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ABSTRACT

Language Model (LM) training requires vast datasets, raising legal, ethical, and
practical concerns. Federated learning (FL) offers an alternative by enabling or-
ganizations to collaboratively leverage untapped reserves while minimizing data
movement. However, scaling FL globally introduces challenges such as restric-
tions on data movement, privacy, and statistical data heterogeneity. We propose
Worldwide Federated Language Model Training (WorldLM), a system that builds
federations of federations. WorldLM enables each federation to autonomously
meet jurisdictional or competitive constraints while managing statistical hetero-
geneity through attention-based aggregation of key layers and cross-federation
information sharing via residual embeddings. In terms of perplexity, WorldLM
outperforms standard FL and other federated baselines by up to 1.91× and 3.3×
respectively. WorldLM scales to models with 400M parameters, achieving 1.39×
lower perplexity than centralized counterparts while approaching the performance
of perfectly localized models trained in an infinite-data regime. Additionally, under
differential privacy constraints, WorldLM proves highly resilient in performance
compared to standard FL methods, which diverge. These results establish WorldLM
as an effective means for pre-training across geographic and legal boundaries.

1 INTRODUCTION

Language models (LMs) require extensive computational resources and vast amounts of curated
text data, often centralized in data centers (Scao et al., 2022; Dubey et al., 2024). This centralized
paradigm raises concerns (Bommasani et al., 2021) about data ownership (Council of European Union,
2021), privacy, and copyright issues (Grynbaum & Mac, 2023), as well as the limited availability
of high-quality linguistic data (Villalobos et al., 2022). Federated Learning (FL) has emerged as a
promising alternative that allows organizations to collaboratively train models without sharing raw
data (McMahan et al., 2017; Douillard et al., 2023; Sani et al., 2024; Woisetschläger et al., 2024a).
FL reduces the need for data movement and synchronization overheads (Rajbhandari et al., 2020;
Zhao et al., 2023), while incorporating privacy-preserving techniques such as differential privacy
(DP) (Wei et al., 2020) and secure aggregation (Bonawitz et al., 2016). However, scaling FL globally
introduces challenges like federated governance and statistical heterogeneity.

The challenge of federated governance (González-García et al., 2021) arises when participants
in a federated system operate under varying legal, privacy, and security constraints. For example,
participants in the European Union must comply with the GDPR (European Parliament & Council
of the European Union, 2016), which imposes rules on cross-border data sharing, while others
may be free to operate without such constraints. The second challenge, statistical heterogeneity,
occurs when different participants hold non-IID data. This heterogeneity can arise from differences
in language (Conneau et al., 2020) or domain. This can lead to slower convergence rates and
even divergence in standard FL settings (Zhou et al., 2023; Ye et al., 2024). Moreover, dataset
geography (Faisal et al., 2022) often exacerbates these issues, as data collected from different regions
may exhibit inherent clustering, requiring careful optimization across global and local distributions.

To address these challenges, we propose the Worldwide Federated Language Model Training
(WorldLM) system, built on the idea of federations of federations. This hierarchical approach
allows federations to collaborate while maintaining local autonomy to respect regulatory and compet-
itive constraints. WorldLM brings the following innovations:
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Figure 1: Overview of WorldLM’s hierarchical structure. Federations exchange backbone and
personalized key layers, while residual embeddings are selectively routed between parent and child
nodes to facilitate cross-federation information sharing.

1. Arbitrary Federation Structure: WorldLM allows federations to account for their unique
legal, privacy, and security constraints while participating in a global training process. Each
federation can operate under separate legal frameworks, while leveraging privacy-enhancing
techniques like differential privacy (Wei et al., 2020) and secure aggregation (Bonawitz
et al., 2016). This provides a flexible structure that enables seamless collaboration across
jurisdictions and industries without compromising compliance.

2. Partially-Personalized Aggregation: To address the statistical heterogeneity inherent in
real-world federated systems, WorldLM incorporates both a shared model backbone and
personalized key layers specific to each node. These key layers are aggregated using an
attention-based mechanism that balances global and local objectives. Results on multilingual
pre-training show that WorldLM achieves a perplexity 1.91× lower than standard FL, 1.86×
lower than Hierarchical Federated Averaging (HierFAVG) (Liu et al., 2020) and 3.3× lower
than Federated Learning With Personalization Layers (FedPer) (Arivazhagan et al., 2019; Li
et al., 2022).

3. Cross-Federation Information Sharing: In cases where participants’ data is more similar
to data in other sub-federations, WorldLM allows for the sharing of residual layers, enabling
transformer layers badly fit to the local distribution to be routed to more relevant federations.
This cross-federation information sharing mechanism ensures that participants whose data
is dissimilar from that of their peers can still benefit from global collaboration, while
minimizing communication overhead by sending only selected residual blocks.

We show that WorldLM scales effectively to larger models by training a model with 400M parameters,
the same size as the 2023 SOTA (Douillard et al., 2023) for federated pre-training, on the MC4 dataset,
achieving a 1.39× lower perplexity compared to centralized baselines. We also evaluate WorldLM
on a gauntlet of 35 downstream tasks organized in 5 categories and show average improvements of
4.49% over standard FL on MC4. Thus, WorldLM provides an effective solution for training LMs
across legal, socioeconomic, and cultural boundaries, diversifying the pool of available data away
from its current geographic (Faisal et al., 2022) concentration.

2 BACKGROUND

The rise of large language models (LLMs), driven by established performance scaling laws (Hoff-
mann et al., 2022), has led to remarkable advancements in various downstream applications (Hu
et al., 2021; Gema et al., 2023). Despite these advancements, pre-training remains reliant on large
centralized datacenters due to high-bandwidth communication requirements, primarily driven by
the synchronization overhead found in Ring AllReduce (Sergeev & Balso, 2018) used in standard
training algorithms like FSDP (Rajbhandari et al., 2020; Zhao et al., 2023).
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Recent work in federated learning (FL) has aimed to alleviate these communication bottlenecks. For
example, Douillard et al. (2023) used Local SGD(Stich, 2019) to reduce synchronization. Following
this, Sani et al. (2024) demonstrated that generative pre-training can be extended to FL, enabling
models to leverage geographically distributed data while maintaining privacy. For scenarios where
high-quality public datasets may become scarce (Villalobos et al., 2022), FL provides a novel
means of tapping into previously inaccessible datasets held by different organizations or even across
countries (OpenAI, 2023; Patel & Palazzolo, 2024). These developments prompt us to explore the
global scale of federated learning, presenting new system and statistical challenges.

2.1 GLOBAL FEDERATED SYSTEMS

FL typically operates through a sequence of broadcast updates, local optimization, and aggregation
processes (McMahan et al., 2017). This approach aligns with privacy regulations, particularly by
minimizing the exchange of raw data (White House, 2013), making FL a suitable technique for
compliance with frameworks such as the GDPR (European Parliament & Council of the European
Union, 2016) and EU AI ACT (Council of European Union, 2021). However, global-scale FL
introduces two primary challenges: statistical heterogeneity and system heterogeneity.

