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Abstract

Cross-lingual transfer of language models001
trained on high-resource languages like En-002
glish has been widely studied for many NLP003
tasks, but focus on conversational tasks has004
been rather limited. This is partly due to the005
high cost of obtaining non-English conversa-006
tional data, which results in limited coverage.007
In this work, we introduce XSGD1 for cross-008
lingual alignment pretraining, a parallel and009
large-scale multilingual conversation dataset010
that we created by translating the English-only011
Schema-Guided Dialogue (SGD) dataset (Ras-012
togi et al., 2020) into 105 other languages.013
XSGD contains about 330k utterances per lan-014
guage. To facilitate aligned cross-lingual rep-015
resentations, we develop an efficient prompt-016
tuning-based method for learning alignment017
prompts. We also investigate two different018
classifiers: NLI-based and vanilla classifiers,019
and test cross-lingual capability enabled by020
the aligned prompts. We evaluate our model’s021
cross-lingual generalization capabilities on two022
conversation tasks: slot-filling and intent clas-023
sification. Our results demonstrate strong and024
efficient modeling ability of NLI-based clas-025
sifiers and the large cross-lingual transfer im-026
provements achieved by our aligned prompts,027
particularly in few-shot settings. We also con-028
duct studies on large language models (LLMs)029
such as text-davinci-003 and ChatGPT in both030
zero- and few-shot settings. While LLMs ex-031
hibit impressive performance in English, their032
cross-lingual capabilities in other languages,033
particularly low-resource ones, are limited.034

1 Introduction035

It has long been known that NLP research and ap-036

plications are concentrated on high-resource lan-037

guages such as English, French, and Japanese. This038

limitation introduces bias and prevents people in039

1https://console.cloud.
google.com/storage/browser/
multilingual-sgd-data-research

minority language groups from accessing recent 040

NLP technologies. 041

Driven by advances in large-scale training, there 042

has been an increase in the number of approaches 043

that attempt to learn general-purpose multilingual 044

representations, which aim to capture shared knowl- 045

edge across languages. Jointly trained multilingual 046

language models such as XLM-R (Conneau et al., 047

2020) and mBART (Liu et al., 2020), coupled with 048

supervised fine-tuning in the source (English) lan- 049

guage, have been quite successful in transferring 050

linguistic and task knowledge from one language 051

to another without using any task labels in the tar- 052

get language, a.k.a. zero-shot transfer. Despite 053

their effectiveness, studies (Wu and Dredze, 2019; 054

Pires et al., 2019; K et al., 2020) have also high- 055

lighted key factors for successful transfer which 056

include structural similarity between languages and 057

the tasks under consideration. When it comes to 058

conversational tasks, studies on cross-lingual zero- 059

shot transfer have been limited to only few domains 060

and languages. 061

To investigate the cross-lingual transfer abil- 062

ity on conversational tasks, we create the XSGD 063

dataset by translating data from the English-only 064

Schema-Guided Dialogue or SGD (Rastogi et al., 065

2020), which is currently the largest multi-domain 066

dialogue corpora. While previous work such as 067

Multi2WOZ (Hung et al., 2022) has also tried to ex- 068

pand monolingual datasets into multiple languages, 069

it is primarily a translation of development and 070

test dialogues from the English-only MultiWOZ 071

dataset (Budzianowski et al., 2018; Zang et al., 072

2020) into Arabic, Chinese, German, and Russian. 073

In contrast, XSGD comprises 106 languages (in- 074

cluding English), with roughly 330k utterances 075

and 10 domains per language, as compared to the 076

7 domains and 29.5k utterances per language in 077

Multi2WOZ. 078

Recently, several studies (Li and Liang, 2021; 079

Lester et al., 2021; Hambardzumyan et al., 2021) 080
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have shown the potential of prompt tuning. In par-081

