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Figure 1. Multi-context visual grounding is a new task that aims at localizing target instances based on open-ended text prompts in multi-
image scenarios. A new dataset MC-Bench is constructed to benchmark the MLLMs and foundation models with potential multi-context
visual grounding capabilities. The benchmark results of over 20 state-of-the-art models reveal a significant performance gap between
existing approaches and humans, while also suggesting potential future directions.

Abstract

While multimodal large language models (MLLMs) have
demonstrated extraordinary vision-language understanding
capabilities, their abilities to solve instance-level visual-
language problems beyond a single image warrant further
exploration. To assess these unproven abilities of MLLMs,
this paper proposes a new visual grounding task called
multi-context visual grounding, which aims to localize in-
stances of interest across multiple images based on open-
ended text prompts. In order to facilitate this research, we
construct a new dataset MC-Bench that features 2K high-
quality and manually annotated samples. Each sample con-
sists of an instance-level labeled image pair and a corre-
sponding text prompt that indicates the target instances in
the images. These text prompts are highly open-ended and
follow three distinct styles, covering 20 practical skills. We
benchmark over 20 state-of-the-art MLLMs and foundation
models with potential multi-context visual grounding capa-
bilities, along with our developed simple yet effective agen-
tic baseline and a finetuned baseline by multi-context in-
struction tuning. Our evaluation reveals a non-trivial per-
formance gap between existing MLLMs and humans, along
with some insightful observations that suggest potential fu-
ture directions. We hope that MC-Bench and our empirical
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findings encourage the research community to further ad-
vance the untapped potentials of MLLMs in instance-level
tasks, particularly in multi-image contexts. Project page:
https://xuyungiu.github.io/MC—-Bench.

1. Introduction

Grounding visual content guided by textual inputs is a long-
standing research topic involving vision-language under-
standing and visual localization tasks. Early works typ-
ically focus on locating instances of interest using sim-
ple textual expressions, such as object detection (OD) [8,
72, 74, 101, 102] and open-vocabulary object detection
(OVD) [17, 33] based on category names, as well as refer-
ring expression comprehension (REC) [26, 44, 45, 80, 87]
and describe object detection (DOD) [76, 100] with refer-
ring phrases. However, text descriptions in real-world ap-
plications are often more flexible and ambiguous. Ground-
ing objects using free-form textual descriptions in an open
world is challenging, as models must comprehend the inten-
tions of ambiguous text inputs and grasp the overall context
within the images. Recently, the development of founda-
tion models [36, 55, 71, 78, 99] has catalyzed a shift from
specialized models to general-purpose models, showcasing
unprecedented generalization capabilities. Despite signifi-
cant progress made by these foundation models, they still
often struggle with complex text descriptions, limiting their
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Figure 2. MC-Bench contains diverse samples covering 20 practical skills.

broader applications for real-world use.

Since the advent of multimodal large language models
(MLLMs) [1, 4, 16, 22, 42, 50, 53, 86, 104, 115, 117],
these models have advanced significantly, demonstrating
extraordinary capabilities in understanding human language
and reasoning about the visual world. Besides solving
image-level visual-language tasks such as captioning [4, 29]
and visual question answering (VQA) [3, 10], some re-
cent MLLM works [7, 13, 14, 109, 113] have also explored
more fine-grained tasks, showcasing promising region un-
derstanding and visual grounding capabilities. Despite their
significance, we notice that, like many early visual ground-
ing works, previous region-level MLLMs typically focus on
single-image inputs, ignoring the cross-image context.

We believe that multi-image vision-language intelli-
gence plays a pivotal role in many real-world applications,
where the ability to extract and integrate contextual infor-
mation from multiple images provides essential cues that
enhance complex comprehension and reasoning. For in-
stance, in autonomous driving, models [18, 77] can better
understand pedestrians and vehicles in the 3D world by in-
tegrating data from multiple camera angles. In security and
surveillance, models [12, 75] can enhance system under-
standing of the dynamic environment by integrating multi-
ple frames from different cameras to identify and analyze
the targets across different time and locations. General-
purpose Al assistants (e.g., chart analysis [118] and GUI
agents [105]) are capable of understanding and reasoning
across multiple contexts to identify correlations/discrepan-
cies and make decisions. Although some early works inves-

tigate vision-language intelligence in multi-image scenar-
ios, they are limited to image-level tasks [54, 82] or without
complex textual descriptions [31, 83].

