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Abstract
State-of-the-art medical multi-modal LLMs (med-
MLLMs), such as LLaVA-Med and BioMedGPT,
primarily depend on scaling model size and data
volume, with training driven largely by autore-
gressive objectives. However, we reveal that this
approach can lead to weak vision-language align-
ment, making these models overly dependent on
costly instruction-following data. To address this,
we introduce ExGra-Med, a novel multi-graph
alignment framework that jointly aligns images,
instruction responses, and extended captions in
the latent space, advancing semantic grounding
and cross-modal coherence. To scale to large
LLMs (e.g., LLaMa-7B), we develop an efficient
end-to-end training scheme using black-box gra-
dient estimation, enabling fast and scalable op-
timization. Empirically, ExGra-Med matches
LLaVA-Med’s performance using just 10% of pre-
training data, achieving a 20.13% gain on VQA-
RAD and approaching full-data performance. In
addition, it exceeds other SOTA med-MLLMs in
Med-VQA benchmarks, promising a new way to
integrate vision and language in medical AI. We
release our checkpoints at this Github.

1. Introduction
Multi-Modal Large Language Models (MLLMs) are a range
of neural network architectures that can process different
types of input data, such as images, text, and audio. One im-
portant step of training MLLM is the curation of instruction-
following (IF) data (Lou et al., 2023), in which a model is
asked to give answers to questions in a multi-turn conversa-
tion based on a given image. This step is also implemented
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in the medical domain, where IF datasets encompassing
medical images, clinical notes, and diagnostic data are cu-
rated (Xie et al., 2024). One example is the work of LLAVA-
Med (Li et al., 2024), which leverages GPT-4 to curate 600K
biomedical image-text pairs and 60K multi-modal IF data
from PMC-15M (Zhang et al., 2023c). Other works follow
this practice, which either scale up the amount of medical
data (Xie et al., 2024; Zhang et al., 2023a; He et al., 2024) or
the model size (Wu et al., 2023; Jiang et al., 2024), while the
autoregressive objective loss stays the same. This practice
is indeed helpful, enabling models to achieve promising per-
formance. For example, Biomed-GPT (Zhang et al., 2023a)
is excellent with multiple biomedical modalities, while Med-
Flamingo (Moor et al., 2023) also reports good performance
on few-shot learning for medical visual question answer-
ing. However, the reliance of performance on scale poses
some serious questions, especially in the biomedical domain,
where IF data is scarce.

In our work, we study the effectiveness of this approach and
reveal that autoregressive learning is highly data-hungry,
which leads to the degradation of the performance of the
model if there is insufficient IF data. To demonstrate this,
we pre-train LLAVA-Med using only 10% of the original
data and compare it to a version trained on the full dataset.
Both models are then fine-tuned on the VQA-RAD dataset
(Lau et al., 2018). As illustrated in Figure 1, despite being
updated with downstream task data, performance declines
sharply from 72.64% to 52.39% on VQA-RAD. This un-
derscores the instability of medical MLLMs trained with
autoregressive methods and highlights their heavy reliance
on extensive medical instruction-following data to achieve
satisfactory performance.

To overcome the limitations of autoregressive training in
settings with limited instruction-following data, we intro-
duce EXGRA-MED, a novel multi-graph alignment frame-
work designed to enhance cross-modal understanding in
multi-modal large language models (MLLMs). Central to
our method is the construction of three modality-specific
graphs: one capturing visual features from a vision encoder,
and two representing different textual forms of the instruc-
tion. These graphs encode semantic relationships within
and across modalities, and we cast their alignment as a com-
binatorial multi-graph matching problem. This enables the
model to learn consistent triplet-level associations among
the image, the original instruction, and a semantically en-
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Figure 1. Our EXGRA-MED versus LLaVA-Med across varying
instruction-following (IF) pre-training data sizes, highlighting
the data-hungry behavior of auto-regressive modeling. Both
models are fine-tuned on the same VQA-RAD training set after
the pre-training stage at each IF rate. At 100% IF pre-training,
ExGra-Med and LLaVA-Med are benchmarked against other state-
of-the-art models, all fine-tuned on the same VQA-RAD training
set (except GPT-4, which is evaluated without fine-tuning). Circle
radius represents the number of model parameters.

riched variant. We jointly optimize this alignment objective
alongside the standard autoregressive language modeling
loss, thereby improving the model’s semantic comprehen-
sion, coherence, and instruction-following capabilities. To
generate the enriched instruction, we employ a frozen LLM
(GPT-4 (Achiam et al., 2023)) to produce a contextually
extended version that preserves the original intent while
emphasizing key concept relationships. The vision encoder
and language model (LLaMa (Touvron et al., 2023)) in-
dependently process the image, instruction, and extension
to produce node embeddings used in the alignment. Un-
like simple data augmentation, our GPT-4-driven supervi-
sion introduces meaningful semantic structure, enabling
fine-grained graph-based correspondence learning across
modalities (Figure 2).

Our method differentiates itself from existing multi-modal
alignment techniques for LLM (Park et al., 2024; Li et al.,
2023a; Chen et al., 2023) in different perspectives. First,
while prior contrastive objectives primarily focus on learn-
ing projections based on multi-layer perceptron (MLP) layer
(Liu et al., 2024a; Chen et al., 2023) or adapters (Zhang
et al., 2024; Huang et al., 2023; Alayrac et al., 2022; Li
et al., 2023a) to connect frozen vision encoders with frozen
language models, our algorithm directly trains LLM using
the multi-graph framework. Second, we unify and gener-
alize pre-training algorithms commonly applied for vision-
language models using pairwise contrastive learning be-
tween image-text pairs (Liu et al., 2023; Zhai et al., 2023;
Khan & Fu, 2023), optimal transport (Chen et al., 2022;
Nguyen et al., 2024a), or impose clustering constraints
(Park et al., 2024) by integrating combinatorial formula-
tion across cross-domain graphs. This allows us to integrate
both feature and structural consistencies using graph edges,
enhancing robustness for similar entities (whether images

or descriptions) commonly found in medical datasets.

