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Abstract

Recently, deep multi-agent reinforcement learning (MARL) has shown the promise
to solve complex cooperative tasks. Its success is partly because of parameter
sharing among agents. However, such sharing may lead agents to behave similarly
and limit their coordination capacity. In this paper, we aim to introduce diversity in
both optimization and representation of shared multi-agent reinforcement learning.
Specifically, we propose an information-theoretical regularization to maximize the
mutual information between agents’ identities and their trajectories, encouraging
extensive exploration and diverse individualized behaviors. In representation,
we incorporate agent-specific modules in the shared neural network architecture,
which are regularized by L1-norm to promote learning sharing among agents while
keeping necessary diversity. Empirical results show that our method achieves
state-of-the-art performance on Google Research Football and super hard StarCraft
II micromanagement tasks†.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has drawn increasing interest in recent
years, which provides a promise for solving many real-world challenging problems, such as sensor
networks [1], traffic management [2], and coordination of robot swarms [3]. However, learning
effective policies for such complex multi-agent systems remains challenging. One central problem is
that the joint action-observation space grows exponentially with the number of agents, which imposes
high demand on the scalability of learning algorithms.

To address this scalability challenge, policy decentralization with shared parameters (PDSP) is widely
used, where agents share their neural network weights. Parameter sharing significantly improves
learning efficiency because it dramatically reduces the total number of policy parameters, while
experiences and gradients of one agent can be used to train others. Enjoying these advantages, many
advanced deep MARL approaches adopt the PDSP paradigm, including value-based methods [4–8],
policy gradients [9–13] and communication learning algorithms [14, 15]. These approaches achieve
state-of-the-art performance on tasks such as StarCraft II micromanagement [16].

While parameter sharing has been proven to accelerate training [17], its drawbacks are also apparent
in complex tasks. These tasks typically require substantial exploration and diversified strategies
among agents. When parameters are shared, agents tend to acquire homogeneous behaviors because
they typically adopt similar actions under similar observations, preventing efficient exploration and
the emergence of sophisticated cooperative policies. This tendency becomes particularly problematic
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for many challenging multi-agent coordination tasks, hindering deep MARL from broader applica-
tions. For example, the unsatisfactory performance of state-of-the-art MARL algorithms on Google
Research Football (Fig. 1, and [18]) highlights an urgent demand for diverse behaviors.
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(a) Parameter sharing: similar 
behaviors (competing for ball).

(b) Our approach: each agent has 
its responsibility to score.

Figure 1: Shared parameters induce behaviors
(left) and can hardly learn successful policies on
the challenging Google Research Football task.
Our method learns sophisticated cooperative strate-
gies by trading off diversity and sharing (right).

Notably, sacrificing the merits of parameter shar-
ing for diversity is also unfavorable. Like hu-
mans, sharing necessary experience or under-
standing of tasks can broadly accelerate coop-
eration learning. Without parameter sharing,
agents search in a much larger parameter space,
which may be wasteful because they do not need
to behave differently all the time. Therefore, the
question is how to adaptively trade-off diversity
and sharing. In this paper, we solve this dilemma
by proposing several structural and learning nov-
elties.

To encourage diversity, we propose a novel
information-theoretical objective to maximize
the mutual information between agents’ identi-
ties and trajectories. This objective enables each agent to distinguish themselves from others and
thus involves the contribution of all agents. Accordingly, we derive an intrinsic reward for motivating
diversity and optimize it with the global environmental reward by learning the total Q-function as a
combination of individual Q-functions. Structurally, we further decompose individual Q-functions
as the sum of shared and non-shared local Q-functions for sharing experiences while maintaining
representation diversity. We hope agents can use and expand shared knowledge whenever possible.
Thus we introduce L1 regularization on each non-shared Q-function, encouraging agents to share
and be diverse when necessary on several critical actions. Combining these novelties achieves a
dynamic balance between diversity and homogeneity, efficiently catalyzing adaptive and sophisticated
cooperation.

We benchmark our approach on Google Research Football (GRF) [18], and StarCraft II micro-
management tasks (SMAC) [16]. The extraordinary performance of our approach on challenging
benchmarking tasks shows that our approach achieve significantly higher coordination capacity than
baselines while using diversity as a catalyst for more robust and talent policies. To our best knowledge,
our approach achieves state-of-the-art performance on SMAC super hard maps and challenging GRF
multi-agent tasks like academy_3_vs_1_with_keeper, academy_counterattack_hard, and a
full-field scenario 3_vs_1_with_keeper (full field).

