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HighlightRemover: Spatially Valid Pixel Learning for Image
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ABSTRACT
Recently, learning-based methods have made significant progress
for image specular highlight removal. However, many of these
approaches treat all the image pixels uniformly, overlooking the
negative impact of invalid pixels on feature reconstruction. This
oversight often leads to undesirable outcomes, such as color distor-
tion or residual highlights. In this paper, we propose a novel image
specular highlight removal network called HighlightRNet, which
utilizes valid pixels as references to reconstruct the highlight-free
image. To achieve this, we introduce a context-aware fusion block
(CFBlock) that aggregates information in four directions, effectively
capturing global contextual information. Additionally, we introduce
a location-aware feature transformation module (LFTModule) to
adaptively learn the valid pixels for feature reconstruction, thereby
avoiding information errors caused by invalid pixels. With these
modules, our method can produce high-quality highlight-free re-
sults without color distortion and highlight residual. Furthermore,
we develop a multiple light image-capturing system to construct a
large-scale highlight dataset called NSH, which exhibits minimal
misalignment in image pairs and minimal brightness variation in
non-highlight regions. Experimental results on various datasets
demonstrate the superiority of our method over state-of-the-art
methods, both qualitatively and quantitatively.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Image specular highlight removal, contextual information, valid
pixels

1 INTRODUCTION
Specular highlights are natural occurrences when light strikes an
object with smooth surface. However, the presence of continuous
or discontinuous spots in specular highlight regions often leads
to poor visibility and incoherent diffuse regions in images. This
phenomenon significantly increases the complexity and difficulty
of various vision tasks, including object detection [13], semantic
segmentation [3], object tracking [6], image segmentation [12],
and so on. Therefore, effectively removing specular highlights from
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(a) Highlight image (b) Our result

(c) Result of [27] (d) Result of [4]

Figure 1: Image specular highlight removal. With the con-
sistent feature manipulations, results of [27] and [4] may
cause color distortion or highlight residual. In contrast, our
method can produce more desirable result by utilizing valid
pixels.

images and recovering clear, highlight-free images is both important
and challenging.

Existing image specular highlight removal methods fall into two
groups. Traditional methods [12, 24, 30, 31] leverage various con-
straints or assumptions to remove highlights from images but often
demonstrate limited effectiveness. Recently, numerous learning-
based specular highlight removal methods have been developed
[4, 9, 10, 27]. They dig into the mapping relationship between high-
light images and non-highlight images, aiming for enhanced per-
formance. However, most of these methods uniformly process all
pixels in the image, creating potential problems such as convo-
lution of invalid pixels or deviation calculation of features. The
main reason is that, the highlight regions with strong light spots
are corrupted regions, and pixels in these region are invalid pix-
els for specular highlight removal. Simply mapping the features
via consistent processing contains convolution of invalid pixels,
resulting in mean and variance shifts in normalized features. It can
result in invalid or biased recovery in highlight regions, leading to
unsatisfactory results with highlight residual or color distortion, as
shown in Figure 1(c) Figure 1(d).

Moreover, the dataset has a crucial impact on the performance of
learning-based models. Currently, there are only three benchmark
datasets publicly available for specular highlight removal. However,
these datasets still have quality defects. For example, SHIQ [4] and
SSHR [5] are synthesized datasets. But the synthetic images still
exhibit some statistical feature differences from the real images.
On the other hand, PSD [27] is a real-world dataset, while the
image pairs in this dataset suffer from obvious misalignment and
brightness variations in non-highlight regions.

1

https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM ’24, October 28 – November 1, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Co
nv
U
ni
t

Co
nv
U
ni
t

D-
Co

nv

ConvU
nit

LFTM
odule

ConvU
nit

LFTM
odule

ConvU
nit

G-Conv
Res

ConvUnit D-Conv G-Conv: Conv+ELU

G-
Co

nv
D-
Co

nv
CF

Bl
oc
k

G-
Co

nv
D-
Co

nv
CF

Bl
oc
k

G-
Co

nv
D-
Co

nv
CF

Bl
oc
k

D-
Co

nv

Co
nv
U
ni
t

Discriminator

Input Result

: DilatedConv+LRelu : Gated Convoluation

Bottleneck ModuleEncoder Decoder

Res : Ressidual Convolution+Pyramid Pooling

Fe
at

ur
e 

Fu
si

on
C

on
vv

Features Global Features

Feature Fusion in four directions

Context-aware Fusion Block 
(CFBlock)

Norm :Normalization

Location-aware Feature Transformation Module (LFTModule)

Reconstructed 
Features

Valid 
Pixels

Invalid 
Pixels

Spatial saliency map

Transformation

Figure 2: The framework of the proposed HighlightRNet. We first use an encoder to extract features. Then, we introduce a
context-aware fusion block (CFBlock) in the bottleneck layer to learn global contextual information. Next, we embed two
location-aware feature transformation modules (LFTModule) into the decoder, aiding in the reconstruction of high-quality
highlight removal results with a consistent appearance.

