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Abstract
Despite their success on large datasets, GANs
have been difficult to apply in the few-shot set-
ting, where only a limited number of training
examples are provided. Due to mode collapse,
GANs tend to ignore some training examples,
causing overfitting to a subset of the training
dataset, which is small in the first place. A re-
cent method called Implicit Maximum Likelihood
Estimation (IMLE) is an alternative to GAN that
tries to address this issue. It uses the same kind
of generators as GANs but trains it with a dif-
ferent objective that encourages mode coverage.
However, the theoretical guarantees of IMLE hold
under a restrictive condition that the optimal like-
lihood at all data points is the same. In this pa-
per, we present a more generalized formulation of
IMLE which includes the original formulation as
a special case, and we prove that the theoretical
guarantees hold under weaker conditions. Us-
ing this generalized formulation, we further de-
rive a new algorithm, which we dub Adaptive
IMLE, which can adapt to the varying difficulty
of different training examples. We demonstrate
on multiple few-shot image synthesis datasets
that our method significantly outperforms exist-
ing methods. Our code is available at https:
//github.com/mehranagh20/AdaIMLE.

1. Introduction
Image synthesis has achieved significant progress over
the past decade with the emergence of deep learning.
Deep generative models such as GANs (Goodfellow et al.,
2014; Brock et al., 2019; Karras et al., 2019; 2020; 2021),
VAEs (Kingma & Welling, 2013; Vahdat & Kautz, 2020;
Child, 2021; Razavi et al., 2019), diffusion models (Dhari-
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wal & Nichol, 2021; Ho et al., 2020; Karras et al., 2022),
score-based models (Song et al., 2021; Song & Ermon,
2019), normalizing flows (Dinh et al., 2017; Kobyzev et al.,
2021; Kingma & Dhariwal, 2018), and autoregressive mod-
els (Salimans et al., 2017; van den Oord et al., 2016b;a) have
made incredible improvements in generated image quality,
which makes it possible to generate photorealistic images
using these models.

Many of these deep generative models require training on
large-scale datasets to produce high-quality images. How-
ever, there are many real-life scenarios in that only a limited
number of training examples are available, such as orphan
diseases in the medical domain and rare events for train-
ing autonomous driving agents. One way to address this
issue is by fine-tuning a model pre-trained on large aux-
iliary datasets from similar domains (Wang et al., 2020;
Zhao et al., 2020a; Mo et al., 2020). Nonetheless, a large
auxiliary dataset with a sufficient degree of similarity to
the task at hand may not be available in all domains. If
an insufficient similar auxiliary dataset were used regard-
less, image quality may be adversely impacted, as shown in
(Zhao et al., 2020b). Therefore, there have been efforts in
tackling the challenging setting of few-shot unconditional
image synthesis without auxiliary pre-training (Liu et al.,
2021; Kong et al., 2022; Li et al., 2022), and we will focus
on this setting.

The scarcity of training data in this setting makes it espe-
cially important for generative models to make full use of
all training examples. This requirement sets it apart from
the many-shot setting with abundant training data, where
ignoring some training examples does not cause as big an
issue. As a result, despite achieving impressive performance
in the many-shot setting, GANs are challenging to apply to
the few-shot setting due to the well-known problem of mode
collapse, where the generator only learns from a subset of
the training images and ignores the rest. A recent work (Li
& Malik, 2018) proposed an alternative technique called
Implicit Maximum Likelihood Estimation (IMLE) for un-
conditional image synthesis. Similar to GAN, IMLE uses a
generator, but rather than adopting an adversarial objective
which encourages each generated image to be similar to
some training images, IMLE encourages each training im-
age to have some similar generated images. Therefore, the
generated images could cover all training examples without
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Figure 1: Schematic illustration that compares vanilla IMLE (Li & Malik, 2018) (top row) with the proposed algorithm,
Adaptive IMLE (bottom row). While IMLE treats all training examples (denoted by the squares on the left) equally and
pulls the generated samples (denoted by the circles on the left) towards them at a uniform pace, Adaptive IMLE adapts to
the varying difficulty of each training example and pulls the generated samples towards them at an individualized pace that
depends on the training example. The dashed line on the left figure illustrates the progression towards three data points at
four comparable epochs (denoted as t0 to t3) with the starting positions highlighted. The corresponding generated samples
are shown on the right. As shown, Adaptive IMLE can converge to the various data points faster and closer than IMLE.

collapsing to a subset of the modes.