2 Background

A fully cooperative multi-agent task can be formulated as a Dec-POMDP [19], which is defined as a
tuple G = 〈N,S,A, P,R,O,Ω, n, γ〉, where N is a finite set of n agents, s ∈ S is the true state of
the environment, A is the set of actions, and γ ∈ [0, 1) is a discount factor. At each time step, each
agent i ∈ N receives his own observation oi ∈ Ω according to the observation function O(s, i), and
selects an action ai ∈ A, which results in a joint action vector a. The environment then transitions to
a new state s′ based on the transition function P (s′|s,a), and inducing a global reward r = R(s,a)
shared by all the agents. Each agent has its own action-observation history τi ∈ Ti

.
= (Ωi×A)∗. Due

to partial observability, each agent conditions its policy πi(ai|τi) on τi. The joint policy π induces
the joint action-value function Qπtot(s,a) = Es0:∞,a0:∞ [

∑∞
t=0 γ

trt | s0 = s,a0 = a,π].

2.1 Centralized Training with Decentralized Execution

Our method adopts the framework of centralized training with decentralized execution (CTDE) [9,
20, 4, 5, 21, 22, 6, 11]. This framework tackles the exponentially growing joint action space by
decentralizing the control policies while adopting centralized training to learn cooperation. Agents
learn in a centralized manner with access to global information but execute based on their local
action-observation history. One promising approach to implement the CTDE framework is value
function factorization. The IGM (individual-global-max) principle [21] guarantees the consistency
between the local and global greedy actions. When IGM is satisfied, agents can obtain the optimal
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global action by simply choosing the local greedy action that maximizes each agent’s individual
utility function Qi. Some algorithms have successfully used the IGM principle [5, 6, 23] to push
forward the progress of MARL.

3 Method

In this section, we present a novel diversity-driven MARL framework (Fig. 2) that balances each
agent’s individuality with group coordination, which is a general approach that can be combined with
existing CDTE value factorization methods.

3.1 Identity-Aware Diversity
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Figure 2: Schematics of our approach.

We first introduce how to encourage
behavioral diversity by designing in-
trinsic motivations. Intuitively, to
encourage the specialty of individ-
ual trajectories, agents need to be-
have differently to highlight them-
selves from others, taking different
actions and visiting different local ob-
servations. To achieve this goal, we
use an information-theoretic objective
for maximizing the mutual informa-
tion between individual trajectory and
agents’ identity:

Iπ(τT ; id) = H(τT )−H(τT |id) = Eid,τT∼π

[
log

p(τT |id)

p(τT )

]
, (1)

where τT and id is the random variable for agent’s local trajectory and identity, respectively. π is the
joint policy. To optimize Eq. 1, we expand p(τT ) as p(o0)

∏T−1
t=0 p(at|τt)p(ot+1|τt, at), and p(τT |id)

as p(o0|id)
∏T−1
t=0 p(at|τt, id)p(ot+1|τt, at, id). Therefore, the mutual information can be written as:

Iπ(τT ; id) = Eid,τ

[
log

p(o0|id)

p(o0)︸ ︷︷ ︸
1©

+

T−1∑
t=0

log
p(at|τt, id)

p(at|τt)︸ ︷︷ ︸
2©

+

T−1∑
t=0

log
p(ot+1|τt, at, id)

p(ot+1|τt, at)

]
︸ ︷︷ ︸

3©

. (2)

Term 1© is determined by the environment, and we can ignore it when optimizing the mutual
information. The second term quantifies the information gain about agent’s action selection when
the identity is given, which measures action-aware diversity as I(a; id|τ). However, p(at|τt, id) is
typically the distribution induced by ε-greedy, which only distinguishes the action with the highest
possibility. Therefore, directly optimizing this term conceals most information about the local Q-
functions. To solve this problem, we use the Boltzmann softmax distribution of local Q values to
replace p(at|τt, id), which forms a lower bound of term 2©:

Eid,τ

[
log

p(at|τt, id)

p(at|τt)

]
≥ Eid,τ

[
log

SoftMax( 1
αQ(at|τt, id))

p(at|τt)

