

ACCELERATED PARALLEL TEMPERING VIA NEURAL TRANSPORTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Markov Chain Monte Carlo (MCMC) algorithms are essential tools in computational
 012 statistics for sampling from unnormalised probability distributions, but can
 013 be fragile when targeting high-dimensional, multimodal, or complex target distri-
 014 butions. Parallel Tempering (PT) enhances MCMC’s sample efficiency through
 015 annealing and parallel computation, propagating samples from tractable reference
 016 distributions to intractable targets via state swapping across interpolating distribu-
 017 tions. The effectiveness of PT is limited by the often minimal overlap between
 018 adjacent distributions in challenging problems, which requires increasing the com-
 019 putational resources to compensate. We introduce a framework that accelerates
 020 PT by leveraging neural samplers—including normalising flows, diffusion models,
 021 and controlled diffusions—to reduce the required overlap. Our approach utilises
 022 neural samplers in parallel, circumventing the computational burden of neural sam-
 023 plers while preserving the asymptotic consistency of classical PT. We demonstrate
 024 theoretically and empirically on a variety of multimodal sampling problems that
 025 our method improves sample quality, reduces the computational cost compared to
 026 classical PT, and enables efficient free energy/normalising constant estimation.

1 INTRODUCTION

027 Sampling from a probability distribution $\pi(x) = \exp(-U(x))/Z$ defined over a state-space \mathcal{X} with
 028 a tractable un-normalised density $\tilde{\pi} : \mathcal{X} \rightarrow \mathbb{R}$ and intractable normalising constant $Z = \int_{\mathcal{X}} \tilde{\pi}(x)dx$
 029 is a fundamental task in machine learning and natural sciences. Markov Chain Monte Carlo (MCMC)
 030 methods are usually employed for such purposes, constructing an ergodic Markov chain $(X_t)_{t \in \mathbb{N}}$ using
 031 local moves leaving π invariant. While MCMC algorithms are guaranteed to converge asymptotically,
 032 in practice, they struggle when the target is complex with multiple well-separated modes (Papamarkou
 033 et al., 2022; Hénin et al., 2022). To handle such cases, *Parallel Tempering* (PT) (Swendsen & Wang,
 034 1986; Geyer, 1991; Hukushima & Nemoto, 1996) is a popular class of MCMC methods designed to
 035 improve the global mixing of locally efficient MCMC algorithms.

036 PT works by considering an *annealing path* $\pi^0, \pi^1, \dots, \pi^N$ of distributions over \mathcal{X} interpolating
 037 between a simple reference distribution $\pi^0 = \eta$ (e.g. a Gaussian) and the target $\pi^N = \pi$. PT
 038 algorithms construct a Markov chain $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ on the extended state-space \mathcal{X}^{N+1} ,
 039 targeting the joint distribution $\pi = \pi^0 \otimes \dots \otimes \pi^N$. The PT chain \mathbf{X}_t is constructed by alternating
 040 between (1) a *local exploration phase* where the n -th chain ¹ of \mathbf{X}_t is updated according to a
 041 π^n -invariant MCMC algorithm; and (2) a *communication phase* which proposes a sequence of
 042 swaps between neighbouring states accepted according to a Metropolis–Hastings correction ensuring
 043 invariance (see Figure 1 (a)). Crucially, PT offsets the additional computation burden of simulating
 044 the extended N chains through parallel computation, allowing for a similar effective computational
 045 cost as a single chain when implemented in a maximally parallelised manner.

046 Typically, the chains X_t^n mix faster when closer to the reference and struggle closer towards the
 047 target. Therefore, communication between the reference and target, facilitated through swaps, can
 048 induce rapid mixing between modes of the target component (Woodard et al., 2009; Surjanovic et al.,
 049 2024). While the importance of the swapping mechanism for PT has led to a literature dedicated to
 050 optimising communication between the reference and target (Syed et al., 2021; 2022; Surjanovic
 051 et al., 2022) such works still rely on the original swapping mechanism (Geyer, 1991).

052 ¹Following the PT literature, we also refer to components of \mathbf{X}_t as chains.