However, the theoretical guarantees of IMLE hold under
a restrictive condition that all data points should have an
identical optimal likelihood. The IMLE algorithm, there-
fore, treats all training examples equally when optimizing
the model parameters and ignores the varying difficulty in
learning from different training examples. As shown in
the top row of Fig. 1, the generated samples make uneven
progress toward different training examples using IMLE,
leading to overfitting to some examples and underfitting
to others. While this may not cause a major issue in the
many-shot setting because many data points are expected to
have similar optimal likelihoods, it can be quite problematic
in the few-shot setting, since uneven fitting can impact the
model quality substantially due to the small total number of
training examples that the model is trained on.

In this paper, we introduce a generalized formulation of
IMLE, which in turn enables the derivation of a new algo-
rithm that requires fewer conditions and gets around the
aforementioned issue. In particular, we mathematically
prove that the theoretical guarantees of the generalized for-
mulation hold under weaker conditions and subsumes the
IMLE formulation as a special case. Furthermore, we derive
an algorithm called Adaptive IMLE using this generalized
formulation, which could adapt to points with different dif-
ficulties, as illustrated in the bottom row of Fig. 1. Further-

more, we conducted experiments on six datasets to evaluate
the performance of our method compared to prior few-shot
image synthesis baselines. Our results demonstrate that
our method achieves significant improvements in terms of
both image fidelity and mode coverage, establishing a new
state-of-the-art.

2. Related Work
There are two broad families of work on few-shot learning,
one that focuses on discriminative tasks such as classifica-
tion (O’Mahony et al., 2019; Finn et al., 2017; Snell et al.,
2017) and another that focuses on generative tasks. In this
paper, we focus on the latter. Similar to many-shot genera-
tion tasks, few-shot generation tasks take a limited number
of training examples as input and aim to generate samples
that are similar to those training examples. What is different
from the many-shot setting is that it is crucial for the genera-
tive model to utilize all the training examples in the few-shot
setting. Due to the scarcity of available data for training,
ignoring even just a few data points would cause a more
serious issue in the few-shot setting than in the many-shot
setting. One line of work focuses on pre-training on large-
scale auxiliary datasets from similar domains and adapting
the pre-trained models for the few-shot task. This has been
applied to unconditional image generation (Li et al., 2020;
Zhao et al., 2020a; Mo et al., 2020; Ojha et al., 2021; Wang
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et al., 2020), conditional image generation (Sinha et al.,
2021; Liu et al., 2019) and video generation (Wang et al.,
2019). However, there are no guarantees on the existence
of such large-scale auxiliary datasets for all domains, and
recent studies (Zhao et al., 2020b; Kong et al., 2022) also
showed that �ne-tuning from a dissimilar domain could even
lead to the degradation of generated image quality.

In this paper, we focus on the setting without �ne-tuning
pre-trained models from auxiliary datasets. Most prior work
considered applying GANs to this setting and developed
methods for alleviating the well-known mode collapse prob-
lem of GANs. FastGAN (Liu et al., 2021) introduced a
skip-layer excitation module for faster training and used
self-supervision for the discriminator to learn more descrip-
tive features, which aids in better mode coverage of the
generator. MixDL (Kong et al., 2022) introduced a two-
sided distance regularization to facilitate learning smooth
and mode-preserving latent space. FakeCLR (Li et al., 2022)
aims to improve image synthesis quality by introducing ex-
tensive data augmentation and applying contrastive learning
only on perturbed fake samples. Despite these improve-
ments, some degree of mode collapse still remains. A recent
method called Implicit Maximum Likelihood Estimation
(IMLE) (Li & Malik, 2018) adopted a different objective
function and showed promising results towards alleviating
mode collapse on unconditional image synthesis tasks. Prior
IMLE-based methods mainly focused on conditional image
synthesis (Li* et al., 2020; Peng et al., 2022). In this work,
we build on (Li & Malik, 2018) and introduce a novel and
more generalized formulation of IMLE to make it more
suitable for the unconditional few-shot setting.