]
. (3)

The inequity holds because the KL divergence DKL(p(·|τt, id)‖SoftMax( 1
αQ(·|τt, id))) is non-

negative. We maximize this lower bound to optimize Term 2©. Inspired by variational inference
approaches [24], we derive and optimize a tractable lower bound for Term 3© at each timestep by
introducing a variational posterior estimator qφ parameterized by φ:

Eid,τ

[
log

p(ot+1|τt, at, id)

p(ot+1|τt, at)

]
≥ Eid,τ

[
log

qφ(ot+1|τt, at, id)

p(ot+1|τt, at)

]
, (4)

Similar to the second term, the inequality holds because for any qφ, the KL divergence
DKL(p(·|τt, at, id)‖qφ(·|τt, at, id)) is non-negative. Intuitively, optimizing Eq. 4 encourages agents
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to have diverse observations that are distinguishable by agents’ identification and thus measures
observation-aware diversity as I(o′; id|τ, a). To tighten the this lower bound, we minimize the KL
divergence with respect to the parameters φ. The gradient for updating φ is:

∇φL(φ) = ∇φEτ,a,id [DKL (p (·|τ, a, id) ‖qφ (·|τ, a, id))] = ∇φEτ,a,id,o′
[
log

p (o′|τ, a, id)

qφ (o′|τ, a, id)

]
= −Eτ,a,id,o′ [∇φ log qφ (o′|τ, a, id)] .

(5)
Based on the lower bounds shown in Eq. 3 and Eq. 4, we introduce intrinsic rewards to optimise the
information-theoretic objective (Eq. 1) for encouraging diverse behaviors:

rI = Eid [β2DKL(SoftMax(β1Q(·|τt, id))||p(·|τt))
+β1 log qφ(ot+1|τt, at, id)− log p(ot+1|τt, at)] .

(6)

We introduce two scaling factors β1, β2 ≥ 0 when calculating intrinsic rewards. When β1 is 0, we
only optimize the entropy term H(τT ) in the mutual information objective (Eq. 1). β2 is used to
adjust the importance of policy diversity compared with transition diversity. In Appendix A, we
discuss and compare two different approaches for estimating p (at|τt) and p (ot+1|τt, at).

3.2 Action-Value Learning for Balancing Diversity and Sharing

In the previous section, we introduce an information-theoretic objective for encouraging each agent
to behave differently from general trajectories. However, the shared local Q-function does not have
enough capacity to present different policies for each agent. For solving this problem, we additionally
equip each agent i with an individual local Q-function QIi . Defining experiences that need to be
shared or exclusively learned is inefficient and usually can not generalize. Therefore, we let agents
adaptively decide whether to share experiences by decomposing Qi as:

Qi(ai|τi) = QS(ai|τi) +QIi (ai|τi), (7)

where QS is the shared Q-function among agents. In its current form, agents may learn to decompose
their local Q-function arbitrarily. On the contrary, we expect that agents can share as much knowledge
as possible so that we apply an L1 regularization on individual local Q-function QI as shown in Fig.2.
Such a regularization can also prevent agents from being too diverse and ignore cooperating to finish
the task. In our experiments, we show that the L1 regularization is critical to achieving a balance
between diversity and cooperation.

3.3 Overall Learning Objective

In this section, we discuss how to use the diversity-encouraging reward to train the proposed learning
framework. Since the intrinsic rewards rI inevitably involves the influence from all agents, we add
rI to environment rewards re and use the following TD loss:

LTD(θ) =
[
re + βrI + γmax

a′
Qtot

(
s′,a′; θ−

)
−Qtot(s,a; θ)

]2
, (8)

where θ is the parameters in the whole framework, θ− is periodically frozen parameters copied from
θ for a stable update, and β is a hyper-parameter adjusting the weight of intrinsic rewards compared
with environment rewards. We use QPLEX to decompose Qtot as mixing of local Q-functions Qi
and train the framework end-to-end by minimizing the loss:

L(θ) = LTD(θ) + λ
∑
i

LL1
(QIi (θ

I
i )), (9)

where θIi is the parameters of QIi , LL1(QIi ) is the L1 regularization term for independent Q-functions,
and λ is a scaling factor.