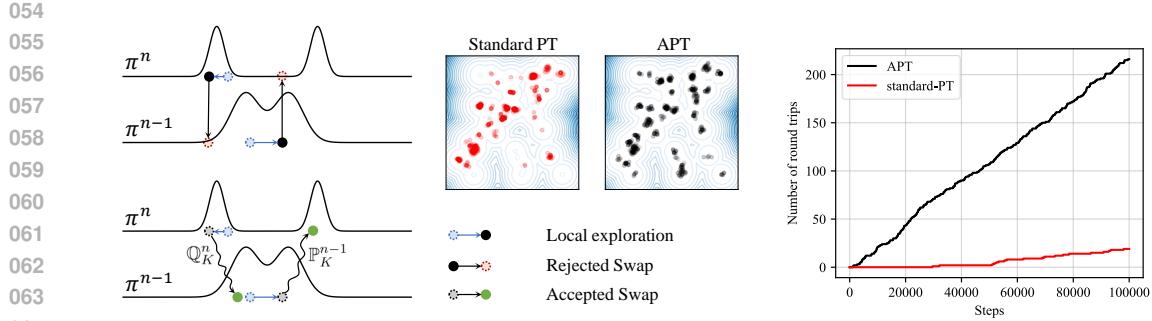


Figure 1: (Left) An illustration of the local exploration and communication step for PT vs APT. (Middle) 1,000 samples of a Gaussian mixture model target obtained using PT vs APT with a standard Gaussian reference. See Section 6.1 for more details. (Right) Round trips for PT and APT with $N = 6$ chains over $T = 100,000$ iterations of Algorithm 1.

As an alternative to PT, recent work has explored both continuous (Zhang & Chen, 2022; Vargas et al., 2023; Berner et al., 2024; Akhoud-Sadegh et al., 2024; Vargas et al., 2024; Máté & Fleuret, 2023; Albergo & Vanden-Eijnden, 2024; Erives et al., 2025) and discrete (Noé et al., 2019; Papamakarios et al., 2021; Midgley et al., 2023; Gabrié et al., 2022) flows for sampling, under the umbrella of *neural samplers*. However, these methods usually incur a bias, foregoing theoretical guarantees of MCMC, and can be expensive to implement and train. Due to these shortcomings, standard PT provides a strong baseline that neural samplers struggle to match (He et al., 2025b).

Recent work (Arbel et al., 2021; Albergo & Vanden-Eijnden, 2024; Phillips et al., 2024; Chen et al., 2025) has explored approaches to debias neural samplers using Sequential Monte Carlo (SMC)-based ideas (Del Moral et al., 2006). Despite their consistency guarantees, these approaches do not address the mode-collapsing nature of many modern neural samplers (He et al., 2025b). PT offers a comparable but computationally dual framework to SMC, where the roles of parallelism and time are reversed (Syed et al., 2024). In SMC, particles are generated in parallel, and approximate annealing distributions are constructed sequentially. In contrast, in PT, particles are generated sequentially and annealing distributions are built in parallel. This raises the question: just as neural samplers have been integrated with SMC, can we integrate neural samplers with PT, combining the consistency of PT with the flexibility of neural samplers?

We answer positively this question by formalising and exploiting the framework introduced by Ballard & Jarzynski (2009; 2012) in physics for designing more flexible swap mechanisms, which we call accelerated PT (APT). APT preserves PT’s asymptotic consistency and allows us to integrate easily normalising flows, stochastic control, and diffusions into existing PT implementations. APT uses neural sampling in a *parallelised* manner, mitigating its high computational burden. Empirically, it outperforms PT by accelerating the communication between the reference and target states, even when controlling for the additional computation incurred by neural samplers.

A relevant prior work integrating PT with normalising flows is Invernizzi et al. (2022): it trains a normalising flow to directly map configurations from the highest-temperature reference distribution of a molecular system to the lowest-temperature target distribution, effectively bypassing the intermediate annealing distributions. By contrast, our framework leverages normalising flows to facilitate exchanges between all neighbouring temperature levels, thereby enhancing sampling efficiency across the entire annealing path and providing a more stable training objective.

2 PARALLEL TEMPERING

Let $\pi^0, \pi^1, \dots, \pi^N$ be an *annealing path* of probability distributions on \mathcal{X} where $\pi^0 = \eta$ is the reference and $\pi^N = \pi$ is the target. We assume the n -th *annealing distribution* admits density $\pi^n(x) := \tilde{\pi}^n(x)/Z_n$ with respect to a base measure dx , where $\tilde{\pi}^n : \mathcal{X} \rightarrow \mathbb{R}$ is the un-normalised density which we can evaluate, with normalising constant $Z_n := \int_{\mathcal{X}} \tilde{\pi}^n(x)dx$. Our goal is to estimate $\pi[f] := \int_{\mathcal{X}} f(x)\pi(dx)$, the expectation of $f : \mathcal{X} \rightarrow \mathbb{R}$ with respect to $\pi = \pi_T$, and the normalising constant $Z = Z_T$.

