the right. As shown, Adaptive IMLE can converge to the various data points faster and closer than IMLE.

collapsing to a subset of the modes.

However, the theoretical guarantees of IMLE hold under
a restrictive condition that all data points should have an
identical optimal likelihood. The IMLE algorithm, there-
fore, treats all training examples equally when optimizing
the model parameters and ignores the varying difficulty in
learning from different training examples. As shown in
the top row of Fig. 1, the generated samples make uneven
progress toward different training examples using IMLE,
leading to overfitting to some examples and underfitting
to others. While this may not cause a major issue in the
many-shot setting because many data points are expected to
have similar optimal likelihoods, it can be quite problematic
in the few-shot setting, since uneven fitting can impact the
model quality substantially due to the small total number of
training examples that the model is trained on.

In this paper, we introduce a generalized formulation of
IMLE, which in turn enables the derivation of a new algo-
rithm that requires fewer conditions and gets around the
aforementioned issue. In particular, we mathematically
prove that the theoretical guarantees of the generalized for-
mulation hold under weaker conditions and subsumes the
IMLE formulation as a special case. Furthermore, we derive
an algorithm called Adaptive IMLE using this generalized
formulation, which could adapt to points with different dif-
ficulties, as illustrated in the bottom row of Fig. 1. Further-

more, we conducted experiments on six datasets to evaluate
the performance of our method compared to prior few-shot
image synthesis baselines. Our results demonstrate that
our method achieves significant improvements in terms of
both image fidelity and mode coverage, establishing a new
state-of-the-art.

2. Related Work
There are two broad families of work on few-shot learning,
one that focuses on discriminative tasks such as classifica-
tion (O’Mahony et al., 2019; Finn et al., 2017; Snell et al.,
2017) and another that focuses on generative tasks. In this
paper, we focus on the latter. Similar to many-shot genera-
tion tasks, few-shot generation tasks take a limited number
of training examples as input and aim to generate samples
that are similar to those training examples. What is different
from the many-shot setting is that it is crucial for the genera-
tive model to utilize all the training examples in the few-shot
setting. Due to the scarcity of available data for training,
ignoring even just a few data points would cause a more
serious issue in the few-shot setting than in the many-shot
setting. One line of work focuses on pre-training on large-
scale auxiliary datasets from similar domains and adapting
the pre-trained models for the few-shot task. This has been
applied to unconditional image generation (Li et al., 2020;
Zhao et al., 2020a; Mo et al., 2020; Ojha et al., 2021; Wang
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et al., 2020), conditional image generation (Sinha et al.,
2021; Liu et al., 2019) and video generation (Wang et al.,
2019). However, there are no guarantees on the existence
of such large-scale auxiliary datasets for all domains, and
recent studies (Zhao et al., 2020b; Kong et al., 2022) also
showed that fine-tuning from a dissimilar domain could even
lead to the degradation of generated image quality.

In this paper, we focus on the setting without fine-tuning
pre-trained models from auxiliary datasets. Most prior work
considered applying GANs to this setting and developed
methods for alleviating the well-known mode collapse prob-
lem of GANs. FastGAN (Liu et al., 2021) introduced a
skip-layer excitation module for faster training and used
self-supervision for the discriminator to learn more descrip-
tive features, which aids in better mode coverage of the
generator. MixDL (Kong et al., 2022) introduced a two-
sided distance regularization to facilitate learning smooth
and mode-preserving latent space. FakeCLR (Li et al., 2022)
aims to improve image synthesis quality by introducing ex-
tensive data augmentation and applying contrastive learning
only on perturbed fake samples. Despite these improve-
ments, some degree of mode collapse still remains. A recent
method called Implicit Maximum Likelihood Estimation
(IMLE) (Li & Malik, 2018) adopted a different objective
function and showed promising results towards alleviating
mode collapse on unconditional image synthesis tasks. Prior
IMLE-based methods mainly focused on conditional image
synthesis (Li* et al., 2020; Peng et al., 2022). In this work,
we build on (Li & Malik, 2018) and introduce a novel and
more generalized formulation of IMLE to make it more
suitable for the unconditional few-shot setting.

3. Background: Implicit Maximum Likelihood
Estimation (IMLE)

In unconditional image synthesis, the goal is to learn the un-
derlying probability distribution of images, denoted as p(x),
which allows us to generate new synthesized images by sam-
pling from this distribution. Implicit generative models are
commonly used for this task, such as the generator in GANs.
The generator, parameterized as a neural network with pa-
rameters θ, maps latent codes z drawn from a standard
Gaussian distribution N (0, I) to generate images x. One
way to learn this model is with the GAN objective, which
introduces a discriminator that aims to distinguish between
generated images Tθ(z) and real images x. The generator is
trained to produce more realistic images that would fool the
discriminator. However, the output Tθ(z) tends to recover
only a subset of the training examples even when varying all
values of z. This issue is known as mode collapse, and the
intuitive reason behind it is that the adversarial objective of
GAN only encourages each generated sample to be similar
to some training examples, but there is no guarantee that all

training examples will have some similar generated samples.
In the few-shot image synthesis setting, the issue of mode
collapse is even more significant given the limited number
of training examples that are available in the first place.