Finally, combinatorial graph alignment is inherently non-
differentiable (Rolı́nek et al., 2020), and solving multi-graph
alignment is computationally expensive (Pevzner, 1992).
While existing approaches - such as multi-marginal optimal
transport (Lin et al., 2022; Piran et al., 2024), Wasserstein
barycenters (Nguyen et al., 2024b), and multi-adjacency
matrix assumptions (Bernard et al., 2019; Swoboda et al.,
2019) — help relax the problem, they are limited to small-
scale tasks and require multiple solver steps, making them
inefficient for LLM training. We overcome these challenges
by leveraging modern implicit maximum likelihood estima-
tion techniques (Niepert et al., 2021; Minervini et al., 2023).
This enables efficient gradient estimation and allows for
fast forward and backward propagation through large LLMs
(e.g., LLaMa-7B), using a barycenter graph (Agueh & Car-
lier, 2011) for alignment. As a result, the model can scale
effectively with extensive datasets on large LLMs while
maintaining alignment performance.

In summary, we make the following key contributions:

• We reveal the data-demanding nature of autoregres-
sive modeling in pre-training medical-MLLM (LLaVa-
Med), showing that insufficient instruction-following
data leads to significant performance drops on down-
stream tasks, even after fine-tuning.

• We introduce a new multi-graph alignment objective,
namely EXGRA-MED, that establishes triplet correla-
tions among images, their instruction-following con-
text, and their enriched versions. Furthermore, we
developed an efficient solver for training with LLMs
(LLaMa-7B) that can scale with the size of the dataset
and model.

• We empirically demonstrate that using a small amount
of pre-training data, EXGRA-MED can achieve per-
formance comparable to LLaVa-Med trained on 100%
data. Additionally, when trained on larger datasets,
EXGRA-MED outperforms several state-of-the-art
med-MLLMs and advanced multi-modal pre-training
algorithms across three Medical VQA tasks.

2. Multi-graph Alignment Learning
We denote the vision encoder, projector and LLM by
fθ(.), hϕ(.), gσ(.), respectively. Figure 2 presents our
EXGRA-MED algorithm, which learns model through triplet
alignment in instruction tuning data. Before detailing each
component, we provide some notations used in this paper.

Notation. Given any tensor T = (Ti,j,k,l) and matrix
M = (Mk,l), we use T ⊗ M to denote the tensor-
matrix multiplication, i.e., the matrix (

∑
k,l Ti,j,k,lMk,l)i,j .

Given Y = [y1,y2, ...,yN ] ∈ RN×d, we define E(Y ) =
1
N

∑N
i=1 yi ∈ Rd. Moreover, we define the matrix scalar
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Figure 2. Overview of EXGRA-MED: The large language model gσ and the projector hϕ are trained jointly by aligning a triplet of
modalities - input image, instruction-following data, and extended captions - through a structure-aware multigraph alignment (Eq.(2)).
This alignment operates over graphs Gv , Ga, and Gae, representing the visual, instruction, and extended textual information, respectively,
via a shared barycenter graph. The entire model is optimized end-to-end using modern black-box gradient estimation techniques.

(or inner) product associated with the Frobenius norm be-
tween two matrices M = (Mi,j) and N = (Ni,j) as
⟨·, ·⟩, i.e., ⟨M ,N⟩ =

∑
i,j Mi,jNi,j . We write [M ] =

{1, 2, . . . ,M} for any natural number M .

2.1. Extended context enriched medical IF data
Recent work shows that longer context improves LLMs’
instruction-following by retaining relevant information (Liu
et al., 2024b; An et al., 2024; Pawar et al., 2024). To leverage
this, we enrich medical instruction data with contextually
extended paraphrases where both original and extended
ones are used: originals preserve domain-specific precision,
while extensions add semantic depth. This combination
enhances image embeddings and helps the LLM generate
contextually rich, consistent responses across modalities
and linguistic forms.

In particular, we define instruction samples as
{Xv, [X

1
q , X

1
a ], ..., [X

L
q , X

L
a ]} where Xv is an in-

put image, X l
q a question, and X l

a an answer at round l
in multi-round conversation of length L. In the medical
domain, questions are often generic, and answers usually
encapsulate the relevant information. Therefore, we focus
on extending answer Xa. Using GPT API with prompt,
we generate an extended context for each X l

a as follows:
X l

ae = GPT
(
X l

q,X
l
a,prompt

)
, ∀l ∈ [L]. (1)

The details of prompt are illustrated in the Appendix C. An
example for X l

ae is in Table 5. Note that other frozen LLMs
such as Gemini are also valid in our method (Table 4).

2.2. Vision-Language Multi-graph Construction
We process each image Xv ∈ R3×H×W by dividing it
into N = (H ×W )/U2 patches with U is patch size (de-
note U is list of image patches). Then, patch features
are extracted via a pre-trained ViT fθ and projected into
Z = hϕ(fϕ(U)) ∈ RN×d. The global image representa-
tion is obtained as Zv = E(Z) ∈ Rd. For each language
input X l

c ∈ {X l
a,X

l
ae} with c ∈ {a, ae}, a LLM extract

embeddings as Zl
c = gσ([xj ]

M
j=1) = [ej ]

M
j=1 ∈ RM×d,

which are aggregated over L conversation rounds into
Zc = 1

L

∑L
l=1 E(Zl

c). Despite its simplicity, it remains
an effective approach with a clear observed margin of sep-
aration between the distinct distributions (Table 3 in the
Ablation study).