There is considerable flexibility in choosing annealing distributions provided $\pi^0 = \eta$ with $Z_0 = 1$ and $\pi^N = \pi$ with $Z_N = Z$. Without loss of generality, we can assume $\pi^n = \pi^{\beta_n}$ where for

$\beta \in [0, 1]$, π^β continuously interpolates between reference and target as β increases from 0 to 1, according to the *annealing schedule* $0 = \beta_0 < \dots < \beta_N = 1$. A common choice is the *geometric path*, $\pi^\beta(x) = \propto \eta(x)^{1-\beta} \pi(x)^\beta$, which geometrically interpolates between reference and target in log-space. See [Masrani et al. \(2021\)](#); [Syed et al. \(2021\)](#); [Máté & Fleuret \(2023\)](#); [York \(2023\)](#) for alternative non-geometric annealing paths.

2.1 NON-REVERSIBLE PARALLEL TEMPERING

The PT algorithm constructs a Markov chain $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ on the extended state-space \mathcal{X}^{N+1} invariant to the joint distribution $\pi := \pi^0 \otimes \dots \otimes \pi^N$. We construct \mathbf{X}_t from \mathbf{X}_{t-1} by doing (1) a *local exploration* step followed by (2) a *communication* step seen in the top of Figure 1 (a). For $n = 0, \dots, N$, the n -th local exploration move (1) updates the n -th component of \mathbf{X}_{t-1} using a π^n -invariant Markov kernel $K^n(x, dx')$ on \mathcal{X} corresponding to an MCMC move targetting π^n ,

$$X_t^n \sim K^n(X_{t-1}^n, dx^n),$$

We additionally assume that $K^0(x, dx') = \eta(dx')$ corresponds to an independent sample from the reference. The communication step (2) applies a sequence of swap moves between adjacent components of \mathbf{X}_t , where the n -th swap move illustrated in Figure 1 exchanges components X_t^{n-1} and X_t^n in $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ with probability $\alpha^n(X_t^{n-1}, X_t^n)$, where for $x, x' \in \mathcal{X}$,

$$\alpha^n(x, x') := \min \left\{ 1, \frac{w^n(x)}{w^n(x')} \right\}. \quad (1)$$

Where $w^n : \mathcal{X} \rightarrow \mathbb{R}$ is the *incremental weight* equal to the un-normalised Radon-Nikodym derivative:

$$w^n(x) := \frac{Z_n}{Z_{n-1}} \frac{d\pi^n}{d\pi^{n-1}}(x) = \frac{\tilde{\pi}^n(x)}{\tilde{\pi}^{n-1}(x)}. \quad (2)$$

In practice, it is advantageous to use a *non-reversible* communication ([Okabe et al., 2001](#); [Syed et al., 2022](#)), where the n -th swap move is proposed only at iterations with matching parity, $n \equiv t \pmod{2}$. Both local exploration and communication steps can be done in parallel, allowing distributed implementations to leverage parallel computation to accelerate sampling ([Surjanovic et al., 2023](#)).

Round trips While the effective sample size (ESS) of samples generated by a Markov chain is the gold standard for evaluating the performance of MCMC algorithms, in our setting, we are mainly interested in improving the swap kernel within PT. As ESS measures the intertwined performance of the local exploration and swap kernels, we are instead interested in maximising communication between reference and target, which can be empirically measured by counting the total number of *round trips*, R_T tracking the number of independent reference samples transported to the target after T iterations of PT ([Katzgraber et al., 2006](#); [Lingenheil et al., 2009](#)). See Section A.1 for a formal definition. The mixing time of the PT chain is related to the time it takes for a round trip to occur and the total number of round trips is a measure of the particle diversity generated by PT and strongly correlates with the ESS ([Surjanovic et al., 2024](#)).