Statistical heterogeneity emerges when participating clients possess vastly different datasets, such
as varying languages, regions, or domains, each with differing statistical properties (Zhou et al.,
2023; Kairouz et al., 2021). When naive aggregation methods, such as those used in FedAvg, are
applied across highly non-IID client datasets, the resulting model updates may conflict, leading
to slower convergence or even performance degradation (Charles et al., 2021). This is analogous
to the generalization gap seen in large-batch training (Keskar et al., 2017). To address statistical
heterogeneity, better aggregation and personalization methods are needed.

System heterogeneity arises because clients within federated systems often operate under diverse
conditions, including varying computational power, network bandwidth, and availability. These
discrepancies can create "stragglers" that slow down the training process as the central server waits
for slow or resource-constrained clients (Huba et al., 2022; Bonawitz et al., 2019). Such disruption
delays convergence and increases the risk of uneven model updates.

Another critical aspect is federated governance, which governs how data can be shared and models
collaboratively trained across legal and regulatory boundaries. In a cross-border context, Federated
learning must respect local privacy laws, such as GDPR or the EU AI ACT, which dictate the
constraints on data sharing across countries (European Parliament & Council of the European Union,
2016) and focus on mitigating biased outcomes (Council of European Union, 2021, Art. 10.2f,fa).
Privacy-enhancing technologies (PETs) such as differential privacy (DP) (Wei et al., 2020) and secure
aggregation (Bonawitz et al., 2016) may ensure the secure collaboration of clients despite differing
privacy regulations. Further details on the legal implications of FL are available in Appendix A.5.

2.2 RELATED WORK

Personalized Federated Learning (PFL) (Tan et al., 2021) aims to enhance performance on a given
client’s data. One means of achieving this is creating hybrid models wherein common layers are
shared while specific layers are customized. For instance, Li et al. (2022) and Arivazhagan et al.
(2019) propose FL With Personalization Layers (FedPer) a method that personalizes deeper layers
while sharing shallower ones, mitigating heterogeneity at the cost of decreased information sharing.

Client clustering methods (Sattler et al., 2021; Briggs et al., 2020) attempt to group clients based on
model similarity but avoid considering the structural intricacies of neural networks, often reducing
model embeddings to insufficient single-scalar compatibility values. Together with common concerns
for clustering hyperparameters, this limits the practical usability of such methods.

Existing hierarchical systems like Liu et al. (2020) and Luo et al. (2020) focus primarily on commu-
nication efficiency by grouping clients under edge servers and performing aggregation via a simple
extension of FedAvg (McMahan et al., 2017), called Hierarchical Federated Averaging(HierFAVG).
However, they do not factor in data heterogeneity and aim to create one global model. More
recent hierarchical methods, such as those in Mhaisen et al. (2022), integrate data heterogeneity
into edge-server assignments but still rely on FedSGD, which is known to converge slower than
FedAvg (McMahan et al., 2017).
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3 WORLDWIDE FEDERATED TRAINING OF LANGUAGE MODELS (WorldLM)

Given the interlocking nature of legal, privacy, and security concerns, we assume organizations
find collaborating with enterprises operating in the same geographic region, legal jurisdiction, or
industry easier. Facilitating collaboration in edge-device FL (Kairouz et al., 2021) requires a fully
decentralized collaborative learning paradigm (Kairouz et al., 2021; Zantedeschi et al., 2020) with
a graph encoding client compatibility. For training LMs, where the participating entities are stable
organizations, we argue that a federation of federations approach, as portrayed in Fig. 1, provides
an attractive compromise between standard federated learning and decentralized learning. WorldLM
employs a custom aggregation procedure and information-sharing mechanism to optimize for a given
hierarchical data distribution.

3.1 HIERARCHICAL DATA DISTRIBUTIONS

We recursively define the data distribution of a federation based on the data distribution of its con-
stituent sub-federations. Intra-federation heterogeneity pertains to the heterogeneity across children
in the same sub-federation, while inter-federation heterogeneity pertains to the heterogeneity between
any two federations that do not share the same parent. The degree of heterogeneity can be measured
using common distance metrics between distributions, such as Earth Mover’s Distance (Zhao et al.,
2018). Under this definition, an “empty” hierarchical federation contains no members, whereas a
“trivial” hierarchical federation consists of one member.

Formally, for a sub-federation Q with root server q, we define its data distribution as Ωq = ∪c∈Cq
Ωc∪

ωq , which is a mixture of the heterogeneous data distributions {Ωc}c∈Cq
of the set of children Cq and

the root server data ωq. Similarly, for another sub-federation P with root server p, root server data
ωp, data distribution Ωp = ∪c∈Cp

Ωc ∪ωp, and a set of children Cp with data distributions {Ωc}c∈Cp
,

the intra-federation heterogeneity is defined as the degree of heterogeneity across {Ωc}c∈Cq
and

{Ωc}c∈Cp
. The inter-federation heterogeneity is determined between Ωp and Ωq .

A practical example: if {Ωc}c∈Cq
∼ LDA0.1 and {Ωc}c∈Cp

∼ LDA1000, then the intra-federation
heterogeneity of Q is greater than that of P .

3.2 PARTIALLY-PERSONALIZED AGGREGATION

Federated learning can train powerful feature extractors beneficial to all WorldLM participants due
to its meta-learning properties (Nichol et al., 2018; Fallah et al., 2020; Lee et al., 2023). However,
participants in federated training may hold heterogeneous data, such as different languages or domains
(e.g., news versus scientific publications). Thus, the feature extractor needs adaptation for each actor
and sub-federation, necessitating a departure from the standard FL objective. WorldLM, inspired by
split-learning and personalized techniques (Arivazhagan et al., 2019; Li et al., 2022), partitions the
model into a backbone B, comprising the majority of the model’s parameters, and a set of partially
personalized key layers K specific to each node.

The backbone parameters B are trained using FL aggregation algorithms such as FedAvg (McMa-
han et al., 2017) or FedOPT (Reddi et al., 2021). Algorithm 1 outlines our method, with key
procedures distinguished by different colors and independent numbering per color. As shown in
Algorithm 1

(
L.1

)
, for each round k, the server broadcasts B to its children c ∈ Cq. When a child

begins execution, it loads or initializes its model
(

L.2
)
, replaces its previous backbone with the

received one
(

L.5
)
, and aggregates its key layers with those of the parent

(
L.6

)
. This aggregation

is performed on a per-key-layer basis
(

L.2, 4
)

using an attention mechanism
(

L.5
)

with average

pooling
(

L.6
)
. The node then executes local training

(
L.4

)
followed by residual routing

(
L.6

)
.