To address the above challenges, we propose a novel image specu-
lar highlight removal network called HighlightRNet, which utilizes
valid pixels in the image to reconstruct the highlight-free image.
Figure 2 illustrates the framework of the proposed HighlightRNet,
which is an encoder-decoder structure with a discriminator. Specif-
ically, we introduce a context-aware fusion block (CFBlock) in the
bottleneck module, which learns global contextual information in
four directions and passes feature information from each pixel to
the others. After several convolutions, the highlight region is grad-
ually recovered, resulting in a distinct appearance from the original
image. To this end, we propose a location-aware feature transfor-
mation module (LFTModule). Based on the spatial relationship of
features, this module learns a spatial saliency map to demonstrate
which are the valid pixels for specular highlight removal task. Thus,
we can redecode the features using the valid pixels as references,
avoiding information error caused by invalid pixels and promot-
ing high-quality highlight-free results without color distortion and
highlight residual, as shown in Figure 1(b).

Additionally, we construct a new large-scale real-world highlight
dataset for specular highlight removal. To obtain high-quality high-
light image pairs, we build a simple yet effective image-capturing
system with multiple light sources. This multiple light source com-
bination mechanism effectively avoids problems such as misalign-
ment between image pairs and inconsistent brightness in non-
highlight regions. Our image-capturing system is portable and
suitable for indoor and outdoor use.

To sum up, our contributions are summarized as follows:

• We propose a network called HighlightRNet to remove
specular highlights in the image, which can recover a high-
quality highlight removal results without color distortion
and highlight residual.

• We introduce a context-aware fusion block to learn global
contextual information and a spatial feature redecoding
module to reconstruct the image features using valid pixels
as references.

• We construct a real-world highlight dataset without mis-
alignment between image pairs and consistent brightness
in non-highlight regions. Experimental results and evalua-
tions demonstrate the superiority of our method over the
state-of-the-art methods.

2 RELATEDWORK
Traditional methods for image specular highlight removal often
rely on additional prior knowledge [8, 17, 26]. Shafer et al. [21] in-
troduced a method to analyze standard color image to estimate the
amount of interface (specular) and body (diffuse) reflection at each
pixel. Klinker et al. [15] used the difference between the object color
and highlight color to separate the color of every pixel into a matte
component and a highlight component. Shen et al. [22] separated
reflections in a color image based on the error analysis of chro-
maticity and the appropriate selection of body color for each pixel.
Yang et al. [29] proposed a novel reflection components separation
model based on H-S color space. Yang and Tang [30] formulated
the highlight removal problem as an iterative bilateral filtering
process. The method proposed by Kim et al. [12] was based on an
observation that the dark channel usually provides an approximate
highlight-free image. Shen and Zheng [23] considered color space
to analyze the distribution of the diffuse and specular components
and used this information for separation. Akashi [1] proposed a
model-driven approach to improve the lighting normalization of
face images. Zhang et al. [32] formulated highlight detection as a
Non-negative Matrix Factorization (NMF) problem.
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With the development of deep learning, numerous learning-
based methods have been proposed for image specular highlight
removal, showing promising results using annotated training data.
Lin et al. [16] proposed a fully-convolutional neural network (CNN),
which automatically and consistently removes specular highlights
from a single image by generating its diffuse component. Muham-
mad et al. [18] introduced Spec-Net, which took an intensity channel
as input to remove high-intensity specularity from low chromatic-
ity images. They also proposed Spec-CGAN, which input an RGB
image to produce a diffuse image. Wu et al. [27] presented a novel
GAN for specular highlight removal with the guidance of the de-
tected specular reflection information. Fu et al. [4] developed a
multi-task network for joint highlight detection and removal based
on a new specular highlight image formation model. These meth-
ods can handle small sizes as well as weak highlights, but they
still perform poorly for others and often carry for color or texture
distortion. More recently, Fu et al. [5] proposed a three-stage spec-
ular highlight removal network, which first decomposed the input
image into the albedo, shading, and specular residue components.
Such treatment may causes the error accumulation and reduces the
performance of the subsequent highlight removal due to intrinsic
decomposition is also a difficult task.