3. Background: Implicit Maximum Likelihood
Estimation (IMLE)

In unconditional image synthesis, the goal is to learn the un-
derlying probability distribution of images, denoted asp(x),
which allows us to generate new synthesized images by sam-
pling from this distribution. Implicit generative models are
commonly used for this task, such as the generator in GANs.
The generator, parameterized as a neural network with pa-
rameters� , maps latent codesz drawn from a standard
Gaussian distributionN (0; I ) to generate imagesx. One
way to learn this model is with the GAN objective, which
introduces a discriminator that aims to distinguish between
generated imagesT� (z) and real imagesx. The generator is
trained to produce more realistic images that would fool the
discriminator. However, the outputT� (z) tends to recover
only a subset of the training examples even when varying all
values ofz. This issue is known as mode collapse, and the
intuitive reason behind it is that the adversarial objective of
GAN only encourages each generated sample to be similar
to some training examples, but there is no guarantee that all

training examples will have some similar generated samples.
In the few-shot image synthesis setting, the issue of mode
collapse is even more signi�cant given the limited number
of training examples that are available in the �rst place.

A more recent method known as Implicit Maximum Likeli-
hood Estimation (IMLE) (Li & Malik, 2018) proposed an
alternative objective to address this issue. Instead of making
each generated sample similar tosometraining examples,
IMLE tries to ensure that samples can be generated around
eachtraining examplex i . The generatorT� is encouraged
to pull some samplesT� (zj ) towards eachx i , thereby re-
warding coverage of the modes associated with all training
examples.

More precisely, the IMLE objective takes the following
form:

min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

min
j 2 [m ]

d(x i ; T� (zj ))

#

(1)

whered(:; :) is a distance metric,m is a hyperparameter,
andx i is thei th training example. The training procedure
involves �nding the latent codez�

i that produces the nearest
generated sample to each training examplex i , and optimiz-
ing the model parameter� by minimizing the distance from
the selected sampleT� (z�

i ) to the target datax i . Detailed
pseudocode of the algorithm can be found in Algorithm 1.

Algorithm 1 Vanilla IMLE procedure

Require: The set of inputsf x i g
n
i =1

1: Initialize the parameters� of the generatorT�

2: for k = 1 to K do
3: Pick a random batchS � [n]
4: Draw latent codesZ  z1; :::; zm from N (0; I )
5: z�

i  arg minz j 2 Z d(x i ; T� (zj )) 8i 2 S
6: for l = 1 to L do
7: Pick a random mini batch~S � S
8: �  � � � r �

� P
i 2 ~S d(x i ; T� (z�

i ))
�

=j eSj
9: end for

10: end for
11: return�

Despite the algorithm's simplicity, a restrictive condition
needs to be satis�ed for the theoretical guarantees of IMLE
to hold, that is requiring a uniform optimal likelihood for all
data points. As an example, consider a dataset with two clus-
ters with the same number of points where one cluster has
a large variance and the other has a small variance. In this
case, the training examples from the high-variance cluster
are more dif�cult to learn than the training examples from
the low-variance cluster, because of the sparser coverage
of the space in the former cluster. If we consider what the
ground truth data distribution looks like, it is a bimodal dis-
tribution, with the mode corresponding to the low-variance
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cluster having a higher likelihood than the other. So requir-
ing uniform optimal likelihood for all data points, as IMLE
does, will result in over�tting to the low-variance cluster
and under�tting to the high-variance cluster, which is not
optimal. We refer readers to the IMLE paper (Li & Malik,
2018) for more details.