Residual routing sends residual layers received from the parent
(

L.3
)

to the child with the high-
est similarity

(
L.4

)
. If the child is a leaf node (a trivial federation), the residual is aggregated;

otherwise, it is routed further. The node then recursively executes its descendants
(
L.7 − 8

)
and

computes pseudo-gradients ∆t
c. These pseudo-gradients are aggregated and applied to the server’s

backbone via ServerOpt
(
L.11

)
. The model aggregates key layers of its descendants by repeating

the parent-to-child aggregation procedure for each child
(
L.14

)
followed by average pooling. Finally,
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Algorithm 1 WorldLM Federation Execution Algorithm
Require: Node id q, set of descendants Cq , number of rounds Tq , parent backbone Bp, key layer sequence Kp

Require: Downstream residuals for aggregation Da, routing D0
r , LoadModel, ClientOpt, ServerOpt

Require: Similarity function s : Rn × Rn → R (default: cosine similarity)

1: procedure WORLDLMFIT(q, Bp, Kp, Da, D0
r )

2: B0,K0, U0 ← AGGPARENT(q,Bp,Kp, Da)

3: for round t← 0, . . . , Tq − 1 do
4: Bt,Kt ← ClientOpt(q,Bt,Kt) ▷ Local optimization
5: if Cq ̸= ∅ then
6: At, Rt ← ROUTERESIDUALS(q,Dt

r, Cq) ▷ Route residuals
7: for child c ∈ Cq do ▷ Train child nodes
8: Bt

c,Kt
c,U t

c ←WORLDLMFIT(c,Bt,Kt, At
c, R

t
c ) ▷ Recurse to child c

9: ∆t
c ← Bt

c − Bt ▷ Compute pseudo-gradient
10: ∆t ← 1

|Cq|
∑

c∈Cq
∆t

c ▷ Aggregate pseudo-gradients

11: Bt+1 ← ServerOpt(Bt,−∆t, t) ▷ Update backbone
12: P ← [Kt

0, . . . ,Kt
|Cq|] ▷ Collect key layers

13: Q,K,V ← P,P,P ▷ Set Q, K, V values
14: Kt+1 ←

∑
i∈|Q|

1
|Q| LAYERATTN(Qi,K,V) ▷ Apply attention

15: U t+1,Dt+1
r ← PARTRESIDUALS(q,Kt+1,V,U t,Dt

r) ▷ Partition residuals

16: return BTq ,KTq ,UTq ▷ Return final state

1: procedure AGGPARENT(q,Bp, Kp, Da)
2: U0, (B0,K0)← ∅,LoadModel(q)
3: if q ̸= 0 then
4: K,V ← [K0,Kp,Expand(|K0|,Da)]
5: B0 ← Bp
6: K0 ← LAYERATTN(K0,K,V)
7: return B0,K0,U0

1: procedure LAYERATTN(Q,K,V)
2: for l ∈ |Q| do
3: Zl ← 0
4: for i ∈ |K| do
5: αi,l ← σ(s(Ql,Ki,l))
6: Zl ← Zl + αi,lVi,l
7: return Z

1: procedure ROUTERESIDUALS(q,Dr, C)
2: Ac, Rc ← ∅, ∅, ∀c ∈ C
3: for (v, l) ∈ Dr do
4: d← argmaxc∈Cs(v,Kc,l)
5: if IsLeaf(d) then
6: Ad ← Ad ∪ {(v, l)}
7: else
8: Rd ← Rd ∪ {(v, l)}
9: return A,R

1: procedure PARTRESIDUALS(q,K,V,U ,Dr)
2: for l ∈ |K| do
3: I0 ← {0, . . . , |V | − 1}
4: for n ∈ νK do
5: m← argminc∈Ins(Kl,Vc,l)
6: In+1 ← In \ {m}
7: U ← U ∪ {(Vm,l, l)}
8: if q = 0 then return ∅,Dr ∪ U
9: return U ,Dr

for each key layer
(

L.2
)
, the model selects the top-νK

(
L.4

)
most dissimilar child key layers. If

the node is the root, it routes them down to the most relevant children
(

L.8
)
; otherwise, it passes

the residuals to its parent
(

L.9
)
.

Local training
(
L.4

)
can be executed either in-parallel with the node model treated as a client or

sequentially. It is crucial to distinguish sequential from parallel steps, since the latter are averaged
across clients, similarly to the gradients produced by one batch in standard SGD. Our work adopts
the sequential approach, where the root executes by itself at the first level, while all leaves execute in
parallel. For more details on how this impacts training, see Appendix A.1.

Unlike traditional personalization approaches, WorldLM optimizes the key layers K by considering
models of both parent and children, aggregating each layer with an attention mechanism (Vaswani
et al., 2017; Ji et al., 2019). The parameters of each layer across federation nodes serve as queries,
keys, and values. To exploit data locality and node similarity within the same sub-federation,
the attention mechanism is applied within a local context, either relative to the node’s parent or
children. This procedure allows WorldLM to manage statistical heterogeneity effectively when
sub-federation nodes have similar data distributions. Unlike FedPer, which personalizes specific
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Figure 2: Data-perspective upon a hierarchical dataset constructed from The Pile (Gao et al.,
2021). The LHS contains two naturally heterogeneous and quantity-skewed groupings of data sources,
corresponding to organizations accessing data from the internet or the medical domain. We construct
such groupings using the internet-based Common Crawl (CC) and Wikipedia (WK) versus the medical
data of PubMed Abstracts (PBA) and PubMed Central (PBC). To test the effectiveness of WorldLM
when such a cluster relationship is absent, we swap the position of the two smaller datasets.

layers without sharing information, WorldLM utilizes a hierarchical structure for better management
of heterogeneity.

To determine the number of key layers, we followed empirical results from the literature on Federated
Learning with Personalization layers and transfer learning. For example, the original work on
BERT (Devlin et al., 2019) suggests concatenating the last four layers of a 12-layer model provides
optimal transfer learning performance, while in federated contexts (Li et al., 2022; Arivazhagan
et al., 2019), personalizing the last four layers is most effective. Given the identical structure of
decoder-only transformers’ blocks, we chose to use 30% of the blocks on average.

The attention-based aggregation of a node’s children
(
L.14

)
reduces to simple unweighted averaging

if no cluster relationship exists in a sub-federation. In contrast, aggregation between a node and
its parent

(
L.2

)
focuses almost exclusively on the node’s keys, approaching a personalization-layer

strategy. Similarly, if a node’s data distribution significantly differs from its peers, its key layers will
be highly dissimilar and thus ignored in aggregation. A full description of the detailed mathematical
logic of the algorithm is presented in Appendix A.3.

4 EXPERIMENTAL DESIGN

Given the recent emergence of federated generative pre-training and the lack of benchmark datasets,
we evaluate WorldLM on tasks that approximate realistic scenarios for its application: (a) organizations
in different industries collaborating to train an LM despite holding different genres of text, and (b)
organizations trying to train an LM despite holding data in different languages.

4.1 FEDERATION CONSTRUCTION

To simulate organizations holding different genres of text, we partition The Pile (Gao et al., 2021)
into its constituent heterogeneous datasets and construct federations of federations by bottom-up
building different mixtures of datasets. As seen in Fig. 2, if the children of a node hold data from the
Pile Common Crawl (CC), Wikipedia (WK), PubMed Central (PBC), and PubMed Abstracts (PBA)
datasets, then the node itself will hold data proportional to their size. For this dataset, we use the
common gpt-neox-20b English tokenizer also adopted by Sani et al. (2024).

