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Abstract

The graph retrieval problem is to search in a large corpus of graphs for ones that are
most similar to a query graph. A common consideration for scoring similarity is the
maximum common subgraph (MCS) between the query and corpus graphs, usually
counting the number of common edges (i.e., MCES). In some applications, it is
also desirable that the common subgraph be connected, i.e., the maximum common
connected subgraph (MCCS). Finding exact MCES and MCCS is intractable, but
may be unnecessary if ranking corpus graphs by relevance is the goal. We design
fast and trainable neural functions that approximate MCES and MCCS well. Late
interaction methods compute representations for the query and corpus graphs
separately, and compare these representations using simple similarity functions
at the last stage, leading to highly scalable systems. Early interaction methods
combine information from both graphs right from the input stages, are usually
considerably more accurate, but slower. We propose both late and early interaction
neural MCES and MCCS formulations. They are both based on a continuous
relaxation of a node alignment matrix between query and corpus nodes. For MCCS,
we propose a novel differentiable ‘gossip’ network for estimating the size of the
largest connected common subgraph. Extensive experiments with seven data sets
show that our proposals are superior among late interaction models in terms of both
accuracy and speed. Our early interaction models provide accuracy competitive
with the state of the art, at substantially greater speeds.

1 Introduction

Given a query graph, the graph retrieval problem is to search for relevant or similar response
graphs from a corpus of graphs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Depending on the application, the
notion of relevance may involve graph edit distance (GED) [12, 13, 14], the size of the maximum
common subgraph (MCS) [5, 6, 7, 8, 9], full graph or subgraph isomorphism [5, 10, 11], etc. In
this work, we focus on two variations of MCS-based relevance measures: (i) maximum common
edge subgraph (MCES) [15], which has applications in distributed computing [16, 15] and molecule
search [17, 18, 19, 20] and (ii) maximum common connected subgraph (MCCS) [21], which has
applications in keyword search over knowledge graphs [22, 23], software development [24, 25, 26],
image analysis [27, 28, 29], etc.

In recent years, there has been an increasing interest in designing neural graph retrieval models [5,
6, 7, 8, 9, 10]. However, most of them learn black box relevance models which provide suboptimal
performance in the context of MCS based retrieval (Section 4). Moreover, they do not provide
intermediate matching evidence to justify their scores and therefore, they lack interpretability. In this
context, Li et al. [5] proposed a graph matching network (GMN) [5] based on a cross-graph attention
mechanism, which works extremely well in practice (Section 4). Nevertheless, it suffers from three
key limitations, leaving considerable scope for the design of enhanced retrieval models. (i) Similar to
other graph retrieval models, it uses a general-purpose scoring layer, which renders it suboptimal in
the context of MCS based graph retrieval. (ii) As acknowledged by the authors, GMN is slow in both
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training and inference, due to the presence of the expensive cross-attention mechanism. (iii) MCS or
any graph similarity function entails an injective mapping between nodes and edges across the graph
pairs. In contrast, cross-attention induces potentially inconsistent and non-injective mappings, where
a given query node can be mapped to multiple corpus nodes and vice-versa.

1.1 Our contributions

We begin by writing down (the combinatorial forms of) MCES and MCCS objectives in specific
ways that facilitate subsequent adaptation to neural optimization using both late and early interaction
networks. Notably, these networks are trained end-to-end, using only the distant supervision by
MCES or MCCS values of query-corpus graph pairs, without explicit annotation of the structural
mappings identifying the underlying common subgraph.
Late interaction models. We use a graph neural network (GNN) to first compute the node embed-
dings of the query and corpus graphs independently of each other and then deploy an interaction
network for computing the relevance scores. This decoupling between embedding computation and
interaction steps leads to efficient training and inference. We introduce LMCES and LMCCS, two
late interaction neural architectures for MCES and MCCS based graph retrieval respectively. The
interaction model is a differentiable graph alignment planner. It learns a Gumbel-Sinkhorn (GS)
network to provide an approximate alignment plan between the query and corpus graphs. In contrast
to GMN [5], it induces an approximately injective mapping between the nodes and edges of the query
and corpus graphs. The MCES objective is then computed as a differentiable network applied to this
mapping. For MCCS, we further develop a novel differentiable gossip network that computes the
size of the largest connected component in the common subgraph estimated from the above mapping.
These neural gadgets may be of independent interest.
Early interaction model. In the early interaction model, we perform the interaction step during
the node embedding computation phase, which makes the query and corpus embeddings dependent
on each other. This improves predictive power, at the cost of additional training and inference time.
Here, we propose XMCS (cross-MCS), an early interaction model that works well for both MCES
and MCCS based graph retrieval. At each propagation layer of the GNN, we first refine the alignment
plan using the embeddings computed in the previous layer, then update the underlying coverage
objective using the refined alignment and finally use these signals to compute the node embeddings
of the current layer.
Comprehensive evaluation. We experiment with seven diverse datasets, which show that: (i) our
late and early interaction models outperform the corresponding state-of-the-art methods in terms
of both accuracy and inference time; (ii) in many cases, LMCES and LMCCS outperform the
early interaction model of GMN [5]; and (iii) GMN’s accuracy can be significantly improved by
substituting its final layer with our MCS-specific neural surrogate.

1.2 Related work

Combinatorial algorithms for MCS. Both MCES and MCCS are NP-complete [15]. Several works
designed heuristics for computing MCES for specific types of graphs [18, 17, 30]. Bahiense et al.
[15] formulated MCES as an integer programming problem, provided a polyhedral analysis of the
underlying formulation, and finally designed a branch and cut algorithm to solve it. Such polyhedral
study for MCES was also performed by others [31, 32]. Combinatorial methods for different variants
of MCCS have also been thoroughly studied. Some of them provide exact MCCS [33, 34, 35].
McCreesh et al. [33] proposed McSplit, a branch and bound algorithm for maximum common
induced and connected graph, which is efficient in terms of time and memory. Other works provide
effective heuristics to find approximate MCCS [36, 37]. However, these methods are not differentiable
and therefore not suitable for data-driven MCS estimation.
Learning models for MCS. There are some recent efforts to design machine learning models for
graph similarity and search [38, 7]. Among them, Bai et al. [38, GLsearch] compute MCS between
two graphs using a reinforcement learning setup. In contrast, we consider a supervised learning
setting for graph retrieval. Although Bai et al. [7, GraphSim] focus on the supervised learning
scenario, their relevance scoring model performs poorly for MCS based retrieval.
Graph matching for computer vision. Neural models for graph matching are used in applications
of computer vision for computing image similarity, object detection, etc. However, these applications
permit explicit supervision of the underlying node alignments [39, 40, 41, 42, 43, 44, 45, 46, 47, 48].
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They adopt different types of losses which include permutation loss [41, 42, 43, 44], Hungarian
loss [46], and displacement loss [40]. In our problem, we only use distant supervision in the form
of size of the underlying MCS. Moreover, these work mostly consider graph matching problems,
whereas we consider maximum common subgraph detection using distant supervision from MCS
score alone.
Graph representation learning. Representation learning on graphs has been widely researched in
the last decade [49, 50, 51, 52, 53, 54]. Among them, graph neural networks (GNN) are the most
popular node embedding models [49, 50, 51, 52, 55, 56]. Given a node u, a GNN collects information
from K-hop neighbors of the node u and applies a symmetric aggregator on top of it to obtain the
representation vector of the nodes. In the context of graph retrieval, the node embeddings are used in
two ways. In the first approach, they are further aggregated into graph embeddings, which are then
used to compute the similarity between query and corpus graphs, by comparing the embeddings in
the vector space [10, 5]. The second approach consists of SimGNN [6], GOTSim [8], GraphSim [7],
GEN [5] and GMN [5], which compare the node embeddings and find suitable alignments between
them. Here, GMN applies cross attention based mechanism on the node embeddings given a graph
neural network [49]. Recently, Chen et al. [57] designed a structure aware transformer architecture,
which can represent a subgraph around a node more effectively than several other representation
models.
Differentiable solvers for combinatorial algorithms. Our work attempts to find a neural surrogate
for the combinatorial challenge of maximizing objective scores over a permutation space. In effect,
we are attempting to solve an Optimal Transport problem, where the central challenge is to present
a neural gadget which is differentiable and backpropagable, thus enabling end-to-end training.
Cuturi [58] utilized iterative row and column normalization, earlier proposed by Sinkhorn [59], to
approximately solve the transportation problem subject to marginal constraints. In another approach,
Vlastelica et al. [60] attempted to solve combinatorial problems exactly using available black-box
solvers, by proposing to use the derivative of an affine surrogate of the piece-wise constant function in
the backward pass. Rolínek et al. [61] leverage this to perform deep graph matching based on explicit
supervision of the ground truth node alignments. In another approach, Berthet et al. [62] perturb the
inputs to the discrete solvers with random noise, so as to make them differentiable. Karalias and
Loukas [63] design probabilistic loss functions for tackling the combinatorial objective of selecting a
subset of nodes adhering to some given property. Finally, Kotary et al. [64] present a detailed survey
of the existing neural approaches for solving constrained optimization problems on graphs.

2 Late interaction models for MCES and MCCS

In this section, we first write down the exact objectives for MCES and MCCS. These expressions
are partly based upon a pairing of nodes between query and corpus graphs, and partly on typical
graph algorithms. They lead naturally to our subsequent development of two late interaction models,
LMCES and LMCCS. We begin with formal definitions of MCES and MCCS.

Definition 1 (MCES and MCCS) Given query and corpus graphs Gq=(Vq, Eq) and Gc=(Vc, Ec).

(1) The maximum common edge subgraph MCES(Gq, Gc) is the common (not necessarily induced
nor connected) subgraph between Gq and Gc, having the maximum number of edges [15].

(2) The maximum common connected subgraph MCCS(Gq, Gc) is the common connected subgraph
with the maximum number of nodes [21].

2.1 Combinatorial formulations for MCES and MCCS

As mentioned in Section 1.2, combinatorial algorithms for MCES and MCCS abound in the litera-
ture [34, 33, 15, 18, 17, 30]. However, it is difficult to design neural surrogates for these algorithms.
Therefore, we come up with the new optimization objectives for MCES and MCCS, which allow
us to design neural surrogates by gradually replacing its different components with differentiable
parameterized components.
Exact MCES. Given a query graph Gq = (Vq, Eq) and a corpus graph Gc = (Vc, Ec), we pad the
graph having fewer vertices (typically, Gq), with ||Vc| − |Vq|| disconnected nodes. This ensures that
the padded graphs have an equal number of nodes N . Let us denote the adjacency matrices of Gq and
Gc (after padding) as Aq ∈ {0, 1}N×N and Ac ∈ {0, 1}N×N . To find MCES(Gq, Gc) from the
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adjacency matrices Aq and Ac, we first obtain the candidate common subgraph under some proposed
node alignment given by permutations P of Ac, which can be characterized by the adjacency matrix
min(Aq,PAcP

T ). This matrix shows the overlapping edges under the proposed node alignment.
Subsequently, we choose the permutation which maximizes the total number of edges in this subgraph.
Formally, we compute the MCES score by solving a coverage maximization problem, as follows:

maxP∈P
∑

i,j min
(
Aq,PAcP

⊤)
i,j

(1)

where P is the set of permutation matrices of size N×N and the min operator is applied elementwise.
Exact MCCS. MCES does not require the common subgraph to be connected, which may be desirable
in some applications. For example, in keyword search and question answering over knowledge graphs
(KGs) [22, 65, 23], one may wish to have the entity nodes, forming the response, to be connected to
each other. In molecule search, one may require a connected functional group to be present in both
query and corpus graphs [19]. In such situations, MCCS may be more appropriate.

Given a query graph Gq and a corpus graph Gc and their adjacency matrices Aq and Ac after
padding, we first apply a row-column permutation on Ac using the permutation matrix P and obtain
the candidate common subgraph with adjacency matrix min(Aq,PAcP

⊤). Then we apply Tarjan’s
algorithm [66] to return the size of the largest connected component, which we maximize w.r.t. P :

maxP∈P TARJANSCC
(
min

(
Aq,PAcP

⊤)) . (2)
Here TARJANSCC takes the adjacency matrix as input and returns the size of the largest connected
component of corresponding graph.
Bottleneck of approximating the optimization problems (1) and (2). One way of avoiding the
intractability of searching through P , is to replace the hard permutation matrix with a differentiable
soft surrogate via the Gumbel-Sinkhorn (GS) network [67, also see Section B]. However, such a
relaxation is not adequate on its own.