4. Method

In this paper, we devise a generalized formulation of IMLE,
whose theoretical guarantees hold under more general con-
ditions than vanilla IMLE (Sec 4.1). This formulation sub-
sumes vanilla IMLE as a special case and also gives rise to
a new algorithm which we callAdaptive IMLE. It turns out
that Adaptive IMLE offers theoretical and practical advan-
tages over IMLE, which we will demonstrate (Sec 4.2).

4.1. Generalized Formulation

SinceT� is an implicit generative model, the likelihood in-
duced by the modelp� cannot in general be expressed in
closed form, and so evaluating it numerically is typically
computationally intractable. In order to train the generative
model, we would like to maximize the likelihood of the
training examples without actually needing to evaluate the
likelihood. Below we will consider the generalized objective
we propose and show that optimizing the objective is equiv-
alent to maximizing the sum of likelihoods at the training
examples, without requiring the evaluation of likelihood.

Consider the following optimization problem:

max
�

L f � i gi (� ) :=

max
�

Ez1 ;:::;z m �N (0 ;I )

"
1
n

nX

i =1

1
wi

0

@� i �
1
m

mX

j =1

� � i (d(x i ; T� (zj )))

1

A

�
�
�
�
�
�
f � i gi

3

5 (2)

whereT� , d(�; �) andm are as de�ned in Eqn 1. For each
training examplei , there is a weighting termwi and a thresh-
old � i , which may be stochastic. The function� � (�) trans-
forms distances from each training example to each sample
from the model. We will choosewi , � i and� � (�) based on
the insight revealed by lemmas below.

We will present the high-level sketches of our key lemmas
(omitting some technicalities) and delineate their interpreta-
tions and signi�cance. The precise statements of the lemmas
and their proofs are left to Appendix A.

We will �rst present a lemma that relates an expectation of
a random variable to the weighted integral of one minus its

cumulative density function (CDF) evaluated at different
points, which we will refer to as cumulative densities.

Lemma 1. LetX be a non-negative random variable and
� be a continuous function on[0; 1 ). If � 0 is integrable on
all closed intervals in[0; 1 ),

E [�( X )] = �(0) +
Z 1

0
� 0(t)Pr( X � t)dt

This lemma is useful because the left-hand side (LHS) is
easy to approximate with Monte Carlo estimates of expecta-
tions, and the right-hand side (RHS) is a weighted integral
of one minus cumulative densities, which are intractable to
compute in general. It enables us to control the weighting
of different cumulative densities by choosing the function
� .

Recall that our goal is to maximize the likelihood at each
training example without actually computing the likelihood.
We can leverage Lemma 1 for this purpose, by choosing
the non-negative random variableX appropriately. We
chooseX to be the distance between a training example
and a generated sampled(x i ; T� (zj )) . With this choice,
Lemma 1 gives us a way to relate a weighted integral of the
average likelihoods within differently sized neighbourhoods
around the training examplex i (RHS) to the expectation of
a function of the distanced(x i ; T� (zj )) (LHS).

Moreover, we'd like to restrict the average likelihoods we in-
tegrate over to only those within neighbourhoods of certain
sizes rather than from0 to 1 . Speci�cally, we'd like to inte-
grate from�� to � , where� > 0 is the radius of the largest
neighbourhood and0 � � < 1 is a tightening threshold. To
this end, we can choose the weighting function� 0

� (�) to be
1 when�� � t � � , and0 otherwise. One choice of such
� � (�) that satis�es this condition and its associated� 0

� (�)
are:

� � (t) =

8
><

>:

�� t < ��
t �� � t � �
� t > �

� 0
� (t) =

8
><

>:

0 t < ��
1 �� � t � �
0 t > �

Using this choice of� � (�), we obtain the following lemma
for a particular training examplex i .

