
Evolving Computation Graphs

Andreea Deac 1 2 Jian Tang 2 3

Abstract
Graph neural networks (GNNs) have demon-
strated success in modeling relational data, es-
pecially for data that exhibits homophily: when a
connection between nodes tends to imply that they
belong to the same class. However, while this as-
sumption is true in many relevant situations, there
are important real-world scenarios that violate this
assumption. In this work, we propose Evolving
Computation Graphs (ECGs), a novel method for
enhancing GNNs on heterophilic datasets without
requiring prior domain knowledge. Our approach
builds on prior theoretical insights linking node
degree, high homophily, and inter vs intra-class
embedding similarity by rewiring the GNNs’ com-
putation graph towards adding edges that connect
nodes that are likely to be in the same class. We
utilise weaker classifiers to identify these edges
and evaluate ECGs on a diverse set of recently-
proposed heterophilous datasets, demonstrating
improvements over 95% of the relevant baselines.

1. Introduction
Neural networks applied to graph-structured data have
demonstrated success across various domains, including
practical applications like drug discovery transportation net-
works chip design and theoretical advancements . The fun-
damental concept behind Graph Neural Networks (GNNs)
is that nodes communicate with their neighbouring nodes
through messages in each layer. These messages, received
from neighbours, are then aggregated in a permutation-
invariant manner to contribute to a new node representation.

The performance of GNNs may thus rely on the underly-
ing assumption of homophily, which suggests that nodes
are connected by edges if they are similar based on their

1Université de Montréal 2Mila Québec AI Institute 3HEC
Montréal. Correspondence to: Andreea Deac <andreead-
eac22@gmail.com>.

Presented at the 2nd Annual Workshop on Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) at the 40 th Interna-
tional Conference on Machine Learning, Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

G

GECG

h
(l)
u

Step 1

Step 2

Step 3

Figure 1. Illustration of ECG. Step 1: nodes in a graph, G, are
embedded using a pre-trained weak classifier. Step 2: Based on
these embeddings, a nearest-neighbour graph, GEGC, is generated.
This graph is likely to have improved propagation and homophily
properties (illustrated by similar colours between neighbouring
nodes). Step 3: Message passing is performed, both in the original
and in the ECG graph, to update node representations.

attributes or belonging to the same class, as commonly seen
in social or citation networks. However, this assumption
often fails to accurately describe real-world data when the
graph contains heterophilic edges, connecting dissimilar
nodes. This observation holds particular significance since
GNNs tend to exhibit significantly poorer performance on
heterophilic graphs compared to datasets known to be ho-
mophilic. Several studies (Zhu et al., 2020b;a; Wang &
Zhang, 2022; He et al., 2022) highlighted this issue, using
a mixture of strongly homophilous graphs—such as Cora,
Citeseer and Pubmed —as well as a standard suite of six
heterophilic datasets—Squirrel, Chameleon, Cornell, Texas,
Wisconsin and Actor.

On this standard suite of heterophilic graphs, general GNN
architectures tend to underperform unless there is high label
informativeness (Ma et al., 2021). In prior work, this issue
was tackled primarily by proposing modifications to the
GNN architecture. These include changes to the aggregation
function, such as separating self- and neighbour embeddings
(Zhu et al., 2020b), mixing low- and high-frequency signals,
and predicting and utilising the compatibility matrix. Other
approaches involve using the Jacobi basis in spectral GNNs

1

Evolving Computation Graphs

or learning cellular sheaves for neural sheaf diffusion.

However, Platonov et al. (2023) remaked that the standard
heterophilous suite has significant drawbacks, such as data
originating from only three sources, significant numbers
of repeated nodes and improper evaluation regarding class
imbalance. To address these shortcomings, a new bench-
mark was introduced incorporating improvements on all
of the above issues. Once such corrections are accounted
for, standard GNN models such as graph convolutional net-
works (GCN), GraphSAGE (SAGE), graph attention net-
works (GAT), and Graph Transformers (GT) demonstrated
superior performance compared to architectures tailored
specifically for heterophily, in spite of the heterophilic prop-
erties of the datasets. The notable exception is -sep (Zhu
et al., 2020b) which consistently improved GAT and GT.