3 NSH DATASET CONSTRUCTION
There are several image specular highlight datasets available, such
as, SHIQ [4], PSD [27], and SSHR [5]. Table 1 summarizes the
general information of the datasets. However, they still have some
limitations:

• SHIQ dataset: The highlight-free images in SHIQ are com-
putationally synthesized, with feature differences from the
real-world images. In addition, this dataset lacks images
with highlights caused by color illumination.

• PSD dataset: The variety of images is small and the back-
ground is simple. Some specular-free images have thin high-
light residual. Also, the image pairs have misalignments
and brightness variation in non-highlight regions.

• SSHR dataset: The images are rendered in software to
simulate real images that have simple textures . The back-
grounds in the images are blank and filled with black color,
and the visual effects are lacking in realism.

In summary, the existing specular highlight datasets are still
imperfect. To address this problem, we build an image-capturing
system and construct a new and high-quality large-scale specu-
lar highlight dataset for image highlight removal. Our dataset is
constructed on real scenes, and our image pairs have consistent
brightness in non-highlight regions without misalignment.

3.1 Image-capturing System
The common light source in the real world is natural light, which
is unpolarized light. Existing techniques [19, 27] often use cross po-
larizers to capture specular highlight images. In a strict laboratory
environment [30], they convert a light source to linearly polarized
light by adding a linear polarizer in front of the light source, as
shown in Figure 3(a). When linearly polarized light strikes an object,
it produces linearly polarized specular reflection and unpolarized
diffuse reflection [2, 19]. As these two different reflection lights

Table 1: Image specular highlight datasets.

Dataset Amount Content of Images DataType

SHIQ 16K Specular/Specular-free
/Specular mask Synthetic

PSD 11.7K Specular/Specular-free Real

SSHR 130K
Specular/Specular-free
/Albedo/Shading/Tone

correction/Specular residue
Synthetic

Our NSH 30K Specular/Specular-free Real

pass through a linear polarizer, the observed image 𝐼 can be rep-
resented as a linear combination of a constant diffuse reflection
component 𝐼𝑑 and a specular reflection component 𝐼𝑠 , where 𝐼𝑠 is
modulated according to the polarization of the filter [25]. Based on
the dichromatic reflection model [20], the observed image 𝐼 can be
expressed as:

𝐼 =
1
2
𝐼𝑑 + 𝐼𝑠 cos2 𝜙 , (1)

where 𝜙 is a special angle between the two polarizers, as shown in
Figure 3(a).

Light Source Polarizer

Polarized Light

Polarizer

ϕ

Light sources

Linearly 
polarized light

Object

Specular reflection light 
and diffuse reflection light

Polarizers

Specular 

Reflection Light

Diffuse 

Reflection Light

(a) Image capture with one lightLight Source Polarizer

Polarized Light

Polarizer

ϕ

Light sources

Linearly 
polarized light

Object

Specular reflection light 
and diffuse reflection light

Polarizers

Specular 

Reflection Light

Diffuse 

Reflection Light

(b) Image capture with multiple lights

Figure 3: Specular highlight image captured process. 𝜙 in (a)
is a special angle between the two polarizers.

When capturing highlight images, we usually place a polarizer
in front of both the camera and the light source. To prevent camera
shake, we fix the polarizer in front of the camera, and rotate the
polarizer in front of the light source to get the observed image. Wu
et al. [27] use this strategy to construct PSD dataset. They capture
the specular highlight image with 𝜙 = 0 and get the corresponding
diffuse image with 𝜙 = 𝜋

2 :

𝐼 =

{
1
2 𝐼𝑑 + 𝐼𝑠 , 𝜙 = 0
1
2 𝐼𝑑 , 𝜙 = 𝜋

2
. (2)

As we know, objects are basically non-Lambertian. When the
linearly polarized light source strikes the object, the object’s surface
is usually divided into the highlight regions and the non-highlight
regions. While 𝜙 = 𝜋

2 , linear specular reflections are filtered out,
resulting in significant brightness variations in non-highlight re-
gions for the image pairs. As shown the first heat map in Figure 5,
the image pair from PSD has significant brightness variations in
non-highlight regions. To solve this problem, we add the number
of light sources to increase the diffuse reflection components, as