ticular, Tu et al. (2022) observed that prompt tun-082

ing can achieve much better cross-lingual transfer083

than model fine-tuning across multiple XTREME084

tasks (Hu et al., 2020) using significantly fewer085

parameters. In this work, we propose an effi-086

cient prompt-tuning-based method that utilizes soft087

prompts to obtain stronger cross-lingually aligned088

representations on the XSGD dataset. The aligned089

prompts enable models to learn cross-lingual rep-090

resentations that can improve cross-lingual re-091

trieval. Additionally, we compare the performance092

of vanilla and NLI-based formulations on intent093

classification task. The latter utilizes label descrip-094

tions or label names in conjunction with utterances095

for entailment prediction. We find that it exhibits096

stronger few-shot cross-lingual generalization ca-097

pability for English-only tuning. Finally, our exper-098

imental results on intent classification and slot fill-099

ing demonstrate consistent performance improve-100

ments with our learned aligned prompts, especially101

in few-shot settings.102

Our contributions are summarized as follows:103

• We have constructed a large parallel multi-104

lingual conversation corpus comprising 106105

languages. We are releasing this dataset to106

facilitate and foster further research on multi-107

lingual conversation tasks.108

• We have also introduced an efficient prompt-109

tuning-based approach for aligning sentence110

representations across multiple languages.111

• We explored two different task formulations in112

the context of cross-lingual settings. We found113

that the NLI-based formulation demonstrated114

much stronger cross-lingual ability than the115

vanilla one, especially in few-shot settings.116

• Our experiments showed that the aligned117

prompt we proposed is effective for cross-118

lingual transfer, particularly in the few-shot119

setting, where we observe significant gains.120

Our study also showns the benefits of our121

approach, even when compared to large lan-122

guage models (LLMs) such as text-davinci-123

003 and ChatGPT.124

2 Background125

2.1 Multilingual Models126

Pre-trained multilingual language models, such as127

mBERT (Devlin et al., 2019), XLM-R (Conneau128

et al., 2020), and mBART (Liu et al., 2020) have 129

demonstrated remarkable zero-shot cross-lingual 130

transfer ability across a range of NLP tasks (Pires 131

et al., 2019; Wu and Dredze, 2019). Moreover, 132

some prior work, such as Artetxe and Schwenk 133

(2019); Luo et al. (2021); Zhang et al. (2019), has 134

leveraged parallel data to further enhance the cross- 135

lingual transfer ability of these models through fine- 136

tuning the entire architecture. Our work mainly 137

explore a similar direction for conversation tasks, 138

but with a more efficient approach where only a 139

small portion of parameters are fine-tuned. 140

2.2 Cross-lingual Benchmarks 141

To evaluate zero-shot cross-lingual transfer abil- 142

ity, it is a standard practice to fine-tune the mod- 143

els exclusively on English tasks and then evaluate 144

them on non-English test sets. XTREME (Hu et al., 145

2020) is a widely used benchmark in this regard, 146

comprising four categories of tasks: sentence clas- 147

sification, structure prediction, question answering, 148

and retrieval. For conversation tasks, the emerging 149

benchmark is MASSIVE (FitzGerald et al., 2022), 150

which includes around 1 million utterances across 151

a range of languages2. 152

3 XSGD Dataset 153

Prior work has focused on enhancing pre-trained 154

language models (PLMs) for either deeper under- 155

standing of conversational contexts or improved 156

cross-lingual generalization. For example, Wu 157

et al. (2020) and Vulić et al. (2021) have ex- 158

plored adapting general-purpose English PLMs 159

(Devlin et al., 2019; Liu et al., 2019) by applying 160

conversation-specific training objectives on large- 161

scale English conversational corpus. 162

One of the main challenges to achieve cross- 163

lingual conversational capability is the lack of 164

paired multi-lingual conversational corpus. In this 165

work, we take the initiative on this challenge and 166

create a multi-lingual dataset XSGD on top of the 167

SGD dataset (Rastogi et al., 2020). To this end, 168

we leverage Google Translate API 3 and translate 169

the original SGD dataset into 105 languages. A 170

complete list of the 105 languages can be found in 171

Appendix A. We follow the same train, develop- 172

ment, and test splits as in the original SGD dataset. 173

2Although this dataset does not contain any dialogue as
our created dataset XSGD, it is of higher quality. As a result,
we will be using it as a benchmark for downstream tasks.

3https://cloud.google.com/translate
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Human Evaluation Our parallel dataset is the174

largest multilingual TOD corpus (330k per lan-175

guage), however, it inherits noise from the trans-176

lation API. It is prohibitively expensive to do full-177

scale manual quality control because of its scale178

across 106 languages4.179

Languages Human Evaluation
Fluency Meaning

Indonesian 99% 98%
Swahili 100% 100%
Khmer 94% 99%
Urdu 97% 100%

Hawaiian 95% 99%
Yoruba 98% 100%

Table 1: Data quality results with Human evaluation.

We conduct human evaluation on 100 randomly180

sampled examples with workers from Amazon181

Mechanical Turk (AMT) on 6 low-resource lan-182

guages (Indonesian, Swahili, Urdu, Khmer, Hawai-183

ian, Yoruba) with different scripts5. Each sample is184

a translation pair that are randomly select consecu-185

tive turns within each dialogue. For quality control186

purpose, we set up a quiz to test Turkers’s language187

skills. Each assignment is evaluated by three dif-188

ferent Turkers. Turkers who passed the quiz are189

asked to evaluate the translation pairs based on 2 in-190

dividual qualities (meaning and fluency): whether191

adequately expresses the meaning of English text,192

and whether the translated text is fluent. We pro-193

vide our evaluation template of Hawaiian language194

in Figure 4 of Appendix. As shown in Table 1, we195

notice the high quality of our dataset. Surprisingly,196

at least 98% have the same meaning of English197

text.6.198

In next section, we show an efficient transfer199

learning method to use this large scale dataset for200

alignment pretraining. Then we further tune the201

aligned model on clean data with gold-labels so202

that noise will hopefully have a minor effect on our203

final model. Our evaluation dataset is also a high204

quality multilingual dataset.205

4It is an interesting direction to explore how to improve
the quality of this public dataset via an economically efficient
way in the future, for example, Majewska et al. (2023).

5Two languages (Hawaiian, Yoruba) are not even supported
by backbone model XLM-R

6We hypothesize the conversation domain is easier to get
high translation quality.

Figure 1: Framework for learning aligned prompts on
multilingual conversational corpus. We denote P as the
aligned prompts, which are tuned on the dialogue trans-
lation pairs, ⟨x,y⟩. The backbone model parameters are
frozen. These aligned prompts are used for conversation
downstream tasks.

4 Method 206

Recently, several studies (Li and Liang, 2021; 207

Lester et al., 2021; Hambardzumyan et al., 2021) 208

have shown that prompt tuning looks promising on 209

many NLU tasks. More recently, Tu et al. (2022) 210

observe that prompt tuning can achieve signifi- 211

cantly better cross-lingual transfer than fine-tuning 212

across several XTREME tasks (Hu et al., 2020), 213

despite only tuning 0.1% to 0.3% of the parameters 214

compared with whole model fine-tuning. 215

4.1 Aligned Prompts on Conversation Domain 216

In the zero-shot cross-lingual setting, models are 217

fine-tuned solely on English and then evaluated 218

on other languages. However, their performance 219

on non-English languages, especially low-resource 220

ones, tend to deteriorate (Hu et al., 2020; FitzGer- 221

ald et al., 2022) . To address this issue, we propose 222

a prompt-tuning-based method that utilizes transla- 223

tion data to learn aligned prompts, which can lead 224

to improved cross-lingual transfer performance, es- 225

pecially when task data in English is limited. 226

Sequence Pairs Our dialogue corpus consists of 227

dialogues with approximately 20 turns each. To 228

reduce the sequence length of each dialogue dur- 229

ing training, we randomly select consecutive turns 230

within each dialogue in each epoch and concatenate 231

them into a sequence. We repeat this process for the 232

corresponding turns in the target language. We use 233

this way to construct translation pairs dynamically 234

during training, and then use the resulting trans- 235

lation pairs ⟨xi,yi⟩ from two different languages 236

to learn aligned representations for an improved 237

cross-lingual generalization capability7. 238

7In our experiment, x is always English.
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Masked Language Modeling (MLM) Loss This239