Lemma 2. Under the choice of� � (�) above and its associ-
ated� 0

� (�),

Ez1 ;:::;z m �N (0 ;I ) [ � � i (d(x i ; T� (zj ))) j f � i gi ]

= � i �
Z � i

�� i

Pr(d(x i ; T� (zj )) < t )dt:

This lemma shows that, for one training examplex i , the
expectation on the LHS reduces to� i minus the integral of
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the average likelihoods within balls whose radii lie between
�� i and � i . Applying Lemma 2 to all training examples
x1; : : : ; xn , we obtain the following lemma that reveals
what the overall objective in Eqn. 2 optimizes.
Lemma 3. Under the choice of� � (�) above and its associ-
ated� 0

� (�),

L f � i gi (� ) =
1
n

nX

i =1

1
mwi

mX

j =1

Z � i

�� i

Pr(d(x i ; T� (zj )) < t )dt:

Lemma 3 shows thatL f � i gi (� ) implicitly computes the
average likelihood that the generative model assigns to
the neighbourhood of each data point, and� i controls
the radius of the neighbourhood size. Since we would
like to maximize probability in the immediate neighbour-
hood of each data point, we would like� i to be small.
So should we choose an arbitrarily small value for� i ?
Recall that by de�nition of� � i (�), if d(x i ; T� (zj )) >
� i , � � i (d(x i ; T� (zj ))) = � i . So, for a very small� i ;
it may well be the case thatd(x i ; T� (zj )) > � i 8j ,
which would make the Monte Carlo estimate ofL f � i gi (� ),

i.e., 1
n

P n
i =1

1
w i

�
� i � 1

m

P m
j =1 � � i (d(x i ; T� (zj )))

�
, zero.

Since this is a constant, the gradient w.r.t. the pa-
rameters is zero, which makes gradient-based learn-
ing impossible. This would happen whenever� i <
min j 2 [m ] d(x i ; T� (zj )) , and so the smallest� i that can be
chosen ismin j 2 [m ] d(x i ; T� (zj )) (which is treated as a con-
stant rather than a function of� ).

With this choice of� i , assuming that there is a uniquej �

such thatd(x i ; T� (zj � )) = min j 2 [m ] d(x i ; T� (zj )) (which
happens almost surely), the objective can be simpli�ed to:

L f � i gi (� ) :=

Ez1 ;:::;z m �N (0 ;I )

"
1

nm

nX

i =1

1
wi

�
� i � max( min

j 2 [m ]
d(x i ; T� (zj )) ; �� i )

� �
�
�
� f � i gi

�
(3)

If we minimize the objective in Eqn. 3, we get a novel objec-
tive known as the Adaptive IMLE objective. The solution
to the Adaptive IMLE objective can be expressed as:

arg max
�

L f � i gi (� )

= arg min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

1
wi

max( min
j 2 [m ]

d(x i ; T� (zj )) ; �� i )

�
�
�
� f � i gi

�
(4)

It turns out that the vanilla IMLE objective can be recovered
as a special case, by choosing� = 0 andw1 = w2 = � � � =
wn .

arg max
�

L f � i gi (� )

= arg min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

1
wi

max( min
j 2 [m ]

d(x i ; T� (zj )) ; 0)j f � i gi ]

= arg min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

1
wi

min
j 2 [m ]

d(x i ; T� (zj ))

#

= arg min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

min
j 2 [m ]

d(x i ; T� (zj ))

#

4.1.1. CURRICULUM LEARNING

Recall that our goal is to maximize the likelihood of the im-
mediate neighbourhood around each data point, and the size
of this neighbourhood is controlled by� i . Therefore, we
want to make� i small. In order to make� i small without im-
peding learning, we need to makeEz1 ;:::;z m �N (0 ;I ) [� i ] =
Ez1 ;:::;z m �N (0 ;I )

�
min j 2 [m ] d(x i ; T� (zj ))

�
small. To this

end, we can either increasem, the number of samples, or
train T� so that the samples it produces are close to the data
point x i . The former is computationally expensive, and so
we will devise a method to achieve the latter.