Driven by this intuition, this paper explores a significant
yet largely overlooked scenario and introduces a practical
multi-image instance-level task, namely multi-context vi-
sual grounding, to assess such unproven abilities of existing
MLLMs. This new task focuses on reasoning and localizing
regions of interest across multiple images based on open-
ended text prompts. As illustrated in Figure 1a, compared to
existing language-based visual grounding tasks [26, 49, 57,
68, 76, 80, 87, 100], multi-context visual grounding is more
challenging, as it takes cross-image context into considera-
tion and uses more nuanced and flexible textual expressions
along with a greater diversity of disciplines.

To facilitate the research, we present MC-Bench, the
first MLLM benchmark specifically designed for visual
grounding in multi-image scenarios. MC-Bench comprises
2,000 manually labeled samples, each featuring paired im-
ages, instance-level annotations and a corresponding text
prompt. The text prompts are categorized into three distinct
styles (i.e., referring, comparison and reasoning), covering
20 practical skills applicable to real-world scenarios (see
Figure 2). Overall, we collect 3,345 diverse images from
over 10 data sources, covering natural images, charts, doc-
ument photos, artworks and scientific diagrams. We then
carefully curate 2,000 image pairs and manually annotated
1,514 unique open-ended text prompts, along with 3,200
language-grounded bounding boxes.

We evaluate over 20 baselines with potential multi-



Table 1. Comparison to related vision-language datasets from different dimensions, i.e., multi-image input, instance-level annotation,
multi-domain data and text description types. ¢ in the multi-image column indicates datasets containing multi-image subsets.

MileBench [79]
Mantis-Eval [30]
MICBench [96]
Mementos [91]

multi-choice & open QAs on long video & image sequences
multiple-choice & open QAs on image sequences
multi-choice QAs on comparing image quality
descriptions capturing unfolding events on image sequences

Datasets multi-image instance-labeled multi-domain text description types
MS-COCO [51] b 4 v X object categories & image-level captions
RefCOCO/g/+ [35, 61] X v X category/attribute/relation descriptions
RIO [68] X v X sentences of intention descriptions for objects
D3 [100] X v v unrestricted descriptions for any number of instances
OmniLabel [76] X v v complex object descriptions for any number of instances
ODinW [40] X v v object categories & external knowledge descriptions
VQS [21] X v X multi-choice QAs from the VQA dataset [3]
VizWiz-VQA-G [9] X v X multi-choice QAs from the VizWiz-VQA dataset [25]
MMBench [56] w X v multiple-choice QAs covering multiple ability dimensions
MMMU [107] w X v multi-choice & open QAs covering diverse disciplines
SEED-Bench [39] (%4 X v multi-choice QAs spanning numerous dimensions
BLINK [20] w X v multi-choice QAs on visual perception abilities

v X v

v X v

v X v

v X v

v v v

MC-Bench (ours)

open-ended instance-level descriptions over multiple images

context visual grounding capabilities on MC-Bench, in-
cluding advanced MLLMs and a few relevant foundation
models without LLMs. The experimental results indicate
that current MLLMs have significant potential for improve-
ment. Concretely, while small-scale MLLMs (no larger
than 7B) can achieve comparable instance-level perfor-
mance to the foundation models [55, 78], they typically
show better image-level performance. As MLLMs scale
up, their performance improves significantly on all met-
rics. We also observe that the specialist MLLMs trained
exclusively on single-image visual grounding data struggle
with multi-context scenarios. In contrast, some generalist
MLLMs with strong instruction-following capabilities gen-
eralize better in multi-context visual grounding, particularly
those trained with multi-context data, even if those data are
not instance-level labeled. Nevertheless, a simple agentic
baseline that integrates the strengths of GPT-40 [1] and G-
DINO [55] can easily outperform all evaluated end-to-end
MLLMs by a clear margin, highlighting the potential for
improvement. We also introduce a fine-tuned baseline that
is trained using synthesized multi-context instruction tuning
data. Moreover, we conduct human evaluations to establish
an upper bound for existing MLLMs, revealing a significant
performance gap between MLLMs and humans.