is a popular learning objective to learn deep bidi-240

rectional representations. MLM is defined based241

on the reconstruction loss of a certain percentage of242

randomly masked input tokens given the rest of the243

context. We leverage this loss to adapt backbone244

models to the conversation domain. We conduct245

token masking dynamically during batch training.246

Formally, the MLM loss is defined as:247

Lmlm =248

− 1
M

(
∑

xm∈MX
logprob(xm)+ ∑

ym∈MY
logprob(ym)

)
249

where M is the total number of masked tokens in250

⟨x,y⟩ and MX and MY are the masked tokens in xi251

and yi, respectively. prob(xm) and prob(ym) denote252

the probabilities of generating xm and ym from their253

corresponding masked tokens, respectively.254

Contrastive Loss We leverage contrastive learn-255

ing to enhance the representations. And it would256

not be possible without our parallel data XSGD,257

which unlocks the possibility of learning stronger258

cross-lingual representations via alignment objec-259

tive formulated via contrastive loss. Figure 1 illus-260

trates the process. In a mini-batch of translation261

pairs, for ⟨x,y⟩, the positive sample for masked x is262

the masked translation y. The negative samples are263

all the other translations ŷ in the same mini-batch.264

We first draw a batch of translation pairs. For265

each translation pair, we dynamically masked each266

sequence. The contrastive loss is267

Lcontra =− 1
N

(
∑

⟨hx,hy⟩∈H
log

exp(sim(hx,hy)/τ)

∑y′ exp(sim(hx,hy′)/τ)

)
268

where H is the translation representations of the269

batch, τ is the temperature term, N is the mini270

batch size, y′ is from mini batch. hx and hy are the271

CLS token representations of masked sequence x272

and y respectively, sim is the similarity function.273

cosine similarity is used in our experiments. We274

set τ = 0.05 in our experiments.275

Total Loss The overall learning objective is the276

sum of Lmlm and Lcontra.277

5 Experimental Setup278

5.1 Datasets279

SGD We use the Schema-Guided Dialogue280

(SGD) dataset (Rastogi et al., 2020) for intent clas-281

sification. There are about 16K dialogues and 20282

domains. For each domain, there are a different 283

number of intents, services and dialogues. Each 284

service provides a schema listing the supported 285

intents along with their natural language descrip- 286

tions. For example, service “payment” have two in- 287

tents “MakePayment” and “RequestPayment”. The 288

description of an intent called “MakePaymen” is 289

“Send money to your contact”. Zero-shot evaluation 290

is used, because lots of intents in the dev and test 291

are unseen in the training set. For training, we only 292

sample 5-shots per service as our training set and 293

evaluate on the whole dev set. For cross-lingual 294

evaluation, we use the translated utterance from 295

XSGD8. 296

MASSIVE We use MASSIVE (FitzGerald et al., 297

2022) as another dataset for evaluation9. There are 298

52 languages and about 1 million utterances in this 299

dataset. For each language, there are about 11k 300

train utterances, about 2k dev utterances, about 3K 301

test utterances. We use this for evaluation on two 302

conversation understanding tasks: intent classifica- 303

tion and slot filling. There are 60 intents and 55 slot 304

types. Accuracy and F1 score are the metrics for 305

intent classification and slot filling, respectively. 306

5.2 Task Classifiers 307

Intent Classifiers We use [CLS] representation 308

from the encoder as the sentence representation. 309

Two different intent classifiers (NLI-based classi- 310

fier and vanilla classifier) are considered in our 311

experiments. Figure 2 shows more details. 312

Vanilla classifier uses the utterance representa- 313

tion to predict intent label. The learning and infer- 314

ence is done as a multi-label classifier. 315

NLI-based text classification has been investi- 316

gated by (Qu et al., 2021), (Zhang et al., 2020) 317

and (Yin et al., 2019) and proved to show supe- 318

rior performance in few-shot setting. In NLI-based 319

text classification scenario, utterance and intent de- 320

scription or intent name are combined to make a 321

prediction. During training, positive samples are 322

formed by concatenating utterance and its intent 323

description. Negative samples are constructed in 324

the mini batch by sampling a negative intent de- 325

scription. To balance the training process, we keep 326

the positive to negative ratio 1:1 for each batch. 327

Cross-entropy loss is used during training. For in- 328

ference, we select the label with largest entailment 329

8According to human evaluation results, we think it is
reasonable to use them in some preliminary experiments.