4 Case study: outperforming by being diverse only when necessary

We design Pac-Men shown in Fig. 3 to demonstrate how our approach works. In this task, four
agents are initialized at the center room and can only observe a 5 × 5 grid around them. Three dots
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are initialized randomly in each edge room. To make this environment more challenging, paths to
different rooms have different lengths, which are down : left : up : right = 4 : 8 : 12 : 8. Three out
of four paths are outside agents’ observation scope, which brings about the difficulty of exploration.
Dots will refresh randomly after all rooms are empty. An ineffective competition between agents
occurs when they come together in one room. The total environmental reward is the number of dots
eaten in one step or -0.1 if no one eats dots. The time limit of this environment is set to 100 steps.
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Figure 3: Why does our method work? The balance between identity-aware diversity and experience
sharing encourages sophisticated strategies.

Fig. 3-middle demonstrates the learned strategies of our approach, with a heatmap showing the
visitation number. Driven by the objective of mutual information between individual trajectory and
identity, agents achieve diversity and scatter in different rooms to eat dots. We further analyze the role
of independent and shared Q-functions during different stages in Fig. 3 right. We visualize the value
of SD(QIi (·))/SD(QS(·)), where SD denotes the standard deviation (SD) of Q values for different
actions. A higher SD ratio indicates the independent Q-functions play a leading role, while a lower
SD ratio indicates the shared Q function’s domination.

We notice that the SD ratio is considerably larger in the central room and four paths than in four edge
rooms. This observation means that agents use independent Q networks to reach different rooms
while use the shared Q network to search for dots in them. The result shows that our method achieves
a good balance between diversity and knowledge sharing. Taking this advantage, our approach
outperforms baselines (Fig. 3 left, baselines are introduced in Sec. 6). Other methods, such as
variational exploration (MAVEN [25]) and individuality emergence (EOI [26]), are slower to learn
optimal strategies.

5 Related Work

Deep multi-agent reinforcement learning algorithms have witnessed significant advances in recent
years. COMA [20], MADDPG [9], PR2 [27], and DOP [10] study the problem of policy-based
multi-agent reinforcement learning. They use a (decomposed) centralized critic to calculate gradients
for decentralized actors. Value-based algorithms decompose the joint value function into individual
utility functions in order to enable efficient optimization and decentralized execution. VDN [4],
QMIX [5], and QTRAN [21] progressively expand the representation capabilities of the mixing
network. QPLEX [6] implements the full IGM class [21] by encoding the IGM principle into a duplex
dueling network architecture. Weighted QMIX [23] proposes weighted projection to decompose any
joint action-value functions. There are other works that investigate into MARL from the perspective
of coordination graphs [28–30], communication [31, 32, 15], and role-based learning [17, 33].

Knowledge sharing in MARL From IQL [34] to QPLEX, many works focus on designing mixing
network structures and have provided promising empirical and theoretical results. For these works,
experience sharing among agents has been an important component. Learning from others is one
essential skill engraved in humans’ genes to survive in society. Based on the relationship between
teachers and students in human society, a series of research work hopes each agent can learn from
others or selectively share its knowledge with others [35–37]. But it is challenging to specify
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knowledge in practice, let alone deciding what to share or learn. SEAC [38] partially solves this
problem by sharing trajectories only for off-policy training. NCC [32] maintains cognition consistency
by representation alignment between neighbors. Roy et al. [39] force each agent to predict others’
local policies and adds a coach for group experience alignment. Christianos et al. [40] group agents
during pre-training and force agents in the same group to use one policy. In this paper, we do not try
to let agents choose whether to learn or share experiences. Our neural network structure shown in
Fig. 2 can balance group coordination and diversity by gradient backpropagation.

Diversity In single-agent settings, diversity emerges for exploration or solving sparse reward prob-
lems. Existing methods such as curiosity-driven algorithms [41–44] or maximising mutual infor-
mation [45–47] have shown great promise. When encouraging diversity in MARL settings, agents’
coordination must be considered. Several recent works study this problem, such as MAVEN [25],
EITI & EDTI [48], and EOI [26]. MAVEN learns a diverse ensemble of monotonic approximations
with the help of a latent space to explore. EITI and EDTI consider pairwise mutual influence to
encourage the interdependence between agents. EOI combines the gradient from the intrinsic value
function (IVF) and the total Q-function to train each agent’s local Q-function. In this paper, we
encourage agents to explore unique trajectories by optimizing the mutual information between agent’s
identity and trajectory. Moreover, we propose a novel network structure to enable experience sharing
or consensus, which combines all agents’ rare ideas, while still maintain independent action-value
functions for each agent to behave differently when necessary. Our approach considers the trade-off
relationship between knowledge sharing and diversity, and learns to establish a balance and leverage
their advantages for joint task solving.