We propose a curriculum learning strategy, which solves
a sequence of optimization problems with different� i 's,
such that� i 's get smaller for optimization problems later
in the sequence. The earlier optimization problems in the
sequence help trainT� to produce samples close to the
data points. After each optimization problem is solved to
convergence, we start solving the next optimization problem
with � initialized to the solution found previously.

This will make � i 's smaller and smaller. If they eventu-
ally converge to zero, then it turns out that we would have
equivalently maximized the sum of likelihoodsp� (x i ) of the
training examples under the probability distribution induced
the generative model, as shown in the lemma below.
Lemma 4. Suppose p� is continuous at all
data points x1; : : : ; xn , under the choice of
wi =

R� i

�� i
vol(B t (x i ))dt :=

R� i

�� i

R
B t (x i ) dxdt, where

B r (x) = f y jd(y ; x) < r g is an open ball of radiusr
centred atx,

lim
f � i ! 0+ gi

L f � i gi (� ) =
1
n

nX

i =1

p� (x i )

Here,wi is a normalizing factor for neighbouring regions
around each data pointx i . For common metrics, such as
`p distances,wi can be found in closed form, details are
included in Appendix A. This lemma shows the theoreti-
cal guarantees of Adaptive IMLE hold under more general
conditions that those required by vanilla IMLE.
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4.2. Adaptive IMLE

The key difference from the objective in Eqn. 4 to the origi-
nal IMLE formulation in Eqn. 1 is the individualized neigh-
bourhood radius� i around each data pointx i . This change
in the objective is crucial, as it allows the model to adapt to
the varying dif�culty in learning different training examples,
hence the algorithm name,Adaptive IMLE.

As mentioned in Sect. 4.1.1, we need to gradually decrease
� i in order to make the learning feasible. To achieve this, we
adopt a progressive approach by trainingT� in stages, each
aimed at making incremental improvements toT� . As we
continue to train the model, the generated samples produced
by T� progressively get closer to the data points, thereby
decreasing� i = min j 2 [m ] d(x i ; T� (zj )) .

During each stage of training, the algorithm optimizes the
model parameters until the distance between the generated
sample and the target datad(x i ; T� (zj )) decreases to�� i .
Here � is a tightening coef�cient that determines the re-
quired progress of the selected sample towards each training
example at each optimization stage.

Upon reaching the threshold, the algorithm generates new
samples and updates the threshold� i to be the distance be-
tween the data point and its nearest sample among thenewly
generated samples, i.e.,� i = min j 02 [m ]new d(x i ; T� (zj 0)) .
This updated threshold�� i then serves as the new target for
learningx i .

Now let's turn our attention to the optimization problem
in each stage of the curriculum. Speci�cally, consider
the weighted objective in Eqn. 4. We denote the distance
threshold at thekth iteration asf � k

i gi and we assume
uniform convergence across all thef � k

i gi 8i 2 [n], i.e.,
plim k !1 max

i 2 [n ]
(� k

i ) = 0 , which we usually observe in prac-

tice.

At the beginning of each optimization problem,� i is set
to the value ofmin j 2 [m ] d(x i ; T� (zj )) . Since0 � � < 1
and� k

i � 0, max(min j 2 [m ] d(x i ; T� (zj )) ; �� k
i ) is lower-

bounded by�� k
i and upper-bounded by� k

i . Furthermore, we
haveplim k !1 �� k

i = plim k !1 � k
i = 0 . By squeeze theo-

remplim k !1 max(min j 2 [m ] d(x i ; T� (zj )) ; �� k
i ) = 0 .