1. Most elements of min(Aq,PAcP
⊤) are binary, which deprives the learner of gradient signals.

2. In practice, the nodes or edges may have associated (noisy) features, which play an important role
in determining similarity between nodes or edges across query and corpus graphs. For example,
in scene graph based image retrieval, "panther" may be deemed similar to "leopard". The
objectives in Eqs. (1) and (2) do not capture such phenomenon.

3. Tarjan’s algorithm first applies DFS on a graph to find the connected components and then
computes the size of the largest among them, in terms of the number of nodes. Therefore, even for
a fixed P , it is not differentiable.

Next, we address the above bottlenecks by replacing the objectives (1) and (2) with two neural
surrogates, which are summarized in Figure 1.

2.2 Design of LMCES

We design the neural surrogate of Eq. (1) by replacing the adjacency matrices with the corresponding
continuous node embeddings computed by a GNN, and the hard permutation matrix with a soft
surrogate—a doubly stochastic matrix—generated by the Gumbel-Sikhorn network [67]. These node
embeddings allow us to compute non-zero gradients and approximate similarity between nodes and
their local neighborhood in the continuous domain. Specifically, we compute this neural surrogate in
the following two steps.
Step 1: Computing node embeddings. We use a message passing graph neural network [49, 68]
GNNθ with R propagation layers and trainable parameters θ, to compute the node embeddings
hu(1), . . . ,hu(R) ∈ Rd, for each node u in the query and corpus graphs, to which GNNθ is applied
separately. Finally, we build two matrices Hq(r),Hc(r) ∈ RN×d for r ∈ [R] by stacking the node
embedding vectors for query and corpus graphs. Formally, we have

Hq(1), . . . ,Hq(R) = GNNθ(Gq), Hc(1), . . . ,Hc(R) = GNNθ(Gc) (3)

Step 2: Interaction between Hq(r) and Hc(r). In principle, the embeddings hu(1), . . . ,hu(R) of
a node u capture information about the neighborhood of u. Thus, we can view the set of embedding
matrices {Hq(r) | r ∈ [R]} and {Hc(r) | r ∈ [R]} as a reasonable representation of the query and
corpus graphs, respectively. To compute a smooth surrogate of the adjacency matrix of the common
subgraph, i.e., min(Aq,PAcP

⊤), we seek to find the corresponding alignment between Hq(r) and
Hc(r) using soft-permutation (doubly stochastic) matrices P (r) generated through a Gumbel-Sikhorn

4



network GSϕ. Here, we feed Hq(r) and Hc(r) into GSϕ and obtain a doubly stochastic matrix P (r):

P (r) = GSϕ(Hq(r),Hc(r)) ∀ r ∈ [R] (4)
Finally, we replace the true relevance scoring function in Eq. (1) with the following smooth surrogate:

s(Gq, Gc) =
∑

r∈[R]

wr

∑

i,j

min(Hq(r),P
(r)Hc(r))i,j (5)

Here {wr ≥ 0 : r ∈ [R]} are trainable parameters, balancing the quality of signals over all message
rounds r. Note that the R message rounds execute on the query and corpus graphs separately. The
interaction between corresponding rounds, happens at the very end.

2.3 Design of LMCCS

In case of MCES, our key modification was to replace the adjacency matrices with node embeddings
and design a differentiable network to generate a soft-permutation matrix. In the case of MCCS, we
have to also replace the non-differentiable step of finding the size of the largest connected component
of the common subgraph with a neural surrogate, for which we design a novel gossip protocol.
Differentiable gossip protocol to compute the largest connected component. Given any graph
G = (V,E) with the adjacency matrix B, we can find its largest connected component (LCC) by using
a gossip protocol. At iteration t = 0, we start with assigning each node a message vector xu(0) ∈ RN ,
which is the one-hot encoding of the node u, i.e., xu(0)[v] = 1 for v = u and 0 otherwise. In
iteration t > 0, we update the message vectors xu(t + 1) as xu(t + 1) =

∑
v∈nbr(u)∪{u} xv(t).

Here, nbr(u) is the set of neighbors of u. Initially we start with sparse vector xu with exactly one
non-zero entry. As we increase the number of iterations, u would gradually collect messages from

Algorithm 1 GOSSIP(B)
1: X(0) = I # identity
2: for t = 1, . . . T − 1 do
3: X(t+ 1)← X(t)(B + I)
4: Return maxu∈V ||X(T )[•, u]||0

the distant nodes which are reachable from u. This would in-
crease the number of non-zero entries of xu. For sufficiently
large value of iterations T (diameter of G), we will attain
xu(T )[v] ̸= 0 whenever u and v lie in the same connected
component and xu(T )[v] = 0, otherwise. Once this stage is
reached, one can easily compute the number of nodes in the
largest connected component of G as maxu ||xu(T )||0, i.e.,
the maximum number of non-zero entries in a message vector. Algorithm 1 shows the gossip protocol,
with the adjacency matrix B as input and the size of the largest connected component as output.
Exact MCCS computation using the gossip protocol. Given the query and corpus graphs Gq and
Gc with their adjacency matrices Aq and Ac, we can rewrite Eqn. (2) in the equivalent form

max
P∈P

GOSSIP(min(Aq,PAcP
⊤)). (6)

Recall that P is the set permutation matrices of size N ×N .
Neural surrogate. One can use a GS network to obtain a permutation matrix P , which in principle,
can support backpropagation of min(Aq,PAcP

⊤). However, as mentioned in Section 2.1 (items 1
and 2), A• is 0/1, and P often saturates, losing gradient signal for training. In response, we will
design a neural surrogate for the true MCCS size given in Eq. (2), using three steps.
Step 1: Computation of edge embeddings. To tackle the above challenge, we introduce a parallel
back-propagation path, in order to allow the GNNs to learn which edges are more important than
others. To this end, we first use the GNNs to compute edge embedding vectors me(r) ∈ RdE for
edges e ∈ E, in addition to node embeddings at each propagation layer r ∈ [R]. Then, we gather the
edge embeddings from the final layer R, into the matrices Mq(R),Mc(R) ∈ R|E|×dE for query and
corpus pairs. Next, we feed each separately into a neural network Lα with trainable parameters α,
which predicts the importance of edges based on each edge embedding. Thus, we obtain two matrices
Sq ∈ RN×N and Sc ∈ RN×N , which are composed of the edge scores between the corresponding
node pairs. Formally, we have:

Hq(R),Mq(R) = GNNθ(Gq), Hc(R),Mc(R) = GNNθ(Gc) (7)
Sq = Lα (Mq(R)) , Sc = Lα (Mc(R)) (8)

In our implementation, Lα consists of one linear layer, a ReLU layer and another linear layer.
Step 2: Continuous approximation of MCCS. In MCES, we approximated the MCES score in
Eq. (1) directly, using the neural coverage function defined in Eq. (5) in terms of the node embeddings.
Note that, here, we did not attempt to develop any continuous approximation of min

(
Aq,PAcP

⊤)—
the adjacency matrix of the candidate common subgraph. However, in order to apply our proposed

5



<latexit sha1_base64="iUpvutZqxOy8SVjilAQwJfr5e60=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbHeuWKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMOJI2l</latexit>

Gc

<latexit sha1_base64="z7zkLytlH6D+Z76k/lq0UrbvM5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRgx4r2g9oQ9lsJ+3SzSbuboQS+hO8eFDEq7/Im//GbZuDVh8MPN6bYWZekAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq3HlFpHst7M07Qj+hA8pAzaqx0d9176JUrbtWdgfwlXk4qkKPeK392+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiFHVumTMFa2pCEz9edERiOtx1FgOyNqhnrRm4r/eZ3UhBd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLf0nzpOqdVd3b00rtMo+jCAdwCMfgwTnU4Abq0AAGA3iCF3h1hPPsvDnv89aCk8/swy84H98jXI2z</latexit>

Gq
<latexit sha1_base64="L6VOblBWsNFgbsIXlRCfU6Axm14=">AAAB/HicbVBNS8NAEN3Ur1q/qj16CRbBU0lE0WPRg55KBfsBbQmb7bRdutmE3YkYQvwrXjwo4tUf4s1/4/bjoK0PBh7vzTAzz48E1+g431ZuZXVtfSO/Wdja3tndK+4fNHUYKwYNFopQtX2qQXAJDeQooB0poIEvoOWPryd+6wGU5qG8xySCXkCHkg84o2gkr1jqIjxielOrZV7axREgzbxi2ak4U9jLxJ2TMpmj7hW/uv2QxQFIZIJq3XGdCHspVciZgKzQjTVElI3pEDqGShqA7qXT4zP72Ch9exAqUxLtqfp7IqWB1kngm86A4kgvehPxP68T4+Cyl3IZxQiSzRYNYmFjaE+SsPtcAUORGEKZ4uZWm42oogxNXgUTgrv48jJpnlbc84pzd1auXs3jyJNDckROiEsuSJXckjppEEYS8kxeyZv1ZL1Y79bHrDVnzWdK5A+szx9PnpUy</latexit>

GNN✓

<latexit sha1_base64="L6VOblBWsNFgbsIXlRCfU6Axm14=">AAAB/HicbVBNS8NAEN3Ur1q/qj16CRbBU0lE0WPRg55KBfsBbQmb7bRdutmE3YkYQvwrXjwo4tUf4s1/4/bjoK0PBh7vzTAzz48E1+g431ZuZXVtfSO/Wdja3tndK+4fNHUYKwYNFopQtX2qQXAJDeQooB0poIEvoOWPryd+6wGU5qG8xySCXkCHkg84o2gkr1jqIjxielOrZV7axREgzbxi2ak4U9jLxJ2TMpmj7hW/uv2QxQFIZIJq3XGdCHspVciZgKzQjTVElI3pEDqGShqA7qXT4zP72Ch9exAqUxLtqfp7IqWB1kngm86A4kgvehPxP68T4+Cyl3IZxQiSzRYNYmFjaE+SsPtcAUORGEKZ4uZWm42oogxNXgUTgrv48jJpnlbc84pzd1auXs3jyJNDckROiEsuSJXckjppEEYS8kxeyZv1ZL1Y79bHrDVnzWdK5A+szx9PnpUy</latexit>

GNN✓

<latexit sha1_base64="NMd1sZqw4uW5IN+TC8Y5bjv0ses=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwVRKxPnZFF7qsaGuhCWEynbRDJw9mbool5E/cuFDErX/izr9x2kaoogcuHM65l3vv8RPBFVjWp1FaWFxaXimvVtbWNza3zO2dtopTSVmLxiKWHZ8oJnjEWsBBsE4iGQl9we794eXEvx8xqXgc3cE4YW5I+hEPOCWgJc80HWAPkF3d5l7mJAOee2bVqllT4DlSt+zzExvbhVJFBZqe+eH0YpqGLAIqiFJd20rAzYgETgXLK06qWELokPRZV9OIhEy52fTyHB9opYeDWOqKAE/V+YmMhEqNQ193hgQG6rc3Ef/yuikEZ27GoyQFFtHZoiAVGGI8iQH3uGQUxFgTQiXXt2I6IJJQ0GFVdAjfn+L/SfuoZtdr1s1xtXFRxFFGe2gfHSIbnaIGukZN1EIUjdAjekYvRmY8Ga/G26y1ZBQzu+gHjPcvOf2UDA==</latexit>

GS�

<latexit sha1_base64="vEgm5VNA3jpi2z4maQNLDiHPd2U=">AAAB9HicdVDLSsNAFL2pr1pfVZduBotQNyUR62NXdOOygn1AG8tkOmmHziRxZlIoId/hxoUibv0Yd/6N0zZCFT1w4XDOvdx7jxdxprRtf1q5peWV1bX8emFjc2t7p7i711RhLAltkJCHsu1hRTkLaEMzzWk7khQLj9OWN7qe+q0xlYqFwZ2eRNQVeBAwnxGsjeR2I+El9fQ+KTvHaa9Ysiv2DGiBVG3n8sxBTqaUIEO9V/zo9kMSCxpowrFSHceOtJtgqRnhNC10Y0UjTEZ4QDuGBlhQ5Sazo1N0ZJQ+8kNpKtBopi5OJFgoNRGe6RRYD9Vvbyr+5XVi7V+4CQuiWNOAzBf5MUc6RNMEUJ9JSjSfGIKJZOZWRIZYYqJNTgUTwven6H/SPKk41Yp9e1qqXWVx5OEADqEMDpxDDW6gDg0g8ACP8Awv1th6sl6tt3lrzspm9uEHrPcvVm+R0Q==</latexit>