In light of this surprising discovery, we suggest that there
should be alternate routes to making the most of heterophilic
datasets. Rather than attempting to modify these standard
GNNs, we propose modifying their computation graph: ef-
fectively, enforcing messages to be sent across additional
pairs of nodes. These node pairs are chosen according to
a particular measure of similarity. If the similarity met-
ric is favourably chosen, such a computation graph will
improve the overall homophily statistics, thereby creating
more favourable conditions for GNNs to perform well.

We further propose that the modification of the computation
graph should be separate from its utilisation. That is, we pro-
ceed in two phases: the first phase learns the representations
that allow us to construct new computation graphs, and the
second phase utilises those representations to construct new
computation graphs, to be utilised by a GNN in each layer.
This design choice makes our method elegant, performant
and easy to evaluate: the two-phase nature means we are
not susceptible to bilevel optimisation, the graphs we use
need to be precomputed exactly once rather than updated
on-the-fly in every layer, and because the same computation
graph is used across all GNN layers, we can more rigidly
evaluate how useful this graph is, all other things kept equal.

Hence, the essence of our method is Evolving Computation
Graphs (ECG), which uses weak classifiers to generate node
embeddings. These embeddings are then used to define a
similarity metric between nodes (such as cosine similarity).
We then select the edges corresponding to k-nearest neigh-
bours, based on the similarity metric. The edges selected
in this manner form a complementary graph, which we pro-
pose using in parallel with the input graph to update each
node’s representation. For this purpose, we use standard,
off-the-shelf, GNNs. Our method is illustrated in Figure 1.

The nature of the weak classifier employed in ECG is flex-
ible and, for the purpose of this paper, we used two rep-
resentative options. The first option is a point-wise MLP

classifier, attempting to cluster together nodes based on the
given training labels, without any graph-based biases. For
the second option, we attempt the converse: utilising the
given graph structure and node features, but not relying
on the training labels. This is a suitable setting for a self-
supervised graph representation learning method, such as
BGRL (Thakoor et al., 2021), which is designed to cluster
together nodes with similar local neighbourhoods—both in
terms of subgraphs and features.

To evaluate ECG, we conduct experiments on the bench-
mark suite proposed by Platonov et al. (2023). Our results
demonstrate that ECG models outperform their GNN base-
lines in 19 out of 20 head-to-head comparisons. The most
significant improvements can be noticed for GCNs—which
are best suited to benefit from improved homophily—where
improvements reach up to 10% in absolute terms.

2. Background
Graph representation learning setup We denote graphs
by G = (V,E), where V is the set of nodes and E is the
set of edges, and we denote by euv ∈ E the edge that
connects nodes u and v. We can assume that the input
graphs are provided to the GNNs via the node feature matrix,
X ∈ R|V |×k (such that xu ∈ Rk are the input features of
node u ∈ V), and the adjacency matrix, A ∈ {0, 1}|V |×|V |,
such that auv indicates whether nodes u and v are connected
by an edge. We further assume the graph is undirected; that
is, A = A⊤. We also use du =

∑
v∈V auv

(
=

∑
v∈V avu

)
to denote the degree of node u.

We focus on node classification tasks with C representing
the set of possible classes, where for node with input fea-
tures xu, there is a label yu ∈ C. Thus we aim to learn
a function f that minimises E[L(yu, ŷu)], where ŷu is the
prediction of f(xu) = ŷu, and L is the cross-entropy loss.

Graph neural networks The one-step layer of a GNN can
be summarised as follows:

h(l)
u = ϕ(l)

h(l−1)
u ,

⊕
(u,v)∈E

ψ(l)
(
h(l−1)
u ,h(l−1)

v

) (1)

where, by definition, we set h(0)
u = xu. Leveraging different

(potentially learnable) functions for ϕ(l) : Rk ×Rm → Rk′
,⊕

: bag(Rm) → Rm and ψ(l) : Rk × Rk → Rm then
recovers well-known GNN architectures.

Homophily has been repeatedly mentioned as an impor-
tant measure of the graph, especially when it comes to GNN
performance. It corresponds to an assumption that neigh-
bouring nodes tend to share labels: auv = 1 =⇒ yu = yv ,
which is often the case for many industrially-relevant real
world graphs (such as social networks). Intuitively, a graph
with high homophily will make it easier to exploit neigh-

2

Evolving Computation Graphs

bourhood structure to derive more accurate node labels. A
discussion on relevant homophily metrics and how they
apply to ECG can be found in Appendix B.