A more recent method known as Implicit Maximum Likeli-
hood Estimation (IMLE) (Li & Malik, 2018) proposed an
alternative objective to address this issue. Instead of making
each generated sample similar to some training examples,
IMLE tries to ensure that samples can be generated around
each training example xi. The generator Tθ is encouraged
to pull some samples Tθ(zj) towards each xi, thereby re-
warding coverage of the modes associated with all training
examples.

More precisely, the IMLE objective takes the following
form:

min
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

min
j∈[m]

d (xi, Tθ(zj))

]
(1)

where d(., .) is a distance metric, m is a hyperparameter,
and xi is the ith training example. The training procedure
involves finding the latent code z∗i that produces the nearest
generated sample to each training example xi, and optimiz-
ing the model parameter θ by minimizing the distance from
the selected sample Tθ (z

∗
i ) to the target data xi. Detailed

pseudocode of the algorithm can be found in Algorithm 1.

Algorithm 1 Vanilla IMLE procedure

Require: The set of inputs {xi}ni=1

1: Initialize the parameters θ of the generator Tθ

2: for k = 1 to K do
3: Pick a random batch S ⊆ [n]
4: Draw latent codes Z ← z1, ..., zm from N (0, I)
5: z∗i ← argminzj∈Z d(xi, Tθ(zj)) ∀i ∈ S
6: for l = 1 to L do
7: Pick a random mini batch S̃ ⊆ S
8: θ ← θ − η∇θ

(∑
i∈S̃ d (xi, Tθ (z

∗
i ))
)
/|S̃|

9: end for
10: end for
11: return θ

Despite the algorithm’s simplicity, a restrictive condition
needs to be satisfied for the theoretical guarantees of IMLE
to hold, that is requiring a uniform optimal likelihood for all
data points. As an example, consider a dataset with two clus-
ters with the same number of points where one cluster has
a large variance and the other has a small variance. In this
case, the training examples from the high-variance cluster
are more difficult to learn than the training examples from
the low-variance cluster, because of the sparser coverage
of the space in the former cluster. If we consider what the
ground truth data distribution looks like, it is a bimodal dis-
tribution, with the mode corresponding to the low-variance
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cluster having a higher likelihood than the other. So requir-
ing uniform optimal likelihood for all data points, as IMLE
does, will result in overfitting to the low-variance cluster
and underfitting to the high-variance cluster, which is not
optimal. We refer readers to the IMLE paper (Li & Malik,
2018) for more details.

4. Method
In this paper, we devise a generalized formulation of IMLE,
whose theoretical guarantees hold under more general con-
ditions than vanilla IMLE (Sec 4.1). This formulation sub-
sumes vanilla IMLE as a special case and also gives rise to
a new algorithm which we call Adaptive IMLE. It turns out
that Adaptive IMLE offers theoretical and practical advan-
tages over IMLE, which we will demonstrate (Sec 4.2).

4.1. Generalized Formulation

Since Tθ is an implicit generative model, the likelihood in-
duced by the model pθ cannot in general be expressed in
closed form, and so evaluating it numerically is typically
computationally intractable. In order to train the generative
model, we would like to maximize the likelihood of the
training examples without actually needing to evaluate the
likelihood. Below we will consider the generalized objective
we propose and show that optimizing the objective is equiv-
alent to maximizing the sum of likelihoods at the training
examples, without requiring the evaluation of likelihood.

Consider the following optimization problem:

max
θ
L{τi}i

(θ) :=

max
θ

Ez1,...,zm∼N (0,I)

[
1

n

n∑
i=1

1

wiτi −
1

m

m∑
j=1

Φτi(d(xi, Tθ(zj)))

∣∣∣∣∣∣ {τi}i
 (2)

where Tθ, d(·, ·) and m are as defined in Eqn 1. For each
training example i, there is a weighting term wi and a thresh-
old τi, which may be stochastic. The function Φτ (·) trans-
forms distances from each training example to each sample
from the model. We will choose wi, τi and Φτ (·) based on
the insight revealed by lemmas below.

We will present the high-level sketches of our key lemmas
(omitting some technicalities) and delineate their interpreta-
tions and significance. The precise statements of the lemmas
and their proofs are left to Appendix A.

We will first present a lemma that relates an expectation of
a random variable to the weighted integral of one minus its

cumulative density function (CDF) evaluated at different
points, which we will refer to as cumulative densities.

Lemma 1. Let X be a non-negative random variable and
Φ be a continuous function on [0,∞). If Φ′ is integrable on
all closed intervals in [0,∞),

E [Φ(X)] = Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt

This lemma is useful because the left-hand side (LHS) is
easy to approximate with Monte Carlo estimates of expecta-
tions, and the right-hand side (RHS) is a weighted integral
of one minus cumulative densities, which are intractable to
compute in general. It enables us to control the weighting
of different cumulative densities by choosing the function
Φ.

Recall that our goal is to maximize the likelihood at each
training example without actually computing the likelihood.
We can leverage Lemma 1 for this purpose, by choosing
the non-negative random variable X appropriately. We
choose X to be the distance between a training example
and a generated sample d(xi, Tθ(zj)). With this choice,
Lemma 1 gives us a way to relate a weighted integral of the
average likelihoods within differently sized neighbourhoods
around the training example xi (RHS) to the expectation of
a function of the distance d(xi, Tθ(zj)) (LHS).