3 ACCELERATED PARALLEL TEMPERING

A limitation of PT is its inflexible swap move, which only proposes directly exchangeable samples between distributions, considering just the relative change in likelihood π^{n-1} and π^n . Low acceptance probability occurs when these distributions have minimal overlap. Addressing this requires increasing the number of parallel chains N , which may not always be possible. We propose Accelerated PT (APT), expanding the framework developed in [Ballard & Jarzynski \(2009; 2012\)](#) to improve distributional overlap and accelerate communication for a fixed number of chains.

3.1 FORWARD AND BACKWARD ACCELERATORS

For $n = 1, \dots, N$, let $P_k^{n-1}(x_{k-1}, dx_k)$ and $Q_{k-1}^n(x_k, dx_{k-1})$, $k = 1, \dots, K$, be two families of K transition kernels which we call *forward accelerators* and *backward accelerators*. They induce \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n , two time-inhomogeneous Markov processes obtained by propagating π^{n-1} forward in time and π^n backward in time respectively using the forward and the backward accelerators,

$$\mathbb{P}_K^{n-1}(dx_{0:K}) := \pi^{n-1}(dx_0) \prod_{k=1}^K P_k^{n-1}(x_{k-1}, dx_k), \quad \mathbb{Q}_K^n(dx_{0:K}) := \pi^n(dx_K) \prod_{k=1}^K Q_{k-1}^n(x_k, dx_{k-1}).$$

162 **Algorithm 1** Accelerated Parallel Tempering

```

163
164 1: Initialise  $\mathbf{X}_0 = (X_0^0, \dots, X_0^N)$ ;
165 2: for  $t = 1, \dots, T$  do
166 3:    $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ ,  $X_t^n \sim K^n(X_{t-1}^n, dx)$  ▷ Local exploration move
167 4:   for  $n \equiv t \pmod{2}$  do ▷ Non-reversible communication
168 5:      $\bar{X}_{t,0}^{n-1}, \bar{X}_{t,K}^n \leftarrow X_t^{n-1}, X_t^n$  ▷ Initialise forward/backward paths
169 6:     for  $k = 1, \dots, K$  do
170 7:        $\bar{X}_{t,k}^{n-1} \sim P_k^{n-1}(\bar{X}_{t,k-1}^{n-1}, dx)$  ▷ Accelerate forward
171 8:        $\bar{X}_{t,K-k}^n \sim Q_{K-k}^n(\bar{X}_{t,K-k+1}^n, dx)$  ▷ Accelerate backward
172 9:     end for
173 10:     $\bar{w}_{K,t}^n, \bar{w}_{K,t}^n \leftarrow W_K^n(\bar{X}_{t,0:K}^{n-1}), W_K^n(\bar{X}_{t,0:K}^n)$  ▷ Work of forward/backward paths
174 11:     $U \sim \text{Uniform}([0, 1])$ 
175 12:    if  $\log U < \bar{W}_{K,t}^n - \bar{W}_{K,t}^n$  then ▷ Accelerated swap move
176 13:       $X_t^{n-1}, X_t^n \leftarrow X_{t,0}^n, X_{t,K}^{n-1}$ 
177 14:    end if
178 15:  end for
179 16: end for
180 Output: Return:  $\mathbf{X}_1, \dots, \mathbf{X}_T$ 

```

182 We assume \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n are mutually absolutely continuous and we can evaluate $w_K^n : \mathcal{X}^{K+1} \rightarrow \mathbb{R}$,
183 the incremental weights between the forward and the backward paths, extending w^n in Equation (2),
184

$$185 \quad 186 \quad w_K^n(x_{0:K}) := \frac{Z_n}{Z_{n-1}} \frac{d\mathbb{Q}_K^n}{d\mathbb{P}_K^{n-1}}(x_{0:K}). \quad (3)$$

189 **3.2 NON-REVERSIBLE ACCELERATED PARALLEL TEMPERING**

190 We construct the Markov chain $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ for $t = 1, \dots, T$ using the same local exploration
191 and non-reversible communication as classical PT, but we use the accelerated PT swap move
192 as described below and summarized in Algorithm 1. Given PT state $\mathbf{X}_t = (X_t^0, \dots, X_t^N) \in \mathcal{X}^{N+1}$
193 after the local exploration move, we define the n -th accelerated swap move as follows: generate paths
194 $\bar{X}_{t,0:K}^{n-1}$ and $\bar{X}_{t,0:K}^n$ obtained by propagating X_t^{n-1} and X_t^n forward and backward in time using the
195 forward and backward transitions respectively,

$$196 \quad 197 \quad \bar{X}_{t,0}^{n-1} = X_t^{n-1}, \quad \bar{X}_{t,k}^{n-1} \sim P_k^{n-1}(\bar{X}_{t,k-1}^{n-1}, dx_k), \\ 198 \quad 199 \quad \bar{X}_{t,K}^n = X_t^n, \quad \bar{X}_{t,K-1}^n \sim Q_{K-1}^n(\bar{X}_{t,K}^n, dx_{K-1}).$$