We hope our MC-Bench and empirical findings inspire
the research community to delve deeper to discover and en-
hance the untapped potentials of MLLMs in instance-level
tasks particularly in multi-image scenarios. The main con-
tributions of this paper can be summarized as follows:

* To the best of our knowledge, this work is the pioneer to
explore the use of MLLMs for multi-image instance-level
scenarios in open environments, and suggests a practical
multi-context visual grounding task.

* We construct a new dataset, MC-Bench, featuring 2,000

manually annotated samples consisting of image pairs,
text prompts, and corresponding instance-level labels.
The diverse images and the open-ended prompts enable
the evaluation of MLLMs from a wide range of dimen-
sions.

* We benchmark more than 20 relevant MLLMs and foun-
dation models on MC-Bench, revealing a non-trivial per-
formance gap between existing MLLMs and humans. Be-
yond the performance scores, this work provides insight-
ful analysis aimed at guiding improvements in MLLM de-
velopment.

2. Related Work

MLLM Benchmarks. Numerous benchmarks evaluate
MLLMs with single-image inputs, and the assessments of
the multimodal capabilities with multiple images do not re-
ceive much attention. Only a few recent benchmarks take
multi-image evaluations into consideration, where some of
them focus on specific domains and tasks (e.g., low-level
vision [95, 96, 98] and temporal understanding [43, 46]).
As summarized in Table 1, some concurrent works [20, 30,
56, 79, 107] present multi-image MLLMs benchmarks for
more general purposes, covering multiple fields and disci-
plines. However, they are annotated for image-level percep-
tion, comprehend and reasoning tasks (e.g., VQA), none of
them is designed for instance-level tasks. Current MLLMs
for instance-level tasks are usually evaluated on conven-
tional benchmarks [9, 13, 21, 28, 35, 61] with limited di-
versity and no multi-image context.

Open-Ended Visual Content Grounding. Benefiting from
the pre-trained visual-language models [69, 110], open-
vocabulary object detection [23, 63, 103, 108] has received
increasing attention, which localizes objects of arbitrary
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Figure 3. MC-Bench contains three distinct styles of open-ended textual descriptions, i.e., referring, comparison and reasoning.

categories using language to achieve zero-shot transferabil-
ity. Besides leveraging category names, another line of
work [26, 68, 80, 87, 100] investigates grounding visual
content using simple referring phrases or sentences that of-
ten include auxiliary cues that help distinguish specific in-
stances from others within the same category. With the im-
pressive success of LLMs, MLLMs have emerged as a piv-
otal advancement that serves to effectively connect vision
and language tasks. While MLLMs [1, 4, 16, 22, 42, 53,
117] demonstrate remarkable capabilities on image-level
tasks, several recent studies [14, 24, 32, 52, 59, 67, 70,
90, 106, 112, 114, 116] explore the potential of enabling
MLLMs to perform region-level tasks through instruction
tuning. However, most of existing works only focus on in-
dependent images and ignore multi-image context.

MLLMs with Multi-Image Context. Unlike most previ-
ous MLLLMs take single-image-text pairs as inputs, some
variants of MLLMs [58, 60, 111] tailored for video tasks in-
herently support multiple frames and long contexts. How-
ever, these models designed to comprehend temporal se-
quences often face challenges when dealing with single im-
ages or multiple images that are not related temporally. An-
other line of work [2, 4, 5, 11, 37, 41, 43] has also no-
ticed the importance of multiple-image capabilities for real-
world applications, and takes effort for scaling the context
to enable MLLMs to handle multiple and interleaved image-
text inputs. Nevertheless, prior MLLMs largely neglect the
multi-image instance-level scenarios, except for a few co-
current works [47, 64, 85] exploring common/unique ob-
jects/parts co-localization or simple co-referring.