Moreover, we’d like to restrict the average likelihoods we in-
tegrate over to only those within neighbourhoods of certain
sizes rather than from 0 to∞. Specifically, we’d like to inte-
grate from δτ to τ , where τ > 0 is the radius of the largest
neighbourhood and 0 ≤ δ < 1 is a tightening threshold. To
this end, we can choose the weighting function Φ′

τ (·) to be
1 when δτ ≤ t ≤ τ , and 0 otherwise. One choice of such
Φτ (·) that satisfies this condition and its associated Φ′

τ (·)
are:

Φτ (t) =


δτ t < δτ

t δτ ≤ t ≤ τ

τ t > τ

Φ′
τ (t) =


0 t < δτ

1 δτ ≤ t ≤ τ

0 t > τ

Using this choice of Φτ (·), we obtain the following lemma
for a particular training example xi.

Lemma 2. Under the choice of Φτ (·) above and its associ-
ated Φ′

τ (·),

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))| {τi}i]

=τi −
∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

This lemma shows that, for one training example xi, the
expectation on the LHS reduces to τi minus the integral of
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the average likelihoods within balls whose radii lie between
δτi and τi. Applying Lemma 2 to all training examples
x1, . . . ,xn, we obtain the following lemma that reveals
what the overall objective in Eqn. 2 optimizes.
Lemma 3. Under the choice of Φτ (·) above and its associ-
ated Φ′

τ (·),

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

Lemma 3 shows that L{τi}i
(θ) implicitly computes the

average likelihood that the generative model assigns to
the neighbourhood of each data point, and τi controls
the radius of the neighbourhood size. Since we would
like to maximize probability in the immediate neighbour-
hood of each data point, we would like τi to be small.
So should we choose an arbitrarily small value for τi?
Recall that by definition of Φτi(·), if d(xi, Tθ(zj)) >
τi, Φτi(d(xi, Tθ(zj))) = τi. So, for a very small τi,
it may well be the case that d(xi, Tθ(zj)) > τi ∀j,
which would make the Monte Carlo estimate of L{τi}i

(θ),

i.e., 1
n

∑n
i=1

1
wi

(
τi − 1

m

∑m
j=1 Φτi(d(xi, Tθ(zj)))

)
, zero.

Since this is a constant, the gradient w.r.t. the pa-
rameters is zero, which makes gradient-based learn-
ing impossible. This would happen whenever τi <
minj∈[m] d(xi, Tθ(zj)), and so the smallest τi that can be
chosen is minj∈[m] d(xi, Tθ(zj)) (which is treated as a con-
stant rather than a function of θ).

With this choice of τi, assuming that there is a unique j∗

such that d(xi, Tθ(zj∗)) = minj∈[m] d(xi, Tθ(zj)) (which
happens almost surely), the objective can be simplified to:

L{τi}i
(θ) :=

Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣ {τi}i] (3)

If we minimize the objective in Eqn. 3, we get a novel objec-
tive known as the Adaptive IMLE objective. The solution
to the Adaptive IMLE objective can be expressed as:

argmax
θ
L{τi}i

(θ)

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi

max( min
j∈[m]

d(xi, Tθ(zj)), δτi)

∣∣∣∣ {τi}i] (4)

It turns out that the vanilla IMLE objective can be recovered
as a special case, by choosing δ = 0 and w1 = w2 = · · · =
wn.

argmax
θ
L{τi}i

(θ)

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
max( min

j∈[m]

d (xi, Tθ(zj)) , 0)| {τi}i]

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
min
j∈[m]

d (xi, Tθ(zj))

]

=argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

min
j∈[m]

d (xi, Tθ(zj))

]

4.1.1. CURRICULUM LEARNING

Recall that our goal is to maximize the likelihood of the im-
mediate neighbourhood around each data point, and the size
of this neighbourhood is controlled by τi. Therefore, we
want to make τi small. In order to make τi small without im-
peding learning, we need to make Ez1,...,zm∼N (0,I) [τi] =

Ez1,...,zm∼N (0,I)

[
minj∈[m] d(xi, Tθ(zj))

]
small. To this

end, we can either increase m, the number of samples, or
train Tθ so that the samples it produces are close to the data
point xi. The former is computationally expensive, and so
we will devise a method to achieve the latter.

We propose a curriculum learning strategy, which solves
a sequence of optimization problems with different τi’s,
such that τi’s get smaller for optimization problems later
in the sequence. The earlier optimization problems in the
sequence help train Tθ to produce samples close to the
data points. After each optimization problem is solved to
convergence, we start solving the next optimization problem
with θ initialized to the solution found previously.