PPP (1)
<latexit sha1_base64="PzxQf0zc9OwJhB+vO546t7KKvU0=">AAAB7XicdVDLSgNBEOz1GeMr6tHLYBA8hV0xPm5BLx4jmAckS5idnU3GzM4sM7OBsOQfvHhQxKv/482/cZKsEEULGoqqbrq7goQzbVz301laXlldWy9sFDe3tnd2S3v7TS1TRWiDSC5VO8CaciZowzDDaTtRFMcBp61geDP1WyOqNJPi3owT6se4L1jECDZWanZHoTS6Vyq7FXcGtECqrnd17iEvV8qQo94rfXRDSdKYCkM41rrjuYnxM6wMI5xOit1U0wSTIe7TjqUCx1T72ezaCTq2SogiqWwJg2bq4kSGY63HcWA7Y2wG+rc3Ff/yOqmJLv2MiSQ1VJD5oijlyEg0fR2FTFFi+NgSTBSztyIywAoTYwMq2hC+P0X/k+ZpxatW3Luzcu06j6MAh3AEJ+DBBdTgFurQAAIP8AjP8OJI58l5dd7mrUtOPnMAP+C8fwHrz49c</latexit>...<latexit sha1_base64="CyRDfjuHOoj6VFa14W/QHtiBAKA=">AAAB9HicdVDLSsNAFL3xWeur6tLNYBHqpiRifeyKblxWsQ9oY5lMJ+3QmSTOTAol5DvcuFDErR/jzr9x2kaoogcuHM65l3vv8SLOlLbtT2thcWl5ZTW3ll/f2NzaLuzsNlQYS0LrJOShbHlYUc4CWtdMc9qKJMXC47TpDa8mfnNEpWJhcKfHEXUF7gfMZwRrI7mdSHhJLb1PSrdHabdQtMv2FGiOVGzn4tRBTqYUIUOtW/jo9EISCxpowrFSbceOtJtgqRnhNM13YkUjTIa4T9uGBlhQ5SbTo1N0aJQe8kNpKtBoqs5PJFgoNRae6RRYD9RvbyL+5bVj7Z+7CQuiWNOAzBb5MUc6RJMEUI9JSjQfG4KJZOZWRAZYYqJNTnkTwven6H/SOC47lbJ9c1KsXmZx5GAfDqAEDpxBFa6hBnUg8ACP8Awv1sh6sl6tt1nrgpXN7MEPWO9fiLWR8g==</latexit>

PPP (R)

<latexit sha1_base64="y9XTGN3h8ayzOKFGBnr+Zaeg2i0=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0nEoseiF49V7AekIWy2m3bpZhN2N5US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfXjUVkkmCW2RhCeyG2JFORO0pZnmtJtKiuOQ0044up35nTGViiXiUU9S6sd4IFjECNZGCmzbewqkH+SyxwTyHvxpYFedmjMHWiVuQapQoBnYX71+QrKYCk04VspznVT7OZaaEU6nlV6maIrJCA+oZ6jAMVV+Pr98is6M0kdRIk0Jjebq74kcx0pN4tB0xlgP1bI3E//zvExH137ORJppKshiUZRxpBM0iwH1maRE84khmEhmbkVkiCUm2oRVMSG4yy+vkvZFza3XnPvLauOmiKMMJ3AK5+DCFTTgDprQAgJjeIZXeLNy68V6tz4WrSWrmDmGP7A+fwBVRZN1</latexit>

[wr]r2[R]

Bottleneck of approximating the optimization problems (1) and (2). One way of approximating it133

is to replace the hard permutation matrix with a differentiable soft surrogate via the Gumbel-Sinkhorn134

(GS) network [41, Appendix B]. However, such a relaxation is not adequate on its own.135

1. Most elements of min(Aq, PAcP
>) are binary, depriving the learner of critical gradient signals.136

2. In practice, the nodes or edges may have associated noisy features, which play an important role137

in determining similarity between nodes or edges across query and corpus graphs. For example, in138

scene graph retrieval, "panther" may be deemed similar to "leopard". The objectives in Eqs. (1)139

and (2) do not capture such phenomenon.140

3. Tarjan’s algorithm first applies DFS on a graph to find the connected components and then141

computes the size of the largest among them, in terms of the number of nodes. Therefore, even for142

a fixed P , it is not differentiable.143

Next, we address the above bottlenecks by replacing the objectives (1) and (2) with two neural144

surrogates, which are summarized in Figure 1.145

2.2 Design of NEURALMCES146

We design the neural surrogate of Eq. (1) by replacing the adjacency matrices with the corresponding147

continuous node embeddings and the hard permutation matrix with a soft surrogate—a doubly148

stochastic matrix—generated by the Gumbel-Sikhorn network [41]. These node embeddings allow us149

to compute non-zero gradients and approximate similarity between nodes and their local neighborhood150

in the continuous domain. Specifically, we compute this neural surrogate in the following two151

decoupled steps.152

(1) Computing node embeddings. We use a message passing graph neural network [42, 43]153

GNN✓ with R propagation layers and trainable parameters ✓ to compute the node embeddings154

hu(1), . . . , hu(R) 2 Rd for each node u in the query and corpus graphs, independently each other.155

Finally, we build two matrices Hq(r), Hc(r) 2 RN⇥d for r 2 [R] by stacking the node embedding156

vectors for query and corpus graphs. Formally, we have157

Hq(1), . . . , Hq(R) = GNN✓(Gq), Hc(1), . . . , Hc(R) = GNN✓(Gc) (3)

(2) Interaction between Hq(r) and Hc(r). In principle, the embeddings hu(1), . . . , hu(R) of a158

node u capture information about the neighborhood of u. Thus, we can view the set of embedding159

matrices {Hq(r) | r 2 [R]} and {Hc(r) | r 2 [R]} as a reasonable representation of the query and160

corpus graphs, respectively. To compute a smooth surrogate of the adjacency matrix of the common161

subgraph, i.e., min(Aq, PAcP
>), we seek to find the corresponding alignment between Hq(r) and162

Hc(r) using soft-permutation (doubly stochastic) matrices P (r) generated through a Gumbel-Sikhorn163

network GS�. Here, we feed Hq(r) and Hc(r) into GS� and obtain a doubly stochastic matrix P (r):164

P (r) = GS�(Hq(r), Hc(r)) 8 r 2 [R] (4)
Finally, we replace the true relevance scoring function in Eq. (1) with the following smooth surrogate:165

sMCES(Gq, Gc) =
X

r2[R]

wr

X

i,j

min(Hq(r), P
(r)Hc(r))i,j (5)

Here {wr � 0 : r 2 [R]} are trainable parameters, balancing the quality of signals over all message166

rounds r. Note that the R message rounds execute on the query and corpus graphs separately, and the167

interaction happens at the very end.168

2.3 Design of NEURALMCCS169

In the context of MCES, our key modification was to replace the adjacency matrices with node170

embeddings and design a differentiable network to generate soft-permutation matrix. In case of171

MCCS, we have to also replace the non-differentiable step of finding the size of the largest connected172

component of the common subgraph with a neural surrogate via a novel gossip protocol.173

Differentiable gossip protocol to compute the largest connected component. Given any graph174

G = (V, E) with the adjacency matrix A, we can find its largest connected component (LCC) by using175

a gossip protocol. At iteration t = 0, we start with assigning each node a message vector xu(0) 2 RN176

which is the one-hot encoding of the node u, i.e., xu(0)[v] = 1 for v = u and 0 otherwise. Given177

the iteration t < T , we update the message vectors xu(t + 1) as xu(t + 1) =
P

v2nbr(u)[{u} xv(t).178
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the MCCS as follows:210

B = min
�
Aq � Sq, PAc � ScP

>�
, with P = GS�(Hq(R), Hc(R)) (9)

In the above, we replace all the non-zero entries of Aq and Ac with the corresponding edge weights of211

Sq and Sc. This facilitates backpropagation more effectively, as opposed to the original 0/1 adjacency212

representation of the common subgraph (item 1 in Section 2.1). Here, we generate the permutation213

matrix P using Gumbel-Sikhorn network similar to MCES, except that here we generate only one214

permutation matrix based on the embeddings on the final layer, whereas in MCES, we generated215

permutations P (r) for each layer r.216

Step 3: Neural implementation of gossip. Our gossip protocol in Algorithm 1 is already differen-217

tiable. However, by the virtue of the way it is designed, it would give accurate results only if the input218

matrix consists of 0/1 values. However, our neural estimate B contains mostly non-zero continuous219

values and many of them can go beyond ±1. As a result, the resultant matrix X(t) = X(0)(B+I)t in220

Algorithm 1 may suffer from extremely poor conditioning. To tackle this problem, we use a rectifier221

network. At each step t we estimate a dynamic threshold ⌧t and use this threshold to discard the No ???

zero out?

222

negative values of X(t). Then we scale the non-zero entries between (0, 1) using a sigmoid activation223

�(·). Specifically, starting with X(t = 0) = I, we update X(t) using the following iterations:
Temperature

224

⌧t = THRESH�(X(t)); X(t + 1) = 2� (ReLU[X(t) � ⌧t]) � 1, (10)
for t = 1, . . . , T . THRESH� consists of a linear, a ReLU, then another linear layer. Note that225

X(t + 1)[u, v] 2 [0, 1] by design, which lets us replace the L0 norm in the final score (Algorithm 1,226

line 4) with the more benign L1 norm, followed by a maxpool over nodes:227

sMCCS(Gq, Gc) = max
u2V

��X(T )[•, u]
��

1
(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have228

any contribution in computing embeddings.229

3 Early interaction model: X-NEURALMCS230

While late interaction models offer efficiently training and fast inference, prior work [5] suggests that231

early interaction models, while slower, offer better accuracy. In recent years, transformers [44] have232

established the utility of early interactions in designing contextual embeddings. Motivated by such233

successes, we propose a unified early interaction model, called X-NEURALMCS, which works for234

both MCES and MCCS. X-NEURALMCS is slower than NEURALMCES and NEURALMCCS, but235

provides significant accuracy gains (Section 4). Moreover, it is significantly faster than GMN [5]. As236

before, the relevance score sMCS(Gq, Gc) is computed using a graph neural network (GNN) with R237

propagation layers, but each graph influences embeddings of the other graph in each layer.238

Initialization of node embeddings. We start with the raw node features zu for each node u 2 Vq [Vc239

and use them to initialize the node embeddings hu.240

hu(0) = FEATUREENCODER✓(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)241

for some propagation layer r < R, we first encode the intra-graph influences across all edges in both242

query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes243

(u, v) 2 Eq [ Ec, which are then aggregated using a simple sum aggregator.244

muv(r) = MESSAGEPASSING✓(hu(r), hv(r)) 8 (u, v) 2 Eq [ Ec (13)
mu(r) =

P
v2nbr(u) muv(r) 8u 2 Vq [ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph245

alignment network, which is modeled using a Gumbel-Sinkhorn network GS� similar to the late246

interaction models in Eq. (4). Specifically, we build the embedding matrix Hq(r) and Hc(r) by247

stacking hu(r) from Gq and Gc respectively. Then, we feed these matrices into GS� to generate an248

alignment matrix and finally compute the difference between query graph and the underlying MCS in249

the continuous embedding space as follows:250

�(r) = Hq(r) � min(Hq(r), P
(r)Hc(r)) with, P (r) = GS�(Hq(r), Hc(r)) (15)

Note that, �(r) in the above can also be written as ReLU[Hq(r) � P (r)Hc(r)] (min(a, b) =251

a � ReLU(a � b)) and thus �(r) captures the representation of a subgraph present in Gq, which252
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sMCCS(Gq, Gc) = max
u2V