Given a batch of B instruction samples, we construct
three graphs Gv = (Vv, Ev), Ga = (Va, Ea), and Gae =
(Vae, Eae) for visual features, original text embeddings,
and extended context embeddings, respectively. Then,
we define 3 set of nodes Vv = {X(1)

v , ...,X
(B)
v }; Vc =

{[X l
c]
(1), ..., [X l

c]
(B)} for each c ∈ {a, ae} with corre-

sponding node features Fv = {Z(1)
v , ...,Z

(B)
v }, Fc =

{Z(1)
c , ...,Z

(B)
c }. The edges for Ev, Ec afterward are con-

structed via k-NN algorithm on Fv, Fc. Finally, a message-
passing network mα(.) is applied on three built graphs to
learn richer node representations. This approach has proven
effective for representation learning (Tang et al., 2022; Ju
et al., 2024), resulting in aggregated feature-node matrices
as {Ẑ(1)

s , ..., Ẑ
(B)
s } = mα(Fs, Es), with s ∈ {v, a, ae}.

2.3. Scalable Multi-graph Alignment
Our goal is to align Gv,Ga, and Gae to enforce a triplet con-
straint between image, original instruction, and extended
embeddings. However, structure-aware alignment across K
domains (K ≥ 3) is costly. For instance, a pairwise graph
alignment approach, while applying specific constraints to
maintain consistency between correspondences (Bernard
et al., 2019; Swoboda et al., 2019), scales impractically
for large multi-modal data when K increases (perform

(
K
2

)
times). Instead, we leverage the barycenter concept from op-
timal transport (Guo et al., 2020; Altschuler & Boix-Adsera,
2022) by reformulating alignments into K separate map-
pings with a barycenter graph. Unlike prior unsupervised
methods, we directly define the barycenter using known
triplet pairs across three graphs, which significantly reduces
complexity and improves efficiency in LLM settings (Tab.3).
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Specifically, we define a barycenter graph Gbr = (Vbr, Ebr)
representing triplet pairs with a correspondence feature node

as Fbr =
1

3

{∑
s Ẑ

(1)
s , ...,

∑
s Ẑ

(B)
s

}
with s ∈ {v, a, ae}.

Edges Ebr is formed using k-NN as previous graphs. We
now state the multi-graph alignment as:

SGA(Av
s ,A

e
s) = argmin

Vs∈A(Gs,Gbr)

⟨Av
s + Ae

s ⊗ Vs,Vs⟩. (2)

where Vs represents valid mappings between Gs and Gbr,
Av

s ∈ R|Vs||Vbr| and Ae
s ∈ R|Es||Ebr| be vertex and edge

affinity tensors between Gs and Gbr, and s ∈ {v, a, ae}.
The set A(G1,G2) indicates for all admissible pairs (V ,E)
that encode a valid matching between G1 and G2.

A(G1,G2) =

{
V ∈ {0, 1}M×N :

M∑
i=1

Vi,j = 1,

N∑
j=1

Vi,j = 1

}
.

(3)
Due to NP-hard complexity, we use heuristic solvers uti-
lizing Lagrange decomposition techniques (Swoboda et al.,
2017; Rolı́nek et al., 2020).

Given V̂s = SGA(Av
s ,A

e
s) and V ∗

s is true triplet align-
ments between the graph Gs to Gbr and G = {v, a, ae}, to
optimize feature representations such that V̂s be identical to
V ∗
s explicitly, we minimize the Hamming loss:

L(V̂s,V
∗
s ) =

∑
s∈G

⟨V̂s, (1− V ∗
s )⟩+ ⟨V ∗

s , (1− V̂s)⟩. (4)

Due to the piecewise constant nature of the graph matching
objective, which poses a challenge for gradient computing,
we apply IMLE techniques (Niepert et al., 2021; Minervini
et al., 2023), a method permitting estimate gradients over
solutions of the combinatorial optimization problem by tak-
ing the difference between solutions of matching problem
perpetuated by Gumbel noise.

In particular, given (ϵ, ϵ′) ∼ Gumble(0, 1) and for each
s ∈ {v, a, ae}, we compute:(

∂L
∂Av

s

,
∂L
∂Ae

s

)
≈ Ṽs − SGA

(
Av

s,λ,A
e
s,λ

)
where Ṽs = SGA (Av

s + ϵ,Ae
s + ϵ′) , (5)(

Av
s,λ,A

e
s,λ

)
= (Av

s + ϵ,Ae
s + ϵ′)− λ∇Ṽs

L(Ṽs,V
∗
s ),

with λ is a step size. (6)

3. Experiments
3.1 Med-VQA Comparison: To highlight the strengths
of EXGRA-MED, we compare it with vision-language pre-
training methods at 10% and 40% data scales, and bench-
mark it against other med-MLLMs using the full dataset.

Datasets. We test pre-trained models on three prominent
biomedical VQA datasets: VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020).
All datasets include open-ended (e.g., what, why, where)
and closed-ended (yes/no or two-option) question types.

Statistical detail of datasets are presented in Appendix D.1.
Baselines - I) Comparing with other vision-language pre-
training algorithms, we compare EXGRA-MED against
two categories: (1) two-modality methods and (2) multi-
modal methods spanning three or more modalities.

- For two-modality methods, we include InfoNCE-based
methods (Khan & Fu, 2023; Liu et al., 2023), SigLIP
(Zhai et al., 2023), PLOT (Chen et al., 2022), and VLAP
(Park et al., 2024). Among this, while SigLIP adapts the
Sigmoid loss on image-text pairs to break the global view of
the pairwise similarities for normalization, resulting in scal-
ing in large batch size, PLOT aligns image patches with text
embeddings using optimal transport, and VLAP employs
assignment prediction to bridge visual-LLM modality gaps.