3. MC-Bench
3.1. Multi-Context Visual Grounding

Visual Grounding with Multi-Image Context. To meet
the demands of open-ended real-world applications, this pa-

per suggests a practical multi-image, instance-level vision-
language task called multi-context visual grounding. Given
a multimodal input sample, i.e., multiple images and a text
prompt, the models are required to localize all instances ref-
erenced in the input text description. Each image in an input
sample is temporally, spatially or semantically related with
others, with the text prompt linking them through shared
concepts or relationships. Without loss of generality, we
initially set the number of multi-images in the input samples
to a pair, which maintains essential characteristics of multi-
image tasks while ensuring a clear and controlled evalua-
tion. Our evaluation pipeline and metrics can be seamlessly
extended to more challenging long-context scenarios.

Visual Grounding with Open-Ended Expressions. Multi-
context visual grounding aims at localizing specific in-
stances within images using flexible and diverse text
prompts, covering a broad range of practical skills. As il-
lustrated in Figure 3, we design three distinct styles of text
prompts for grounding: referring, comparison and reason-
ing. The referring style prompts identify instances using
their category, attributes or positional information, either
directly or indirectly. The comparison style prompts are
slightly more challenging, requiring models to ground in-
stances by comparing the visual content across multiple im-
ages. These comparisons can be global, based on image-
level cues (e.g., the quantity of objects and image quality),
or local, focusing on the attributes (e.g., color and shape) of
objects within the images. The reasoning style prompts de-
scribe instances in a more challenging manner, where mod-
els struggle to locate instances without relying on external
knowledge (e.g., common sense and multi-hop reasoning
skills) beyond the input itself.

Visual Grounding with One-to-Any Matching. Since the
text descriptions in multi-context visual grounding are un-
restricted, each positive sample includes a text prompt that
may refer to one or multiple instances within the images of



that sample. In contrast, the text prompts in negative sam-
ples describe no instance within the images, and the models
are encouraged to reject these negative inputs (e.g., the po-
lice dog example in Figure 3). Textual expressions in the
real world often exhibit high generalization and polysemy.
Therefore, we also assume that the models can accurately
understand the intent behind flexible prompts and group tar-
get instances accordingly. As shown in the top right of Fig-
ure 3, given images featuring apples of two colors and a
prompt ‘Apples of the same colors’, the models are encour-
aged not only to detect all the apples but also to group them
according to their colors.

3.2. Dataset Curation

To the best of our knowledge, there is no existing dataset
suitable for language-grounded cross-image instance-level
tasks like multi-context visual grounding. To facilitate the
research, we construct an evaluation-only dataset that effec-
tively and faithfully evaluates the multimodal comprehend,
reasoning and grounding capabilities of existing MLLMs in
multi-image scenarios.

Multi-Source Image Collection. Our goal is to create a
high diverse benchmark that can better simulate a variety of
real-world scenarios. Guided by such goal, we first select
images covering a wide range of domains and topics, e.g.,
natural images, comics, scientific diagrams, artworks, doc-
ument photos, webpage screenshots, synthesized images
and efc. Unlike conventional benchmarks, we emphasize
instance-level tasks in real-world scenarios and collect a
more extensive set of scene-centric images featuring a vari-
ety of object sizes and domains. In total, we incorporate im-
ages from multiple data sources, including more than 10 ex-
isting datasets [6, 20, 30, 38, 51, 62, 65, 81, 94, 95, 97] and
a few additional images crawled from the Internet. Please
refer to the Appendix for more details.

Linking Images through Text Descriptions. We then re-
purpose the collected images and link image pairs using
open-ended text descriptions. Concretely, the images are
grouped into distinct subsets based on similar themes or do-
mains. The annotators are tasked with selecting image pairs
from the subsets and writing an open-ended text prompt
for each selected image pair, where the text prompts are
supposed to properly leverage the cross-image context and
clearly identify instances. In addition, to facilitate the sub-
sequent annotation process, annotators are asked to assign
positive/negative flags to indicate whether the images con-
tain at least one instance described by the text prompt.