9We use the version MASSIVE 1.1, which can be down-
loaded at https://github.com/alexa/massive.
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Figure 2: Two different classifiers (NLI-based classifier and vanilla classifier) are proposed for intent classification
task. For NLI-based classifier training, negative samples are constructed in the mini batch. English intent description
are also used for the evaluation on the other languages. See more details in 5.2.

score. The prediction is correct if and only if the330

predicted label is correct and the largest entailment331

score is larger than 0.5 10.332

Slot Classifier Slot filling is treated as a token333

level classification task. We report F1 score for this334

task.335

5.3 Training336

For the backbone model, we use XLM-R (Conneau337

et al., 2020) in the most of experiments, which is a338

pretrained multilingual masked language model339

with 560M parameters on 2.5B of filtered data340

containing 100 languages. We also use XLM-341

RoBERTa-XL with 3.5B parameters in some set-342

tings. More details can be seen in Appendix B.343

6 Aligned Prompts Results344

In section 4, we propose a method that learns345

aligned prompts on conversation pair data in or-346

der to improve cross-lingual transfer ability. In this347

section, we show some aligned prompts results.348

Retrieval Results To justify what are the learn349

for these aligned prompts, we perform similarity350

search on Tatoeba. With aligned prompts, we use351

the CLS token representation as the sentence rep-352

resentation, and do nearest-neighbor search. Fig-353

ure 3 displays the Tatoeba test results for several354

languages. Notably, our results demonstrate that355

aligned prompts can achieve significantly higher356

retrieval accuracy, even when the prompt length is357

only 1. Furthermore, performance can be further358

improved with additional prompts; however, it is359

important to note that using too many prompts can360

actually hurt performance. In our subsequent ex-361

periments, the prompt length was set to 16, unless362

otherwise specified.363

10The 0.5 threshold is for out-of-scope (OOS) prediction,
which is required in the SGD dataset. The MASSIVE dataset
doesn’t have OOS, so the threshold can be disregarded.

non-conversation conversation

5-shots 51.7 (1.1) 55.2 (1.3)

15-shots 63.0 (0.5) 66.5 (0.5)

all-shots 76.1 (0.6) 77.7 (0.5)

Table 2: Cross-lingual transfer (Training only on En-
glish annotation data, and evaluate on all languages)
performance (with standard deviation) on intent classifi-
cation when using aligned prompts from two different
domains: conversation and non-conversation. All re-
sults are averaged over all languages of 5 runs.

Conversation Pairs vs. Non-Conversation Pairs 364

Previous works have utilized parallel corpora from 365

non-conversational domains, such as OPUS (Tiede- 366

mann, 2012). To evaluate the effectiveness of 367

XSGD, we randomly selected a parallel dataset 368

from OPUS of a similar size and learned aligned 369

prompts using the same method. Table 2 presents 370

the results of intent classification on a conversation 371

downstream task, demonstrating that the perfor- 372

mance of aligned prompts on XSGD significantly 373

outperforms that of the non-conversational domain 374

dataset across different settings (5-, 15-, all-shots). 375

7 Downstream Tasks Results 376

In this section, we perform experiments on a con- 377

versation benchmark MASSIVE and report the per- 378

formance results on all languages. We try the fol- 379

lowing three tuning methods. 380

Fine-tuning (FT): In this setting, all available 381

parameters are tunable. 382

Prompt Tuning (PT): For prompt tuning, the 383

backbone model is fixed, only a small number of pa- 384

rameters (prompts) and task classifiers parameters 385

are updated. We use continuous prompts and layer 386

prompts (Li and Liang, 2021; Liu et al., 2022). 387

Aligned Prompt Tuning (APT): With the paral- 388

lel translation data, we can learn aligned prompt for 389
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Figure 3: Unsupervised cross-lingual retrieval results (accuracy) for several linguistically diverse selected languages.
The backbone model for these aligned prompts are XLM-R models. The length of prompts is 1, 8, 16, 100
respectively. XLM-R results are token from Hu et al. (2020).

aligned cross-lingual representation in Section 4.390

These prompts can be used for a warm-up start for391

these downstream task with prompt learning.392

en zh-TW zh-CN ja ko AVG

NLI-based Classifier

5-shots 47.8 29.1 31.3 25.7 38.3 36.1
15-shots 70.8 51.8 53.1 43.5 61.8 58.3

all 89.9 65.0 69.4 54.3 83.7 77.3

Vanilla Classifier

5-shots 9.4 3.6 4.4 4.2 6.6 5.6
15-shots 10.2 13.7 13.7 9.2 11.5 9.9

all 90.6 69.6 71.1 53.7 84.0 78.8

Table 3: Averaged accuracy (%) of the NLI-based clas-
sifier and the vanilla classifier on the MASSIVE intent
classification task when fine-tuning on English only and
evaluating on all 52 languages.

7.1 Intent Classification393

en zh-TW zh-CN ja ko AVG
5-shots
FT 9.4 3.6 4.4 4.2 6.6 5.9 (3.3)
PT 51.3 17.0 16.8 15.3 30.8 24.9 (11.5)

APT 65.2 49.3 52.1 38.5 59.3 55.2 (1.3)

15-shots
FT 10.2 13.7 13.7 9.2 11.5 28.7 (17.4)
PT 75.8 50.2 56.5 43.6 63.7 58.2 (2.3)

APT 78.0 59.1 62.9 47.7 71.7 66.5 (0.5)

all

FT 90.6 69.6 71.1 53.7 84.0 78.8 (0.5)
PT 89.7 63.9 68.2 55.6 82.1 76.8 (0.1)

APT 90.1 67.7 70.5 54.5 84.4 77.7 (0.5)

Table 4: Accuracy (%) of vanilla classifier on MAS-
SIVE intent classification task when training on English
only and evaluate on all 52 languages.