For simulating geographically distributed systems, we use a subset of the Multilingual Colossal
Common Crawl (MC4)(Xue et al., 2021), covering high and low-resource languages (Magueresse
et al., 2020). Sub-federations are constructed based on language families similarly to The Pile.
Given the larger vocabulary size (Xue et al., 2021) and consequent model size, we use a single
federated structure partitioned with high-resource French (FR) and Italian (IT) on one side and
lower-resource Bulgarian (BG) and Ukrainian (UK) on the other. For IID experiments, we use the
standard Cleaned Colossal Common Crawl (C4) English dataset, partitioned into equal-sized shards
using the same tokenizer as The Pile. Given the larger size of multilingual models, and the
restricted heterogeneity of The Pile, we use The Pile for ablation studies while using MC4 for
crucial baselines comparisons.
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Each federation in our hierarchy represents a substantial data holder, organized in a tree structure.
Each node q in the tree can have a set of children Cq. Trivial federations are represented by leaf
nodes with no children (Cq = ∅). In this experimental setup, the root federation consists of seven
participating nodes counting the root, then each regional federation contains three participating nodes,
and each leaf is a federation of one. The configuration is reported in Fig. 2 while partitions and their
sizes are detailed in Appendix A.2.

4.2 TASKS

For all experiments, we use decoder-only transformers (Brown et al., 2020) for the language modeling
task. Given that we are concerned with partially personalized FL, we compare the personalized
local perplexity of WorldLM against three relevant baselines representing alternative scenarios. First,
we compare against standard FL with momentum (Huo et al., 2020; Douillard et al., 2023; Sani
et al., 2024), which has no hierarchical structure and is challenging to integrate across heterogeneous
participants. Second, we compare against Hierarchical FedAvg (HierFAVG)( (Liu et al., 2020), which
does not have any personalization. Third, we compare against FedPER (Arivazhagan et al., 2019)
which has personalized layers but no hierarchical structure. Finally, we compare against centralized
training of a global model on all node data pooled together, which represents the standard pre-training
recipe when all data can be centralized.

In addition to these baselines, we are also interested in evaluating upper bound of local performance
on a given data distribution for a given model size, in order to asses how close WorldLM gets to it.
For this purpose, we train models of the same size as WorldLM using an infinite-data regime for the
given node. We achieve this by training models that are far too small compared to the size of the
local dataset recommended by scaling laws (Hoffmann et al., 2022), specifically we use datasets
appropriate for billion-scale models to complete one epoch while training 75M-400M models. These
should be seen as idealized cases for what the participants could train if they had unbounded data, in
which case they would not need to use federated training to begin with. For the rest of this work we
shall use the term “infinite-data local models”.

Language Modeling: We utilize models of four sizes: 75M, 125M, and 250M and 400M. Our
federated training uses the parameters shown in Table 5, while local parameters are available in
Table 6. We compare models that have executed for a given number of sequential steps. The step-wise
execution in WorldLM (Algorithm 1) implies that each level of the hierarchy (Fig. 1) trains in parallel,
while the levels execute sequentially in three stages: Root, Regional, and Edge. For the 400M, we
only had the resources for comparison against centralized, as standard FL is much less computationally
efficient than WorldLM due to not having this three-stage execution (Appendix A.1.2).

For the local training of each node, samples are drawn proportionally to the data source sizes to ensure
balanced and representative batches. Each node’s dataset mixture is constituted by combining streams
from relevant data sources while employing balanced sampling with shuffling. Since each node
performs the same number of local steps, the size of a data source is primarily relevant in determining
sampling ratios locally. Full details on the impact of sampling are available in Appendix A.1.

Privacy and Security: To validate the effectiveness of WorldLM in enhancing privacy and security,
we simulate differentially private training, where the leaf nodes of a hierarchy contain potentially
sensitive information and use DPFedAvg (Wei et al., 2020; Andrew et al., 2021) instead of standard
averaging. This requires gradient clipping and the injection of Gaussian noise. For this, we assume
that the Pile-CC and WK leaf clients of The Pile require DP, injecting noise with σ = 0.5 and
clipping gradients to the median l2 norm of the previous round (using a bound of 1.0 for the first
round as in centralized ML (Scao et al., 2022)).

5 EVALUATION

Our results for the language modeling task (Tables 1 and 2 and Figs. 3 and 5) show that WorldLM
offers the desired compromise between global performance and local personalization.
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Table 1: Language modeling personalized performance (over local client test sets) of WorldLM on
MC4 in terms of perplexity (the lower, the better). We compare against standard FL, infinite-data fully
local models, HierFAVG, FedPer and centralized models. The latter is trained on the union of all
local training sets. WorldLM outperforms standard FL, reaching a perplexity 1.91× lower for the
250M. Furthermore, while it almost reaches the performance of centralized training for the 250M
model, it outperforms it for the 400M, reaching a perplexity 1.39× lower.

Collaborative Non-Collaborative
Model WorldLM FL HierFAVG FedPer Local Centralized
250M 80.47± 68.53 153.27± 95.47 149.00± 95.55 269.85± 129.00 45.47± 31.13 72.21± 49.78
400M 44.46± 29.25 - - - - 62.08± 35.27

5.1 WorldLM OUTPERFORMS FL AND CENTRALIZED ON NON-IID DATA

Table 2 and Table 1 show that WorldLM is capable of outperforming standard FL in terms of local
personalized performance for datasets that exhibit statistical heterogeneity while obtaining similar
performance on the IID C4 dataset.

WorldLM approaches the performance of a fully centralized training paradigm for the 75M and
125M models on The Pile, and sometimes exceeds it for the 250M and 400M models on MC4.
For the 250M model trained on MC4, WorldLM reaches a perplexity 1.91× lower. For for the less
heterogeneous monolingual The Pile it bring improvements of 1.15 × −1.45×. The episodic
nature of WorldLM ’s execution, characterized by periodic increases in train perplexity (Fig. 3)
when revisiting different stages, indicating its adaptive strategy in the aggregation process. Each
subsequent revisiting of a stage results in a lower starting and ending perplexity, as the model learns
to simultaneously optimize for the hierarchical data distribution of the entire tree and for the local
distribution.

For the 250M model trained on MC4, WorldLM also show substantial improvements over FedPer and
HierFAVG. Specifically, WorldLM achieved a 1.86x lower perplexity than Hierarchical Federated
Averaging (HierFAVG) by accounting for both inter- and intra-federation heterogeneity more effec-
tively. When comparing against a hierarchical version of Federated Learning with personalization
layers (FedPer), WorldLM showed a 3.3× lower average validation perplexity. Crucially, this im-
provement is due to the effective incorporation of relevant information from multiple participants
across hierarchical levels, which is not feasible for FedPer.

The 400M model further exemplifies the scalability and robustness of WorldLM, demonstrating a
significant improvement over its centralized counterpart, reaching a perplexity 1.39× lower.