- For multi-modal learning (three or more modali-
ties), we compare against PAC-S (Sarto et al., 2023),
GeoCLAP (Khanal et al., 2023), and IMAGEBIND (Gird-
har et al., 2023). PAC-S combines contrastive losses across
modality pairs: (image–text), (image–augmented text), and
(text–augmented text). GeoCLAP applies CLIP-style learn-
ing to cross-domain pairs while IMAGEBIND extends In-
foNCE to unified multi-modal embeddings.

II) Comparing with other med-MLLMs, we benchmark
LLaVA (Liu et al., 2024a), LLaVA-Med (Li et al., 2024),
Med-Flamingo (Moor et al., 2023), Med-Dr (He et al.,
2024), Biomed-GPT (Zhang et al., 2023a), M2I2 (Li et al.,
2023b), GPT-4o (Achiam et al., 2023), and Med-MoE
(Jiang et al., 2024). Except for LLaVA and GPT-4o, all
models leverage biomedical pre-training. With exception
of LLaVA, which we reproduced, baseline results are taken
from literature. Additionally, we introduce EXGRA-MED
+ DCI, integrating multi-scale vision features (Yao et al.,
2024) to enhance local-global medical image understanding.

Results. Table 2 presents results for EXGRA-MED and base-
line models trained with just 10% of instruction-tuning data
(see trend in Figure 1). While most contrastive baselines
outperform LLaVA-Med at this low data regime, EXGRA-
MED consistently achieves the best performance across all
settings. It is especially strong on open-ended questions
requiring external knowledge and maintains stable improve-
ments across all VQA benchmarks. In contrast, some meth-
ods like SigLIP peak early (e.g., 72.14% on VQA-RAD at
40%) but degrade at 100%, while EXGRA-MED continues
to improve, reaching 74.91% (Avg) and 74.75% (Overall).

Across full-scale evaluations (Table 1), both versions of
EXGRA-MED outperform all baselines, including the best
PathVQA result of 64.82% (Avg) and 75.1% (Overall) by
DCI. EXGRA-MED shows notable gains over LLaVA-Med-
e.g., +2.27% on VQA-RAD, +2.03% on SLAKE, and
+0.76% on PathVQA. Despite having fewer parameters than
some competitors, both versions are highly competitive,
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Table 1. Comparison with other Med-MLLMs on MedVQA tasks . All
models (except GPT-4) are fine-tuned on the same training set in each
VQA task. These Med-MLLMs differ notably in model size, training data
volume, and pre-training strategies - e.g., ExGra-Med (7B, 60K GPT-4
augmented samples) vs. MedDR (40B, 2M samples).

Method #Para VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med 7B 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
BiomedGPT-B 182M 60.9 81.3 71.1 84.3 89.9 87.1 28 88 58 72.07
M2I2 - 61.8 81.6 71.7 74.7 91.1 82.9 36.3 88 62.15 72.25
BioMed-CLIP 422M 67.6 79.8 73.7 82.5 89.7 86.1
Med-Dr 40B 37.5 78.9 58.2 74.2 83.4 78.8 33.5 90.2 61.85 66.28
LLaVA (general) 7B 50 65.1 57.55 78.2 63.2 70.7 7.7 63.2 35.45 54.57
GPT-4 200B 39.5 78.9 59.2 33.6 43.6 38.6
Med-MoE (Phi2) 3.6B 58.55 82.72 70.64 85.06 85.58 85.32 34.74 91.98 63.36 73.11
Med-MoE (Stable LM) 2B 50.08 80.07 65.08 83.16 83.41 83.29 33.79 91.30 62.55 70.3
ExGra-Med 7B 66.35 83.46 74.91 85.34 85.58 85.46 36.82 90.92 63.87 74.75
ExGra-Med (DCI) 7B 67.03 83.46 75.25 84.88 85.58 85.23 37.77 91.86 64.82 75.1

Table 2. Fine-tuning performance on MedVQA tasks (pre-trained 10%).
Bold indicates the best values among pre-training algorithms , excluding
LLaVA-Med.

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (10%) 43.38↓20.361.4↓20.252.39↓20.380.94↓2.580.29↓3.180.62↓2.824.26↓13.6988.03↓3.1856.15↓7.9163.05↓10.3

InfoNCE 59.39 77.57 68.48 82.4 83.17 82.78 34.59 91.45 63.02 71.43
PLOT 16.86 26.47 21.67 37.81 56.25 47.03 11.79 81.36 46.58 38.42
SigLIP 56.99 77.94 67.47 80.86 80.53 80.69 18.08 50.85 34.465 60.88
VLAP 57.49 76.47 66.98 80.05 82.21 81.13 32.21 91.16 61.685 69.93

GeoCLAP 60.68 75.37 68.03 82.64 85.10 83.87 35.12 91.15 63.14 71.68
PAC-S 57.72 72.79 65.26 83.78 81.49 82.64 35.01 91.36 63.19 70.36
IMAGEBIND 57.31 75.74 66.53 80.79 84.13 82.46 34.61 91.42 63.02 70.67
ExGra-Med 66.02 79.04 72.52 84.92 85.10 85.01 37.25 91.45 64.34 73.96

Table 3. ExGra-Med ablation study . Results are pre-
sented as average scores on VQA-RAD and SLAKE, using
pre-trained weights on 10%, 40%, 100%.

Method VQA-RAD SLAKE

ExGra-Med (Full, 10%, α = 1.0) 72.52 85.01
- (ii) ExGra-Med (Full, 10%, α = 0.1) 65.95 82.9
- (ii) ExGra-Med (Full, 10%, α = 0.5) 67.72 82.33

ExGra-Med (Full, 40%) 74.37 84.99
- (iii) ExGra-Med w/o ext. context 72.12 81.95
- (iv) ExGra-Med w/o ori. caption 72.58 82.31
- (v) ExGra-Med w/o message passing 73.90 84.29
- (vi) ExGra-Med in two stages 72.81 84.14

ExGra-Med (Full, 100%) 74.91 85.46
- (vii) ExGra-Med w/o barycenter graph 73.88 84.34

Table 4. EXGRA-MED results with
different frozen LLMs . It shows that Gemini is

also effective within our method.