200 The n -th accelerated swap move illustrated in Figure 1 replaces components X_t^{n-1} and X_t^n in \mathbf{X}_t with
201 $\bar{X}_{t,0}^{n-1}$ and $\bar{X}_{t,K}^n$ respectively with probability $\alpha_K^n(\bar{X}_{t,0:K}^{n-1}, \bar{X}_{t,0:K}^n)$, where for $x_{0:K}, x'_{0:K} \in \mathcal{X}^{K+1}$,

$$202 \quad 203 \quad \alpha_K^n(x_{0:K}, x'_{0:K}) = \min \left\{ 1, \frac{w_K^n(x_{0:K})}{w_K^n(x'_{0:K})} \right\}.$$

205 When $K = 0$, the accelerated swap coincides with the traditional PT swap in Equation (1). However,
206 an accelerated swap can obtain an acceptance of 1 even if $\pi^{n-1} \neq \pi^n$ provided $\mathbb{P}_K^{n-1} = \mathbb{Q}_K^n$.
207 Therefore, we aim to choose the forward and backward accelerators to make the laws of simulated
208 forward and backward paths as close to each other as possible. Theorem 1 shows we can quantify this
209 discrepancy in through the *rejection rate*, $r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) := \|\mathbb{P}_K^{n-1} \otimes \mathbb{Q}_K^n - \mathbb{Q}_K^n \otimes \mathbb{P}_K^{n-1}\|_{\text{TV}}$ which
210 by Pinsker inequality is controlled by the symmetric KL divergence between \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n ,

$$211 \quad 212 \quad r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)^2 \leq \frac{1}{2} \mathbb{P}_K^{n-1}[-\log w_K^n] + \frac{1}{2} \mathbb{Q}_K^n[\log w_K^n] =: \text{SKL}(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n).^2 \quad (4)$$

213 **Theorem 1.** *The APT Markov chain \mathbf{X}_t generated by Algorithm 1 is ergodic and π -invariant.
214 Moreover, the probability the n -th accelerated swap is rejected at stationarity equals $r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)$.*

215 ²We note that $[\cdot]$ represents expectation with respect to the measure on the left.

216 **Expectation and free energy estimators** As a by-product of Algorithm 1, we obtain a consistent
 217 estimator $\hat{\pi}_T^n[f] = \frac{1}{T} \sum_{t=1}^T f(X^n_t)$ for the expectation of $f : \mathcal{X} \rightarrow \mathbb{R}$ with respect to π^n by taking the
 218 Monte Carlo average over the n -th chain X^n_t . To also obtain free energy estimates, we can average
 219 over $\vec{w}_{K,t}^n := w_K^n(\vec{X}_{t,0:K}^{n-1})$ and $\tilde{w}_{K,t}^n := w_K^n(\tilde{X}_{t,0:K}^n)$, the weights of the forward and backward
 220 accelerated paths generated during the n -th accelerated swap at time t during the communication
 221 phase of Algorithm 1, to obtain consistent estimators $\Delta \vec{Z}_T$ and $\Delta \tilde{Z}_T$ for Z respectively as $T \rightarrow \infty$,
 222

$$223 \quad \vec{Z}_T := \prod_{n=1}^N \frac{2}{T} \sum_{n \equiv t \pmod{2}} \vec{w}_{K,t}^n, \quad \frac{1}{\tilde{Z}_T} := \prod_{n=1}^N \frac{2}{T} \sum_{n \equiv t \pmod{2}} \frac{1}{\tilde{w}_{K,t}^n}.$$