Instance-Level Labeling and Cyclic Review. After label-
ing the text descriptions for each image pair, we distribute
the triplets to other annotators for subsequent annotation.
Given textual descriptions written by the text annotators,
the box annotators are tasked with identifying the relevant
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Figure 4. Statistical analysis of the proposed MC-Bench.

instances within the positive samples and drawing bounding
boxes to enclose them. Once all the samples have instance-
level annotations, we reassign them to the annotators who
label the text prompts, asking them to review the bound-
ing boxes to ensure they properly encompass the target in-
stances indicated by the written prompt. If any inconsisten-
cies are found, the samples will be flagged for relabeling
as part of the quality control process. We build an online
annotation platform based on Label Studio [84], leveraging
its programmable and user-friendly interface for annotating
paired images (see the interface example in the Appendix).

3.3. Dataset Statistics

We gather a total of 3,345 different images from various
sources, covering various domains and topics. We meticu-
lously organize the collected images into 2,000 image pairs
and provide 1,514 unique open-ended text descriptions for
these image pairs. As shown in Figure 4d, the length of
the text descriptions ranges from 2 to 24 words, with an
average of 7.2. Each text prompt describes visual content
within paired images without restriction. MC-Bench has
1,712 positive samples, with 404 containing target instances
in both images, while the remaining samples having target
objects in only one image (either the first or the second),
as summarized in Figure 4a. Besides positive samples, we
add a small proportion of negative examples to evaluate the
capabilities of models for rejecting negative inputs. As il-
lustrated in Figures 4b and 4c, MC-Bench contains three
distinct styles of text expressions (i.e., 346, 810 and 844 for
referring, comparison and reasoning respectively) and 20



practical skills (e.g., attribute comparison, logical reason-
ing, common sense reasoning and multi-view reasoning).
For the instance-level annotations, MC-Bench includes
3,200 language-grounded bounding boxes in total. As sum-
marized in Figure 4e, each prompt in positive samples indi-
cates 1 to 17 instances of 1 to 7 groups within image pairs,
while there is no instance related to negative description.
Unlike benchmarks for image-level tasks, we collect more
challenging scene-centric images and label instances with
diverse sizes. The size of the labeled bounding boxes ranges
from 4e-6 to 1, as shown in the distribution in Figure 4f.

4. Experiments

4.1. Evaluation Metrics

Image-Level Metrics. For multi-context visual grounding
task, we design image-level and instance-level metrics to
evaluate the performance of models from different dimen-
sions. Accuracy (Acc) is used to confirm whether the mod-
els can correctly identify which images contain the objects
indicated by each text prompt, where the instance quantity
and fine-grained location information is not considered.

Instance-Level Metrics. We choose average precision
(AP5p) as the instance-level metric to verify whether the
models can locate the target instances with multi-context in-
puts. For samples where the text prompt describes multiple
groups of instances, we first apply Hungarian algorithm to
match each predicted group to the most appropriate ground-
truth group, ensuring that the mean intersection over union
(IoU) across all predictions is maximized.

4.2. Baselines

Since the multi-context visual grounding is a new task, we
implement and evaluate various advanced approaches with
potential visual grounding capabilities, including latest pro-
prietary and open-source MLLMs as well as foundation
models without LLMs. Most existing methods do not sup-
port multi-image inputs, and we horizontally concatenate
the images before feeding them to these models.
Specifically, we select and evaluate @ the API-based
generalist MLLMs, such as GPT-4o [1] and Gemini-1.5
Pro [73], ® the open-source generalist MLLMs (e.g.,
Qwen-VL series [5, 89], SPHINX [52], InternVL2.5 [15]
and MiniGPT-v2 [11]) which are capable of performing a
wide range vision-language tasks, © the open-source spe-
cialist MLLMs (e.g., Shikra [14], Kosmos-2 [66], Fer-
ret [106], Lenna [92], Groma [59] and GroundingGPT [48])
tailored to visual grounding-related tasks and @ the foun-
dation models without LLMs, such as ONE-PEACE [88],
G-DINO [55] and APE [78]. More details (e.g., model ver-
sion and used prompts) are provided in the Appendix.
Apart from aforementioned end-to-end approaches, we
devise and assess @ an agentic baseline that follows a sim-
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“People with flags in their hands”