Method VQA-RAD SLAKE

ExGra-Med (GPT-4), 10% 72.52 85.01
ExGra-Med (Gemini), 10% 71.09 83.98
LLaVa-Med (Baseline) 10% 52.39 80.62

ExGra-Med (GPT-4), 40% 74.37 84.99
ExGra-Med (Gemini), 40% 73.26 85.10
ExGra-Med with synonyms, 40% 72.39 82.93
LLaVa-Med (Baseline) 40% 70.82 84.04

even outperforming the 40B-parameter Med-Dr.

3.2 Further Analysis: Potentially Hallucination in
Extended Captions. We conducted a user study with five
general practitioners from top public hospitals (Appendix
Sec. F). In Stage 2 of pre-training, each expert evaluated 200
image-text pairs (1,000 total) across five modalities - chest
X-ray, CT, MRI, histology, and others - rating the complete-
ness and accuracy of GPT-4-generated extended captions.
Figures 8–12 indicate that most scores ranged from 3 to
5, with few low ratings, confirming the overall consistency
and quality of the extended outputs. Also, these extended
captions are used only during pre-training to guide latent
space alignment. They are excluded during fine-tuning on
downstream tasks. As such, we argue that a small amount of
noise in the extended captions should have minimal impact
on overall performance, since they do not directly affect the
model’s task-specific adaptations.

Other factors. We validate the method under six settings:
(i) generalization to frozen LLMs (GPT-4, Gemini) for ex-
tended captions and synonym handling (Table 4); (ii) im-
pact of coefficient (α) combine multi-graph alignment with
auto-regressive modeling; (iii) using only original captions,
reducing three-graph alignment to two; (iv) without using
original captions, i.e., only extended ones are used; (v) ap-
plying message passing for node feature enhancement; (vi)
employing multi-graph alignment in both steps (default:
Step-2 only); and (vii) replacing barycenter graph alignment

with three pairwise alignments (Eq. (2), Sec. 2.3). Key
results are in Tables 3-4. Additional analyses on average
pooling features and k-NN are in the Appendix.

4. Discussion
We show that enforcing triplet correlations among im-
ages, instructions, and extended captions improves vision-
language alignment and mitigates limitations of autoregres-
sive models, especially under limited data. EXGRA-MED
achieves performance on par with LLaVA-Med using just
10% of the data and outperforms other state-of-the-art meth-
ods. These results underscore the importance of effective
learning algorithms alongside model or data scaling for
training MLLMs.

In future work, we suggest validating the effectiveness and
adaptability of EXGRA-MED across other architectures,
such as the Flamingo model (Alayrac et al., 2022), to assess
its generalizability and robustness in biomedical contexts.
Incorporating vision encoders or large language models
specifically pre-trained on medical datasets (MH Nguyen
et al., 2024; Zhao et al., 2024) could further enhance per-
formance by capturing the unique characteristics of medi-
cal data. Additionally, exploring adaptor-based fine-tuning
methods such as Low-Rank Adaptation (Hu et al., 2022) and
adaptors (Zhang et al., 2023b; Diep et al., 2025) presents a
promising path toward large-scale medical applications in
resource-constrained settings.
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A. Examples of Extended Contexts Generated Using GPT-4
We present several examples of enriched captions generated using the GPT-4 API in Table 5. These extended captions offer
multiple advantages: (i) they enrich the model’s ability to associate images with detailed, domain-specific descriptions that
go beyond conventional captions; (ii) they better reflect real-world medical workflows, where clinicians utilize domain
expertise, thereby facilitating multi-scale understanding by bridging local and global features while reducing ambiguity in
learning; and (iii) from a representation learning perspective, these captions diversify the embedding space and capture
hierarchical relationships between input images and captions, potentially enhancing performance in complex pre-training
tasks.

B. Medical Visual Chatbot
We evaluate the performance of EXGRA-MED on a medical visual chatbot task to assess its ability to generalize across
downstream applications. This experiment highlights the model’s transferability, testing how well it retains instruction-
following capabilities and cross-modal understanding in a practical, interactive setting beyond traditional VQA benchmarks.

Datasets. Following LLaVA-Med’s settings, we evaluate EXGRA-MED on a biomedical multimodal conversational dataset
with 193 questions (143 conversational, 50 descriptive) across five medical domains: Chest X-ray, MRI, Histology, Gross,
and CT.

Baselines. We evaluate with several SOTA multimodal large language models, including general models like LLaVA
and GPT-4o, as well as medical-focused models such as LLaVA-Med and its variants, Med-Flamingo, Med-Dr, and
Biomed-GPT. We use the officially provided weights for all comparison baselines without additional reproduction steps.
The details of the evaluation protocol using GPT-4 as a scorer are presented in the Appendix section.

Evaluation Protocol We evaluate the ability of models to serve as a medical visual chatbot as follows: each of the 193
novel questions in the dataset has a corresponding ground-truth answer. We generate responses to each question from
the LMM. Next, we ask GPT-4 to score the helpfulness, relevance, accuracy, and level of detail of the response from the
LMM relative to the ground-truth answer. The score is, therefore, on a scale of 0 to 100, where a higher score indicates
better overall performance. During our project, we were unable to access the GPT-4 version used by LLaVA-Med due to
deprecation. Therefore, we opt for the GPT-4o version as a judge. We also use this GPT version to reproduce the results
reported in the LLaVA-Med paper and observe a decrease in performance. This may be due to the fact that GPT-4o serves as
a better judge than the previous version and thus judge the model’s response harder.
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Table 5. Example of a conversation extended with enriched caption explanations.

Original Conversation Enriched Context
User What is the organ shown in the image?

INSTRUCTION The image is a CT scan
of the abdomen and
pelvis, focusing on
the adrenal glands.