5.2 WorldLM IS ROBUST TO DP AND ALTERNATIVE HIERARCHIES

We evaluate the robustness of WorldLM to differential privacy and to data heterogeneity. For the first,
Table 3 shows that WorldLM is generally more robust than standard FL to the gradient clipping and
noise that DP injects into the models of two leaf nodes. Standard FL diverges immediately due to
its inability to suppress the impact of DP on the global model. The personalized keys of WorldLM,
on the other hand, can ignore the impact of the noise entirely, as seen in Fig. 4. Furthermore, the
additional per-level momentum mechanism of WorldLM allows it to stabilize the backbone training.

Table 2: Language modeling personalized performance (over local client test sets) of WorldLM in
terms of perplexity (the lower, the better). We compare against standard FL, infinite-data fully local,
and centralized models. The latter is trained on the union of local training sets. WorldLM outperforms
standard FL across Non-IID English dataset partitions, reducing perplexity by 1.15×−1.45×.

Collaborative Non-Collaborative
Dataset Model WorldLM FL Local Centralized

Pile 75M 73.82± 44.18 107.31± 52.50 40.66± 25.28 85.81± 24.42
Pile 125M 48.34± 32.41 53.92± 24.24 24.83± 12.47 29.61± 13.17
C4 75M 167.31± 2.92 145.32± 3.53 N/A 67.01± 1.67
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Figure 3: WorldLM performance of the multilingual models trained on a heterogeneous partitioning
of MC4 constructed analogously to Fig. 2 using IT and FR on one side and UK and BG on the other.
While standard FL stops improving after round 15, WorldLM reaches a performance close to the
centralized model and even the infinite-data local models. Furthermore, for the 250M bmodel it
outperforms HierFAVG and FedPer for the entire traininig. For the 400M model, which matches the
2023 SOTA for federated pre-training, we compare against centralized only due to limited compute
and show comparable performance as early as round 15 with a better final average perplexity (Table 1)

Table 3: Results evaluating privacy and robustness. WorldLM is highly resilient to DP with σ = 0.5
being applied over two of its leaf participants due to its aggregation procedure. It is also capable of
handling the alternative arrangement of WK and PBA, only losing slightly in val perplexity to FL.

Method Pile DPCC,WK DPPBC,PBA Pile (A)
WorldLM 73.82± 44.18 101.78± 88.48 103.68± 90.53 140.05± 100.52

FL 107.31± 52.50 724.56± 251.89 724.24± 250.98 107.31± 52.50

This indicates that additional means of accounting for noise may be highly beneficial for standard FL
approaches as well. For example, first pre-training on non-DP clients.

For the second, we analyze robustness to data heterogeneity by using an alternative arrangement
of The Pile which does not contain an inherent cluster relationship. As observed in Table 3 and
Figure 4, swapping the data of WK with PBA harms performance due to the K layers of the root being
unable to agree during attention-based aggregation. Crucially, as can be observed from Fig. 4, the
personalized layers of the other nodes, together with the residual mechanism of WorldLM allow them
to maintain performance despite this decrease for the root—which drives the performance decrease
shown in Table 3. Consequently, for a majority of the participating organizations WorldLM serves as
a superior alternative to FL from a personalization perspective.

5.3 WorldLM IMPROVES DOWNSTREAM TASK PERFORMANCE

Table 4: Downstream task evaluation on five broad categories evaluated using the MosaicML Gauntlet
for models trained on MC4. Scores account for the random baseline and average accuracy values
within each category uniformly. We report performance relative to the baselines, FL/Centralized,
respectively. Full downstream evaluation results are available in Appendix A.6.

Collaborative Non-Collaborative
Dataset Model Category WorldLM FL FedPer HierFAVG Local Centralized
MC4 250M comm -1.11% 0.43% 3.52% -0.19% -0.57% 0.42%
MC4 250M lang 3.21% 0.29% 1.03% 1.12% -1.72% 0.31%
MC4 250M read 0.43% 0.21% -2.14% 0.12% -3.49% 0.21%
MC4 250M symbol 14.90% 0.06% -5.04% 10.14% 2.76% 0.08%
MC4 250M know 5.04% 0.21% 0.21% 2.85% 1.19% 0.22%

Avg Improvement 4.49% -0.48% 2.81% -0.37%
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Figure 4: The impact of differential privacy on WorldLM performance, with the 75M model on The
Pile, versus standard FL. WorldLM is able to stabilize the training and validation performance (a,b)
when applying DP over the leaf CC and WK clients, unlike FL which diverges. Similarly, for the
alternative arrangement of The Pile where WK and PBA are swapped, the cross-federation sharing
mechanism allows WorldLM to maintain a good degree of performance.

To further evaluate the efficacy of WorldLM, we assess its performance across various downstream
tasks provided by the MosaicML Gauntlet, comparing it with other collaborative and non-collaborative
methods. Because our gauntlet includes 35 different benchmarks, we report the averages weighted
scores reported by the gauntlet with its necessary adjustments for the random baseline accuracy.
As can be seen in Table 4, WorldLM achieves superior performance to standard FL baseline, and
outperforms FedPer and HierFAVG. We want to emphasize that few-shot evaluations at this scale are
difficult Brown et al. (2020) resulting in low absolute performance, and likely noisy. Thus, Table 4
reports performance across all models in relative terms to the relevant baseline as is done for all
comparisons in Appendix A.6. Finally, it is important to note that perplexity is highly predictive of
downstream tasks Dubey et al. (2024) and should be the preferred metric for comparison.

5.4 LIMITATIONS

The primary limitations of our design related to the need for an implicit relationship to exist across
the data of clients in the same federation. While our information-sharing and partial-personalization
address this by increasing the distance between two nodes that can result in an interaction, allowing
WorldLM to perform well on the alternative arrangement of The Pile, it is not a guaranteed
solution. Other significant limitations relate to preventing attacks in a hierarchical scenario, as a
single centralized control point does not exist. However, the residuals of WorldLM could be used to
potentially filter out outliers from aggregation. A full description of the limitations of WorldLM is
available in Appendix A.4.

6 CONCLUSION

WorldLM supports the extension of federated learning (FL) to the challenging setting of worldwide
optimization of language models (LMs). Our results indicate that systems based on federations-of-
federations can compete with standard FL and centralized optimization for the medium-sized LMs
affordable to small organizations and groups, given their hardware. Our results show that WorldLM
can outperform standard FL under realistic federated topologies and data distributions constructed
using naturally heterogeneous datasets. Furthermore, they also indicate our method to be robust under
the constraints of differential privacy, unlike standard FL. Thus, WorldLM is an effective approach
for addressing the nascent sub-field of worldwide LM pre-training. We open several new research
opportunities such as: (a) defending against model poisoning in hierarchical settings, (b) bringing the
benefits of WorldLM billion-scale models, (c) tackling broader forms of statistical heterogeneity, and
(d) applying it to parameter-efficient fine-tuning. We hope this will help democratize LM training
across national boundaries and address the societal concerns regarding its governance.
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A APPENDIX

Table 5: Hyperparameters for WorldLM. The federated learning rate ηs and momentum µs (Huo
et al., 2020) are applied by a standard FL server or each server of WorldLM. |K| is the number of
blocks used for the key in WorldLM, while νK is the number of layers selected for each residual
across all clients. Finally, SC represents the parameters of the learning rate scheduler synchronized
across sequential steps. Do note that the 400M model is trained for twice as many steps per
round (Hoffmann et al., 2022).