Analysis: The input prompt specifies looking for instances
where people are holding flags. In image1, there is one
person holding a flag on a golf course. In image2, there is
another person holding a flag as well.

Analysis: The task is to identify people in the same role
within the interview setup, such as interviewers, cameramen,
or interviewees. The images show two different interview
scenarios, each with a distinct group of people fulfiling
various roles.

Selected image: both,
Selected image: both,

Referring phrases for instances within image1 (group1):
['Person in black outfit holding a red flag"],

Referring phrases for instances within image2 (group1) :
["Person in grey shirt holding a red flag"]

Referring phrases for instances within image1 (group1):

Referring phrases for instances within image2 (group1) :

v

Figure 5. Some case examples of the agentic baseline, where the
correct and wrong predictions are highlighted using and red.
The left case shows the detection error caused by G-DINO, while
the right case demonstrates the grouping error caused by GPT-4o.

ple yet effective divide-and-conquer strategy [93] and takes
the advantages of MLLMs and detectors in reasoning and
localization respectively. Concretely, we utilize GPT-40
as a reasoning agent and prompt it to first analyze multi-
context inputs to determine which images contain the tar-
get instances described by the text phrases. This reasoning
agent is then requested to generate concise and discrimina-
tive referring phrases for each individual target instance. We
finally localize the target objects using G-DINO [55] along
with the GPT-generated referring phrases. Some examples
of our agentic baseline are showcased in Figure 5.

We also introduce and evaluate ® a finetuned baseline
that enhances existing end-to-end MLLM (i.e., Qwen2-VL-
7B [89]) by multi-context instruction tuning. We construct
a multi-context instruction tuning dataset with over 50K
samples by collecting multi-context image-level task sam-
ples from existing datasets [19, 30] and synthesizing multi-
context instance-level task samples. To accelerate the train-
ing process/maintain the generalization capabilities of the
MLLM, we finetune models with LoRA [27]. Please refer
to the Appendix for more training details.

We conduct @ human evaluations to establish an upper
bound for the models. In total, we invite 3 volunteers who
have not been exposed to annotated data to participate in the
evaluation with all 2K multi-context samples. Given each
text prompt, the participants are asked to draw bounding
boxes for the target instances in corresponding image pairs.

4.3. Benchmark Results

We divide existing approaches into different groups and re-
port their performance in Table 2. The proprietary gener-
alist MLLMs [55, 73] are used through API calls and gen-
erally considered to have huge model sizes. These mod-
els inherently support image sequence inputs and show
strong image-level comprehend and reasoning capabilities.



Table 2. Comparison of baselines on MC-Bench. Sequence indicates whether the model supports image sequences as inputs, where ¥
denotes that some intermediate steps support image sequences. The superscripts ref, com and rea denote the results for the three specific

types respectively.