This will make τi’s smaller and smaller. If they eventu-
ally converge to zero, then it turns out that we would have
equivalently maximized the sum of likelihoods pθ(xi) of the
training examples under the probability distribution induced
the generative model, as shown in the lemma below.
Lemma 4. Suppose pθ is continuous at all
data points x1, . . . ,xn, under the choice of
wi =

∫ τi
δτi

vol(Bt(xi))dt :=
∫ τi
δτi

∫
Bt(xi)

dxdt, where
Br(x) = {y|d(y,x) < r} is an open ball of radius r
centred at x,

lim
{τi→0+}i

L{τi}i
(θ) =

1

n

n∑
i=1

pθ(xi)

Here, wi is a normalizing factor for neighbouring regions
around each data point xi. For common metrics, such as
ℓp distances, wi can be found in closed form, details are
included in Appendix A. This lemma shows the theoreti-
cal guarantees of Adaptive IMLE hold under more general
conditions that those required by vanilla IMLE.
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4.2. Adaptive IMLE

The key difference from the objective in Eqn. 4 to the origi-
nal IMLE formulation in Eqn. 1 is the individualized neigh-
bourhood radius τi around each data point xi. This change
in the objective is crucial, as it allows the model to adapt to
the varying difficulty in learning different training examples,
hence the algorithm name, Adaptive IMLE.

As mentioned in Sect. 4.1.1, we need to gradually decrease
τi in order to make the learning feasible. To achieve this, we
adopt a progressive approach by training Tθ in stages, each
aimed at making incremental improvements to Tθ. As we
continue to train the model, the generated samples produced
by Tθ progressively get closer to the data points, thereby
decreasing τi = minj∈[m] d(xi, Tθ(zj)).

During each stage of training, the algorithm optimizes the
model parameters until the distance between the generated
sample and the target data d(xi, Tθ(zj)) decreases to δτi.
Here δ is a tightening coefficient that determines the re-
quired progress of the selected sample towards each training
example at each optimization stage.

Upon reaching the threshold, the algorithm generates new
samples and updates the threshold τi to be the distance be-
tween the data point and its nearest sample among the newly
generated samples, i.e., τi = minj′∈[m]new d(xi, Tθ(zj′)).
This updated threshold δτi then serves as the new target for
learning xi.

Now let’s turn our attention to the optimization problem
in each stage of the curriculum. Specifically, consider
the weighted objective in Eqn. 4. We denote the distance
threshold at the kth iteration as {τki }i and we assume
uniform convergence across all the {τki }i ∀i ∈ [n], i.e.,
plimk→∞ max

i∈[n]
(τki ) = 0, which we usually observe in prac-

tice.

At the beginning of each optimization problem, τi is set
to the value of minj∈[m] d(xi, Tθ(zj)). Since 0 ≤ δ < 1

and τki ≥ 0, max(minj∈[m] d(xi, Tθ(zj)), δτ
k
i ) is lower-

bounded by δτki and upper-bounded by τki . Furthermore, we
have plimk→∞δτki = plimk→∞τki = 0. By squeeze theo-
rem plimk→∞ max(minj∈[m] d(xi, Tθ(zj)), δτ

k
i ) = 0.

Note that the weighting term 1
wi

in Eqn. 4 is fixed
for all data points xi, this means that the objective
value of the weighted objective would converge to
plimk→∞

∑n
i=1

1
wi

max(minj∈[m] d(xi, Tθ(zj)), δτ
k
i ) =

0.

Now let’s consider an unweighted optimization problem
L̃{τk′

i }i
, which is a variant to the objective in Eqn. 4 without

the 1
wi

factor:

Algorithm 2 Adaptive IMLE Procedure

Require: The set of inputs {xi}ni=1, tightening coefficient δ ∈
[0, 1)

1: Initialize the parameters θ of the generator Tθ

2: Draw latent codes Z ← z1, ..., zm fromN (0, I)
3: z∗i ← argminzj∈Z d(xi, Tθ(zj))
4: τi ← d (xi, Tθ (z

∗
i )) ∀i ∈ [n]

5: for k = 1 to K do
6: Pick a random batch S ⊆ [n]
7: θ ← θ − η∇θ

(∑
i∈S d (xi, Tθ (z

∗
i ))

)
/|S|

8: Draw latent codes Z ← z1, ..., zm fromN (0, I)
9: for i ∈ S do

10: if d (xi, Tθ (z
∗
i )) ≤ δτi then

11: z∗i ← argminzj∈Z d(xi, Tθ(zj))
12: τi ← d(xi, Tθ(z

∗
i )) {Update the threshold}

13: end if
14: end for
15: end for
16: return θ

argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

max( min
j∈[m]

d(xi, Tθ(zj)), δτ
k′

i )
∣∣∣ {τk′

i }i
]

(5)

Similar to the weighted case, the objec-
tive value for the unweighted problems∑n

i=1 max(minj∈[m] d(xi, Tθ(zj)), δτ
k′

i ) would converge
to 0 as plimk′→∞ max(minj∈[m] d(xi, Tθ(zj)), δτ

k′

i ) = 0.