3
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(a) Capturing device indoor (b) Capturing device outdoor

(c) Illustration of several captured image pairs in our NSH

Figure 4: Our image-capturing systemand the captured image
pairs in NSH. The top row in (c) is highlight images, and
the bottom is corresponding highlight-free images (ground-
truth).

shown in Figure 3(b). The superposition of light reflection compo-
nents is a very complex process, and here we view the process as a
linear one. Assuming there are 𝑛 light sources in the environment,
the observed image can indicate that,

𝐼 =
1
2
𝐼𝑑1 + · · · + 1

2
𝐼𝑑𝑛 + 𝐼𝑠1 cos

2 𝜙1 + · · · + 𝐼𝑠𝑛 cos2 𝜙𝑛 , (3)

where 𝐼𝑑𝑖 and 𝐼𝑠𝑖 are the diffuse reflection component and the spec-
ular reflection component produced by the 𝑖-th light source, and
𝑖 ∈ {1, · · · , 𝑛}. 𝜙𝑖 is the special angle between the two polarizers in
front of the 𝑖-th light source and the camera.

Assuming the 𝑛 light sources have the same intensity, the 𝑛 light
sources have the same diffuse reflection component 𝐼𝑑 and specular
reflection component 𝐼𝑠 . Thus, Eq. 3 can be rewritten as,

𝐼 =
𝑛

2
𝐼𝑑 +

𝑛∑︁
𝑖=1

𝐼𝑠 cos2 𝜙𝑖 . (4)

To obtain the image pair, we set 𝜙𝑘 = 0 for the 𝑘-th light source,
and the special angles of the other light sources are set to 𝜋

2 . Then,
the image pair is that,

𝐼 =

{
𝑛
2 𝐼𝑑 + 𝐼𝑠 , 𝜙𝑘 = 0, 𝜙 𝑗 =

𝜋
2 , 𝑗 ∈ {1, · · · , 𝑛} ∧ 𝑗 ≠ 𝑘

𝑛
2 𝐼𝑑 , 𝜙𝑖 =

𝜋
2 , 𝑖 ∈ {1, · · · , 𝑛} .

(5)

Given sufficient light sources, the diffuse reflection components
tend to infinity, and the effect of specular reflections on non-highlight
regions is relatively small. At this time, if the specular reflections
are filtered out, the brightness in the non-highlight regions will
not change significantly. As shown the heat maps in Figure 5, our
image pair remains unchanged from one another in non-highlight
regions. Furthermore, we use a tripod to fix the camera and use
a wireless trigger to control the captured process of the image,
avoiding camera shake and misalignment in the image pair due to
manual camera manipulation.

(a) (b) (c)

Figure 5: Comparison between the PSD and our NSH datasets.
(a) and (b) show the highlight and corresponding highlight-
free images. The image pair in the first row is from PSD,
and the second row is from our NSH. (c) illustrates the heat
maps, highlighting the differences between the highlight
and highlight-free images. The heat map from our NSH con-
sistently displays smaller values in non-highlight regions,
indicating superior image pairs.

To obtain a high-quality real-world dataset for image specular
highlight removal, we built a simple yet effective image-capturing
system, which consists of five light sources and a Conon 6D Mark
II camera in a lighting-controlled environment, as shown in Figure
4(a, b). Note that, our image-capturing system is a movable device.
We can move it to the desired environment for image capture, both
indoors and outdoors.

3.2 Dataset Collection
Our image collection process mainly includes the following four
steps: 1) we place the image-capturing device in the desired en-
vironment; 2) we fix a rotatable polarizer in front of both each
light source and the camera; 3) we adjust the illumination direction
and place an object in the intersection area of beams; 4) the image
pair is captured by controlling the location of the light source and
the polarizer. Specifically, according to Eq. 5, we first set all the
light source’s polarizers with 𝜙 = 𝜋/2 to obtain a diffuse image
(highlight-free image). Then, we rotate the polarizer of one of the
light sources with 𝜙 = 0 to obtain a specular highlight image.

Repeating this process, we finally collect 30K image pairs from
3350 different scenes featuring a wide variety of materials that can
easily produce highlights in daily life. Each image pair contains a
highlight image and a corresponding highlight-free image. These
images are divided into three parts: 22K pairs for training, 6K for
testing, and 2K for validation. Figure 4(c) presents some highlight
and highlight-free image pairs in our NSH.