��X(T )[•, u]
��

1
(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have228

any contribution in computing embeddings.229

3 Early interaction model: X-NEURALMCS230

While late interaction models offer efficiently training and fast inference, prior work [5] suggests that231

early interaction models, while slower, offer better accuracy. In recent years, transformers [44] have232

established the utility of early interactions in designing contextual embeddings. Motivated by such233

successes, we propose a unified early interaction model, called X-NEURALMCS, which works for234

both MCES and MCCS. X-NEURALMCS is slower than NEURALMCES and NEURALMCCS, but235

provides significant accuracy gains (Section 4). Moreover, it is significantly faster than GMN [5]. As236

before, the relevance score sMCS(Gq, Gc) is computed using a graph neural network (GNN) with R237

propagation layers, but each graph influences embeddings of the other graph in each layer.238

Initialization of node embeddings. We start with the raw node features zu for each node u 2 Vq [Vc239

and use them to initialize the node embeddings hu.240

hu(0) = FEATUREENCODER✓(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)241

for some propagation layer r < R, we first encode the intra-graph influences across all edges in both242

query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes243

(u, v) 2 Eq [ Ec, which are then aggregated using a simple sum aggregator.244

muv(r) = MESSAGEPASSING✓(hu(r), hv(r)) 8 (u, v) 2 Eq [ Ec (13)
mu(r) =

P
v2nbr(u) muv(r) 8u 2 Vq [ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph245

alignment network, which is modeled using a Gumbel-Sinkhorn network GS� similar to the late246

interaction models in Eq. (4). Specifically, we build the embedding matrix Hq(r) and Hc(r) by247

stacking hu(r) from Gq and Gc respectively. Then, we feed these matrices into GS� to generate an248

alignment matrix and finally compute the difference between query graph and the underlying MCS in249

the continuous embedding space as follows:250

�(r) = Hq(r) � min(Hq(r), P
(r)Hc(r)) with, P (r) = GS�(Hq(r), Hc(r)) (15)

Note that, �(r) in the above can also be written as ReLU[Hq(r) � P (r)Hc(r)] (min(a, b) =251

a � ReLU(a � b)) and thus �(r) captures the representation of a subgraph present in Gq, which252

6
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the MCCS as follows:210

B = min
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Aq � Sq, PAc � ScP
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, with P = GS�(Hq(R), Hc(R)) (9)

In the above, we replace all the non-zero entries of Aq and Ac with the corresponding edge weights of211

Sq and Sc. This facilitates backpropagation more effectively, as opposed to the original 0/1 adjacency212

representation of the common subgraph (item 1 in Section 2.1). Here, we generate the permutation213

matrix P using Gumbel-Sikhorn network similar to MCES, except that here we generate only one214

permutation matrix based on the embeddings on the final layer, whereas in MCES, we generated215

permutations P (r) for each layer r.216

Step 3: Neural implementation of gossip. Our gossip protocol in Algorithm 1 is already differen-217

tiable. However, by the virtue of the way it is designed, it would give accurate results only if the input218

matrix consists of 0/1 values. However, our neural estimate B contains mostly non-zero continuous219

values and many of them can go beyond ±1. As a result, the resultant matrix X(t) = X(0)(B+I)t in220

Algorithm 1 may suffer from extremely poor conditioning. To tackle this problem, we use a rectifier221

network. At each step t we estimate a dynamic threshold ⌧t and use this threshold to discard the No ???

zero out?

222

negative values of X(t). Then we scale the non-zero entries between (0, 1) using a sigmoid activation223

�(·). Specifically, starting with X(t = 0) = I, we update X(t) using the following iterations:
Temperature

224

⌧t = THRESH�(X(t)); X(t + 1) = 2� (ReLU[X(t) � ⌧t]) � 1, (10)
for t = 1, . . . , T . THRESH� consists of a linear, a ReLU, then another linear layer. Note that225

X(t + 1)[u, v] 2 [0, 1] by design, which lets us replace the L0 norm in the final score (Algorithm 1,226

line 4) with the more benign L1 norm, followed by a maxpool over nodes:227

sMCCS(Gq, Gc) = max
u2V

��X(T )[•, u]
��

1
(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have228

any contribution in computing embeddings.229

3 Early interaction model: X-NEURALMCS230

While late interaction models offer efficiently training and fast inference, prior work [5] suggests that231

early interaction models, while slower, offer better accuracy. In recent years, transformers [44] have232

established the utility of early interactions in designing contextual embeddings. Motivated by such233

successes, we propose a unified early interaction model, called X-NEURALMCS, which works for234

both MCES and MCCS. X-NEURALMCS is slower than NEURALMCES and NEURALMCCS, but235

provides significant accuracy gains (Section 4). Moreover, it is significantly faster than GMN [5]. As236

before, the relevance score sMCS(Gq, Gc) is computed using a graph neural network (GNN) with R237

propagation layers, but each graph influences embeddings of the other graph in each layer.238

Initialization of node embeddings. We start with the raw node features zu for each node u 2 Vq [Vc239

and use them to initialize the node embeddings hu.240

hu(0) = FEATUREENCODER✓(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)241

for some propagation layer r < R, we first encode the intra-graph influences across all edges in both242

query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes243

(u, v) 2 Eq [ Ec, which are then aggregated using a simple sum aggregator.244

muv(r) = MESSAGEPASSING✓(hu(r), hv(r)) 8 (u, v) 2 Eq [ Ec (13)
mu(r) =

P
v2nbr(u) muv(r) 8u 2 Vq [ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph245

alignment network, which is modeled using a Gumbel-Sinkhorn network GS� similar to the late246

interaction models in Eq. (4). Specifically, we build the embedding matrix Hq(r) and Hc(r) by247

stacking hu(r) from Gq and Gc respectively. Then, we feed these matrices into GS� to generate an248

alignment matrix and finally compute the difference between query graph and the underlying MCS in249

the continuous embedding space as follows:250

�(r) = Hq(r) � min(Hq(r), P
(r)Hc(r)) with, P (r) = GS�(Hq(r), Hc(r)) (15)

Note that, �(r) in the above can also be written as ReLU[Hq(r) � P (r)Hc(r)] (min(a, b) =251

a � ReLU(a � b)) and thus �(r) captures the representation of a subgraph present in Gq, which252
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the MCCS as follows:210

B = min
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Aq � Sq, PAc � ScP

>�
, with P = GS�(Hq(R), Hc(R)) (9)

In the above, we replace all the non-zero entries of Aq and Ac with the corresponding edge weights of211

Sq and Sc. This facilitates backpropagation more effectively, as opposed to the original 0/1 adjacency212

representation of the common subgraph (item 1 in Section 2.1). Here, we generate the permutation213

matrix P using Gumbel-Sikhorn network similar to MCES, except that here we generate only one214

permutation matrix based on the embeddings on the final layer, whereas in MCES, we generated215

permutations P (r) for each layer r.216

Step 3: Neural implementation of gossip. Our gossip protocol in Algorithm 1 is already differen-217

tiable. However, by the virtue of the way it is designed, it would give accurate results only if the input218

matrix consists of 0/1 values. However, our neural estimate B contains mostly non-zero continuous219

values and many of them can go beyond ±1. As a result, the resultant matrix X(t) = X(0)(B+I)t in220

Algorithm 1 may suffer from extremely poor conditioning. To tackle this problem, we use a rectifier221

network. At each step t we estimate a dynamic threshold ⌧t and use this threshold to discard the No ???

zero out?

222

negative values of X(t). Then we scale the non-zero entries between (0, 1) using a sigmoid activation223

�(·). Specifically, starting with X(t = 0) = I, we update X(t) using the following iterations:
Temperature

224

⌧t = THRESH�(X(t)); X(t + 1) = 2� (ReLU[X(t) � ⌧t]) � 1, (10)
for t = 1, . . . , T . THRESH� consists of a linear, a ReLU, then another linear layer. Note that225

X(t + 1)[u, v] 2 [0, 1] by design, which lets us replace the L0 norm in the final score (Algorithm 1,226

line 4) with the more benign L1 norm, followed by a maxpool over nodes:227

sMCCS(Gq, Gc) = max
u2V

��X(T )[•, u]
��

1
(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have228

any contribution in computing embeddings.229

3 Early interaction model: X-NEURALMCS230

While late interaction models offer efficiently training and fast inference, prior work [5] suggests that231

early interaction models, while slower, offer better accuracy. In recent years, transformers [44] have232

established the utility of early interactions in designing contextual embeddings. Motivated by such233

successes, we propose a unified early interaction model, called X-NEURALMCS, which works for234

both MCES and MCCS. X-NEURALMCS is slower than NEURALMCES and NEURALMCCS, but235

provides significant accuracy gains (Section 4). Moreover, it is significantly faster than GMN [5]. As236

before, the relevance score sMCS(Gq, Gc) is computed using a graph neural network (GNN) with R237

propagation layers, but each graph influences embeddings of the other graph in each layer.238

Initialization of node embeddings. We start with the raw node features zu for each node u 2 Vq [Vc239

and use them to initialize the node embeddings hu.240

hu(0) = FEATUREENCODER✓(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)241

for some propagation layer r < R, we first encode the intra-graph influences across all edges in both242

query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes243

(u, v) 2 Eq [ Ec, which are then aggregated using a simple sum aggregator.244

muv(r) = MESSAGEPASSING✓(hu(r), hv(r)) 8 (u, v) 2 Eq [ Ec (13)
mu(r) =

P
v2nbr(u) muv(r) 8u 2 Vq [ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph245

alignment network, which is modeled using a Gumbel-Sinkhorn network GS� similar to the late246

interaction models in Eq. (4). Specifically, we build the embedding matrix Hq(r) and Hc(r) by247

stacking hu(r) from Gq and Gc respectively. Then, we feed these matrices into GS� to generate an248

alignment matrix and finally compute the difference between query graph and the underlying MCS in249

the continuous embedding space as follows:250

�(r) = Hq(r) � min(Hq(r), P
(r)Hc(r)) with, P (r) = GS�(Hq(r), Hc(r)) (15)

Note that, �(r) in the above can also be written as ReLU[Hq(r) � P (r)Hc(r)] (min(a, b) =251

a � ReLU(a � b)) and thus �(r) captures the representation of a subgraph present in Gq, which252
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the MCCS as follows:210

B = min
�
Aq � Sq, PAc � ScP

>�
, with P = GS�(Hq(R), Hc(R)) (9)

In the above, we replace all the non-zero entries of Aq and Ac with the corresponding edge weights of211

Sq and Sc. This facilitates backpropagation more effectively, as opposed to the original 0/1 adjacency212

representation of the common subgraph (item 1 in Section 2.1). Here, we generate the permutation213

matrix P using Gumbel-Sikhorn network similar to MCES, except that here we generate only one214

permutation matrix based on the embeddings on the final layer, whereas in MCES, we generated215

permutations P (r) for each layer r.216

Step 3: Neural implementation of gossip. Our gossip protocol in Algorithm 1 is already differen-217

tiable. However, by the virtue of the way it is designed, it would give accurate results only if the input218

matrix consists of 0/1 values. However, our neural estimate B contains mostly non-zero continuous219

values and many of them can go beyond ±1. As a result, the resultant matrix X(t) = X(0)(B+I)t in220

Algorithm 1 may suffer from extremely poor conditioning. To tackle this problem, we use a rectifier221

network. At each step t we estimate a dynamic threshold ⌧t and use this threshold to discard the No ???

zero out?