This means that for any given ϵ′ > 0, there ex-
ists an optimal solution θk

′
to the unweighted prob-

lem such that max(minj∈[m] d(xi, Tθk′ (zj)), δτ
k′

i ) <
ϵ′. Suppose there is a weighted problem such that
1
wi

max(minj∈[m] d(xi, Tθk(zj)), δτ
k
i ) > ϵ > 0, then

the solution θk
′

to the unweighted problem can also
solve the current weighted problem if we set ϵ′ =
wiϵ > 0. This is because wi is positive and
max(minj∈[m] d(xi, Tθk′ (zj)), δτ

k′

i ) < ϵ′ = wiϵ, and so
1
wi

max(minj∈[m] d(xi, Tθk′ (zj)), δτ
k′

i ) < ϵ which is the
weighted objective in Eqn. 4. This demonstrates that for any
weighted optimization problem, we could always solve it by
the optimal solution to an unweighted problem.

Let’s examine the other direction. Suppose
there is an unweighted problem such that
max(minj∈[m] d(xi, Tθk′ (zj)), δτ

k′

i ) > ϵ′ > 0.
Similar to the derivation above, we could find
a solution θk to the weighted problem such
that 1

wi
max(minj∈[m] d(xi, Tθk(zj)), δτ

k
i ) < ϵ,

where ϵ = 1
wi

ϵ′. Since 1
wi

is positive, we have
max(minj∈[m] d(xi, Tθk(zj)), δτ

k
i ) < wiϵ = ϵ′. This

shows that θk is also an optimal solution to the unweighted
problem.
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Hence, the optimal solutions for both the weighted and un-
weighted problems are equivalent. This equivalence holds
across all stages of the optimization problems. As a re-
sult, the sets of optimizers for the weighted and unweighted
objectives are identical. Consequently, optimizing the un-
weighted objective is equivalent to optimizing the weighted
objective. Therefore, we utilize the unweighted objective in
our algorithm.

Now, if we putting everything together, we obtain the Adap-
tive IMLE algorithm shown in Algorithm 2. In practice,
we make slight modifications to improve efficiency, and the
details are provided in Appendix B. We further examine
the convergence of τi’s by plotting the changes in their val-
ues during the training process, as shown in Fig. 2. The
results demonstrate that the maximum value of τi converges
to zero, validating our assumption of uniform convergence.
Furthermore, as the training progresses, we observe a trend
of increased concentration in the values of τi’s, indicating
a more balanced convergence among different data points
achieved by our algorithm.

Figure 2: Evolution of τi values during training. Each slice
of x axis shows the concentration of τi values in that specific
iteration. Darker colour indicates higher concentration. The
results illustrate the uniform convergence of τi towards zero,
validating our assumption. Additionally, the values of τi’s
become more concentrated as the model trains, demonstrat-
ing a more even convergence towards different data points.

5. Experiments
Baselines We compare our method to recent few-shot
unconditional image synthesis methods that operate in the
same setting we consider, namely without needing to pre-
train on auxiliary datasets. Three of such recent methods are
FastGAN (Liu et al., 2021), MixDL (Kong et al., 2022) and
FakeCLR (Li et al., 2022). We also compare our method
to the recent diffusion model EDM (Karras et al., 2022) to
demonstrate its potential impact in a broader context.

Table 1: Comparison of image quality, as measured by
FID (Heusel et al., 2017), between real data and 5000 ran-
domly generated samples from each method. Lower FID
value is better. Our method outperforms all baselines.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

FID↓ FID↓ FID↓ FID↓ FID↓ FID↓
FakeCLR (Li et al., 2022) 20.6 29.9 8.8 27.4 44.4 62.11
FastGAN (Liu et al., 2021) 26.6 41.1 10.0 35.1 50.7 54.2
MixDL (Kong et al., 2022) 24.5 43.4 10.6 56.1 81.2 62.3
EDM (Karras et al., 2022) 36.9 51.3 23.7 48.6 100.1 79.1
Adaptive IMLE (Ours) 19.1 25.0 7.6 24.9 43.0 33.2

Training Details Our network architecture is modified
from (Child, 2021), where we keep the decoder architecture
and replace the encoder with a fully-connected mapping
network inspired by (Karras et al., 2019). We choose an
input latent dimension of 1024, m = 10000 and a tightening
coefficient δ = 0.98. We train our model for less than
200k iterations with a mini-batch size of 4 using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of
2× 10−6 on a single NVIDIA V100 GPU.

Datasets We evaluate our method and the baselines on a
wide range of natural image datasets at 256×256 resolution,
which includes Animal-Face Dog and Cat (Si & Zhu, 2012),
Obama, Panda, and Grumpy-cat (Zhao et al., 2020b) and
Flickr-FaceHQ (FFHQ) subset (Karras et al., 2019). All
datasets contain 100 images except for Dog and Cat which
contain 389 and 160 images respectively. The FFHQ subset
consists of 100 FFHQ images with similar backgrounds, in
order to highlight diversity in the generation of foregrounds.

Evaluation Metrics We use the Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) to measure the perceptual
quality of the generated images, where we randomly gener-
ate 5000 images and compute FID between the generated
samples and real images in each dataset. To evaluate the
mode modelling accuracy (precision) and coverage (recall),
we use the precision metric of (Kynkäänniemi et al., 2019)
to measure the former, and use the recall metric of (Kynkään-
niemi et al., 2019) and LPIPS backtracking score (Liu et al.,
2021) to measure the latter. For LPIPS backtracking, we use
90% of the full dataset for training and evaluate the metric
using the remaining 10% of the dataset.