6 Experiments

In Sec. 4, we use a toy game to illustrate how our approach adaptively balances experience sharing
and identity-aware diversity. In this section, we use challenging tasks from GRF and SMAC
benchmark to further demonstrate and illustrate the outperformance of our approach. We compare our
approach against multi-agent value-based methods (QMIX [5], QPLEX [6]), variational exploration
(MAVEN [25]), and individuality emergence (EOI [26]) methods. Different from baselines, we do
not include agents’ identification in inputs when calculating local Q-functions. We show the average
and variance of the performance for our method, baselines, and ablations tested with five random
seeds.

6.1 Performance on Google Research Football (GRF)
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Figure 4: Comparison of our approach against baseline algorithms on Google Research Football.

We first benchmark our approach on three challenging Google Research Football (GRF) offensive sce-
narios academy_3_vs_1_with_keeper, academy_counterattack_hard, and our own designed
full-field scenario 3_vs_1_with_keeper (full field). Agents’ initial locations for each scenario
are shown in Appendix B.3. In GRF tasks, agents need to coordinate timing and positions for orga-
nizing offense to seize fleeting opportunities, and only scoring leads to rewards. In our experiments,
we control left-side players (in yellow) except the goalkeeper. The right-side players are rule-based
bots controlled by the game engine. Agents have a discrete action space of 19, including moving in
eight directions, sliding, shooting, and passing. The observation contains the positions and moving
directions of the ego-agent, other agents, and the ball. The z-coordinate of the ball is also included.
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We make a small and reasonable change to the half-court offensive scenarios: our players will lose if
they or the ball returns to our half-court. All baselines and ablations are tested with this modification.
Environmental reward only occurs at the end of the game. They will get +100 if they win, else get -1.

We show the performance comparison against baselines in Fig. 4. Our approach outperforms all
the scenarios. MAVEN needs more time to explore sophisticated strategies, demonstrating that
CDS incentives more efficient exploration. EOI lets each agent consider individuality and cooperation
simultaneously by setting local learning objectives but without exclusive Q networks, making
cooperation and individuality hard to be persistently coordinated. In comparison, taking advantage
of the partially shared network structure, CDS agents learn diverse but coordinated strategies. For
example, as shown in Fig. 1, three agents have different behaviors, with the first agent passing the ball,
the second scoring, while the third running to threaten. These diverse behaviors closely coordinate,
forming a perfect scoring strategy and leading to significant outperformance against EOI.

6.2 Performance on StarCraft II
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Figure 5: Comparison of our approach against baseline algorithms on four super hard SMAC
maps: corridor, MMM2, 6h_vs_8z, and 3s5z_vs_3s6z and two hard SMAC maps: 5m_vs_6m and
3s_vs_5z.

In this section, we test our approach on the StarCraft II micromanagement (SMAC) benchmarks [16].
This benchmark consists of various maps classified as easy, hard, and super hard. Here we test our
method on four super hard maps: corridor, MMM2, 6h_vs_8z, and 3s5z_vs_3s6z, and two hard
SMAC maps: 5m_vs_6m and 3s_vs_5z. For the four super hard maps, our approach outperforms
all baselines with acceptable variance across random seeds, as shown in Fig. 5. The baselines
QPLEX and QMIX can achieve satisfactory performance on some challenging benchmarks, such
as 3s5z_vs_3s6z and MMM2. But on other maps, they need the proposed diversity-celebrating
method to get better performance. Compared with MAVEN and EOI, our approach maintains its
out-performance with the balance between diversity and homogeneity for learning sophisticated
cooperation. Our approach performs similarly with baselines for the two hard maps, indicating
our balancing process may not improve the learning efficiency in environments that require pure
homogeneity. But for challenging environments, where sophisticated strategies are laborious to
explore, our approach can efficiently search for valuable strategies with stable updates.