Fine Tuning Table 3 shows the performance of394

the fine-tuned XLM-R model on English. Both of395

the intent classifiers achieve higher performance396

with more data. In few-shot experiments, the NLI-397

based classifier outperforms the vanilla classifier398

en zh-TW zh-CN ja ko AVG
5-shots
FT 47.8 29.1 31.3 25.7 38.3 24.2 (6.8)
PT 59.9 38.7 40.0 30.0 49.4 38.1 (16.5)

APT 69.8 51.1 52.4 45.4 64.8 59.8 (1.6)

15-shots

FT 70.8 51.8 53.1 43.5 61.8 46.0 (11.9)
PT 75.8 54.8 57.8 43.5 68.7 60.3 (2.6)

APT 89.7 58.5 62.8 51.8 75.0 67.5 (1.1)

all
FT 89.9 65.0 69.4 54.3 83.7 76.8 (0.6)
PT 89.7 56.4 56.4 36.0 83.9 75.6 (0.4)

APT 90.2 66.1 68.4 52.0 85.2 78.9 (0.2)

Table 5: Accuracy (%) of NLI-based classifier on MAS-
SIVE intent classification task when training on English
only and evaluate on all 52 languages.

by a significant margin. The average performance 399

on all 52 languages reaches 58.3% accuracy with 400

only 15 samples per intent. However, the vanilla 401

classifier works better with the full data. 402

Vanilla Classifier In Table 4, we observe poor 403

performance on few-shot settings for vanilla classi- 404

fiers on intent tasks. However, significant gains are 405

achieved with our method (from 5.9% to 24.9% on 406

5-shots and from 28.7% to 58.2% on 15-shots). We 407

also observe that aligned prompts can further im- 408

prove performance, with the best results obtained 409

in few-shot settings. Additionally, the variances in 410

task performance across all languages with aligned 411

prompts are significantly smaller than fine-tuning 412

and prompt tuning only. Although prompt tuning 413

achieves higher accuracy on few-shot settings than 414

fine-tuning, there is still a small gap, even with 415

aligned prompts and full data training. 416

NLI-based Classifier An advantage of using 417

NLI-based classifiers is their ability to evaluate 418

unseen intent labels if their descriptions are known. 419

Additionally, we demonstrate strong performance 420

on the SGD dataset. In Table 5, we present the re- 421
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sults of fine-tuning with prompt tuning and aligned422

prompts for the MASSIVE dataset. With aligned423

prompts, we achieve strong accuracy results of424

59.8% on 5-shots and 67.7% on 15-shots. More-425

over, the English result on 15-shots with aligned426

prompts is comparable to the result obtained from427

full data training. These findings suggest that NLI-428

based classifiers with aligned prompts can effi-429

ciently learn with few samples. Aligned prompts430

consistently outperform other methods in this set-431

ting, indicating strong modeling ability and cross-432

lingual transfer ability.433

LLMs Results We conducted experiments using434

both ChatGPT and the latest GPT-3.5 model (text-435

davinci-003 as of May, 2023) from OpenAI. We436

sampled 100 examples for each language and used437

the prompts provided in the Appendix. In the few-438

shot setting, the in-context examples were taken439

from the English partition. The intent classification440

results are presented in Table 6. The text-davinci-441

003 model showed significant improvements as442

more in-context examples were included, however,443

the ChatGPT model only demonstrated improve-444

ment in English. The cross-lingual ability of Chat-445

GPT was found to be even worse, which led us to446

hypothesize that the data used to train ChatGPT447

is predominantly in English. Based upon these re-448

sults, we can draw a conclusion that cross-lingual449

is still challenging in the era of LLMs, and smaller450

models still have an advantage over LLMs for the451

ability to quickly adapt into new domains through452

fine-tuning or prompt-tuning.453

en AVG
text-davinci-003

zero-shot 59.0 40.8
1-shot 71.0 51.2
5-shot 83.0 54.6

ChatGPT
zero-shot 63.0 54.6

1-shot 76.0 51.2
5-shots 87.0 51.3

Table 6: Accuracy (%) of ChatGPT and text-davinci-
003 on MASSIVE intent classification task.

Takeaway Upon analyzing the results presented454

in Tables 4 and 5, we can observe significant im-455

provements with aligned prompts as compared to456

prompting tuning alone. For instance, the improve-457

ments for vanilla classifiers are 30.3%, 8.3%, and458

0.9% for 5-shots, 15-shots, and full data training,459

respectively. Similarly, for NLI-based classifiers,460

the gains are 11.7%, 7.2%, and 3.3% for the same461

settings. We note that there is a clear trend where462

the gain of cross-lingual transfer ability decreases 463

as more English training data is used. Furthermore, 464

NLI-based classifiers exhibit superior cross-lingual 465

transfer ability, particularly in the few-shot setting. 466

7.2 Slot Filling 467

Table 7 shows the evaluation results for slot filling 468

using the XLM-R backbone model. Our models 469

were trained solely on English data, but we report 470

the results for all languages. However, the fine- 471

tuned models’ results for Chinese and Japanese are 472

significantly worse than those for English. In fact, 473

the gaps are much larger than those in a similar 474

setting for the intent classification task. This ob- 475

servation suggests that slot filling is considerably 476

more challenging than intent classification. 477

The performance differences between fine- 478

tuning and prompt tuning for all languages aver- 479

aged across are 6.4%, -3.4%, and -6.2%, respec- 480

tively. These results indicate that fine-tuning is 481

more effective for improving slot filling perfor- 482

mance than prompt tuning. However, this also 483

suggests that there is still room for improvement 484

for the current prompt-based methods. 485

With aligned prompts, we achieve consistent im- 486

provements over 5 runs, with gains of 4.5%, 1.3%, 487

and 0.1% in the averaged F1 score. These results 488

are consistently better, but the improvements are 489

smaller as the training dataset size increases. 490

en AVG
5-shots
FT 41.0 27.8 (3.3)
PT 59.5 34.2 (1.2)

APT 62.6 38.7 (0.9)

15-shots

FT 70.7 49.0 (1.1)
PT 70.9 45.6 (0.9)

APT 72.4 46.9 (1.2)

all
FT 83.9 61.6 (1.0)
PT 83.3 55.4 (0.1)

APT 83.5 55.5 (0.5)

Table 7: Slot filling F1 (%) results on MASSIVE bench-
mark when training on English only and evaluate on all
52 languages.