5.1. Quantitative Results

We compare the FID across all methods in Tab. 1. As
shown, our method outperforms the baselines in terms of
FID on all datasets. We compare the mode accuracy and
coverage in Tab. 2. As shown, our method significantly
outperforms the baselines in terms of recall while achieving
the best or second best precision across all datasets. We
also compare the LPIPS backtracking score in Tab. 3. Our
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FakeCLR MixDL FastGAN EDM Adaptive IMLE (Ours)

Cat

Dog

FFHQ subset

Panda

Grumpy Cat

Obama

Figure 3: Qualitative comparison of images generated by our method and the baselines, FakeCLR (Li et al., 2022),
FastGAN (Liu et al., 2021), MixDL (Kong et al., 2022) and EDM (Karras et al., 2022). Our method shows higher sample
quality and diversity. In contrast, the samples generated by the baselines exhibit distortions and limited diversity, as
supported by the results in Table 2. These results indicate that the baselines suffer from spurious modes or mode collapse.

Table 2: Precision and recall (Kynkäänniemi et al., 2019)
are computed for 1000 randomly generated samples and the
target dataset. Higher precision shows better fitting to the
target dataset, while higher recall corresponds to better mode
coverage. Our method achieves significantly better recall
compared to the baselines and scores the best or second best
precision across all cases.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑
FakeCLR (Li et al., 2022) 0.97 0.39 0.96 0.30 0.97 0.41 0.99 0.55 0.95 0.34 0.71 0.25
FastGAN (Liu et al., 2021) 0.91 0.13 0.92 0.09 0.96 0.16 0.97 0.08 0.96 0.19 0.91 0.13
MixDL (Kong et al., 2022) 0.93 0.35 0.91 0.47 0.93 0.30 0.91 0.50 0.86 0.15 0.77 0.30
Adaptive IMLE (Ours) 0.97 0.72 0.99 0.68 0.98 0.63 0.98 0.86 0.97 0.61 0.99 0.77

method achieves a better LPIPS backtracking score across
all datasets, showing better mode coverage. Due to limited
computational resources, we omit the calculation of this
metric for EDM (Karras et al., 2022), as it necessitates
optimizing a substantial number of noise samples. These

Table 3: LPIPS below represents LPIPS backtracking
score (Liu et al., 2021). For this metric, each model is
trained on 90% of the dataset. The resulting model is used
to backtrack in the latent space and reconstruct the remain-
ing 10%. Lower LPIPS backtracking score shows better
mode coverage of the training data. Our method signifi-
cantly outperfoms the baselines.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓
FakeCLR (Li et al., 2022) 0.467 0.446 0.479 0.570 0.602 0.316
FastGAN (Liu et al., 2021) 0.357 0.370 0.339 0.467 0.430 0.357
MixDL (Kong et al., 2022) 0.296 0.276 0.264 0.305 0.274 0.221
Adaptive IMLE (Ours) 0.058 0.036 0.039 0.074 0.072 0.014

results show that our method could produce high-quality
images while obtaining better mode coverage compared to
the baselines, thereby setting a new state-of-the-art.
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Target image FakeCLR MixDL FastGAN Ours

Figure 4: Visualizations of the reconstructions of an un-
seen target image from LPIPS backtracking. While the re-
constructions of FakeCLR, MixDL and FastGAN are struc-
turally dissimilar from the target images, the reconstructions
of our method are structurally similar to the target images.

Obama FFHQ subset
FakeCLR

MixDL

FastGAN

Ours

Figure 5: Latent space interpolation results. Our results
show smooth and meaningful transitions and higher qual-
ity images generated from intermediate points along the
interpolation line in the latent space. Start and end of inter-
polations are nearest neighbours of the same data examples
among 200 samples generated by each method.

5.2. Qualitative Results

We show the qualitative comparison of our method to the
baselines in Fig. 3. As shown, our method generates higher
quality samples which better preserve the semantic struc-
tures compared to the baselines, such as the eyes in Cat,
the facial structure in Dog and the mouth and hair in the
FFHQ subset. In addition, our method generates more di-
verse results while the GAN-based baselines suffer from
mode collapse and generate similar samples, such as in
Panda, Grumpy Cat and Obama. Additional samples from
our model can be found in Appendix C.

We show the final reconstruction of the target image found
using LPIPS backtracking (Liu et al., 2021) on the models
trained with different methods in Fig. 4. As shown, our
method is the only one where the reconstruction is struc-
turally similar to the target image, demonstrating that our
model successfully covers the mode that the target image
belongs to.

We also compare our method to the baselines on the quality
of intverpolations between two samples in the latent space.
As shown in Fig. 5, our method interpolates more smoothly
and naturally than the baselines, thereby indicating that our
model is less overfitted to the training examples.

Figure 6: FID comparison of Adaptive IMLE and Vanilla
IMLE during training on the Obama and Dog datasets.
Adaptive IMLE achieves better image quality (lower FID)
and faster convergence rate compared to vanilla IMLE.