222

negative values of X(t). Then we scale the non-zero entries between (0, 1) using a sigmoid activation223

�(·). Specifically, starting with X(t = 0) = I, we update X(t) using the following iterations:
Temperature

224

⌧t = THRESH�(X(t)); X(t + 1) = 2� (ReLU[X(t) � ⌧t]) � 1, (10)
for t = 1, . . . , T . THRESH� consists of a linear, a ReLU, then another linear layer. Note that225

X(t + 1)[u, v] 2 [0, 1] by design, which lets us replace the L0 norm in the final score (Algorithm 1,226

line 4) with the more benign L1 norm, followed by a maxpool over nodes:227

sMCCS(Gq, Gc) = max
u2V

��X(T )[•, u]
��

1
(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have228

any contribution in computing embeddings.229

3 Early interaction model: X-NEURALMCS230

While late interaction models offer efficiently training and fast inference, prior work [5] suggests that231

early interaction models, while slower, offer better accuracy. In recent years, transformers [44] have232

established the utility of early interactions in designing contextual embeddings. Motivated by such233

successes, we propose a unified early interaction model, called X-NEURALMCS, which works for234

both MCES and MCCS. X-NEURALMCS is slower than NEURALMCES and NEURALMCCS, but235

provides significant accuracy gains (Section 4). Moreover, it is significantly faster than GMN [5]. As236

before, the relevance score sMCS(Gq, Gc) is computed using a graph neural network (GNN) with R237

propagation layers, but each graph influences embeddings of the other graph in each layer.238

Initialization of node embeddings. We start with the raw node features zu for each node u 2 Vq [Vc239

and use them to initialize the node embeddings hu.240

hu(0) = FEATUREENCODER✓(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)241

for some propagation layer r < R, we first encode the intra-graph influences across all edges in both242

query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes243

(u, v) 2 Eq [ Ec, which are then aggregated using a simple sum aggregator.244

muv(r) = MESSAGEPASSING✓(hu(r), hv(r)) 8 (u, v) 2 Eq [ Ec (13)
mu(r) =

P
v2nbr(u) muv(r) 8u 2 Vq [ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph245

alignment network, which is modeled using a Gumbel-Sinkhorn network GS� similar to the late246

interaction models in Eq. (4). Specifically, we build the embedding matrix Hq(r) and Hc(r) by247

stacking hu(r) from Gq and Gc respectively. Then, we feed these matrices into GS� to generate an248

alignment matrix and finally compute the difference between query graph and the underlying MCS in249

the continuous embedding space as follows:250

�(r) = Hq(r) � min(Hq(r), P
(r)Hc(r)) with, P (r) = GS�(Hq(r), Hc(r)) (15)

Note that, �(r) in the above can also be written as ReLU[Hq(r) � P (r)Hc(r)] (min(a, b) =251

a � ReLU(a � b)) and thus �(r) captures the representation of a subgraph present in Gq, which252

6

is not present in Gc. Moreover, P provides an injective mapping from Vc to Vq in contrast to the253

attention based graph matching network [5] which is non-injective— it assigns one corpus node to254

one query node but one query node to multiple corpus nodes.255

Next, node embeddings hu are updated using aggregated intra-graph and cross-graph influences.256

hu(r + 1) = UPDATEEMBEDDING✓

�
hu(r), mu(r),

P
j �(r)[u, j]

�
8 u 2 Vq [ Vc (16)

The node embeddings of Gq explicitly depend on Gc via the alignment P (•) and vice-versa.257

Relevance score computation. Finally, we compute the relevance score using the neural surrogate:258

sMCS(Gq, Gc) =
X

i,j

min(Hq(R), P (R)Hc(R))i,j . (17)

Clearly, the above scoring function directly approximates the MCES objective (1) similar to the score259

given by NEURALMCES in Eq. (5), except that here we use the embeddings at the last layer to260

compute the score. Although one can subsequently combine gossip network with the above model,261

we found that it does not improve accuracy significantly and moreover, results in extreme slowdown.262

4 Experiments263

In this section, we provide a comprehensive evaluation of our models across six datasets and show264

that they outperform several competitors [6, 7, 8, 10, 11, 5].265

4.1 Experimental setup266

Datasets. We experiment seven datasets, viz., MSRC-21 (MSRC), PTC-MM (MM), PTC-FR (FR),267

PTC-MR (MR), PTC-FM (FM), COX2 (COX) and DD. The details about them are described268

in Appendix C. Among these datasets, we report the results of first six datasets in the main paper and269

the DD dataset in Appendix D.270

State-of-the-art methods compared. We compare our method against six state-of-the-art late271

interaction models, viz., (i) SimGNN [6] (i) GraphSim [7] (ii) GOTSim [8] (iii) NeuroMatch [10] (v)272

IsoNet [11] and (vi) Graph embedding network (GEN) [5]; and, one early interaction model, viz.,273

(vi) Graph Matching Network (GMN) [5]. Except for NeuroMatch and IsoNet, all other methods274

use a general purpose scoring layer. Neuromatch and IsoNet are specifcially designed for subgraph275

isomorphism task.276

Training and evaluation. For every dataset, we have at our disposal, a corpus graph database with277

800 graphs and a set of 500 query graphs. We partition the query set into 60% training, 20% validation278

and 20% test splits. We train our models and all of the baselines on the training split, using a Mean279

Square Error (MSE) loss between the predicted output and ground truth MCS values. The validation280

split is used to tune the hyperparameters. Subsequently, we use the trained models to predict MCS281

scores between the test query graphs and the corpus graphs. For each of the query graphs in the test282

split, we use the predicted outputs to compute the MSE and Kendall-Tau rank correlation (KTau)283

values. Finally, we report the average MSE and KTau values across all the test query graphs.284

4.2 Results285

Comparison with SOTA methods. In Table 2, we evaluate the performance of our proposed286

models, against that of the recent state-of-the-art baselines. Firstly, on the MCES task, we compare287

NEURALMCES and X-NEURALMCS with the corresponding late and early interaction baselines.288

Next on the MCCS task, a similar performance comparison is presented for NEURALMCESand289

X-NEURALMCS. We make the following observations:290

(1) Across both MCES and MCCS objectives, our proposed NEURALMCES and NEURALMCCS291

outperform all the late interaction baselines by a substantial margin, for both KTau and MSE in all 6292

datasets.293

(2) Among the late interaction baselines, in both tasks IsoNet is consistently seen to be the second294

best performer in terms of MSE. Additionally, it achieves the second best KTau values in 6 out of 12295

cases. This strong performance can be attributed to IsoNet’s custom neural architecture for subgraph296

isomorphism, whose similarity scoring layer implements � ReLU(a � b). As we have previously297

noted, min(a, b) = a � ReLU(a � b), which means that IsoNet learns the MCS min objective for298
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Update
<latexit sha1_base64="K9ULemF0wcyabTk/8xi8SKiHPXE=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0lE0WNRBI8V7Ae0pWw203bpZhN2J9IS8le8eFDEq3/Em//GbZuDtj4YeLw3w8w8PxZco+t+W4W19Y3NreJ2aWd3b//APiw3dZQoBg0WiUi1fapBcAkN5CigHSugoS+g5Y9vZ37rCZTmkXzEaQy9kA4lH3BG0Uh9u9xFmKBm6V3oQxBwOcz6dsWtunM4q8TLSYXkqPftr24QsSQEiUxQrTueG2MvpQo5E5CVuomGmLIxHULHUElD0L10fnvmnBolcAaRMiXRmau/J1Iaaj0NfdMZUhzpZW8m/ud1Ehxc91Iu4wRBssWiQSIcjJxZEE7AFTAUU0MoU9zc6rARVZShiatkQvCWX14lzfOqd1l1Hy4qtZs8jiI5JifkjHjkitTIPamTBmFkQp7JK3mzMuvFerc+Fq0FK585In9gff4AoIyU0Q==</latexit>

Embedding <latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓

<latexit sha1_base64="qOZr/lICm9tyqEk1KfU6HxNfJHU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovQQgmJKLosuumyin1AG8JkOmmHTiZxZiKU0JUbf8WNC0Xc+g3u/BunbUBtPXDhcM693HuPHzMqlW1/Gbml5ZXVtfx6YWNza3vH3N1ryigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXk381j0Rkkb8Vo1i4oaoz2lAMVJa8szDbhz6aW3s3ZWccsWyrMqPcFP2zKJt2VPAReJkpAgy1D3zs9uLcBISrjBDUnYcO1ZuioSimJFxoZtIEiM8RH3S0ZSjkEg3nb4xhsda6cEgErq4glP190SKQilHoa87Q6QGct6biP95nUQFF25KeZwowvFsUZAwqCI4yQT2qCBYsZEmCAuqb4V4gATCSidX0CE48y8vkuaJ5ZxZ9vVpsXqZxZEHB+AIlIADzkEV1EAdNAAGD+AJvIBX49F4Nt6M91lrzshm9sEfGB/fcI+XLg==</latexit>

HHHq(1), ...,HHHq(R)

<latexit sha1_base64="R6+qlMuFi2YoKmt19s5DFBwkHAg=">AAACBnicbVBNSwMxEM3Wr1q/Vj2KECxCC2XZFUWPRS89VrGt0C5LNk3b0CS7JFmhLD158a948aCIV3+DN/+Nabugtj4YeLw3w8y8MGZUadf9snJLyyura/n1wsbm1vaOvbvXVFEiMWngiEXyLkSKMCpIQ1PNyF0sCeIhI61weDXxW/dEKhqJWz2Kic9RX9AexUgbKbAPOzEP09o4wCWvXHEcp/Ij3JQDu+g67hRwkXgZKYIM9cD+7HQjnHAiNGZIqbbnxtpPkdQUMzIudBJFYoSHqE/ahgrEifLT6RtjeGyULuxF0pTQcKr+nkgRV2rEQ9PJkR6oeW8i/ue1E9278FMq4kQTgWeLegmDOoKTTGCXSoI1GxmCsKTmVogHSCKsTXIFE4I3//IiaZ443pnjXp8Wq5dZHHlwAI5ACXjgHFRBDdRBA2DwAJ7AC3i1Hq1n6816n7XmrGxmH/yB9fENRN2XEg==</latexit>

HHHc(1), ...,HHHc(R)

<latexit sha1_base64="RJxZt8GYxSpPiXS4ycgqCVVrYw8=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FL16EKvYDukvJptk2NMmuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuJKs1i+WBGCQ0E7ksWMYKNlXw/EWF2O+4+Vu5PuqWyW3WnQIvEy0kZctS7pS+/F5NUUGkIx1p3PDcxQYaVYYTTcdFPNU0wGeI+7VgqsaA6yKY3j9GxVXooipUtadBU/T2RYaH1SIS2U2Az0PPeRPzP66QmugwyJpPUUElmi6KUIxOjSQCoxxQlho8swUQxeysiA6wwMTamog3Bm395kTRPq9551b07K9eu8jgKcAhHUAEPLqAGN1CHBhBI4Ble4c1JnRfn3fmYtS45+cwB/IHz+QNwb5FJ</latexit>

MMMq(R)

<latexit sha1_base64="slTp1z+UJs9fSLd0/0QABGgqicw=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHosevEiVLEf0F1KNs22ocluSLJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvFBypo3rfjuFldW19Y3iZmlre2d3r7x/0NJJqghtkoQnqhNiTTmLadMww2lHKopFyGk7HN1M/fYTVZol8aMZSxoIPIhZxAg2VvJ9KcLsbtIj1YfTXrni1twZ0DLxclKBHI1e+cvvJyQVNDaEY627nitNkGFlGOF0UvJTTSUmIzygXUtjLKgOstnNE3RilT6KEmUrNmim/p7IsNB6LELbKbAZ6kVvKv7ndVMTXQUZi2VqaEzmi6KUI5OgaQCozxQlho8twUQxeysiQ6wwMTamkg3BW3x5mbTOat5Fzb0/r9Sv8ziKcATHUAUPLqEOt9CAJhCQ8Ayv8Oakzovz7nzMWwtOPnMIf+B8/gBbDZE7</latexit>

MMM c(R)

<latexit sha1_base64="GaEvtrZmQesjuPQ7J6hc0jhjjFU=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHoseumxiv2A7lKyabYNzWZDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjtk5SRWiLJDxR3RBrypmgLcMMp12pKI5DTjvh+G7md56o0iwRj2YiaRDjoWARI9hYyfdlHGaNaZ9UH8775Ypbc+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRTZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oeVc19/6yUr/N4yjCCZxCFTy4hjo0oAktICDhGV7hzUmdF+fd+Vi0Fpx85hj+wPn8AVNbkTY=</latexit>

HHHc(R)

<latexit sha1_base64="DN2vBxNRem21lvaQHQUboWU4lXs=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FLz1WsR/QXUo2zbah2WxMskJZ+je8eFDEq3/Gm//GtN2Dtj4YeLw3w8y8UHKmjet+Oyura+sbm4Wt4vbO7t5+6eCwpZNUEdokCU9UJ8SaciZo0zDDaUcqiuOQ03Y4up367SeqNEvEgxlLGsR4IFjECDZW8n0Zh1l90nus3J/1SmW36s6AlomXkzLkaPRKX34/IWlMhSEca931XGmCDCvDCKeTop9qKjEZ4QHtWipwTHWQzW6eoFOr9FGUKFvCoJn6eyLDsdbjOLSdMTZDvehNxf+8bmqi6yBjQqaGCjJfFKUcmQRNA0B9pigxfGwJJorZWxEZYoWJsTEVbQje4svLpHVe9S6r7t1FuXaTx1GAYziBCnhwBTWoQwOaQEDCM7zCm5M6L8678zFvXXHymSP4A+fzB2i9kUQ=</latexit>