XLM-R-XL and OpenAI API Results To test 491

the limits of the prompt tuning method, we 492

conducted experiments using prompt tuning and 493

aligned prompts. Initially, we learned the aligned 494

prompts on parallel XSGD data with a similar set- 495

ting, where the prompt length is 16 and the back- 496

bone model is XLM-R-XL. 497

Table 7 and Table 8 displays the results of 498
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prompt tuning and aligned prompts on these set-499

tings. There are significant performance gains, par-500

ticularly for aligned prompts. When scaling up the501

backbone model size from XLM-R to XLM-R-XL,502

the improvements with aligned prompts are 5.2%503

and 5.0% for 15-shots and full English data, respec-504

tively. Meanwhile, the improvements with prompt505

tuning are only 1.0% and 0.5%. This finding indi-506

cates that aligned prompts provide better modeling507

ability when increasing the backbone model size.508

For the experiments with OpenAI models, we509

adapted prompts from Qin et al. (2023). More510

details about the prompts and results are available511

in the Appendix. Overall, LLMs exhibit poor per-512

formance in the slot filling task, with an average F1513

score ranging from 3% to 6% across all languages.514

en zh-TW zh-CN ja AVG

15 shots

PT 71.7 9.2 10.1 5.1 46.6 (1.9)
APT 73.3 20.5 22.1 13.2 52.1 (0.5)

all

PT 83.1 14.3 14.9 9.4 55.9 (0.7)
APT 82.8 22.9 23.6 11.7 60.5 (0.7)

Table 8: Averaged Slot filling F1 (%) results with 5 runs
on MASSIVE benchmark when training on English only
and evaluate on all 52 languages. The prompt lengths is
16. XLM-RoBERTa-XL is used as the backbone model.

Discussion We observe gains in cross-lingual515

ability with aligned prompts. However, there is still516

room for future improvements. The gains achieved517

with current aligned prompts methods are smaller518

than those achieved in few-shot settings. Also, the519

prompt tuning method on complex tasks, such as520

slot filling, still lags behind the fine-tuning method.521

These observations suggest that further research is522

needed to explore how to design more sophisticated523

and efficient methods for cross-lingual transfer.524

8 Related Work525

Methods for Cross-lingual Transfer In recent526

years, many cross-lingual methods have been de-527

veloped for non-conversational tasks using parallel528

data. However, continued pretraining on parallel529

data has been found to improve retrieval perfor-530

mance by making the pre-training task more simi-531

lar to the downstream setting, but does not lead to532

a significant improvement in performance on other533

tasks (Luo et al., 2021; Chi et al., 2021; Zhang534

et al., 2019). These methods often require updating535

all model parameters or using larger scale mono-536

lingual corpora that cover all languages, which can 537

make them difficult to use with large language mod- 538

els. In this work, we used a prompt-tuning-based 539

method that only tunes few prompts and achieved 540

significant gains in few-shot settings. We believe 541

that more sophisticated work in this direction can 542

be done in the future. 543

Resources for Multilingual Conversation One 544

of the fundamental objectives of artificial intel- 545

ligence is to enable machines to communicate 546

with humans. To achieve this, annotated conver- 547

sation corpora are crucial. Conversation datasets 548

have evolved from single-domain ones such as 549

ATIS (Price, 1990) to more complex and diverse 550

ones such as MultiWOZ (Budzianowski et al., 551

2018) and SGD (Rastogi et al., 2020). In recent 552

years, several multilingual conversation datasets 553

have been proposed to develop multilingual conver- 554

sational models. However, most existing conversa- 555

tion systems are predominantly built for English or 556

a few other major languages. For example, Schus- 557

ter et al. (2019) introduced an annotation corpus 558

of 57k utterances in English (43k), Spanish (8.6k), 559

and Thai (5k) across three domains. Multi2WOZ 560

dataset (Hung et al., 2022) is much larger anno- 561

tation corpus with five languages (including En- 562

glish) and 29.5k utterances per language. Due to 563

high cost for collecting multilingual conversation 564

data, Ding et al. (2022) introduces a novel data 565

curation method for creating GlobalWoZ with 20 566

languages. In this work, we have created a new 567

parallel multilingual dataset called XSGD by trans- 568

lating the English-only Schema-Guided Dialogue 569

(SGD) dataset (Rastogi et al., 2020) into 106 differ- 570

ent languages. Although this dataset may contain 571

some noise due to the translation process, we think 572

it is a valuable resource for researchers interested 573

in exploring multilingual conversational tasks. 574

9 Conclusion 575

In this paper, we present XSGD, a large-scale par- 576

allel multilingual conversation corpus that can be 577

used for aligned cross-lingual transfer. Addition- 578

ally, we propose a prompt-tuning method to learn 579

alignment prompts, which can further improve the 580

efficiency of the cross-lingual transfer. We evaluate 581

our approach on intent classification and slot-filling 582

tasks, and our experiments demonstrate its effec- 583

tiveness. We also study popular LLMs and find 584

that their performance on non-English languages 585

remain to be improved. 586
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Limitations587