Note that the weighting term1
w i

in Eqn. 4 is �xed
for all data pointsx i , this means that the objective
value of the weighted objective would converge to
plim k !1

P n
i =1

1
w i

max(min j 2 [m ] d(x i ; T� (zj )) ; �� k
i ) =

0.

Now let's consider an unweighted optimization problem
~L f � k 0

i gi
, which is a variant to the objective in Eqn. 4 without

the 1
w i

factor:

Algorithm 2 Adaptive IMLE Procedure

Require: The set of inputsf x i g
n
i =1 , tightening coef�cient� 2

[0; 1)
1: Initialize the parameters� of the generatorT�

2: Draw latent codesZ  z1 ; :::; zm from N (0; I )
3: z�

i  arg minz j 2 Z d(x i ; T� (zj ))
4: � i  d (x i ; T� (z�

i )) 8i 2 [n]
5: for k = 1 to K do
6: Pick a random batchS � [n]
7: �  � � � r �

� P
i 2 S d (x i ; T� (z�

i ))
�

=jSj
8: Draw latent codesZ  z1 ; :::; zm from N (0; I )
9: for i 2 S do

10: if d (x i ; T� (z�
i )) � �� i then

11: z�
i  arg minz j 2 Z d(x i ; T� (zj ))

12: � i  d(x i ; T� (z�
i )) {Update the threshold}

13: end if
14: end for
15: end for
16: return�

arg min
�

Ez1 ;:::;z m �N (0 ;I )

"
nX

i =1

max( min
j 2 [m ]

d(x i ; T� (zj )) ; �� k 0

i )
�
�
� f � k 0

i gi

i
(5)

Similar to the weighted case, the objec-
tive value for the unweighted problemsP n

i =1 max(min j 2 [m ] d(x i ; T� (zj )) ; �� k 0

i ) would converge
to 0 asplim k 0!1 max(min j 2 [m ] d(x i ; T� (zj )) ; �� k 0

i ) = 0 .

This means that for any given� 0 > 0, there ex-
ists an optimal solution� k 0

to the unweighted prob-
lem such thatmax(min j 2 [m ] d(x i ; T� k 0(zj )) ; �� k 0

i ) <
� 0. Suppose there is a weighted problem such that
1

w i
max(min j 2 [m ] d(x i ; T� k (zj )) ; �� k

i ) > � > 0, then

the solution � k 0
to the unweighted problem can also

solve the current weighted problem if we set� 0 =
wi � > 0. This is becausewi is positive and
max(min j 2 [m ] d(x i ; T� k 0(zj )) ; �� k 0

i ) < � 0 = wi � , and so
1

w i
max(min j 2 [m ] d(x i ; T� k 0(zj )) ; �� k 0

i ) < � which is the
weighted objective in Eqn. 4. This demonstrates that for any
weighted optimization problem, we could always solve it by
the optimal solution to an unweighted problem.

Let's examine the other direction. Suppose
there is an unweighted problem such that
max(min j 2 [m ] d(x i ; T� k 0(zj )) ; �� k 0

i ) > � 0 > 0.
Similar to the derivation above, we could �nd
a solution � k to the weighted problem such
that 1

w i
max(min j 2 [m ] d(x i ; T� k (zj )) ; �� k

i ) < � ,
where � = 1

w i
� 0. Since 1

w i
is positive, we have

max(min j 2 [m ] d(x i ; T� k (zj )) ; �� k
i ) < w i � = � 0. This

shows that� k is also an optimal solution to the unweighted
problem.
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Hence, the optimal solutions for both the weighted and un-
weighted problems are equivalent. This equivalence holds
across all stages of the optimization problems. As a re-
sult, the sets of optimizers for the weighted and unweighted
objectives are identical. Consequently, optimizing the un-
weighted objective is equivalent to optimizing the weighted
objective. Therefore, we utilize the unweighted objective in
our algorithm.