HHHq(R)

<latexit sha1_base64="SYoWpaaKfDgXvjDgB3+umGVgXow=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHoseumxgv2A7lKyabYNTXZjkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjtk5SRWiLJDxR3RBryllMW4YZTrtSUSxCTjvh+G7md56o0iyJH8xE0kDgYcwiRrCxku9LEWaNaf+x6p33yxW35s6BVomXkwrkaPbLX/4gIamgsSEca93zXGmCDCvDCKfTkp9qKjEZ4yHtWRpjQXWQzW+eojOrDFCUKFuxQXP190SGhdYTEdpOgc1IL3sz8T+vl5roJshYLFNDY7JYFKUcmQTNAkADpigxfGIJJorZWxEZYYWJsTGVbAje8surpH1R865q7v1lpX6bx1GEEziFKnhwDXVoQBNaQEDCM7zCm5M6L86787FoLTj5zDH8gfP5AzaYkSM=</latexit>

HHHq(1)

<latexit sha1_base64="5beZpePK/DsIJfwWwgPqU1Ll/7U=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FLz1WsB/QXUo2TdvQJBuSrFCW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvVpwZ6/vf3tr6xubWdmGnuLu3f3BYOjpumSTVhDZJwhPdibGhnEnatMxy2lGaYhFz2o7H9zO//US1YYl8tBNFI4GHkg0YwdZJYahEnNWnPVIJLnqlsl/150CrJMhJGXI0eqWvsJ+QVFBpCcfGdANf2SjD2jLC6bQYpoYqTMZ4SLuOSiyoibL5zVN07pQ+GiTalbRorv6eyLAwZiJi1ymwHZllbyb+53VTO7iNMiZVaqkki0WDlCOboFkAqM80JZZPHMFEM3crIiOsMbEupqILIVh+eZW0LqvBddV/uCrX7vI4CnAKZ1CBAG6gBnVoQBMIKHiGV3jzUu/Fe/c+Fq1rXj5zAn/gff4AITaRFQ==</latexit>

HHHc(1)
<latexit sha1_base64="n/Q8twW/sqqpmw5km4C5H3tzIbQ=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FLz1WsB/QXUo2TdvQJBuSrFCW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvVpwZ6/vf3tr6xubWdmGnuLu3f3BYOjpumSTVhDZJwhPdibGhnEnatMxy2lGaYhFz2o7H9zO//US1YYl8tBNFI4GHkg0YwdZJYahEnNWnPVLRF71S2a/6c6BVEuSkDDkavdJX2E9IKqi0hGNjuoGvbJRhbRnhdFoMU0MVJmM8pF1HJRbURNn85ik6d0ofDRLtSlo0V39PZFgYMxGx6xTYjsyyNxP/87qpHdxGGZMqtVSSxaJBypFN0CwA1GeaEssnjmCimbsVkRHWmFgXU9GFECy/vEpal9Xguuo/XJVrd3kcBTiFM6hAADdQgzo0oAkEFDzDK7x5qffivXsfi9Y1L585gT/wPn8Ag/uRVg==</latexit>

HHHc(r)

<latexit sha1_base64="1SpApQOEbv9E9N7//9L3hCti27M=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHoseumxgv2A7lKyabYNTXZjkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjtk5SRWiLJDxR3RBryllMW4YZTrtSUSxCTjvh+G7md56o0iyJH8xE0kDgYcwiRrCxku9LEWaNaf+xqs775Ypbc+dAq8TLSQVyNPvlL3+QkFTQ2BCOte55rjRBhpVhhNNpyU81lZiM8ZD2LI2xoDrI5jdP0ZlVBihKlK3YoLn6eyLDQuuJCG2nwGakl72Z+J/XS010E2QslqmhMVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oeVc19/6yUr/N4yjCCZxCFTy4hjo0oAktICDhGV7hzUmdF+fd+Vi0Fpx85hj+wPn8AZldkWQ=</latexit>

HHHq(r)
<latexit sha1_base64="PuVeBgnYIXSIKR08+hR3iemRz2o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHosevEiVLAf0F1KNs22odlsTLJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvFBypo3rfjuFldW19Y3iZmlre2d3r7x/0NJJqghtkoQnqhNiTTkTtGmY4bQjFcVxyGk7HN1M/fYTVZol4sGMJQ1iPBAsYgQbK/m+jMPsbtJ7rKrTXrni1twZ0DLxclKBHI1e+cvvJySNqTCEY627nitNkGFlGOF0UvJTTSUmIzygXUsFjqkOstnNE3RilT6KEmVLGDRTf09kONZ6HIe2M8ZmqBe9qfif101NdBVkTMjUUEHmi6KUI5OgaQCozxQlho8twUQxeysiQ6wwMTamkg3BW3x5mbTOat5Fzb0/r9Sv8ziKcATHUAUPLqEOt9CAJhCQ8Ayv8Oakzovz7nzMWwtOPnMIf+B8/gChD5Fp</latexit>

MMMq(r)

<latexit sha1_base64="UEjaqlqzEXhxJPUsU37p1xXcbw8=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FL16ECvYDukvJpmkbmmRDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmxYozY33/21tZXVvf2CxsFbd3dvf2SweHTZOkmtAGSXii2zE2lDNJG5ZZTttKUyxiTlvx6Hbqt56oNiyRj3asaCTwQLI+I9g6KQyViLP7SZdU9Fm3VPar/gxomQQ5KUOOerf0FfYSkgoqLeHYmE7gKxtlWFtGOJ0Uw9RQhckID2jHUYkFNVE2u3mCTp3SQ/1Eu5IWzdTfExkWxoxF7DoFtkOz6E3F/7xOavvXUcakSi2VZL6on3JkEzQNAPWYpsTysSOYaOZuRWSINSbWxVR0IQSLLy+T5nk1uKz6Dxfl2k0eRwGO4QQqEMAV1OAO6tAAAgqe4RXevNR78d69j3nripfPHMEfeJ8/i62RWw==</latexit>

MMM c(r) <latexit sha1_base64="rovY18aB69LgWLBcpHdGlgpcg6w=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRahIpRdUfRY9NJjBfsB7VqyabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0e3Ubz1SpVkk7804pr7AA8lCRrCx0kM3FkFam/RIWZ15p71iya24M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/Orp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjtp0zGiaGSzBeFCUcmQtMIUJ8pSgwfW4KJYvZWRIZYYWJsUAUbgrf48jJpnle8y4p7d1Gq3mRx5OEIjqEMHlxBFWpQhwYQUPAMr/DmPDkvzrvzMW/NOdnMIfyB8/kDYmWRxg==</latexit>

HHHc(r + 1)

<latexit sha1_base64="gtM9GVRmBMdLOaGd0pXDvCBr0ac=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSJUhLIrih6LXnqsYD+gXUs2zbahSXZNskpZ+j+8eFDEq//Fm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q0eJIrROIh6pVoA15UzSumGG01asKBYBp81geDPxm49UaRbJOzOKqS9wX7KQEWysdN+JRZBWx92Hkjr1TrqFolt2p0CLxMtIETLUuoWvTi8iiaDSEI61bntubPwUK8MIp+N8J9E0xmSI+7RtqcSCaj+dXj1Gx1bpoTBStqRBU/X3RIqF1iMR2E6BzUDPexPxP6+dmPDKT5mME0MlmS0KE45MhCYRoB5TlBg+sgQTxeytiAywwsTYoPI2BG/+5UXSOCt7F2X39rxYuc7iyMEhHEEJPLiEClShBnUgoOAZXuHNeXJenHfnY9a65GQzB/AHzucPd+OR1A==</latexit>

HHHq(r + 1)
<latexit sha1_base64="DN2vBxNRem21lvaQHQUboWU4lXs=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVRY9FLz1WsR/QXUo2zbah2WxMskJZ+je8eFDEq3/Gm//GtN2Dtj4YeLw3w8y8UHKmjet+Oyura+sbm4Wt4vbO7t5+6eCwpZNUEdokCU9UJ8SaciZo0zDDaUcqiuOQ03Y4up367SeqNEvEgxlLGsR4IFjECDZW8n0Zh1l90nus3J/1SmW36s6AlomXkzLkaPRKX34/IWlMhSEca931XGmCDCvDCKeTop9qKjEZ4QHtWipwTHWQzW6eoFOr9FGUKFvCoJn6eyLDsdbjOLSdMTZDvehNxf+8bmqi6yBjQqaGCjJfFKUcmQRNA0B9pigxfGwJJorZWxEZYoWJsTEVbQje4svLpHVe9S6r7t1FuXaTx1GAYziBCnhwBTWoQwOaQEDCM7zCm5M6L8678zFvXXHymSP4A+fzB2i9kUQ=</latexit>

HHHq(R)

<latexit sha1_base64="GaEvtrZmQesjuPQ7J6hc0jhjjFU=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquKHoseumxiv2A7lKyabYNzWZDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjtk5SRWiLJDxR3RBrypmgLcMMp12pKI5DTjvh+G7md56o0iwRj2YiaRDjoWARI9hYyfdlHGaNaZ9UH8775Ypbc+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRTZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oeVc19/6yUr/N4yjCCZxCFTy4hjo0oAktICDhGV7hzUmdF+fd+Vi0Fpx85hj+wPn8AVNbkTY=</latexit>

HHHc(R)

<latexit sha1_base64="MR3zZxaucX4nIzwHIeSNXv5iXmI=">AAAB9XicbVDLSgNBEJyNrxhfUY9eFoPgKeyKosdgEDwoRDQPSNYwO+lNhszOLjO9aljyH148KOLVf/Hm3zh5HDSxoKGo6qa7y48F1+g431ZmYXFpeSW7mltb39jcym/v1HSUKAZVFolINXyqQXAJVeQooBEroKEvoO73yyO//gBK80je4SAGL6RdyQPOKBrpvoXwhH6QXl2XL26H7XzBKTpj2PPEnZICmaLSzn+1OhFLQpDIBNW66ToxeilVyJmAYa6VaIgp69MuNA2VNATtpeOrh/aBUTp2EClTEu2x+nsipaHWg9A3nSHFnp71RuJ/XjPB4MxLuYwTBMkmi4JE2BjZowjsDlfAUAwMoUxxc6vNelRRhiaonAnBnX15ntSOiu5J0bk5LpTOp3FkyR7ZJ4fEJaekRC5JhVQJI4o8k1fyZj1aL9a79TFpzVjTmV3yB9bnD0uOkl8=</latexit>

LMCES <latexit sha1_base64="fPkkdS5rlyT7H7oXVcphrn32igw=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosdgLh4UIpoHJGuYnfQmQ2YfzPSqYcl/ePGgiFf/xZt/4yTZg0YLGoqqbrq7vFgKjbb9ZeUWFpeWV/KrhbX1jc2t4vZOQ0eJ4lDnkYxUy2MapAihjgIltGIFLPAkNL1hdeI370FpEYW3OIrBDVg/FL7gDI1010F4RM9PL6+q1Ztxt1iyy/YU9C9xMlIiGWrd4menF/EkgBC5ZFq3HTtGN2UKBZcwLnQSDTHjQ9aHtqEhC0C76fTqMT0wSo/6kTIVIp2qPydSFmg9CjzTGTAc6HlvIv7ntRP0z9xUhHGCEPLZIj+RFCM6iYD2hAKOcmQI40qYWykfMMU4mqAKJgRn/uW/pHFUdk7K9vVxqXKexZEne2SfHBKHnJIKuSA1UiecKPJEXsir9WA9W2/W+6w1Z2Uzu+QXrI9vSIKSXQ==</latexit>