Although the translated data can be a little noisy, in588

our work, we did not mainly use the data directly589

on downstream tasks. Instead, we propose an effi-590

cient transfer learning method to use this large scale591

dataset for alignment pretraining. Then we further592

tune the aligned model on clean data with gold-593

labels so that noise will hopefully have a minor594

effect on our final model. Our evaluation dataset is595

also a high quality multilingual TOD dataset. So596

the proposed method and conclusion are still solid.597

When conducting experiments with the OpenAI598

API, the large number of intent types (60) and slot599

types (55) posed a challenge in designing effective600

prompts. To address this, we conducted surveys601

and explored various prompt templates based on602

the works of Bang et al. (2023); Qin et al. (2023);603

Lai et al. (2023), among others. However, it is pos-604

sible that we may have overlooked some potential605

prompt templates. There is room for improving the606

performance of text-davinci-003 and ChatGPT in607

future iterations.608

We acknowledge that there are other parameter-609

efficient tuning techniques (Houlsby et al., 2019;610

Hu et al., 2022; Ben Zaken et al., 2022) and other611

LLMs, such as BLOOM (Scao et al., 2022) and612

LLamA (Touvron et al., 2023). It is however non-613

trivial to compare against different parameter effi-614

cient methods on various different LLMs, which615

requires a significant amount of GPU hours and616

can warrant a paper by itself. Our contribution in-617

cludes the massive XSGD multilingual data and an618

effective prompt-tuning based alignment method.619

We leave the exploration of other methods as future620

work.621
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela852
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola853
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B Licenses of Datasets920

• SGD (Rastogi et al., 2020): Attribution-921

ShareAlike 4.0 International Public License.922

• Massive (FitzGerald et al., 2022): Apache923

License.924

• XSGD created by us: Attribution-ShareAlike925

4.0 International.926

C More Training Details927

For the aligned prompts learning, we use Adam928

optimizer (Kingma and Ba, 2015) with warm up929

rate 0.1 and learning rate e−3. The number of930

epoch is 10. The mini-batch size are 64 and 32 for931

XLM-R and XLM-RoBERTa-XL, respectively.932

On the conversation downstream tasks, we tune933

the learning rate in {0.1,5e−2,2e−2,1e−2,5e−934

3,2e−3,1e−3}. For experiments on XSGD, we935

do fine-tuning for 3 epochs and prompt-tuning for936

30 epochs. For Massive benchmark, we fine tuning937

on intent classification and slot filling task for 30938

epochs. For prompt tuning, the max number of939

epoch is 1000. We do early stopping based on940

performance on the English dev set. 1 A100 GPU941

with 40G memory is used for experiments. And942

most experiments are done in one day.943

D Ablation Study on Learning Objectives944

An ablation study was conducted to analyze the945

learning losses for three different settings: prompt946

tuning (PT), aligned prompts (APT), and APT947

(with MLM only). The results on XSGD are shown948

in Figure 9, while the results on MASSIVE intent949

classification can be seen in Figure 10.950

en hi ms vi gd tg AVG

Prompt Tuning

l = 16 97.2 94.3 94.2 94.6 86.4 74.7 90.0

Aligned Prompts

97.7 95.5 95.7 95.2 89.7 75.3 91.4

Aligned Prompts (w/ MLM only)

96.8 93.3 93.1 92.7 88.5 75.0 89.7

Table 9: Intent classification accuracy (%) on XSGD.
Here we select some languages, which are in different
language family or low-resourced.

E Prompt Templates and Results951

Prompt templates in experimental settings.952

[schema] and [utt] are the intent set and the raw953

en AVG
5-shots

PT 51.3 24.9 (11.5)
APT 65.2 55.2 (1.3)

APT (w/ MLM only) 61.9 30.9 (7.1)

15-shots
PT 75.8 58.2 (2.3)

APT 78.0 66.5 (0.5)
APT (w/ MLM only) 78.2 61.2 (1.8)

Table 10: Accuracy (%) of vanilla classifier on MAS-
SIVE intent classification task when training on English
only and evaluate on all 52 languages.

utterance text respectively. And utt1, label1, utt2, 954

label2 are in-context examples. 955

Intent Classification Task 956

Zero-shot Setting 957

Please tell me the 958

intent of the following 959

utterance:[utt] given the 960

intent set [schema] 961

Few-shots Setting 962

Given the intent set 963

[schema], please tell 964

me the intent of the 965

following utterances. 966

967

utt1 968

label1 969

utt2 970

label2 971

... 972

utt 973

Slot Filling Task 974

Please identify slots s 975

from the given text. The 976

text from utt with slot 977

annotations is formatted 978

as [label : entity] . 979

980

Text:[utt] 981

Slot: 982

F Amazon Mechanical Turk Template 983

G XSGD 984

Table 13 shows the intent classification results 985

when training on English-only data and evaluat- 986

ing on all languages. We find that prompt tuning 987
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Please identify slots app_name, currency_name, radio_name, email_folder, relation, sport_type,
media_type, music_genre, drink_type, ingredient, time_zone, game_name, weather_descriptor, cof-
fee_type, podcast_name, general_frequency, transport_type, time, playlist_name, transport_descriptor,
movie_name, cooking_type, place_name, device_type, email_address, change_amount, timeofday,
audiobook_name, joke_type, game_type, transport_agency, event_name, song_name, artist_name,
order_type, person, player_setting, house_place, business_name, food_type, music_album, meal_type,
definition_word, podcast_descriptor, transport_name, audiobook_author, date, movie_type, mu-
sic_descriptor, list_name, news_topic, color_type, Other, personal_info, business_type, alarm_type
from the given text. The text from utt with slot annotations is formatted as [label : entity].