226 We then obtain a consistent estimator $\hat{Z}_T = (\vec{Z}_T \tilde{Z}_T)^{1/2}$ for Z by taking the geometric mean of the
 227 forward and backward estimators. When we consider the classical PT with $K = 0$, these estimators
 228 degrade back to free energy perturbation (FEP) (Zwanzig, 1954); when the path is deterministic
 229 (e.g., implemented through normalising flow), these estimators recover the target FEP (Jarzynski,
 230 2002); and when the path is stochastic, the estimators can be viewed as a form of Jarzynski equality
 231 (Jarzynski, 1997) or escorted Jarzynski equality (Vaikuntanathan & Jarzynski, 2008). Additionally,
 232 following He et al. (2025a, Proposition 3.2), we can also apply Bennett acceptance ratio using the
 233 weight for the paths (Bennett, 1976; Shirts et al., 2003; Hahn & Then, 2009; Minh & Chodera, 2009;
 234 Vaikuntanathan & Jarzynski, 2011) to achieve reduced variance without additional functional calls.
 235

235 **Proposition 1.** *The estimators $\hat{\pi}_T^n[f]$ and $\Delta \hat{Z}_T$ a.s. converge to $\pi^n[f]$ and Z respectively as $T \rightarrow \infty$.
 236 Moreover, if $\mathbb{P}_K^{n-1} = \mathbb{Q}_K^n$ for all n , then $\hat{Z}_T \xrightarrow{a.s.} Z$.*

238 4 ANALYSIS OF ACCELERATED PT

240 We analyse how the performance, measured by the round trip observed after T iterations, R_T , scales
 241 with increasing parallel chains N and acceleration time K . It is equivalent to analyse the *round*
 242 *trip rate* $\tau := \lim_{T \rightarrow \infty} \mathbb{E}[R_T]/T$, defined as the expected percentage of PT iterations, where a
 243 round trip occurs (Katzgraber et al., 2006; Lingenheil et al., 2009), which coincides with slope in
 244 Figure 1 (Right). To derive theoretical insights independent of the problem-specific local exploration
 245 move, we make an efficient local exploration assumption analogous to Syed et al. (2021; 2022);
 246 Surjanovic et al. (2024), which assumes the weight of forward and backward accelerated paths is
 247 independent across chains and PT iterations.

248 **Assumption 1** (Efficient local exploration). *For all $n = 1, \dots, N$, $(\vec{w}_{K,t}^n, \tilde{w}_{K,t}^n)$ are iid in t and
 249 equal in distribution to $(w_K^n(\vec{X}_{0:K}^{n-1}), w_K^n(\tilde{X}_{0:K}^n))$ where $(\vec{X}_{0:K}^{n-1}, \tilde{X}_{0:K}^n) \sim \mathbb{P}_K^{n-1} \otimes \mathbb{Q}_K^n$.*

251 Proposition 2 relates the round trip rate to the rejections, extending Syed et al. (2021, Corollary 2).

252 **Proposition 2.** *If Assumption 1 holds, then $\tau = \tau(\mathbb{P}_K^{0:N-1}, \mathbb{Q}_K^{1:N})$ where,*

$$254 \quad \tau(\mathbb{P}_K^{0:N-1}, \mathbb{Q}_K^{1:N}) := \left(2 + 2 \sum_{n=1}^N \frac{r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)}{1 - r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)} \right)^{-1}.$$

257 **Asymptotic scaling with acceleration time.** We now fix N and use Proposition 2 to study how
 258 the round trip rate scales with K . We focus on a special case where \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n arise as K -step
 259 discretisations of an underlying stochastic differential equation (SDE) which bridge π^{n-1} and π^n
 260 with path measure \mathbb{P}_∞^{n-1} and \mathbb{Q}_∞^n as $K \rightarrow \infty$.

261 **Proposition 3.** *Under appropriate conditions on the drifts of the SDE (Section B.2), as $K \rightarrow \infty$,
 262 $\tau(\mathbb{P}_K^{0:N-1}, \mathbb{Q}_K^{1:N})$ converges to $\tau(\mathbb{P}_\infty^{0:N-1}, \mathbb{Q}_\infty^{1:N})$ and $r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) \leq r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n) + \mathcal{O}(\frac{1}{\sqrt{K}})$.*

264 The main appeal of accelerated PT comes from the fact that for well-designed $\mathbb{P}_K^{0:N-1}, \mathbb{Q}_K^{1:N}$, that
 265 aim to induce approximately the same measure, we have

$$266 \quad r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n) \approx 0 \ll r(\pi^{n-1}, \pi^n).$$

268 Thus, increasing K can dramatically reduce the rejection rate and increase the round trip rate in
 269 challenging scenarios. In practice, we find that for moderate values of K , this benefit overweights the
 increased computational cost as seen in Table 1.