Image-Level Instance-Level

Methods sequence  LLMsize  Acc™  Acc®™  Acc™®  Acc AP APE™ AP APy
API-Based Generalist MLLMs
GPT-4o [1] v - 69.7 82.8 71.5 78.3 1.8 3.9 2.3 2.8
Gemini-1.5 Pro [73] v - 56.1 65.1 62.7 62.5 30.6 29.9 26.1 28.2
Open-Source Generalist MLLMs
Qwen-VL-Chat [5] v 7B 338 34.8 31.8 334 10.9 9.2 9.0 9.3
Qwen-VL-Chat [5] b 4 7B 36.7 47.7 45.5 449 21.7 17.3 17.0 17.5
Qwen2-VL [89] v 7B 439 60.1 54.3 54.9 22.5 21.3 16.2 19.1
Qwen2-VL [89] X 7B 43.6 52.2 53.7 514 19.9 18.0 17.5 17.8
Qwen2-VL [89] v 72B 61.6 79.1 68.0 71.4 33.7 33.2 27.0 30.7
Qwen2-VL [89] X 72B 43.1 535 52.8 51.4 29.6 26.7 24.4 26.0
InternVL2.5 [15] v 8B 28.0 37.7 38.5 36.4 15.7 10.9 9.6 11.1
InternVL2.5 [15] X 8B 38.7 54.8 53.2 514 12.9 114 10.1 10.8
SPHINX-1k [52] X 13B 419 49.6 51.1 48.9 16.2 15.8 14.0 14.9
SPHINX-v2-1k [52] b 4 13B 413 522 389 44.7 26.5 21.1 19.0 20.8
MiniGPT-v2 [11] b 4 7B 34.1 43.8 45.6 429 11.7 12.2 10.8 11.6
Open-Source Specialist MLLMs
Shikra [14] X 7B 37.6 44.7 454 43.8 10.0 10.6 9.1 9.8
Kosmos-2 [66] X 1.6B 26.3 30.6 33.6 31.2 10.7 11.5 10.5 10.6
Lenna [92] X 7B 30.3 30.6 28.6 29.7 17.1 14.3 12.7 13.9
Groma [59] X 7B 34.1 444 424 41.8 17.2 15.6 12.8 14.2
GroundingGPT [48] X 7B 35.5 433 46.3 43.3 14.4 12.2 11.9 12.3
Ferret [106] b 4 7B 34.4 42.6 45.5 424 12.8 12.6 9.5 11.0
Ferret [106] X 13B 35.8 447 48.6 44.8 13.4 13.5 12.3 12.9
CogVLM-Grounding [90] b 4 17B 40.5 50.2 50.1 48.5 20.9 18.0 16.0 17.5
Foundation Models without LLMs
G-DINO-B [55] X X 31.2 30.4 30.9 30.8 13.9 15.6 15.3 15.0
APE (D) [78] b 4 b 4 24.0 20.6 16.2 19.3 20.4 20.8 16.1 18.8
ONE-PEACE [88] X X 32.9 42.7 42.3 40.9 17.8 15.5 10.2 13.3
Agentic Baselinegpr4o+G-pINO w - 66.8 84.8 75.7 77.9 41.6 37.2 34.4 36.2
Finetuned Baselineg,yen2-vz-78 v 7B 47.1 59.9 60.0 57.7 26.7 23.2 20.8 22.6
Humans - - 89.5 95.4 90.5 92.3 47.8 40.3 41.0 41.3

However, while Gemini-1.5 Pro [73] achieves competi-
tive instance-level performance, GPT-4o0 [1] exhibits limited
fine-grained localization capabilities.

For the open-source MLLMs accepting image sequence
inputs (i.e., Qwen-VL-Chat [5], Qwen2-VL [89] and In-
ternVL2.5 [15]), we compare both sequence- and merge-
image variants. We find that as model capabilities in-
crease (i.e., Qwen-VL to Qwen2-VL, and 7B to 72B LLM),
the sequence-image variants more clearly exceed merge-
image variants. Among all tested open-source MLLMs [5,
11, 15, 52, 89], Qwen2-VL-72B with image sequence in-
puts achieves the best results, even outperforms proprietary
MLLMs on instance-level metrics.

Generally, the specialist MLLMs [14, 48, 59, 66, 90,
92, 106] are specially designed or fine-tuned for visual
grounding-related tasks. However, in multi-context visual
grounding, existing specialists obtain worse results in terms
of both image-level and instance-level metrics. For in-
stance, the largest specialist CogVLM-Grounding-17B [90]
achieves performance comparable to some 7B generalist

MLLMs (e.g., Qwen-VL-Chat and Qwen2-VL). We at-
tribute this to the limited generalization capabilities of these
specialists tailored to single-image scenarios.