4 PROPOSED METHOD
We propose an image specular highlight removal network called
HighlightRNet, which leverages valid pixels in the image to re-
construct the highlight-free image. To better recognize the valid
pixels, we first introduce a context-aware fusion block (CFBlock)
to learn global contextual information in four different directions.
Then, we propose a location-aware feature transformation mod-
ule (LFTModule) to reconstruct the features using valid pixels as
referents.

4
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Our HighlightRNet is an encoder-decoder structure stacked with
a discriminator, as shown in Figure 2. The encoder employs a Con-
vUnit and twoConvUnit+D-Conv to extract features from the image.
Each ConvUnit comprises a convolution operation followed by a
LRelu function, while D-Conv represents a dilated convolution with
a LRelu function. The bottleneck module consists of three fusion
blocks, and each fusion block applies a gated convolution and a
D-Conv alongside a CFBlock. There is a residual connection be-
tween two neighboring fusion blocks. The decoder employs two
ConvUnit+LFTModule layers, followed by a gated convolution, a
residual module, and a ConvUnit to reconstruct the highlight-free
images.

Our discriminator is a binary classifier [11] to determine whether
the predicted result is real or fake. It consists of six Conv+BN+ReLu
layers and a fully connected layer. The final fully connected layer
employs a sigmoid function to output the actual probability of the
input image.

� × � × �

ReNet

Convolution

� × � 
��,ℎ

Weighted Summation

� × � × �

��� ����

Recombined 
Features

����
Softmax

biLSTM Learning biLSTM Learning

Recombined 
Features

Figure 6: The network for our context-aware fusion block
(CFBlock).

4.1 Context-aware Fusion Block
The convolution operations typically operate in localized regions,
which can limit the extraction of global contextual features. For
tasks like specular highlight removal, these localization-based con-
volutions may not capture contextual associations over longer dis-
tances, leading to color or texture distortion in the results. To ad-
dress this issue, we introduce a context-aware fusion block (CF-
Block) to learn and fuse contextual information in four different
directions, enabling more effective utilization of global information.

Figure 6 illustrates the architecture of the proposed CFBlock.
Initially, we segment the input features 𝐹𝑖𝑛 ∈ R𝐻×𝑊 ×𝐶 along
the height dimension, where 𝐻 ,𝑊 and 𝐶 are height, width and
number of channels, respectively. We then employ bidirectional
LSTM (biLSTM) [7] to learn the segmented features leftward and
rightward pixel-by-pixel, enabling each pixel to retain its left and
right contexts. Following biLSTM processing, we recombine the
learned features. Subsequently, the combined features are split
along the width dimension, and we conduct upward and downward
pixel-by-pixel learning on the segmented features using biLSTM.
After that, we recombine the learned features to obtain a new
feature map 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 . By alternately scanning horizontally and
vertically, our CFBlock effectively fuses contextual features in four
directions and pass them from each pixel to the others, facilitating
the perception of global contextual information.

Next, we apply a convolution to transform 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to 𝐹𝑚𝑖𝑑 ∈
R𝐻×𝑊 ×𝑍 , and 𝑍 = 𝐻 ×𝑊 . Consequently, we can obtain a feature
vector 𝑓 for each pixel. We perform a softmax operation to nor-
malize 𝑓 along the channel dimension and obtain the contextual

attention weights 𝜆, which is that:

𝜆𝑖 =
𝑒𝑥𝑝 (𝑓𝑖 )

𝑍∑
𝑗=1

𝑒𝑥𝑝 (𝑓𝑗 )
, (6)

where 𝑖 ∈ {1, · · · , 𝑍 }, and 𝜆 ∈ R𝑍 .
Finally, we perform matrix multiplication of 𝐹𝑖𝑛 and 𝜆 to con-

struct the global contextual features 𝐹𝑜𝑢𝑡 :

𝐹𝑜𝑢𝑡 =

𝑍∑︁
𝑖=1

𝜆𝑖𝐹𝑖𝑛 . (7)

4.2 Location-aware Feature Transformation
Module

Typically, the decoder utilizes all the computed features to recon-
struct the highlight-free image. However, it’s crucial to note that
the regions with strong specular highlights are corrupted regions,
and pixels in these regions are invalid pixels for specular highlight
removal. Processing all features uniformly may introduces invalid
or biased convolution of pixels, potentially leading to errors in
feature computation and the generation of undesirable removal
results, such as color distortion and highlight residual.