Weak classifier To derive novel computation graphs which
are likely to result in higher test performance, we likely
require “novel” homophilic connections to emerge—rather
than amplifying the homophily already present in A. There-
fore, for the purposes of building a useful computation
graph, our ECG method aims to first learn representations
of nodes governed by a model which does not have access
to inputs (X), graph structure (A) and training labels (ytr)
simultaneously. We hence call such a model a “weak clas-
sifier”, as it is not exposed to the same kind of inductive
biases as a supervised GNN would (and hence it must obtain
useful models which do not rely on some of these biases).

BGRL While using the embeddings from an MLP can offer
a solid way to improve homophily metrics, their confidence
will degrade for nodes where the model is less accurate
outside of the training set—which are arguably the nodes
we would like to improve predictions on the most. Accord-
ingly, we may also withhold access to the training labels
(ytr). Now the model is forced to arrange the node repre-
sentations in a way that will be mindful of the input features
and graph structure, but without knowing the task specifics
upfront, and hence not vulnerable to overfitting on the train-
ing nodes. Such a weak classifier naturally lends itself to
self-supervised learning on graphs.

Bootstrapped graph latents (BGRL) is a state-of-the-art self-
supervised graph representation learning method. BGRL
learns two GNN encoders with identical architecture; an
online encoder, Eθ, and a target encoder, Eϕ. BGRL also
contains a predictor network pθ. We offer a “bird’s eye”
view of BGRL, and defer to Thakoor et al. (2021) for details.

At each iteration, two data augmentations (e.g. random
node/edge dropout) are applied to the input graph, obtain-
ing augmented graphs (X1,A1) and (X2,A2). Then, the
two encoders are applied to these augmentations, recover-
ing a pair of latent node embeddings: H1 = Eθ(X1,A1),
H2 = Eϕ(X2,A2). H1 is additionally passed through the
predictor network: Z1 = pθ(H1). BGRL preserves cosine
similarity between all corresponding nodes in Z1 and H2:

LBGRL = − Z1H
⊤
2

∥Z1∥∥H2∥
(2)

Lastly, the parameters of the online encoder Eθ and predictor
pθ are updated via SGD on LBGRL, and the parameters of
the target encoder Eϕ are updated as the exponential moving
average of the online encoder’s parameters.

3. Evolving Computation Graphs
Next, we describe the ECG methodology. Please refer to
Algorithm 1 in Appendix C for a pseudocode summary.

Step 1: Embedding extraction Firstly, we assume that
an appropriate weak classifier has already been trained (as
discussed in previous sections), and is capable of producing
node embeddings. We start by invoking this classifier to
obtain ECG embeddings HECG = γ(X,A). We study two
simple but potent variants of γ, as per the previous section:

MLP: We utilise a simple deep MLP1; that is, γ(X,A) =
σ (σ (XW1)W2), where σ is the GELU activation.

BGRL: In this case, we set γ = Eθ, the online encoder of
BGRL. We utilise a publicly available implementation of
BGRL by DGL , which uses a two-layer GCN as γ. The
parameters of γ are kept frozen after pre-training.

Step 2: Graph construction Having obtained HECG, we
can now use it to compute a similarity metric between the
nodes, such as cosine similarity, as follows:

S = HECGH
⊤
ECG ŝuv =

suv
∥hECGu∥∥hECGv∥

(3)

Based on this similarity metric, for each node u ∈ V
we select its neighbourhood NECG

u to be its k nearest
neighbours in S (where k is a tunable hyperparameter):
NECG

u = top-kv∈V ŝuv. Equivalently, we construct a new
computation graph, GECG = (V,EECG), such that its
edges are EECG = {(u, v) | u ∈ V ∧ v ∈ Nu}. These
edges are effectively determined by the weak classifier.