Model (size) #Rounds ηs µs |K| νK SC(α, ηmax, T)
English (75M) 12 0.2 0.9 1 1 (10−2, 8× 10−4, 3× 103)

English (125M) 21 0.2 0.9 3 1 (10−2, 6× 10−4, 5× 103)
Multi (250M) 21 0.2 0.9 1 1 (10−2, 8× 10−4, 5× 103)
Multi (400M) 21 0.2 0.9 1 1 (10−2, 3× 10−4, 1× 104)

Table 6: Architecture details and local training parameters for our 75M and 250M models. They
represent the number of transformer blocks, hidden model dimension, number of attention heads, the
linear layer expansion ratio and the parameters of Adam.

Model (size) #Blocks d #Heads Exp. Ratio (β1, β2) |Vocab|
English (75M) 3 896 16 4 (0.9, 0.95) 50K

English (125M) 12 768 12 4 (0.9, 0.95) 50K
Multi (250M) 3 896 16 4 (0.9, 0.95) 250K
Multi (400M) 16 896 16 4 (0.9, 0.95) 250K
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Figure 5: WorldLM training and performance of the 75M) and 125 English models on a three-level
heterogeneous partitioning of The Pile (Fig. 2). While the hierarchical approach makes steady
progress due to its attention-based aggregation and partial personalization, standard FL struggles to
converge due to data heterogeneity. Crucially, the performance of WorldLM approaches that of the
centralized model and partially overlaps with infinite-data local models.
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A.1 THE IMPACT OF SAMPLING ON WORLDLM

In the WorldLM algorithm, the size of a data source impacts the sampling ratios within the local
training pipeline of a given node and the composition of the evaluation set. The hierarchical structure
of the federations necessitates a multi-layered approach to sampling, where each level of the hierarchy
influences the effective sampling ratios for the data sources.

A.1.1 LOCAL SAMPLING STRATEGY

Let ωc represent the dataset held by client c. If a participant holds a single data source, they exclusively
sample from that source. For example, a participant holding only Common Crawl (CC) samples will
see as many samples of CC as a participant holding only PubMed Central (PBC). Conversely, if a
participant holds both Wikipedia (WK) and Common Crawl (CC) datasets, they sample from these
sources proportionally to their sizes when forming batches. The local sampling ratio, rωc , for data
from a source ωc at a given node is thus determined by the relative sizes of the datasets held by that
node.

A.1.2 EFFECTIVE SAMPLING RATIO ACROSS HIERARCHY

To determine the effective sampling ratio for a given data source across all model training steps,
one must consider the data mixture across all clients in the federation. It is important to keep the
sequential versus parallel distinction in mind. For example, if in standard FL, 7 clients would executed
in parallel and be averaged, the execution of WorldLM would depend on the hierarchical structure.
Thus, while standard FL could complete 3 rounds with 250 steps per client, for a total number of
parallel SGD steps of 5250, WorldLM would only perform 250 + 250 ∗ 2 + 250 ∗ 4 = 1750 parallel
steps despite doing the same number of sequential steps.

Let us formalize the sampling ratios using a concrete example involving data sources from the
Multilingual Colossal Common Crawl (mC4).

Formulation for Effective Sampling Ratio

We define the batch-wise sampling ratio for the Bulgarian dataset, ωBG, considering all levels of the
hierarchy. The sampling ratio rBG is given by summing contributions from each hierarchical level.
This can be expressed as:

rBG =
|ωBG|

|ωFR|+ |ωIT|+ |ωBG|+ |ωUK|
+

|ωBG|
|ωUK|+ |ωBG|

+
|ωBG|
|ωBG|

where: - The first term represents the root server sampling from all four datasets proportionally to
their sizes in each batch. - The second term represents a regional server sampling from UK (UK) and
Bulgarian (BG) proportionally to their sizes. - The third term represents a leaf node containing only
Bulgarian data.

A.1.3 IMPACT OF AGGREGATION PROCEDURE

Next, we consider the impact of the aggregation procedure on the sampling ratio. To model the
sampling ratio given the effect of averaging, we account for the number of participants at each
hierarchical level. The adjusted sampling ratio rBG, taking into account hierarchical averaging, is:

rBG =
|ωBG|

|ωFR|+ |ωIT|+ |ωBG|+ |ωUK|
+

1

2

|ωBG|
|ωUK|+ |ωBG|

+
1

4

|ωBG|
|ωBG|

This adjusted ratio emphasizes that the dataset size becomes less relevant due to the inherent upsam-
pling effect within each leaf node, facilitated by the hierarchical structure of WorldLM.

A.2 FEDERATION SIZE SIZES

Table 7 provides the detailed sample sizes for each federation partition. Crucially, only the relative
size of a given data source within a single node matters. To construct our splits we partition each
dataset into equal shared and then divide the shards between the nodes of the federation, giving 3
shards of each data source to each leaf node, and 2 shards for the other two levels.
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Table 7: Number of samples for each federation partition in the datasets MC4 and The Pile. The
sizes are in GiB, which serves as a proxy for the number of samples, depending on the tokenizer and
sequence length.

Federation Dataset Size [GiB]
MC4

IT Italian (IT) 252.2
FR French (FR) 483.1
UK Ukrainian (UK) 84.5
BG Bulgarian (BG) 44.3
IT + FR Italian (IT) + French (FR) 168.1 + 332
UK + BG Ukrainian (UK) + Bulgarian (BG) 56.3 + 29.3
IT + FR + UK + BG 585.7

The Pile
CC Common Crawl (CC) 97.2
WK Wikipedia (WK) 2.7
PBC PubMed Central (PBC) 38.3
PBA PubMed Abstracts (PBA) 8.2
CC + WK Common Crawl (CC) + Wikipedia (WK) 64.8 + 1.8
PBC + PBA PubMed Central (PBC) + PubMed Abstracts (PBA) 25.5 + 5.5
CC + WK + PBC + PBA 97.6

A.3 DETAILED ALGORITHM DESCRIPTION

In this appendix, we provide a comprehensive and detailed description of the WorldLM algorithm,
aimed at offering a thorough understanding of its operations.

A.3.1 ALGORITHM OVERVIEW

Each participant in WorldLM is referenced with a node ID q ∈ {0, 1, . . . , n − 1}. Every node q
possesses a parent p, except for the root node q = 0, and a set of descendants Cq. The following
detailed steps outline the execution of the WorldLM algorithm for node q.