�1 �2

�1 �1

�2

(a) Original highlight region (b) Highlight region after several convolutions

Figure 7: The specular highlight region. 𝑁1 and𝐻1 denote the
original non-highlight region and the highlight region. After
passing through several convolutions, highlights in 𝑁2 have
been removed, and 𝑁2 can be considered as a non-highlight
region. 𝐻2 is the remaining highlight region.

Moreover, after several convolution operations, the specular
highlights are gradually removed, as shown in Figure 7. That indi-
cates that the specular highlight regions dynamically change during
the decoding process. The repaired contents, such as 𝑁2 in Figure
7(b), can also be considered as valid pixels for the restoration of the
remaining highlighted regions.

Based on the preceding analysis, we introduce a location-aware
feature transformation module (LFTModule), which reconstructs
features using the valid pixels as references. LFTModule utilizes
the spatial relationship of input features to learn a spatial saliency
map, which can be considered as the distribution and the intensity
of the highlights at the current layer. Larger values in the spatial
saliency map indicate stronger highlights at the current position.
The stronger the highlight, the higher the probability that it is
an invalid pixel. With the spatial saliency map, we can recognize
which are the valid pixels for feature reconstruction. Thus, we can
selectively manipulate the image features using the valid pixels as
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Table 2: Quantitative comparisons of highlight removal on NSH, SHIQ and PSD datasets. ↑means the larger the better. The best
results are marked in bold.

Methods Venue/Year NSH SHIQ PSD
SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

Yamamoto et al. [28] MTA/2019 0.683 14.651 0.820 20.513 0.697 19.897
Shen et al. [23] AO/2012 0.872 20.638 0.811 20.621 0.732 19.438
Yang et al. [31] CV/2010 0.633 19.651 0.776 17.323 0.753 15.942
Wu et al. [27] TMM/2021 0.899 29.921 0.875 28.637 0.910 29.153
Fu et al. [4] CVPR/2021 0.903 28.893 0.899 29.732 0.870 27.846
Fu et al. [5] ICCV/2023 0.901 26.211 0.917 27.475 0.897 26.274

HighlightRNet ACMMM/2024 0.942 30.672 0.930 30.231 0.922 29.787

referents, avoiding information error caused by the consistent fea-
ture process and boosting satisfactory highlight-free results without
color distortion and highlight residual.

Figure 8 illustrates the pipeline of the proposed LFTModule. For
the input feature 𝐹𝑑𝑒 ∈ R𝐻×𝑊 ×𝐶 , we first apply max-pooling and
global average pooling along the channel axis to obtain efficient
feature descriptor. We integrate the results of these two pooling
operations and perform a convolution operation followed by a
sigmoid function to compute a spatial saliency map 𝐴 ∈ R𝐻×𝑊 ×1.
We can use the spatial saliency map𝐴 to get the valid pixels through
a threshold 𝑡 . If𝐴(ℎ,𝑤) < 𝑡 , we consider pixel (ℎ,𝑤) is a valid pixel,
and (ℎ,𝑤) is an index of (𝐻,𝑊 ) axis; else, we consider this pixel to
be in a strong highlight region and is an invalid pixel for specular
highlight removal. In our experiments, we set 𝑡 = 0.5.

Next, we utilize the valid pixels to normalize the input features
and result in feature𝑀1. Since the spatial saliency map 𝐴 contains
global spatial information, we use convolution operation for 𝐴 to
learn a global representation. We perform convolution operation
on 𝐴 respectively to obtain two parameters 𝛾 and 𝛽 . We use 𝛾 and
𝛽 as affine parameters to perform pixel-wise affine transformation
on𝑀1, obtaining the reconstructed features. With the affine trans-
formation, our LFTModule promotes consistent-looking results of
the highlight regions with the surrounding environment.

Input Features

C

X
Conv

Background 
Feature

Input Features

Spatial saliency map

Sigmoid

Max-pooling

Sigmoid

Average Pooling

Conv

Normalization

Conv

X

Conv

+
Output Features

Valid 
Features

Figure 8: The network for our location-aware feature trans-
formation module (LFTModule).

4.3 Loss Functions
The loss function for training our HightlightRNet contains three
components: color consistency loss L𝑐𝑜𝑙𝑜𝑟 , texture consistency loss
L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 and adversarial loss L𝑎𝑑𝑣 .

Color consistency loss is used to suppress the color distortion
during the reconstruction process. It is calculated using the mean
squared errors (MSE) between the predicted highlight removal
result 𝐼𝑓 𝑟𝑒𝑒 and the ground-truth image 𝐼𝑔𝑡 , as follows:

L𝑐𝑜𝑙𝑜𝑟 = ∥𝐼𝑓 𝑟𝑒𝑒 − 𝐼𝑔𝑡 ∥22 .