Text: weck mich diese woche um fünf uhr morgens auf
Slot:
app_name : weck, currency_name : None, radio_name : None, email_folder : None, relation :
None, sport_type : None, media_type : None, music_genre : None, drink_type : None, ingredient
: None, time_zone : None, game_name : None, weather_descriptor : None, coffee_type : None,
podcast_name : None, general_frequency : None, transport_type : None, time : fünf uhr morgens,
playlist_name : None, transport_descriptor : None, movie_name : None, cooking_type : None,
place_name : None, device_type : None, email_address : None, change_amount : None, timeofday :
morgens, audiobook_name : None, joke_type : None, game_type : None, transport_agency : None,
event_name : None, song_name : None, artist_name : None, order_type : None, person : None,
player_setting : None, house_place : None, business_name : None, food_type : None, music_album :
None, meal_

Table 11: One example input and output pair for slot filling. The utterance and OpenAI API response are colored in
green and blue, respectively.

has better cross-lingual transfer ability and aligned988

prompts further improve the performance.989

Figure 5 in the Appendix presents performance990

comparison of the three different methods (FT: fine-991

tuning; PT: prompt tuning; APT: aligned prompt992

tuning). The figure indicates that prompt tuning993

outperforms fine-tuning, while aligned prompt tun-994

ing achieves the best performance. However, the995

models still struggle with some low-resource lan-996

guages, especially those that are not supported by997

the backbone model XLM-R (e.g., haw (Hawaiian),998

yo (Yoruba), tk (Turkmen), sn (Shona)).999
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Languages Intent Classification Slot Filling
text-davinci-003 ChatGPT text-davinci-003 ChatGPT text-davinci-003 ChatGPT

zero-shot zero-shot 5-shots 5-shots zero-shot zero-shot

Acc. Acc. Acc. Acc. F1 F1

Afrikaans 52 62 64 49 10.3 5.4
Amharic 5 14 13 8 0.0 0.0
Arabic 45 62 66 57 8.5 5.5

Azerbaijani 33 48 61 40 5.3 1.9
Bengali 32 56 45 46 3.0 1.9
Catalan 45 64 55 52 6.6 6.1
Welsh 21 31 34 21 2.9 2.0
Danish 62 70 72 65 12.7 5.3
German 55 76 76 72 13.6 5.4
Greek 45 66 67 75 7.9 3.7

English 59 63 83 87 23.8 1.6
Spanish 52 65 67 58 10.7 10.4
Persian 39 70 66 65 5.4 1.9
Finnish 45 62 62 49 5.3 3.5
French 54 78 77 73 12.9 8.8
Hebrew 42 64 60 55 1.6 0.0
Hindi 35 63 60 63 7.1 1.9

Hungarian 55 64 66 53 3.6 2.0
Armenian 11 26 21 22 0.0 5.5
Indonesian 55 60 70 63 11.1 1.9
Icelandic 46 57 49 40 4.7 3.6

Italian 60 66 67 63 6.0 5.3
Japanese 53 70 66 66 1.8 0.0
Javanese 19 15 25 21 1.6 0.0
Georgian 13 22 21 28 0.0 0.0
Khmer 15 22 34 18 4.3 2.0

Kannada 17 41 26 50 3.4 0.0
Korean 55 72 74 75 3.2 4.0
Latvian 41 49 52 41 1.7 7.2

Malayalam 17 40 27 40 1.6 5.6
Mongolian 14 24 30 25 0.0 0.0

Malay 51 49 66 55 11.7 1.9
Burmese 0 8 13 10 0.0 0.0

Norwegian 51 66 67 63 14.3 6.8
Dutch 63 71 71 64 12.8 5.8
Polish 60 64 71 68 13.2 1.8

Portuguese 53 62 65 60 14.5 10.5
Romanian 54 63 65 55 3.3 12.3
Russian 56 72 64 71 5.6 5.4

Slovenian 56 61 59 57 7.6 3.9
Albanian 39 41 47 35 6.2 2.0
Swedish 59 75 66 69 9.8 3.5
Swahili 21 47 27 34 0.0 3.6
Tamil 17 29 37 32 0.0 0.0
Telugu 22 33 32 31 0.0 0.0
Thai 50 62 69 69 3.5 4.0

Tagalog 49 58 59 51 10.1 6.2
Turkish 46 65 67 57 9.8 1.9

Urdu 18 52 30 46 3.5 2.0
Vietnamese 45 65 65 64 10.9 3.6

Simplified Chinese 60 75 74 64 0.0 0.0
Traditional Chinese 57 70 71 71 0.0 0.0

Table 12: The performance results of the OpenAI API using our prompts are presented. 100 examples are sampled
for each language. For the slot filling task, the prompt used is adapted from Qin et al. (2023). It should be noted
that due to the large number of slot types (55), the slot results are not satisfactory.
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Figure 4: Human evaluation template for our dataset.

Figure 5: Intent classification performance of different models (FT: fine-tuning; PT: prompt tuning; APT: aligned
prompt tuning) over all languages on XSGD. The scores represent the accuracy of each language. We can see the
models are still struggled with languages that are not supported by the backbone model XLM-R.

en hi ms vi gd tg AVG

Fine Tuning

95.7 92.8 93.2 93.9 84.5 75.0 88.6

Prompt Tuning

l = 4 93.6 90.8 90.7 90.5 83.7 74.5 87.5
l = 8 96.2 94.4 93.8 94.7 85.8 74.3 89.8
l = 16 97.2 94.3 94.2 94.6 86.4 74.7 90.0

Aligned Prompts

97.7 95.5 95.7 95.2 89.7 75.3 91.4

Table 13: Intent classification accuracy (%) on XSGD.
Here we select some languages, which are in different
language family or low-resourced. The monolingual
training corpus size of “gd” for backbone model XLM-
R is small (∼0.1 GB). "tg" (Tajik) is also not supported
by the backbone model.
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