The organ depicted in the image
is the adrenal glands, which are
located on top of each kidney. In
this CT scan of the abdomen and
pelvis, the adrenal glands appear as
small, triangular-shaped structures
that play a crucial role in hormone
production, including cortisol and
adrenaline, which are vital for
stress response and metabolism.

User What do the black arrows indicate?

INSTRUCTION The black arrows in the
image are pointing to
the bilateral adrenal
enlargement, which
means that both adrenal
glands are larger than
normal.

The black arrows in the image
indicate bilateral adrenal
enlargement, which signifies that
both adrenal glands are enlarged
beyond their normal size. This
condition can be associated with
various clinical implications, such
as hormonal imbalances or underlying
diseases, and may require further
evaluation to determine the cause.

User Are both adrenal glands enlarged?

INSTRUCTION Yes, both adrenal
glands appear to be
enlarged in the CT scan.
This bilateral adrenal
enlargement may be due
to various causes, and
further evaluation
by a healthcare
professional is
necessary to determine
the underlying reason
for this finding.

Yes, both adrenal glands are enlarged
in the CT scan. This bilateral
adrenal enlargement can result from
various conditions, including: -
Adrenal adenomas - Cushing’s syndrome
- Hyperplasia - Metastatic disease
Further evaluation by a healthcare
professional is essential to identify
the specific cause of this finding.

User What is the age and gender of the patient?

INSTRUCTION The patient is a
23-year-old female.

The patient is a 23-year-old female,
indicating her age and gender
clearly. This information is
essential for understanding her
demographic profile in a clinical
context.

User What is the main finding in the chest x-ray?

INSTRUCTION The main finding
in the chest x-ray
is lymphadenopathy,
which refers to the
enlargement of lymph
nodes.

The main finding in the chest x-ray
is lymphadenopathy, which indicates
the enlargement of lymph nodes. This
condition may suggest underlying
issues such as infection, malignancy,
or autoimmune disorders, warranting
further investigation to determine
the cause and appropriate management.

User What is the patient’s medical condition?

INSTRUCTION The patient has
respiratory symptoms
and a confirmed
H1N1 infection.
Additionally, the
patient has a history
of crack addiction.

The patient is diagnosed with
respiratory symptoms and has
a confirmed H1N1 infection.
Additionally, the patient has
a significant history of crack
addiction, which may impact their
overall health and treatment options.

Results Table 6 shows the experimental results of EXGRA-MED alongside competitive methods, with the highest scores
in bold. Our two method variants—based on LLaVA 1.5 with and without the DCI technique—outperform others on
conversation samples and achieve comparable results to LLaVA-Med 1.5 on description samples. In evaluations across
five medical domains, our methods surpass the baselines in three (CXR, Histology, and Gross), positioning EXGRA-MED as
the state-of-the-art overall. These findings highlight how the multi-graph alignment strategy and extended answer contexts
enhance VQA chatbot performance in the biomedical domain.
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Table 6. Medical visual chatbot evaluation . Results are reported using GPT-4 as the scorer.

Method #Para Question Type Domain Overall
Conver. Descr. CXR MRI Hist. Gross CT

LLAVA 7B 39.40 26.20 41.60 33.40 38.40 32.91 33.40 36.1
LLAVA-Med 1.0 7B 47.4 33.99 51.31 36.32 45.61 41.09 44.87 43.93
LLAVA-Med 1.5 7B 46.78 34.58 54.58 36.5 41.85 40.3 45.02 43.62
MedFlamingo 8.3B 28.58 13.89 26.93 21.34 22.09 32.71 22.25 24.77
Med-Dr 40B 35.61 19.28 38.98 26.28 29.10 35.40 28.30 31.38
Biomed-GPT 182M 20.71 17.99 27.53 18.50 17.18 14.72 22.08 20.01
GPT-4o 200B 42.04 25.47 42.77 39.74 38.68 31.40 35.59 37.75
ExGra-Med 7B 48.49 34.32 58.37 36.82 46.05 45.19 38.24 44.82
ExGra-Med (DCI) 7B 48.99 34.01 59.9 32.34 51.88 42.53 38.28 45.11

Qualitative results are shown in Table 7, where EXGRA-MED’s generated responses are compared against a series of
example questions and image contexts. The top and middle parts of the figure illustrate a detailed description of a chest
X-ray image, while the bottom part showcases a conversational exchange regarding the origin and extent of a mass found in
a medical image. As demonstrated, EXGRA-MED effectively provides clinically relevant answers with high-level details,
enhancing the interpretability and usability of its outputs. In cases where the given image and/or question is ambiguous, as
shown in the middle dialogue, EXGRA-MED should produce a clear explanation without adding any additional information
or showing any signs of hallucinations.

Table 7. Examples of the medical visual chatbot. Top: a detailed description for a Chest X-Ray (CXR) image; Middle: a detailed
description for a CT scan image; Bottom: a conversation exchange regarding a medical condition.

Detailed Description
Caption Chest X-ray: Normal with no signs of metastatic lesions

User Walk through the important details of the image

EXGRA-MED The image is a chest X-ray (CXR) taken on the 1st
postoperative day. It provides a view of the patient’s
chest, including the lungs, heart, and surrounding
structures. Since this is a postoperative image, it
may be used to assess the patient’s condition after a
surgical procedure, monitor for any complications, or
evaluate the effectiveness of the treatment.

Caption Viral Sialadenitis. Axial computed tomography in a
14-year-old female with bilateral parotid pain and
swelling demonstrates symmetric enlargement of the
parotid glands with subtle stranding in the adjacent
fat (white arrows). Blood work was positive for
parainfluenza virus.

User Offer a thorough analysis of the image

EXGRA-MED As an AI, I cannot view the actual image, but I can help
you interpret the image based on the visual aspects you
describe. If you have any questions about the content
or context of the image, feel free to ask, and I’ll do my
best to provide assistance.