Compared to MLLM counterparts, the foundation mod-
els [55, 78, 88] without LLMs still perform well on
instance-level metrics. However, these models tend to gen-
erate redundant low-confidence boxes within irrelevant im-
ages, leading to deteriorated Acc performance. The agentic
baseline integrates extraordinary multi-modal comprehen-
sion and reasoning capabilities of GPT-40 and excellent lo-
calization capabilities of G-DINO [55], thereby achieving
remarkable results and surpassing aforementioned end-to-
end approaches. We also observe that after multi-context
instruction tuning, the cross-image perception and local-
ization capabilities of Qwen2-VL-7B are significantly en-
hanced, leading to 2.8% Acc and 3.5% APs5 gains. More-
over, we calculate the average results of all volunteers as the
upper bound. Human evaluations outperform the agentic
baseline by 14.4% in Acc and 5.1% in APj5(, underscoring
a clear performance gap between models and humans.
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Figure 6. More analysis experiments on MC-Bench.

4.4. More Analysis

We conduct multiple analytical experiments to further ex-
plore MLLMs from different perspectives. For the open-
source MLLMs (e.g., Qwen2-VL [89] and Ferret [106])
with various model size variants, we analyze the impact of
model size, as visualized in Figure 6a. Larger models show
sustained performance improvement on both Acc and APs5,
consistent with the scaling law [34].

In multi-context visual grounding, a single text prompt
may describe objects from multiple groups. As shown in
Figure 6b, we observe that current approaches struggle with
assigning groups, with most models predicting only one
group. By replacing the standard instance-level metric with
a group-agnostic one, almost all baselines achieve signifi-
cantly higher AP5q results (see Figure 6¢), indicating that
while these methods correctly localize the instances, they
fail to assign the correct group. Moreover, we find that most
models generate only about one instance per sample on av-
erage, as illustrated in Figure 6d. These observations sug-
gest potential for improvement in generating multiple in-
stances and assigning groups.

Inspired by MS-COCO evaluation [51], we divide the in-
stances into different scales (i.e., small, medium and large)
and analyze the performance of different object sizes in Fig-
ure 6e. We find that while existing models correctly lo-
calize large-scale instances, they usually struggle to ground
medium and small objects, particularly MLLMs. The agen-
tic baseline integrates the reasoning capabilities of GPT-40
with the localization strength of G-DNIO, demonstrating
significant advantages in grounding small objects.

In order to verify the models’ capabilities to reject neg-
ative samples, we calculate the average number of predic-

tions across all negative samples, as shown in Figure 6f. We
observe that most models struggle with negative samples.
Gemini [73] performs the best, with 0.42 predictions per
negative sample, but this is still significantly worse than hu-
man performance (0.19 predictions per negative sample).

5. Conclusion

This paper investigates a valuable yet overlooked prob-
lem in the field of MLLMs and proposes a new task,
namely multi-context visual grounding. Unlike prior works
that focus on single-image understanding, multi-context vi-
sual grounding aims at localizing instances in multi-image
scenarios. Additionally, the text prompts used in multi-
context visual grounding are more open-ended and chal-
lenging compared to those in previous language-based lo-
calization tasks. To facilitate the research, we introduce
MC-Bench, a new benchmark designed for instance-level
tasks in multi-context scenarios. MC-Bench contains 2,000
image pairs with diverse text prompts describing target in-
stances in three distinct styles, covering 20 practical tasks.
After benchmarking over 20 advanced MLLMs and founda-
tion models, we found that current models typically struggle
with multiple images and exhibit frustratingly low perfor-
mance compared to the human upper bound. We conduct
multiple analytical experiments to further investigate the is-
sues that hinder the improvement of existing methods and to
identify future directions for development. Our research ad-
vances MLLM development by highlighting weaknesses in
instance-level tasks within multi-image scenarios, and MC-
Bench serves as a valuable resource for further research. We
hope our findings will draw attention to the application of
MLLMs in instance-level tasks in multi-context scenarios.
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