Table 4: FID comparison between vanilla IMLE and the
proposed method, Adaptive IMLE. Adaptive IMLE con-
sistently outperforms vanilla IMLE, demonstrating better
generated image quality.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

FID↓ FID↓ FID↓ FID↓ FID↓ FID↓
Vanilla IMLE 23.3 37.4 8.2 34.4 61.9 54.1
Adaptive IMLE (Ours) 19.1 25.0 7.6 24.9 43.0 33.2

5.3. Ablation Study

We compare the FID for the proposed method, namely Adap-
tive IMLE, and vanilla IMLE on all datasets in Tab. 4. The
results show that Adaptive IMLE significantly improves
upon vanilla IMLE in terms of FID. We also compare the
FID scores throughout the training process on Obama and
Dog datasets in Fig. 6. The results demonstrate the improve-
ments achieved by Adaptive IMLE in terms of generated
image quality and convergence speed, validating the effec-
tiveness of our proposed method in the few-shot setting.

6. Conclusion
We developed a method for the challenging few-shot image
synthesis setting that does not depend on pre-training on
auxiliary datasets. We presented a more generalized formu-
lation of IMLE and proved that the theoretical guarantees of
this generalized formulation hold under weaker conditions.
We further derived a novel algorithm based on this formu-
lation which can adapt to different training examples of
varying difficulty. We showed that our method significantly
outperforms existing baselines in terms of image quality and
mode coverage on six few-shot benchmark datasets.
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A. Proofs
Lemma 1. Let X be a non-negative random variable and Φ be a continuous function on [0,∞). If Φ′ is integrable on all
closed intervals in [0,∞),

E [Φ(X)] = Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt

Proof.

Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt = Φ(0) +

∫ ∞

0

∫ ∞

t

Φ′(t)p(x)dxdt

= Φ(0) +

∫
{x≥t,t≥0}

Φ′(t)p(x)d

(
x
t

)
= Φ(0) +

∫
{t≤x,t≥0}

Φ′(t)p(x)d

(
x
t

)
= Φ(0) +

∫ ∞

0

∫ x

0

Φ′(t)p(x)dtdx

= Φ(0) +

∫ ∞

0

(∫ x

0

Φ′(t)dt

)
p(x)dx

= Φ(0) +

∫ ∞

0

(Φ(x)− Φ(0)) p(x)dx (2nd FTC)

= Φ(0) +

∫ ∞

0

Φ(x)p(x)dx−
∫ ∞

0

Φ(0)p(x)dx

= Φ(0) +

∫ ∞

0

Φ(x)p(x)dx− Φ(0)

∫ ∞

0

p(x)dx

= Φ(0) + E [Φ(X)]− Φ(0)

= E [Φ(X)]

Lemma 2. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))| {τi}i] = τi −
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt.

Proof. By definition, Φτi(0) = δτi.

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))| {τi}i] = Φτi(0) +

∫ ∞

0

Φ′
τi(t)Pr(d(xi, Tθ(z)) ≥ t)dt (Lemma 1)

= δτi +

∫ τi

δτi

Pr(d(xi, Tθ(z)) ≥ t)dt

= δτi +

∫ τi

δτi

(1− Pr(d(xi, Tθ(z)) < t)) dt

= δτi + (τi − δτi)−
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt

= τi −
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt
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Lemma 3. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

Proof.

L{τi}i
(θ) = Ez1,...,zm∼N (0,I)

 1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

Φτi(d(xi, Tθ(zj)))

∣∣∣∣∣∣ {τi}i


=
1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))| {τi}i]


=

1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

(
τi −

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt

) (Lemma 2)

=
1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt

Equation 3.

Proof.

L{τi}i
(θ) = Ez1,...,zm∼N (0,I)

[
1

n

n∑
i=1

1

wi

(
τi −

m− 1

m
τi −

1

m
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣∣ {τi}i
]

= Ez1,...,zm∼N (0,I)

[
1

n

n∑
i=1

1

wi

(
1

m
τi −

1

m
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣∣ {τi}i
]

= Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣∣ {τi}i
]

Equation 4.

Proof.

argmax
θ
L{τi}i

(θ) = argmax
θ

Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣∣ {τi}i
]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)∣∣∣∣∣ {τi}i
]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

τi
wi
−

n∑
i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

∣∣∣∣∣ {τi}i
]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
−

n∑
i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

∣∣∣∣∣ {τi}i
]

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

∣∣∣∣∣ {τi}i
]

13
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Lemma 4. Suppose pθ is continuous at all data points x1, . . . ,xn, under the choice of wi =
∫ τi
δτi

vol(Bt(xi))dt :=∫ τi
δτi

∫
Bt(xi)

dxdt, where Br(x) = {y|d(y,x) < r} is an open ball of radius r centred at x,

lim
{τi→0+}i

L{τi}i
(θ) =

1

n

n∑
i=1

pθ(xi)

Proof.