LMCCS

<latexit sha1_base64="wdPOKNlM/Ffp67sF3/OmOc8eLrM=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosdgLl6EiOYByRJmJ73JkNmHM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7vFgKjbb9beVWVtfWN/Kbha3tnd294v5BQ0eJ4lDnkYxUy2MapAihjgIltGIFLPAkNL1hdeo3R6C0iMIHHMfgBqwfCl9whkZyOwhP6Plp67Z6P+kWS3bZnoEuEycjJZKh1i1+dXoRTwIIkUumdduxY3RTplBwCZNCJ9EQMz5kfWgbGrIAtJvOjp7QE6P0qB8pUyHSmfp7ImWB1uPAM50Bw4Fe9Kbif147Qf/KTUUYJwghny/yE0kxotMEaE8o4CjHhjCuhLmV8gFTjKPJqWBCcBZfXiaNs7JzUbbvzkuV6yyOPDkix+SUOOSSVMgNqZE64eSRPJNX8maNrBfr3fqYt+asbOaQ/IH1+QPLhZIc</latexit>
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HHHc(r) � min(HHHc(r),PPP
>(r)HHHq(r))

Figure 1: Proposed late (top row) and early (bottom row) interaction models. Top Left: LM-
CES encodes the given query-corpus graphs separately, using R layers of GNNθ to compute
node embedding matrices Hq(r),Hc(r) with r = {1, . . . , R}. For each layer r, the Gumbel-
Sinkhorn network GSϕ computes the optimal alignment P (r) between Hq(r) and Hc(r), which is
finally used compute the relevance score in Eq. (5). Top Right: LMCCS uses GNNθ to encode
the R-hop node and edge embeddings, H•(R) and M•(R). The edge embeddings M•(R) are
fed into Lα to predict edge score matrix S•(R) whose valid edge entries are encoded in A ⊙ S.
As before, GSϕ(Hq(R),Hc(R)) generates alignment P (R) which is used to compute candidate
MCS graph min(Aq ⊙ Sq,P (Ac ⊙ Sc)P

⊤), which is then fed into the neural GOSSIP mod-
ule, to predict the final MCCS score. Bottom: At each layer r, XMCS uses the alignment ma-
trix P (r) to factor the cross graph influences using Hq(r) − min(Hq(r),P

(r)Hc(r)) for query,
and Hc(r) − min(Hc(r),P

(r)THq(r)) for corpus. This is used to update the node embeddings
H•(r) → H•(r+1). Embeddings from the final layer are used to compute the final relevance score.

gossip protocol (or its neural approximation), we need an estimate of the adjacency matrix of the
common subgraph. Therefore, we compute the noisy estimator as follows:

P = GSϕ(Hq(R),Hc(R)), B = min
(
Aq ⊙ Sq,P (Ac ⊙ Sc)P

⊤) (9)
In the above expression, we replace all the non-zero entries of Aq and Ac with the corresponding
edge importance scores of Sq and Sc. This facilitates backpropagation more effectively, as opposed
to the original 0/1 adjacency representation of the common subgraph (item 1 in Section 2.1). Here,
we generate the permutation matrix P using Gumbel-Sinkhorn network similar to MCES, except that
here we generate only one permutation matrix based on the embeddings on the final layer, whereas in
MCES, we generated permutations P (r) for each layer r.
Step 3: Neural implementation of gossip. Our gossip protocol in Algorithm 1 is already differen-
tiable. However, by the virtue of the way it is designed, it would give accurate results only if the input
matrix consists of 0/1 values. However, our neural estimate B contains mostly non-zero continuous
values and many of them can go beyond ±1. As a result, the resultant matrix X(t) = X(0)(B + I)t
in Algorithm 1 may suffer from extremely poor conditioning. To tackle this problem, we use a noise
filter network at the final step T . We first estimate a dynamic threshold τ ∈ [0,∞) and then set the
values of X(T ) below that threshold to zero. Finally, we scale the non-zero entries between (0, 1)
using a sigmoid activation σ(·). Formally, we define:

τ = THRESHβ(X(T )); X̂(T ) = 2σ (ReLU[X(T )− τ ]/λ)− 1, (10)
where λ is a temperature hyperparameter. THRESHβ consists of a linear, a ReLU, then another
linear layer. Note that X̂(T ) ∈ [0, 1] by design, which lets us replace the L0 norm in the final score
(Algorithm 1, line 4) with the more benign L1 norm, followed by a maxpool over nodes:

s(Gq, Gc) = max
u∈V

∥∥X̂(T )[•, u]
∥∥
1

(11)

Note that the interaction steps 2 and 3 above are completely decoupled from step 1 and do not have
any contribution in computing embeddings.

3 Early/cross interaction model: XMCS

Although late interaction models offer efficient training and fast inference, prior work [5] suggests
that early interaction models, while slower, may offer better accuracy. Motivated by such successes,
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we propose a unified early interaction model, called XMCS, which works for both MCES and MCCS.
XMCS is slower than LMCES and LMCCS, but provides significant accuracy gains (Section 4).
Moreover, it is significantly faster than GMN [5]. As before, the relevance score s(Gq, Gc) is
computed using a graph neural network (GNN) with R propagation layers, but each graph influences
embeddings of the other graph in each layer.
Initialization of node embeddings. We start with the raw node features zu for each node u ∈ Vq∪Vc

and use them to initialize the node embeddings hu.
hu(0) = FEATUREENCODERθ(zu) (12)

Embedding computation via interaction between Gq and Gc. Given the node embeddings hu(r)
for some propagation layer r < R, we first encode the intra-graph influences across all edges in both
query and corpus graphs. Accordingly, we obtain directed message vectors, for each pair of nodes
(u, v) ∈ Eq ∪ Ec, which are then aggregated using a simple sum aggregator.

muv(r) = MESSAGEPASSINGθ(hu(r),hv(r)) ∀ (u, v) ∈ Eq ∪ Ec (13)
mu(r) =

∑
v∈nbr(u) muv(r) ∀u ∈ Vq ∪ Vc (14)

Next, we perform the interaction step across the query and corpus graphs Gq and Gc, using a graph
alignment network, which is modeled using GSϕ, similar to the late interaction models in Eq. (4).
We build embedding matrices Hq(r) and Hc(r) by stacking hu(r) from Gq and Gc respectively.
Then, we feed them into GSϕ to generate an alignment matrix, and finally compute the difference of
the query and the corpus graphs from the underlying MCS in the continuous embedding space:

P (r) = GSϕ(Hq(r),Hc(r)); ∆q(r) = Hq(r)−min(Hq(r),P
(r)Hc(r));

∆c(r) = Hc(r)−min(Hc(r),P
(r)⊤Hq(r)). (15)

Note that ∆q(r) in the above can also be written as ReLU[Hq(r)−P (r)Hc(r)] (because min(a, b) =
a − ReLU(a − b)) and thus ∆q(r) (similarly, ∆c(r)) captures the representation of a subgraph
present in Gq (Gc), which is not present in Gc (Gq). Here, P provides an injective mapping from Vc

to Vq , in contrast to attention-based GMN [5], which is non-injective—it assigns one corpus node to
one query node but one query node to possibly multiple corpus nodes.

Next, the node embeddings hu are updated using aggregated intra-graph and cross-graph influences.
hu(r + 1) = UPDATEEMBEDDINGθ

(
hu(r),mu(r),

∑
j ∆(r)[u, j]

)
∀ u ∈ Vq ∪ Vc (16)

The node embeddings of Gq explicitly depend on Gc via the alignment P (•) and vice-versa.
Relevance score computation. Finally, we compute the relevance score using the neural surrogate:

s(Gq, Gc) =
∑

i,j

min(Hq(R),P (R)Hc(R))i,j . (17)

Clearly, the above scoring function directly approximates the MCES objective (1) similar to the score
given by LMCES in Eq. (5), except that here we use the embeddings at the last layer to compute the
score. Although one can subsequently a combine gossip network with the above model, we found
that it does not improve accuracy significantly and moreover, results in extreme slowdown.

4 Experiments

In this section, we provide a comprehensive evaluation of our models across seven datasets and show
that they outperform several competitors [6, 7, 8, 10, 11, 5]. Our code is in https://tinyurl.com/mccs-
xmcs.

4.1 Experimental setup

Datasets. We experiment with seven datasets, viz., MSRC-21 (MSRC), PTC-MM (MM), PTC-FR
(FR), PTC-MR (MR), PTC-FM (FM), COX2 (COX) and DD. The details about them are described
in Appendix C. Among these datasets, we report the results of the first six datasets in the main paper
and the DD dataset in Appendix D. For every dataset, we have a corpus graph database with 800
graphs and a set of 500 query graphs, leading to 400000 query-corpus pair of graphs.
State-of-the-art methods compared. We compare our method against six state-of-the-art late
interaction models, viz., (i) SimGNN [6], (ii) GraphSim [7], (iii) GOTSim [8], (iv) NeuroMatch [10],
(v) IsoNet [11] and (vi) Graph embedding network (GEN) [5]; and one early interaction model, viz.,
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MCES MSE (lower is better) KTau (higher is better)
MSRC MM FR MR FM COX MSRC MM FR MR FM COX

L
at

e





SimGNN 0.910 0.302 0.355 0.337 0.331 0.281 0.232 0.368 0.358 0.354 0.372 0.394
GraphSim 0.629 0.274 0.282 0.274 0.261 0.249 0.461 0.432 0.458 0.454 0.500 0.403
GOTSim 0.496 0.343 0.326 0.320 0.359 0.328 0.564 0.464 0.448 0.516 0.496 0.374
NeuroMatch 0.582 0.308 0.282 0.795 0.604 0.269 0.632 0.488 0.516 0.548 0.535 0.514
IsoNet 0.276 0.225 0.220 0.209 0.253 0.182 0.669 0.506 0.504 0.537 0.532 0.522
GEN 0.426 0.311 0.273 0.284 0.324 0.277 0.627 0.416 0.468 0.456 0.456 0.466
LMCES 0.232 0.167 0.170 0.162 0.163 0.140 0.691 0.577 0.588 0.598 0.610 0.574

E
ar

ly

{
GMN 0.269 0.184 0.181 0.178 0.189 0.155 0.670 0.544 0.567 0.568 0.569 0.555
XMCS 0.226 0.154 0.162 0.154 0.160 0.132 0.699 0.582 0.594 0.612 0.606 0.580

MCCS MSE (lower is better) KTau (higher is better)
MSRC MM FR MR FM COX MSRC MM FR MR FM COX

L
at

e





SimGNN 0.100 0.360 0.337 0.233 0.316 0.289 0.125 0.281 0.308 0.313 0.299 0.366
GraphSim 0.088 0.283 0.290 0.221 0.255 0.325 0.153 0.336 0.337 0.315 0.366 0.292
GOTSim 0.165 0.416 0.340 0.330 0.321 0.318 -0.088 0.320 0.327 0.307 0.380 0.416
NeuroMatch 0.352 0.376 0.326 0.351 0.295 0.984 0.125 0.376 0.365 0.370 0.406 0.440
IsoNet 0.086 0.237 0.244 0.191 0.218 0.253 0.185 0.381 0.388 0.351 0.402 0.406
GEN 0.171 0.366 0.344 0.290 0.356 0.309 0.111 0.325 0.332 0.305 0.326 0.391
LMCCS 0.068 0.174 0.179 0.134 0.173 0.177 0.248 0.451 0.438 0.406 0.457 0.487

E
ar

ly

{
GMN 0.101 0.200 0.216 0.156 0.193 0.176 0.174 0.416 0.405 0.379 0.431 0.479
XMCS 0.071 0.168 0.163 0.131 0.168 0.153 0.198 0.452 0.451 0.412 0.453 0.501

Table 1: Performance measured using mean square error (MSE) (left half) and Kendall-Tau Rank
Correlation (Ktau) (right half) of our models and state-of-the-art baselines, viz., SimGNN [6],
GraphSim [7], GOTSim [8], Neuromatch [10], IsoNet [11], GEN [5], GMN [5] on 20% test set.
Top-half and bottom-half report results for MCES and MCCS respectively. Except GMN, all SOTA
methods are late interaction models. Numbers in green (blue) indicate the best performers among
early (late) interaction models. Numbers in yellow indicate second best performers for late interaction
models.