A.3.2 INITIAL SETUP

Each node q is initialized with:

• A backbone B0
q and an ordered sequence of personalized key layers K0

q , composed of pairs
(v, l), where v are the parameters of a layer and l is their index in the model.

• Two unordered sequences of downstream residuals: one for pre-training aggregation, Da,
and one for downstream routing, D0

r , both consisting of pairs (v, l).

• Federated server optimization method, ServerOpt, and client optimization method,
ClientOpt.

• A similarity function, typically cosine similarity.

• Number of training rounds, Tq .

A.3.3 EXECUTION STEPS

The algorithm for node q proceeds as follows:

1. Initialize Parameters: Node q loads its initial parameters, separating them into the backbone
B0

q and the personalized key layers K0
q .

2. Aggregate Initial Key Layers: If q is not the root node:

(a) Aggregate K0
q with downstream residuals for pre-training aggregation, Da, and the

parent key layers Kp using a layer-wise attention mechanism.
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(b) Expand the pairs in Da to a complete model, masking unfilled layers. For each element
r ∈ Da, obtain a new ordered sequence Kr.

(c) Treat each current node’s key layer Kq,l as a query Ql in a self-attention mechanism
involving Kq,l, Kp,l, and Kr,l for all residuals:

eq,q = 1

eq,p =
⟨Kq,l,Kp,l⟩
|Kq,l||Kp,l|

eq,r =
⟨Kq,l,Kr,l⟩
|Kq,l||Kr,l|

,∀r ∈ Da

(d) Compute attention coefficients λ using a softmax over the cosine similarities and
produce the final layer at position l:

K ′
q,l = λq,qKq,l + λq,pKp,l +

|Da|∑
r=1

λq,rKr,l

3. Replace Backbone: Replace the loaded backbone B0
q with the parent backbone Bp.

4. Training Round Execution:
(a) For each training round t ∈ {0, . . . , Tq − 1}:

i. Train the model of node q using ClientOpt.
ii. Route each downstream residual layer (v, l) received from the parent Dt

r. For a key
layer v with index l, compute its similarity to Kc,l for all children c ∈ Cq:

ec = ⟨v,Kc,l⟩,∀c ∈ Cq

iii. Select the destination node with the highest cosine similarity. If the child is a leaf,
send the layer as part of the residuals to be aggregated At or routed Rt. All children
execute recursively in parallel.

iv. Aggregate the key layers of descendants. If q is not a leaf node, perform:
A. Compute pseudo-gradients ∆t

c ← Bt
c −Bt for each child received backbone Bt

c.
B. Average pseudo-gradients into ∆t and apply ∆t to the backbone using

ServerOpt.
C. Perform full attention computation where the layer of a child Kc,l serves as key,

value, and query:

ec,j,l =
⟨Kc,l,Kj,l⟩
|Kc,l||Kj,l|

,∀j ∈ Cq ∪ {q}

λc,j,l =
exp(ec,j,l)∑

z∈Cq∪{q} exp(ec,z,l)

K ′
c,l =

∑
j∈Cq∪{q}

λc,j,lKj,l

D. Average attentional representations:

K ′
q,l =

∑
c∈Cq∪{q}

1

|Cq ∪ {q}|
K ′

c,l

E. For each layer position l, score the same layer across all clients Kc,l against
K ′

q,l and select the νK most dissimilar layers to be sent upstream as residuals or
routed down if q is the root.

A.3.4 MATHEMATICAL REPRESENTATION OF KEY PROCEDURES

The following equations summarize the key procedures involved in the algorithm, making heavy use
of attention aggregation and similarity measures.
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A.3.5 LAYER-WISE ATTENTION MECHANISM

Given the query, key, and value representations of key layers:

Ql = Kq,l

Kl = {Kp,l,Kr,l∀r ∈ Da}
Vl = {Kq,l,Kp,l,Kr,l∀r ∈ Da}

The similarity scores and attention weights are computed as:

eq,i,l =
⟨Ql,Ki,l⟩
|Ql||Ki,l|

λq,i,l = softmax(eq,i,l) =
exp(eq,i,l)∑
j exp(eq,j,l)

The final aggregated key layer is then:

K ′
q,l =

∑
i

λq,i,lVi,l

These steps are repeated for each training round and for each layer position l as described above,
ensuring that the model aggregates information from various levels of the hierarchy in a structured
and efficient manner.

A.3.6 PSEUDO-GRADIENT COMPUTATION AND AGGREGATION

For a given child’s received backbone Bt
c and the current node’s backbone Bt, the pseudo-gradient

∆t
c is computed as:

∆t
c = Bt

c −Bt

The pseudo-gradients from all children are then averaged to obtain the final gradient update ∆t,
which is applied to the backbone using the federated optimization method ServerOpt.

A.3.7 RESIDUAL ROUTING AND AGGREGATION

The residual layers (v, l) are routed based on their similarity to the key layers of recipients. The
similarity is computed as:

ec =
⟨v,Kc,l⟩
|v||Kc,l|

,∀c ∈ Cq

The residual is then sent to the child with the highest similarity, ensuring relevant updates are
propagated through the hierarchy.

A.4 LIMITATIONS

The limitations of WorldLM come from two different sources: (a) those common to all federated
methods [1], (b) those induced by its particular design choices such as the hierarchical structure,
partially personalized attention-based aggregation and residual information sharing.

The limitations common to all federated methods which are highly relevant to WorldLM are data
heterogeneity, system heterogeneity, and sample efficiency. While we have built WorldLM to tackle
data heterogeneity, our experimental setup cannot completely replicate the most pathological natural
data distributions which can naturally arise since it relies on known and curated datasets. Thus,
it is possible for a real-world federation to hold data that is even more heterogeneous than what
we can explore using multiple languages or genres of text, as is the case for the work of Charles
et al. (2023). Investigating how to model heterogeneity for federated LM pre-training is an active
research topic. Stragglers may be caused by system heterogeneity as nodes with less powerful GPUs
may take longer to complete a round, our work assumes that the participants are roughly equal in
terms of computational ability and that the impact of potential stragglers on training time is limited.
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However, we would like to mention that several opportunities to address this concern, including
asynchronous execution [3], partial participation[4], and load balancing[5]. Finally, the sample
efficiency of federated averaging and its derived methods is questionable, given that the multiple
parallel updates of simultaneously executing participants are averaged together which may result in an
uninformative pseudo-gradient on the server [6]. Creating more effective aggregation methods is one
of the primary pursuits of the field. While the partially-personalized aggregation of WorldLM may
help tackle this issue, the challenge is guaranteed for exist in the case of the backbone aggregation.