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt (Lemma 3)

=
1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

∫
Bt(xi)

pθ(x)dxdt

=
1

nm

n∑
i=1

m∑
j=1

1

wi

∫ τi

δτi

∫
Bt(xi)

pθ(x)dxdt

=
1

nm

n∑
i=1

m∑
j=1

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt

lim
{τi→0+}i

L{τi}i
(θ) =

1

nm

n∑
i=1

 lim
τi→0+

 m∑
j=1

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt


=

1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
Bτi

(xi)
pθ(x)dx− δ

∫
Bδτi

(xi)
pθ(x)dx∫

Bτi
(xi)

dx− δ
∫
Bδτi

(xi)
dx

)
(L’Hôpital and 2nd FTC)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
Bτi

(xi)
pθ(x)(1− δ1Bδτi

(xi)(x))dx∫
Bτi

(xi)
1− δ1Bδτi

(xi)(x)dx

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫ τi
0
(1− δ1{r<δτi}(r))

∫
{x|d(x,xi)=r} pθ(x)dxdr∫ τi

0
(1− δ1{r<δτi}(r))

∫
{x|d(x,xi)=r} dxdr

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
{x|d(x,xi)=τi} pθ(x)dx∫

{x|d(x,xi)=τi} dx

)
(L’Hôpital and 2nd FTC)

=
1

nm

n∑
i=1

m∑
j=1

pθ(xi) (Continuity of pθ)

=
1

n

n∑
i=1

pθ(xi)

Note that under common metrics like ℓp distances, wi can be found in closed form, i.e., vol(Bt(xi)) = (2t)d Γ(1+1/p)d

Γ(1+d/p) , and

so wi =
∫ τi
δτi

vol(Bt(xi))dt =
∫ τi
δτi

(2t)d Γ(1+1/p)d

Γ(1+d/p) dt =
(2(1−δ)τi)

d+1

2(d+1) · Γ(1+1/p)d

Γ(1+d/p) , where Γ(·) denotes the gamma function.
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B. Adaptive IMLE Algorithm In Practice
The Adaptive IMLE algorithm solves a sequence of optimization problems for each data example xi as described in 4.2.
Once an optimization problem is sovled for xi, i.e., its nearest neighbour gets within the threshold of the ball whose radii
is δτi, a fresh nearest neighbour needs to be assigned to xi in order to start solving the next optimization problem. This
requires generating a set of random samples. Because sample generation is expensive and could become the bottleneck for
the algorithm’s speed, we would like to reduce it to have an efficient and practical algorithm. To achieve this, we utilize two
ideas simultaneously, 1- we store the pool of generated samples and share it among all data examples. This approach enables
us to generate a larger sample pool size. As a result, each data example has a higher likelihood of finding a nearby nearest
neighbour, thereby leading to faster convergence. 2- we try to reuse this sample pool as long as possible. To achieve the
latter, we regenerate a new pool of samples only if a data example xi needs a new nearest neighbour while having already
accessed the sample pool, as indicated by the variable sample_pool_accessed in the algorithm. In rare cases where the
sample pool doesn’t get updated for a large number of iterations, denoted by t (maximum sample pool age), we regenerate a
new pool of samples.

Algorithm 3 Adaptive IMLE Procedure

Require: The set of inputs {xi}ni=1, tightening coefficient δ ∈ [0, 1), maximum pool age t ∈ N
1: Initialize the parameters θ of the generator Tθ

2: Draw latent codes Z ← z1, ..., zm fromN (0, I)
3: z∗i ← argminzj∈Z d(xi, Tθ(zj))
4: τi ← d (xi, Tθ (z

∗
i )) ∀i ∈ [n]

5: sample_pool← {}
6: sample_pool_age← t {number of epochs that the generated samples pool hasn’t been updated}
7: sample_pool_accessed← {false}ni=1 {keeps track of data examples that have used the sample_pool}
8: for k = 1 to K do
9: Pick a random batch S ⊆ [n]

10: S′ ← {i|d (xi, Tθ (z
∗
i )) ≤ δτi ∀i ∈ S} {set of data examples to get updated with a fresh nearest neighbour}

11: if sample_pool_age ≥ t or true ∈ {sample_pool_accessedi | ∀i ∈ S} then
12: {we get here if the sample_pool is too old or some data example in S′ has used it already}
13: Draw latent codes Z ← z1, ..., zm fromN (0, I)
14: sample_pool← {Tθ(zi) | ∀zi ∈ Z}
15: sample_pool_accessed← {false}ni=1 {No data example has used these set of new samples}
16: sample_pool_age← 0
17: end if
18: for i ∈ S′ do
19: j ← idxminx′

j∈sample_poold(xi,x
′
j)

20: z∗i ← Zj

21: τi ← d(xi, Tθ(z
∗
i )) {Update the threshold}

22: sample_pool_accessedi← true
23: end for
24: θ ← θ − η∇θ

(∑
i∈S d (xi, Tθ (z

∗
i ))

)
/|S|

25: sample_pool_age← sample_pool_age + 1
26: end for
27: return θ
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C. Additional Results
We show more interpolation results for Adaptive IMLE on FFHQ subset and Obama in Fig. 7. We also show randomly
generated samples for FFHQ subset in Fig. 8. For more results, please refer to https://github.com/mehranagh20/
AdaIMLE.

Figure 7: Interpolation results for Adaptive IMLE (Ours). Each row shows a different interpolation.
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Figure 8: Adaptive IMLE (Ours): randomly generated samples for FFHQ subset.
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