Texture consistency loss aims to preserve image structure
using the gradient information in the image. It can prevent the
generation of blurry results. Our texture consistency loss L𝑡𝑒𝑥𝑡𝑢𝑟𝑒

is calculated as,

L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = ∥∇𝑥 𝐼𝑓 𝑟𝑒𝑒 − ∇𝑥 𝐼𝑔𝑡 ∥1 + ∥∇𝑦𝐼𝑓 𝑟𝑒𝑒 − ∇𝑦𝐼𝑔𝑡 ∥1 , (8)

where ∇𝑥 represents the gradient along the x-direction and ∇𝑦

represents the gradient along the y-direction.
Adversarial loss. We employ relativistic average adversarial

loss [11] to implement our adversarial lossL𝑎𝑑𝑣 , which is described
as:

L𝑎𝑑𝑣 = 0.5 · (𝐵𝐶𝐸 (𝜎 (𝐷 (𝐼𝑓 𝑟𝑒𝑒 ) − 𝐷 (𝐼𝑔𝑡 )), 𝑦′)
+𝐵𝐶𝐸 (𝜎 (𝐷 (𝐼𝑓 𝑟𝑒𝑒 ) − 𝐷 (𝐼𝑔𝑡 )), 𝑦)) ,

(9)

where 𝜎 is the sigmoid function and 𝐵𝐶𝐸 (∗) measures the binary
cross entropy. (𝑦′, 𝑦) is set as (1, 0) for the generator and (0, 1) for
the discriminator, respectively. 𝐷 is our discriminator.

In summary, the total loss for our method is written as:

L = 𝜆1L𝑐𝑜𝑙𝑜𝑟 + 𝜆2L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 + 𝜆3L𝑎𝑑𝑣 , (10)

where 𝜆1, 𝜆2 and 𝜆3 are the weighting parameters. In our experi-
ments, we empirically set 𝜆1 = 1.0, 𝜆2 = 1, and 𝜆3 = 0.01.

5 EXPERIMENTS
5.1 Implementation Details
Our network is implemented in PyTorch. We use the Adam opti-
mizer [14] to train our HightlightRNet using an NVIDIA GeForce
RTX 2080 Ti GPR for 80 epochs with a batch size of 8. The initial
learning rate is set to 2 × 10−4 and is decayed by a factor of 1/2
every 10 epochs until it reaches a value lower than 10−5.

5.2 Datasets and Evaluation Metrics
We evaluate the method on three datasets, including our NSH,
SHIQ [4] and PSD [27]. We employ two commonly used metrics,
including structural similarity index (SSIM) and peak signal-to-
noise ratio (PSNR), to quantitatively evaluate the performance of
our method.

5.3 Comparison with State-of-The-Art Methods
To verify the effectiveness of our method, we compare our method
with three learning-based methods [4, 5, 27] and three traditional
methods [23, 28, 31]. For a fair comparison, we directly use the codes
provided by the authors with recommended parameter settings and
retrain the learning-based methods on the same hardware. To train
and evaluate method of Fu et al. [5] on the three datasets, we modify
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Figure 9: Visual comparison of our method against state-of-the-art highlight removal methods. Compared with other results,
our method produce satisfactory results without color distortion and highlight residual.

Table 3: Quantitative results of ablation study on NSH, SHIQ and PSD. The best results are marked in bold. ↑means the larger
the better.

Methods NSH SHIQ PSD
SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

𝑀1: remove CFBlock 0.836 25.534 0.824 25.637 0.838 25.347
𝑀2: Replace LFTModule with batchNorm 0.901 26.941 0.877 26.554 0.873 25.199

𝑀3: Without L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 0.888 28.431 0.852 26.978 0.847 27.201
𝑀4: Without L𝑎𝑑𝑣 0.876 28.433 0.851 27.207 0.836 26.954
HighlightRNet 0.942 30.672 0.930 30.231 0.922 29.787

their method and estimate the highlight-free and highlight residue
instead of the original albedo and shading at the first stage.

Quantitative Comparison. Table 2 presents the quantitative
comparisons on three datasets. From the table, we can observe
that, our method achieves larger SSIM and PSNR scores on all
datasets, indicating the better performance of our method compared
to existing state-of-the-art methods.