(vii) Graph Matching Network (GMN) [5]. All methods use a general purpose scoring layer, except
for NeuroMatch and IsoNet, which are specifcially designed for subgraph isomorphism.
Training and evaluation. Given corpus graphs C= {Gc}, query graphs Q= {Gq} and their gold
MCES and MCCS values {yMCES(Gq, Gc)} and {yMCCS(Gq, Gc)}, for Gq ∈ Q,Gc ∈ C, we
partition the query set into 60% training, 20% validation and 20% test folds. We train all methods by
minimizing mean square error (MSE) loss between the predicted output and gold MCS (MCES or
MCCS) values on the training split.

minΛ
∑

Gq∈Q,Gc∈C(sΛ(Gq, Gc)− y(Gq, Gc))
2 (18)

Here y can be either yMCES or yMCCS and Λ is the set of trainable parameters for the relevance scoring
function sΛ(Gq, Gc). In the context of our models, Λ = {θ, ϕ, w1:R} for LMCES, Λ = {θ, ϕ, α, β}
for LMCCS and Λ = {θ, ϕ} for XMCS model. We use the validation split to tune various
hyperparameters. Subsequently, we use the trained models to predict MCS scores between the test
query graphs and the corpus graphs. For each of the query graphs in the test split, we use the predicted
outputs to compute the MSE and Kendall-Tau rank correlation (KTau) values. Finally, we report the
average MSE and mean KTau values across all the test query graphs.

4.2 Results

Comparison with state-of-the-art methods. In Table 1, we compare the performance of LMCES
and XMCS (LMCCS and XMCS) against the state-of-the-art methods on both MCES (MCCS)
based retrieval tasks. We observe: (1) For MCES and MCCS tasks, LMCES and LMCCS outperform
all late interaction models by a substantial margin in terms of MSE and KTau across all datasets.
(2) XMCS consistently outperforms GMN, the only early interaction baseline model. Suprisingly,
GMN is also outperformed by our late interaction models, except in COX for the MCCS task. The
likely reason is that GMN uses a general purpose scoring function and a cross attention mechanism that
induces a non-injective mapping between the nodes and edges of the query corpus pairs. (3) XMCS
outperforms both LMCES and LMCCS, as expected. (4) For both MCES and MCCS tasks, IsoNet is
consistently second-best with respect to MSE. IsoNet is a subgraph isomorphism based retrieval model
and its scoring function is proportional to

∑
i,j ReLU(Mq(R) − P (R)Mc(R))i,j , which can be

re-written as
∑

i,j [Mq(R)−min(Mq(R),P (R)Mc(R))i,j ] (since min(a, b) = a−ReLU(a− b)).
Thus, the second term captures MCES score. During training, IsoNet is also able to shift and scale the
above score to offset the additional term involving Mq(R), which likely allows it to outperform other
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MCES MSRC MM FR MR

L
at

e





GEN 0.426 0.311 0.273 0.284
GEN (MCS) 0.284 0.181 0.179 0.169
IsoNet 0.276 0.225 0.220 0.209
IsoNet (MCS) 0.260 0.187 0.178 0.173
LMCES 0.232 0.167 0.170 0.162

E
ar

ly
{ GMN 0.269 0.184 0.181 0.178

GMN (MCS) 0.228 0.155 0.158 0.157
XMCS 0.226 0.154 0.162 0.154

MCCS MSRC MM FR MR

L
at

e





GEN 0.171 0.366 0.344 0.290
GEN (MCS) 0.076 0.226 0.195 0.161
IsoNet 0.086 0.237 0.244 0.191
IsoNet (MCS) 0.088 0.230 0.225 0.161
LMCCS 0.068 0.174 0.179 0.134

E
ar

ly

{ GMN 0.101 0.200 0.216 0.156
GEN (MCS) 0.070 0.178 0.173 0.125
XMCS 0.071 0.168 0.163 0.131

Table 2: Effect of replacing the general-purpose scoring layers with new layers customized to MCS
on most competitive baselines, viz., GEN and IsoNet (late interaction models) and GMN, across first
four datasets (MSE). Numbers in green (red) indicate the best (second best) performers for early
interaction models. Numbers in blue (yellow) indicate the best (second best) performers for late
interaction models. The proposed modification improves performance of all baselines. However our
models outperform them, even after modifying their layers, in most cases.

baselines. (5) Neuromatch is excellent with respect to KTau, where it is the second best performer in
six out of twelve settings. This is due to NeuroMatch’s order-embedding training objective, which
translates well to the KTau rank correlation scores.
Effect of replacing general purpose scoring layers with MCS customized layer. The state-
of-the-art methods use a general purpose scoring functions, whereas those of our models are
tailored to MCS based retrieval. In order to probe the effect of such custom MCS scoring
layers, we modify the three most competitive baselines, viz., IsoNet, GEN, GMN, where we
replace their scoring layers with a layer tailored for MCS. Specifically, for IsoNet, we set
s(Gq, Gc) =

∑
i,j min(Mq(R),P (R)Mc(R))i,j and for GEN and GMN, we use s(Gq, Gc) =∑

i min(hq(R),hc(R))i. Table 2 summarizes the results, which show that: (1) All three baselines
enjoy a significant accuracy boost from the MCS-tailored scoring layer. (2) LMCES and LMCCS
continue to outperform MCS-tailored variants of late interaction baselines. XMCS outperforms
MCS-tailored GMN in a majority of cases.
Ablation study. We consider four additional variants: (i) LMCES (final layer) where
the relevance score is computed using only the embeddings of the Rth layer, (ii) LMCCS

MCES MSRC MM FR

L
at

e { LMCES (final layer) 0.237 0.175 0.170
LMCES 0.232 0.167 0.170

E
ar

ly

{
XMCS (all layers) 0.224 0.154 0.165
XMCS 0.226 0.154 0.162
MCCS MSRC MM FR

L
at

e

{ LMCCS (no gossip) 0.166 0.241 0.240
LMCCS (no NOISE FILTER) 0.068 0.194 0.206
LMCCS 0.068 0.174 0.179

E
ar

ly

{
XMCS (all layers) 0.069 0.181 0.171
XMCS 0.071 0.168 0.163

Table 3: Ablation study (MSE).

(no gossip), where we remove
the gossip network and compute
s(Gq, Gc) =

∑
i,j min(Aq ⊙

Mq,P
(R)Ac ⊙ McP

(R))i,j , (iii)
LMCCS (no NOISE FILTER) where
we set τt = 0 in Eq. (10) and (iv)
XMCS (all layers) where we compute
the relevance score in Eq. (17) using
embeddings from all R layers. Table 3
summarizes the results where the num-
bers in green (red) for early interaction
models, and blue (yellow) for late interaction models, indicate the best (second best) performers. We
observe: (1) The scoring function of LMCES computed using Eq. (5) improves the performance for
MSRC and MM datasets. (2) The gossip component is the most critical part of LMCCS. Upon
removal of this component, the MSE of LMCCS significantly increases—for MSRC, it more than
doubles. (3) The noise filter unit described in Eq. (10) is also an important component of LMCCS.
Removal of this unit renders noticeable rise in MSE in MM and FR datasets. (4) Given an already
high modeling power of XMCS, we do not observe any clear advantage if we use embeddings
{Hq(r),Hc(r), r ∈ [R]} from all R layers to compute the final score in Eq. (17).
Recovering latent linear combinations of MCES and MCCS scores. In some applications, the
ground truth relevance scores may be unknown or equal to a noisy latent function MCCS and MCES
size. To simulate this scenario, here, we evaluate the performance when the ground truth relevance
label is a convex combination of MCCS and MCES scores, i.e., a ·MCCS-size+(1−a) ·MCES-size.
We experiment with our late (LMCES and LMCCS) and early (XMCS) interaction models, as
well as the baseline late (GEN) and early(GMN) interaction models equipped with our custom MCS
layer. Additionally, we implement a new model COMBO, whose relevance score s(Gq, Gc) =∑

w1sLMCCS(Gq, Gc) + w2sLMCES(Gq, Gc). Here,{wr ≥ 0 : r ∈ [2]} are trainable parameters,
which attempt to balance the signals from the LMCCS and LMCES scoring functions, in order to
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Combined MSE (lower is better) KTau (higher is better)
MSRC MM MSRC MM

a = 0.3 a = 0.7 a = 0.3 a = 0.7 a = 0.3 a = 0.7 a = 0.3 a = 0.7

L
at

e





GEN (MCS) 0.150±0.004 0.071±0.008 0.146±0.005 0.165±0.012 0.664±0.004 0.644±0.004 0.567±0.005 0.549±0.005
LMCES 0.125±0.004 0.066±0.008 0.143±0.006 0.177±0.013 0.692±0.004 0.675±0.004 0.587±0.005 0.565±0.005
LMCCS 1.044±0.069 0.230±0.011 0.172±0.007 0.166±0.011 0.553±0.010 0.528±0.011 0.561±0.006 0.554±0.006
COMBO 0.130±0.004 0.068±0.008 0.145±0.006 0.140±0.012 0.687±0.004 0.665±0.004 0.580±0.005 0.578±0.005

E
ar

ly
{

GMN (MCS) 0.124±0.003 0.060±0.007 0.129±0.005 0.130±0.009 0.692±0.004 0.677±0.004 0.587±0.005 0.574±0.005
XMCS 0.121±0.003 0.063±0.008 0.124±0.005 0.129±0.009 0.695±0.004 0.671±0.004 0.593±0.005 0.572±0.005

Table 4: Performance when the ground truth is the convex combination of MCES and MCCS
sizes, i.e., a ·MCCS-size+(1−a) ·MCES-size, for two values of a viz., a ∈ {0.3, 0.7}. Performance
measured using mean square error (MSE) (left half) and Kendall-Tau Rank Correlation (Ktau) (right
half) with standard error, of our models and the baselines GEN and GMN, for two datasets. Numbers
in green (red) indicate the best (second best) performers for early interaction models. Numbers in
blue (yellow) indicate the best (second best) performers for late interaction models.

predict any given combination of ground truths. In Table 4, we report the performance in terms of
MSE and KTau with standard error, for two latent (hidden from the learner) values of a, viz., a = 0.3
and a = 0.7. We make the following observations:

1. GEN (MCS) is consistently outperformed in all cases, by one of our late interaction variants
LMCES, LMCCS, or COMBO.

2. LMCCS is seen to be very susceptible to noise. It does not perform well even for a = 0.7 (30%
MCES noise). In fact, its performance deteriorates rapidly for MCES dataset, due to the noisy
MCES signals, with the performance for a = 0.3 being significantly worse than a = 0.7.

3. LMCES is seen to be more robust to noise, and is the best performer in six out of eight cases.
4. COMBO is overall seen to be the most well-balanced in terms of performance. Although it is

the best performer in two out of eight cases, it is the second best close behind LMCES, for the
remaining cases.

5. XMCS is seen to be able to adapt well to this noisy setup, and performs better than GMN (MCS)
in five out of eight cases.

It is encouraging to see that XMCS does not need customization based on connectedness of the
MCS, but we remind the reader that late interaction methods are substantially faster and may still
have utility.
Inference times. Tables 1 and 2 suggest that GMN is the most competitive baseline. Here,
we compare the inference time, on our entire test fold, taken by GMN against our late and
early interaction models. Table 5 shows the results. We observe: (1) XMCS is 3× faster
than GMN. This is because GMN’s cross interaction demands processing one query-corpus pair

LMCCS LMCCS (no gossip) LMCES XMCS GMN
13.78 13.96 28.13 31.10 99.54

Table 5: Inference time (s), increasing from left to right.

at a time to account for variable
graph sizes. In contrast, our Gumbel-
Sinkhorn permutation network allows
us to pad the adjacency matrices for
batched processing, which results in significant speedup along with accuracy improvements. (2) LM-
CES is 2× slower than LMCCS (no gossip), as it has to compute the permutation matrices for all R
layers. Furthermore, LMCCS and LMCCS (no gossip) require comparable inference times.

5 Conclusion

We proposed late (LMCES, LMCCS) and early (XMCS) interaction networks for scoring corpus
graphs with respect to query graphs under a maximum common (connected) subgraph consideration.
Our formulations depend on the relaxation of a node alignment matrix between the two graphs, and
a neural ‘gossip’ protocol to measure the size of connected components. LMCES and LMCCS
are superior with respect to both speed and accuracy among late interaction models. XMCS is
comparable to the best early interaction models, while being much faster. Our work opens up
interesting avenues for future research. It would be interesting to design neural MCS models which
can also factor in similarity between attributes of nodes and edges. Another interesting direction is to
design neural models for MCS detection across multiple graphs.
Acknowledgement. Indradyumna acknowledges PMRF fellowship and Qualcomm Innovation
Fellowship. Soumen Chakrabarti and Abir De acknowledge IBM AI Horizon grant. Abir De also
acknowledges DST Inspire grant.
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