Answer (Short) Chest X-ray showing dilated cardiomyopathy
Conversation

Caption A computed tomography scan shows that the mass arises
from the posterior costal arc of the eighth rib on the
patients left side and does not involve the medulla.

User What is the origin of the mass?

EXGRA-MED The mass appears to be originating from the right lung.

User Does the mass involve the medulla?

EXGRA-MED According to the image, the mass does not appear to
involve the medulla. The medulla is a part of the
brainstem, and its involvement would indicate that the
mass has extended to this area. In this case, the mass
seems to be affecting other parts of the brainstem and
cerebellum.

Answer (Short) -
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C. LLM Prompting for GPT-4 to Generate Extended Captions
We illustrate in Figure 3 how to leverage the GPT-4 API to analyze and extend the original answers. For detailed responses
in specific cases, refer to Table 5.

System Prompt

You possess in-depth biomedical knowledge in checking the quality of the answer to a given instruction. From
the given input, which is a pair of instruction and answer, your task involves the following steps:

1. Explain why the given answer is not good for its instruction. Please analyze based on the Helpfulness,
Relevance, Accuracy, Level of Detail, and Structure fields.

2. Generate a better answer based on the reasons pointed out above, while preserving the same content. To
achieve that, you may want to adjust the level of details, add bullet points, or use comprehensive
words, etc. Because these answers are about biomedical knowledge, you must keep all the medical
terminology and important words in the new better answer. The new better answer should be in a tone
that you are also seeing the image and answering the question.

3. Output a JSON object containing the following keys (note that double quotes should not be used): {
"explanation": { "helpfulness":<comment on helpfulness, max 20 tokens>, "relevance":<comment on
relevance, max 20 tokens>, "accuracy":<comment on accuracy, max 20 tokens>, "detail":<comment on detail,
max 20 tokens>, "structure":<comment on structure, max 20 tokens> },
"revision": <improved version of the answer, max 2x tokens of input if > 2 tokens, otherwise max 20
tokens> }

Figure 3. Instructions provided to the system for analyzing the quality of answers based on different criteria and generating a revised
response in JSON format.

D. Additional Results for Multi-modal Pre-training Comparison
D.1. MedVQA datasets

We train and evaluate ExGra-Med on three biomedical VQA datasets, including VQA-RAD, SLAKE, and PathVQA. The
dataset statistics are summarized in detail in Table 8.

• VQA-RAD dataset is a collection of 2248 QA pairs and 515 radiology images which are evenly distributed over the
chest, head, and abdomen. Over half of the answers are closed-ended (i.e., yes/no type), while the rest are open-ended
with short phrase answers.

• SLAKE dataset contains 642 radiology images and over 7000 diverse QA pairs. It includes rich modalities and human
body parts such as the brain, neck, chest, abdomen, and pelvic cavity. This dataset is bilingual in English and Chinese,
and in our experiments, we only considered the English subset.

• PathVQA dataset contain pathology images. It has a total of 32795 QA pairs and 4315 pathology images. The
questions in this dataset have two types: open-ended questions such as why, where, how, what, etc. and closed-ended
questions.

Table 8. Dataset statistics for 3 medical VQA datasets: VQA-RAD, SLAKE, and PathVQA.

Dataset VQA-RAD SLAKE PathVQA

Train Test Train Val Test Train Val Test

# Images 313 203 450 96 96 2599 858 858
# QA Pairs 1797 451 4919 1053 1061 19755 6279 6761
# Open 770 179 2976 631 645 9949 3144 3370
# Closed 1027 272 1943 422 416 9806 3135 3391
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Table 9. Fine-tuning performance on MedVQA tasks (pre-trained 40%). Bold indicate for best values among pre-training algorithms
excluding LLaVA-Med.

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (40%) 62.23↓1.479.41↓2.270.82↓1.884.42↑1.083.65↓0.284.04↑0.631.86↓4.984.99↓6.358.43↓5.671.09↓2.3

InfoNCE 63.11 77.57 70.34 82.68 83.89 83.29 33.58 89.62 61.6 71.74
PLOT 64.36 79.41 71.89 83.38 82.93 83.16 35.11 89.59 62.35 72.46
SigLIP 63.02 81.25 72.14 81.26 80.29 80.77 36.01 90.86 63.435 72.12
VLAP 63.17 79.04 71.11 83.38 83.89 83.64 35.62 90.83 63.225 72.66

GeoCLAP 62.28 82.72 72.5 82.64 85.2 83.92 33.2 75.05 54.13 70.18
PAC-S 63.77 79.41 71.59 84.52 85.58 85.05 27.11 85.34 56.23 70.96
IMAGEBIND 64.73 78.68 71.71 82.31 84.62 83.47 35.76 87.08 61.42 72.20
ExGra-Med 66.01 82.72 74.37 84.47 85.82 85.15 37.41 91.27 64.34 74.57

D.2. Results

Tables 9 present the results using 40% of the data. Overall, EXGRA-MED demonstrates a steady improvement and
consistently outperforms other pre-training methods across nearly all settings.

E. Further Ablation Studies
E.1. K Nearest Neighbor in the Graph Construction Step

We conduct experiments to assess the impact of different K values in the graph construction step. Table 10 presents model
performance on the VQA-RAD dataset along with the training time for Step-2 pre-training using 10% of the data for each
K value. Our findings indicate that K = 5 achieves the best balance between performance and efficiency.

Table 10. Impact of Nearest Neighbors Count on Graph Construction. Performance is reported on VQA-RAD with running time measures
on Stage-2 pre-training step on 10% data.