The WorldLM design itself suffers from challenges when dealing with data heterogeneity, communi-
cation requirements, and potential attacks. As discussed in section 3 of the main work, WorldLM
assumes that there exists multiple participants in the federation which share similar data and may be
connected either via an ancestor or via the residual-sharing mechanism. When this relation fails to
hold, the attention aggregation and residual sharing of WorldLM do not provide a direct benefit over
standard FL methods, as shown by FL performing similarly to WorldLM on the C4 dataset. When
such a relationship is indeed present and the residual mechanism can take care of it, it is possible
for communication restrictions to exist between regions for legal or practical reasons, limiting the
efficacy of the residual sharing. Finally, defenses against potential poisoning attacks must now
consider all levels of the hierarchy rather than having a simple dual system where the server is trusted
while clients are not, as in traditional FL. WorldLM provides some recourse to this as the attention
coefficients may indicate if the data distribution of a particular participant is completely out of the
ordinary, however, security remains an open future direction.

A.5 THE LEGAL CONTEXT OF LLM TRAINING

The surge in popularity of language models, notably exemplified by the release and widespread
adoption of ChatGPT, has accelerated the integration of AI into various sectors. This expansion has
subsequently encouraged the development of regulatory frameworks to govern AI technologies. A
pioneering effort in this domain is the European Union’s Artificial Intelligence Act (the EU AI Act),
which represents the first comprehensive legal framework of its kind, anticipated to set a precedent for
global AI regulation (Woisetschläger et al., 2024b). The Act encompasses, among various provisions,
rigorous data governance guidelines (Art. 10), including adherence to the General Data Protection
Regulation (GDPR). This introduces significant challenges for AI developers, particularly concerning
the international transfer of data and data de-biasing processes.

Restrictions in cross-border transfer of data: The EU’s GDPR imposes stringent conditions on
the international transfer of personal data, particularly to third countries deemed to lack adequate
protection for personal data. The criterion for ’adequacy’, as established in Schrems v DPC (C-
262/14)) and Recital 104, requires a level of protection ’essentially equivalent’ to that of the EU,
a high bar for international data transfers, especially to developing countries. Additionally, the
requirement for periodic reviews of adequacy for jurisdictions considered equivalent, alongside
mandated safeguard measures (Art. 49) for transfers to non-equivalent third countries, introduces a
layer of uncertainty and financial burden for businesses engaged in data transfer. Moreover, the EU
is not the only jurisdiction tightening controls over data transfer. China, for instance, has enacted
laws and supplementary provisions mandating a security assessment by regulator for the transfer
of ’important data’ or personal data exceeding specific thresholds, barring certain exemptions. The
varied landscape of regulations poses challenges for accessing diverse local datasets while adhering
to disparate, and sometimes significantly different, regulations across jurisdictions. Hierarchical FL
offers an efficient solution to maintain compliance by storing data and model within its jurisdiction
of origin, avoiding cross-border transfers.

Mitigation of data bias: The EU AI Act mandates rigorous oversight throughout the entire lifecycle
of the data used in AI models and obligates the implementation of ’appropriate measures to detect,
prevent, and mitigate potential biases’ (Art. 10.2f,fa). It underscores the growing importance of
accessing diversified data sources, particularly those from jurisdictions that are underrepresented. To
accommodate the acquisition of such data while adhering to individual privacy and local regulations, a
novel training paradigm, comprising multiple layers of federation both among clients and jurisdictions,
is necessitated to address the limitations of the traditional single-layer FL framework.

The right to information: Transparency regarding the data collected and utilized in training, along
with the rights of AI developers to access such information, has garnered considerable attention from
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both regulators and content creators. The GDPR grants individuals the right to obtain all information
stored by a service provider (Art. 15, Rec. 63 & 64), including details on the application of this
data in training models. Furthermore, the EU AI Act mandates that model providers compile and
disclose a comprehensive summary of the training content publicly (Art. 52c). In the US, legal
disputes such as "Times v OpenAI" have underscored the debate over the extent to which the fair use
doctrine under US copyright law protects the utilization of copyrighted materials in the training of AI
models. This case also ignites broader discussions about the adequacy of the current legal framework
in safeguarding content creators against the opaque practices of LLM training. These challenges have
led to legislative proposals, including the Generative AI Copyright Disclosure Bill in the US House of
Representatives, aimed at enhancing transparency and accountability. Hierarchical FL, by its design,
offers inherent advantages over centralized training models by delineating clear data provenance —
identifying the sources of data and their contributors. This attribute of Hierarchical FL positions it
favorably in addressing concerns related to informational rights and data privacy, presenting a more
transparent framework for data utilization in AI development.

Energy efficiency: The EU AI Act advocates for the environmentally sustainable development of
AI systems by proposing the formulation of a Code of Conduct. This Code is intended to establish
explicit objectives and key performance indicators (Art. 69), mirroring the core values of the EU but
also responding to growing concerns within the industry and broader society regarding the energy
consumption associated with the training and use of AI.

A.6 DOWNSTREAM TASK ANALYSIS

We report values on the gauntlet provided by MosaicML, using the full gauntlet with category
definitions and random baseline accuracy as provided by Mosaic.

Collaborative Non-Collaborative
Dataset Model Category WorldLM FL FedPer HierFAVG Local Centralized
MC4 250M comm -1.11% 0.43% 3.52% -0.19% -0.57% 0.42%
MC4 250M lang 3.21% 0.29% 1.03% 1.12% -1.72% 0.31%
MC4 250M read 0.43% 0.21% -2.14% 0.12% -3.49% 0.21%
MC4 250M symbol 14.90% 0.06% -5.04% 10.14% 2.76% 0.08%
MC4 250M know 5.04% 0.21% 0.21% 2.85% 1.19% 0.22%

Avg Improvement 4.49% -0.48% 2.81% -0.37%

22

https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
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Collaborative Non-Collaborative
Dataset Model Category WorldLM FL Local Centralized
Pile 125M comm 2.79% 0.40% 4.74% 0.40%
Pile 75M comm 0.26% 0.42% -0.79% 0.41%
Pile 125M lang -0.27% 0.31% -3.15% 0.33%
Pile 75M lang -1.89% 0.31% -0.81% 0.32%
Pile 125M read 1.88% 0.20% 11.43% 0.24%
Pile 75M read -0.15% 0.21% 9.67% 0.20%
Pile 125M symbol 2.23% 0.08% 5.89% 0.08%
Pile 75M symbol 7.91% 0.07% 6.02% 0.08%
Pile 125M know -3.84% 0.22% -1.75% 0.23%
Pile 75M know 0.86% 0.21% 2.20% 0.21%

Avg Improvement 1.40% 0.32%

Collaborative Non-Collaborative
Dataset Model Category WorldLM FL Local Centralized
C4 75M comm -2.59% 0.42% - 0.40%
C4 75M lang -1.57% 0.30% - 0.32%
C4 75M read 4.09% 0.21% - 0.23%
C4 75M symbol -1.36% 0.08% - 0.08%
C4 75M know 0.03% 0.20% - 0.22%

Avg Improvement -0.28%

Collaborative
Dataset Model Category WorldLM FL
Pile (Alt) 75M comm 2.79% 0.42%
Pile (Alt) 75M lang 0.26% 0.31%
Pile (Alt) 75M read -0.27% 0.21%
Pile (Alt) 75M symbol -1.89% 0.07%
Pile (Alt) 75M know 1.88% 0.21%

Avg Improvement 1.40%
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