Step 3: Parallel message passing Finally, once the ECG
graph, GECG, is available, we can run our GNN of choice
over it. To retain the topological benefits contained in the
input graph structure, we opt to run two GNN layers in
parallel—one over the input graph (as in Equation 1), and
one over the ECG graph, as follows:

h
(l)
INPu

= ϕ
(l)
INP

h(l−1)
u ,

⊕
(u,v)∈E

ψ
(l)
INP

(
h(l−1)
u ,h(l−1)

v

)
(4)

h
(l)
ECGu

= ϕ
(l)
ECG

h(l−1)
u ,

⊕
(u,v)∈EECG

ψ
(l)
ECG

(
h(l−1)
u ,h(l−1)

v

)
(5)

Then the representation after l layers is obtained by jointly
transforming these two representations:

h(l)
u = W(l)h

(l)
INPu

+U(l)h
(l)
ECGu

(6)

where W(l) and U(l) are learnable parameters.

1While training the MLP, logistic regression is attached to γ.

3

Evolving Computation Graphs

Table 1. ECG performance on datasets proposed in Platonov et al. (2023). We report accuracy for roman-empire and
amazon-ratings and ROC AUC for minesweeper, tolokers, and questions.

Model roman-empire amazon-ratings minesweeper tolokers questions

MLP 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

ECG-GCN 84.53±0.26 (↑) 51.12±0.38 (↑) 92.63±0.10 (↑) 84.81±0.25 (↑) 77.50±0.35 (↑)

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

ECG-SAGE 87.88±0.25 (↑) 53.45±0.27 (↓) 94.11±0.07 (↑) 82.61±0.29 (↑) 77.23±0.36 (↑)

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

ECG-GAT-sep 89.62±0.18 (↑) 53.65±0.39 (↑) 94.52±0.20 (↑) 84.23±0.25 (↑) 77.38±0.18 (↑)

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

ECG-GT-sep 89.56±0.16 (↑) 53.25±0.39 (↑) 93.62±0.27 (↑) 84.00±0.24 (↑) 78.12±0.32 (↑)

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

Equations 4–6 can then be repeatedly iterated, like for any
standard GNN layer. As GECG will contain noisy edges
which do not contribute to useful propagation of messages,
we additionally apply DropEdge when propagating over the
ECG graph, with probability pde = 0.5.

4. Experiments
We evaluate ECG on five diverse heterophilic node classifi-
cation datasets, recently-proposed by Platonov et al. (2023):
roman-empire, amazon-ratings, minesweeper,
tolokers and questions.

We ran ECG as an extension on standard GNN models,
choosing the “-sep” variant (Zhu et al., 2020b) for GAT and
GT as it was noted to improve their performance consistently
on these tasks (Platonov et al., 2023). Thus, our baselines
are GCN, GraphSAGE, GAT-sep and GT-sep, which we
extend by modifying their computation graph as in Section
3. For each ECG model, we ran three variants, depending on
which weak classifier was used to select the complementary
edges, EECG: the MLP, the BGRL, or a concatenation of
the output of the two. In Appendix A, we present additional
information on the experiments, together with the hyper-
parameters corresponding to the best validation results.

In Table 1, we show the test performance corresponding to
the best ECG model for each of the five datasets, with hyper-
parameters selected using validation performance. There
are 20 dataset-model combinations that ECG is tested on;
on 19 of them (marked with arrow up in the table), ECG
improves the performance of the corresponding GNN, the
only exception being GraphSAGE on amazon-ratings.

Moreover, we observe the highest gains in performance are
achieved by ECG-GCN, ranging from 1.17% to 10.84%
(absolute values) in a manner that is correlated with the

homophily of the dataset. This confirms that, due to its
aggregation function, GCN is also the architecture most
prone to performance changes based on the homophily.

References
He, D., Liang, C., Liu, H., Wen, M., Jiao, P., and Feng,

Z. Block modeling-guided graph convolutional neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 4022–4029, 2022.

Ma, Y., Liu, X., Shah, N., and Tang, J. Is homophily a
necessity for graph neural networks? arXiv preprint
arXiv:2106.06134, 2021.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
gnns under heterophily: are we really making progress?
arXiv preprint arXiv:2302.11640, 2023.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
In International Conference on Learning Representations,
2021.

Wang, X. and Zhang, M. How powerful are spectral graph
neural networks. In International Conference on Machine
Learning, pp. 23341–23362. PMLR, 2022.

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed,
N. K., and Koutra, D. Graph neural networks with het-
erophily. arXiv preprint arXiv:2009.13566, 2020a.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33, 2020b.

4