Settings VQA-RAD

Open Close Avg. Run Time

ExGra-Med (Full), K = 3 55.9 73.9 64.9 1h
ExGra-Med (Full), K = 5 66 79.04 72.52 1h4’
ExGra-Med (Full), K = 7 55.52 73.16 64.37 1h17’

Table 11. Comparison of pre-training algorithms with different feature embedding methods. Models are pre-trained on 40% of the data
and evaluated on the average performance across three medical visual question-answering datasets.

Method VQA-RAD SLAKE PathVQA

EXGRA-MED 74.37 84.99 64.34
InfoNCE (avg.feature) 70.34 83.29 61.6
PLOT (optimal transport) 71.89 83.16 62.4

E.2. Feature representation analysis using average pooling for visual and language tokens

We investigate using average pooling token features in EXGRA-MED with two experiments:

• We trained EXGRA-MED on 70% of the pre-training data, randomly sampling 1000 unseen image-text pairs. The
trained model extracted features using average pooling, and a box plot (Figure 4) visualized the central tendency, spread,
and skewness of 1000 positive and negative pairs. The results show: (i) the median similarity for positive pairs is
significantly higher than for negative pairs, indicating clear separation; (ii) while some overlap exists in the interquartile
ranges (IQRs), the shift in central tendency confirms the distinction; and (iii) outliers are present, particularly among
negative pairs, but they minimally overlap with the core distribution of positive pairs.
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Figure 4. Visualization of similarity values between positive and negative pairs based on features computed by EXGRA-MED.

• We compare against two pre-training algorithms, InfoNCE (Khan & Fu, 2023; Liu et al., 2023) and PLOT (Chen
et al., 2022). Both utilize the same contrastive loss, but InfoNCE relies on cosine distance with averaged features,
while PLOT directly computes optimal transport over sets of visual and text tokens. The results for these baselines
are summarized in Table 11. We observe that using a more sophisticated distance metric, such as optimal transport,
provides a slight improvement (around 1%) over the averaging approach. However, the performance gain is relatively
modest. Based on the above evidence, we conclude that using average pooling for distance feature extraction is a
reasonable and practical approach.

F. Qualification Test on the GPT-generated Extended Captions
We adopt the GPT-4 as a tool for paraphrasing image captioning due to its improved performance compared with GPT-3.5,
especially in healthcare (Jin et al., 2024). During our implementations, we also randomly checked for a hundred samples and
found consistency between extended context and original ones. However, we also sought help from five general practitioners
currently working at top public hospitals in Vietnam (for anonymity reasons, we will update their affiliations after the review
process has been completed).

In particular, we randomly chose 1000 samples in Stage 2 of pre-training, covering five data modalities: chest X-ray, CT
scan, MRI, histology, and others. Each doctor is assigned a specific data modality given their expertise, including 200
image-text pairs and corresponding captions. We then build an annotation tool for them to verify data where each sample
is asked with two questions (i) whether the extended caption covers the original caption; and (ii) whether new concepts
appearing in extended captions are correct. For (i) and (ii), doctors can rate with five levels (from 1 to 5), each indicating an
increasing level of correctness (Figures 5-6).

We provide statistical correctness evaluated by general doctors for these domains in Figures 8,9,10, 11, and 12. It can
be seen that most rating scores fall between 3 and 5, with only a small number of samples rated 1 or 2, validating the
overall consistency of GPT-4 outputs. While concerns may arise regarding the impact of low-scoring extended captions
(rated 1 or 2) on the LLM, it’s important to note that these extended captions are utilized solely for contrastive learning
during pre-training to align the model’s latent space representations. They are not used in auto-regressive training, which
involves predicting target ground-truth tokens. Additionally, the model is fine-tuned with the given training samples from
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downstream tasks after pre-training (no extended captions are used). Thus, we argue that the presence of a small number of
noisy extended captions should not significantly affect the performance of the LLM.

Figure 5. (Part 1) Demonstration of our annotation tool for general practitioners to validate the quality of extended captions generated by
GPT-4.

Figure 6. (Part 2) A detailed guideline for scoring, ranging from 1 to 5, is provided.
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Figure 6. Q: What are the types of cells
depicted in this image?
A: Neutrophils

B: Melanocytes
C: Lymphocytes
D: Hepatocytes

Figure 6. Q: What is the diagnosis of the
histopathology in this image?
A: Breast hyperplasia without atypia
histopathology
B: Normal breast histopathology
C: Benign breast histopathology

D: Fibrocystic breast histopathology

Figure 6. Q: What is the probable diagno-
sis depicted in this image?
A: Chronic myeloid leukemia
B: Multiple myeloma
C: Hodgkin’s lymphoma
D: Acute lymphoblastic leukemia

Figure 6. Q: What is the diagnosis of the
cancer seen in this image?
A: Adenocarcinoma of the right hilum,
T3 N1 M0, Stage IIb
B: Mesothelioma of the right hilum, T2
N1 M0, Stage IIb
C: Large cell carcinoma of the left

hilum, T2 N2 M0, Stage IIIa
D: Non-small cell carcinoma of the left
hilum, T2 N0 M0, Stage I

Figure 6. Q: Is COVID-19 apparent in
this CT scan image?
A: No
B: Yes

Figure 6. Q: Which imaging technique
was utilized to obtain this image?
A: Ultrasound
B: Optical Coherence Tomography C:

Magnetic Resonance Imaging (MRI)
D: Thermography

Figure 7. Examples from the OmniMedVQA dataset: microscopy (top) and CT images (bottom) with corresponding questions and options,
with the correct answers highlighted in blue.
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Figure 8. Statistical correctness of extended captions generated by GPT-4 on Chest X-rays.

Figure 9. Statistical correctness of extended captions generated by GPT-4 on CT scans.

Figure 10. Statistical correctness of extended captions generated by GPT-4 on MRI.
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Figure 11. Statistical correctness of extended captions generated by GPT-4 on mixed domains.

Figure 12. Statistical correctness of extended captions generated by GPT-4 on histology samples.
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