Visual Comparison. Figure 9 illuminates some visual highlight
removal results to further demonstrate the effectiveness of our
method. With inaccurate shadow detection results, Fu et al. [4]
and Wu et al. [27] may produce undesirable results with highlight

residual, as shown in Figure 9(e, f). Without adequate information
to guide, Fu et al. [5] may result in color distortion or incomplete
removal of highlights, as shown in Figure 9(d). Due to the lack
of ability to capture high-level semantic information, the three
traditional methods do not make good use of non-highlight pixels
to restore the highlight regions, which usually result in color or
texture distortion. For example, Yang et al. [30] suffer from severe
artifacts such as black blocks and color distortion, as shown in
Figure 9(g). Shen et al. [23] often result in texture loss, as shown
in Figure 9(h). Yamamoto et al. [28] also suffer from black blocks
and color distortion, as shown in Figure 9(i). Comparatively, our

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, October 28 – November 1, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Input (b) GT (c) Our results (d) Results of𝑀1 (e) Results of𝑀2 (f) Results of𝑀3 (g) Results of𝑀4

Figure 10: Visual comparison for ablation study. Compared with other variants, our HighlightRNet can produce more natural
results.

(a) (b) (c)

Figure 11: Visual results for real-world natural highlight im-
ages. (a) is highlight images, and (b) is our highlight removal
results. (c) is the highlight detection masks.

method effectively removes highlight and recovers the content in
the image without artifacts, which are closer to the ground truth
images, as shown in Figure 9(b) and Figure 9(c).

To further verify the robustness and generalization ability of our
HightlightRNet, Figure 11 presents some other highlight removal
results for real-world natural images captured by smartphones or
downloaded from the internet. As shown in Figure 11, our method
can effectively remove the highlights and obtain natural results
with few artifacts. Moreover, although we focus on highlight re-
moval, our HighlightRNet can also be applied to detect the highlight
regions based on the predicted removal result, as shown in Figure
11(c), which clearly distinguish the specular highlight regions.

5.4 Ablation Study
We performed a series of experiments to validate the effectiveness
of our method and the superiority of our dataset.

Effectiveness of the network. To demonstrate the effective-
ness of our HightlightRNet, we compare our network with four
variants to assess the impact of each component. The variants are (1)
𝑀1: remove CFBlock in HightlightRNet; (2)𝑀2: replace LFTModule

Table 4: Ablation study about NSH dataset. The quantitative
results are evaluated on NSH. The best results are marked in
bold.

Methods SSIM ↑ PSNR↑
Training on SHIQ 0.824 23.662
Training on PSD 0.798 23.512
Training on SSHR 0.844 25.291

HighlightRNet training on NSH 0.942 30.672

with batchNorm; (3)𝑀3: remove L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 for training HightlightR-
Net; and (4)𝑀4: remove L𝑎𝑑𝑣 for training HightlightRNet. We train
the variants on NSH. Table 3 summarizes the evaluated results on
three datasets. From the table, we can observe: (1) our HightlightR-
Net with all components gets the best results; (2) the proposed
CFBlock and LFTModule can help improve the performance of the
network, and the combination leads to the best performance; and
(3) the loss functions L𝑡𝑒𝑥𝑡𝑢𝑟𝑒 and L𝑎𝑑𝑣 are necessary to ensure
the high-quality highlight removal results. We also provide the visu-
alization in Figure 10, from which we can see that results produced
by our HightlightRNet look more realistic with fewer artifacts.

Superiority of NSH dataset. To validate the superiority of
our NSH dataset, we train our HighlightRNet using four datasets:
SHIQ, PSD, SSHR, and our NSH datasets. Table 4 summarizes the
evaluation results on NSH dataset. It is evident from the table that
the model trained with our NSH dataset outperforms the models
trained with the other datasets, highlighting the superiority of our
NSH dataset.

6 CONCLUSIONS
In this paper, we propose a new network called HighlightRNet for
image specular highlight removal, which utilize the valid pixels
in non-highlight regions to reconstruct the highlight-free image.
Particularly, we introduce a context-aware fusion block (CFBlock)
to learn global contextual information in four directions. We also
propose a location-aware feature transformation module (LFTMod-
ule) to adaptively learn the valid pixels for feature reconstruction,
avoiding features error caused by the invalid pixels and promot-
ing high-quality highlight-free results without color distortion and
highlight residual. Experiments qualitatively and quantitatively
demonstrate the superiority of our method over the state-of-the-art
methods.
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