6.3 Ablations and Visualization

To understand the contribution of each component in the proposed CDS framework, we carry out
ablation studies to test the contribution of its three main components: Identity-aware diversity (A)
encouragement and partially shared (B) neural network structure with L1 regularization (C) on
non-shared Q-functions. To test component A, we ablate our intrinsic rewards to four different levels.
(1) CDS-Raw ablates all intrinsic rewards by setting β in Eq. 8 to zero. (2) CDS-No-Identity ablates
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H (τT |id) and only optimize H (τT ) in Eq. 1 by setting β1 in Eq. 6 to zero. (3) CDS-No-Action
ablates item 2© in Eq. 2 by setting β2 in Eq. 6 to zero. (4) CDS-No-Obs ablates item 3© in Eq. 2
by ablating β1 log qφ (ot+1|τt, at, id)− log p (ot+1|τt, at) in Eq. 6. To test component B, we design
CDS-All-Shared, which ablates independent action-value functions together with the L1 loss and,
like baselines, adds agents’ identification to the input. To test component C, we design CDS-No-L1,
which ablates L1 regularization terms by setting λ in Eq. 9 to zero.

Agents' history
location

The goal's dribbling, passing, 
crossing and shooting route Off-the-ball moving

Figure 6: Left. Ablation studies on academy_counterattack_hard. Right. Visualization of
trained policies, which achieve complex cooperation with impressive off-the-ball moving strategies.

We first carry out ablation studies on academy_counterattack_hard to analyze which part of our
novelties lead to the outstanding performance as shown on the left side of Fig. 6. The ablation of
each part of our intrinsic reward will bring a noticeable decrease in performance. Among them, the
least impact on performance is the ablation of action-aware diversity. CDS-No-L1 performs similarly
to MAVEN, which indicates that unlimited diversity is harmful to cooperation. CDS-All-Shared
performs even worse than QPLEX, demonstrating that identity-aware diversity is difficult to emerge
without our specially designed network structure.

We further visualize the final trained strategies on the right side of Fig. 6, which shows complex
cooperation between agents. Our players first attack down the wing by dribbling and passing the ball.
Then one of them draws the attention of the enemy defenders and the goalkeeper, while the ball being
passed across the penalty area. Another player catches the ball and completes the shot. The most
impressive part of our sophisticated strategies is off-the-ball moving strategies. All agents without
the ball try to use their unique and valuable moves to create more scoring opportunities, which shows
behavior and position diversity for finishing the goal.

Different offensive routes Attracted enemies

Figure 7: Left. Ablation studies in super hard map corridor. Right. Visualization of the final
trained strategies, which achieves a hard-earned victory brought by the sacrifice of a warrior.

We also carry out ablation studies on the super hard map corridor as shown in Fig. 7 left. Same as
results on academy_counterattack_hard, the ablation of action-aware diversity causes the least
performance gap. Among all the ablations, CDS-No-L1 and CDS-No-Identity perform worst, whose
performance is similar to QPLEX. This phenomenon indicates excessive diversity is harmful to the
emerge of complex cooperation. CDS-All-Shared achieves acceptable performance, different from
the GRF scenario, reflecting the different demand levels for the representation diversity of these two
kinds of benchmarks.

To better explain why our approach performs well. On corridor, we also visualize the final strategies
in Fig. 7 right. In this super hard map, six friendly Zealots are facing 24 enemy Zerglings. The
disparity in quantity means our agents are doomed to lose if they attack together. One Zealot, whose
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route is highlighted blue, becomes a warrior leaving the team to attract the attention of most enemies
in the blue oval. Although doomed to sacrifice, he brings enough time for the team to eliminate a
small part of the enemies in the green oval. After that, another Zealot stands out to attract some
enemies and enables teammates to eradicate them. These sophisticated strategies reflect the leverage
between diversity and homogeneity by encouraging agents to be diverse only when necessary.

7 Closing Remarks

Observing that behavioral diversity among agents is essential for many challenging and complex
multi-agent tasks, in this paper, we introduce a novel mechanism of being diverse when necessary
into shared multi-agent reinforcement learning. The balance between individual diversity and group
coordination induced by our CDS approach pushes forward state-of-the-art of deep MARL on
challenging benchmark tasks while keeping parameter sharing benefits. We hope that our method can
shed light on future works to motivate agents to cooperate with diversity to further explore complex
multi-agent coordination problems.
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