Now, if we putting everything together, we obtain the Adap-
tive IMLE algorithm shown in Algorithm 2. In practice,
we make slight modi�cations to improve ef�ciency, and the
details are provided in Appendix B. We further examine
the convergence of� i 's by plotting the changes in their val-
ues during the training process, as shown in Fig. 2. The
results demonstrate that the maximum value of� i converges
to zero, validating our assumption of uniform convergence.
Furthermore, as the training progresses, we observe a trend
of increased concentration in the values of� i 's, indicating
a more balanced convergence among different data points
achieved by our algorithm.

Figure 2: Evolution of� i values during training. Each slice
of x axis shows the concentration of� i values in that speci�c
iteration. Darker colour indicates higher concentration. The
results illustrate the uniform convergence of� i towards zero,
validating our assumption. Additionally, the values of� i 's
become more concentrated as the model trains, demonstrat-
ing a more even convergence towards different data points.

5. Experiments

Baselines We compare our method to recent few-shot
unconditional image synthesis methods that operate in the
same setting we consider, namely without needing to pre-
train on auxiliary datasets. Three of such recent methods are
FastGAN (Liu et al., 2021), MixDL (Kong et al., 2022) and
FakeCLR (Li et al., 2022). We also compare our method
to the recent diffusion model EDM (Karras et al., 2022) to
demonstrate its potential impact in a broader context.

Table 1: Comparison of image quality, as measured by
FID (Heusel et al., 2017), between real data and5000ran-
domly generated samples from each method. Lower FID
value is better. Our method outperforms all baselines.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

FID# FID# FID# FID# FID# FID#

FakeCLR (Li et al., 2022) 20:6 29:9 8:8 27:4 44:4 62:11
FastGAN (Liu et al., 2021) 26:6 41:1 10:0 35:1 50:7 54:2
MixDL (Kong et al., 2022) 24:5 43:4 10:6 56:1 81:2 62:3
EDM (Karras et al., 2022) 36:9 51:3 23:7 48:6 100:1 79:1
Adaptive IMLE (Ours) 19:1 25:0 7:6 24:9 43:0 33:2

Training Details Our network architecture is modi�ed
from (Child, 2021), where we keep the decoder architecture
and replace the encoder with a fully-connected mapping
network inspired by (Karras et al., 2019). We choose an
input latent dimension of1024, m = 10000and a tightening
coef�cient � = 0 :98. We train our model for less than
200k iterations with a mini-batch size of 4 using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of
2 � 10� 6 on a single NVIDIA V100 GPU.

Datasets We evaluate our method and the baselines on a
wide range of natural image datasets at256� 256resolution,
which includes Animal-Face Dog and Cat (Si & Zhu, 2012),
Obama, Panda, and Grumpy-cat (Zhao et al., 2020b) and
Flickr-FaceHQ (FFHQ) subset (Karras et al., 2019). All
datasets contain100images except for Dog and Cat which
contain389and160images respectively. The FFHQ subset
consists of 100 FFHQ images with similar backgrounds, in
order to highlight diversity in the generation of foregrounds.

Evaluation Metrics We use the Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) to measure the perceptual
quality of the generated images, where we randomly gener-
ate5000images and compute FID between the generated
samples and real images in each dataset. To evaluate the
mode modelling accuracy (precision) and coverage (recall),
we use the precision metric of (Kynkäänniemi et al., 2019)
to measure the former, and use the recall metric of (Kynkään-
niemi et al., 2019) and LPIPS backtracking score (Liu et al.,
2021) to measure the latter. For LPIPS backtracking, we use
90%of the full dataset for training and evaluate the metric
using the remaining10%of the dataset.

5.1. Quantitative Results

We compare the FID across all methods in Tab. 1. As
shown, our method outperforms the baselines in terms of
FID on all datasets. We compare the mode accuracy and
coverage in Tab. 2. As shown, our method signi�cantly
outperforms the baselines in terms of recall while achieving
the best or second best precision across all datasets. We
also compare the LPIPS backtracking score in Tab. 3. Our
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