270 **Asymptotic scaling with increased parallelism.** To understand how accelerated PT scales with
 271 increased parallelism, as $N \rightarrow \infty$ for a fixed number of acceleration steps K . For each N , we
 272 assume π^n discretizes a continuous annealing path π^β interpolating between reference and target at
 273 $\beta = \beta_n$ for some annealing schedule $0 = \beta_0 < \dots < \beta_n = 1$. Additionally we assume \mathbb{P}_K^{n-1} and
 274 \mathbb{Q}_K^n discretize the mutually absolutely continuous forward/backward accelerators $\mathbb{P}_K^{\beta, \beta'}$ and $\mathbb{Q}_K^{\beta, \beta'}$
 275 between π_β and $\pi_{\beta'}$ at $\beta = \beta_{n-1}$ and $\beta' = \beta_n$ respectively with weight function $W_K^{\beta, \beta'}$.
 276

277 **Theorem 2.** Suppose $\mathbb{P}_K^{\beta, \beta'}$ and $\mathbb{Q}_K^{\beta, \beta'}$ are sufficiently regular and satisfy Assumptions 2–4 in
 278 Section B.3. As $N \rightarrow \infty$ if $\max_{n \leq N} |\beta_n - \beta_{n-1}| = O(N^{-1})$, then $\sum_{n=1}^N r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)$ converges
 279 to Λ_K and $\tau(\mathbb{P}_K^{0:N-1}, \mathbb{Q}_K^{1:N})$ converges to $\bar{\tau}_K = (2 + 2\Lambda_K)^{-1}$, where Λ_K equals,
 280

$$281 \quad \Lambda_K := \int_0^1 \frac{1}{2} \mathbb{E}[|\dot{w}_K^\beta(\bar{X}_{0:K}^\beta) - \dot{w}_K^\beta(\bar{X}_{0:K}^\beta)|] d\beta, \quad (\bar{X}_{0:K}^\beta \bar{X}_{0:K}^\beta) \sim \mathbb{P}_K^{\beta, \beta} \otimes \mathbb{Q}_K^{\beta, \beta},$$

284 and $\dot{w}_K^\beta : \mathcal{X}^{K+1} \rightarrow \mathbb{R}$ is the partial derivative with respect to β' of $\log w_K^{\beta, \beta'}$ at $\beta' = \beta$.
 285

286 Theorem 2 shows that as $N \rightarrow \infty$, the round trip rate is controlled by the *global barrier* for APT,
 287 Λ_K , and can be approximated by rejection rates obtained in Algorithm 1. Notably, APT observes a
 288 sharp deterioration in round trip when $N \ll \Lambda_K$, begins to stabilise when $N \approx \Lambda_K$ and observes
 289 a marginal improvement when $N \gg \Lambda_K$. As discussed in Proposition 3, for a reasonable choice
 290 of accelerators we expect Λ_K to decrease with K , which suggests APT can substantially improve
 291 compared to classical PT ($K = 0$) for challenging problems where $N \approx \Lambda_0 > \Lambda_K$. Finally, we
 292 explore the trade-off between increasing parallelism and increasing acceleration time in Section B.
 293

294 5 DESIGN SPACE FOR DIFFUSION PT

295 5.1 NORMALISING FLOW ACCELERATED PT

296 Normalising flows (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015) provide a flexible
 297 framework for approximating complex probability distributions by transforming a simple base
 298 distribution (e.g., a Gaussian) through a sequence of invertible, differentiable mappings.
 299

300 Let $T^n : \mathcal{X} \rightarrow \mathcal{X}$ be such a diffeomorphism. We denote NF-APT as APT with forward and backward
 301 accelerators to deterministically transport by normalising flow T^n and its inverse, respectively,
 302 motivated by the use of normalising flows to map between annealing distributions in Arbel et al.
 303 (2021) and Matthews et al. (2022) in the context of SMC samplers (Del Moral et al., 2006),
 304

$$305 \quad P_1^{n-1}(x_0, dx_1) = \delta_{T^n(x_0)}(dx_1), \quad Q_0^n(x_1, dx_0) = \delta_{(T^n)^{-1}(x_1)}(dx_0).$$

306 Then the weight functional equals,
 307

$$308 \quad W_1^n(x_0, x_1) = U^n(x_1) - U^{n-1}(x_0) - \log |\det \nabla T^n(x_0)|, \quad x_1 = T^n(x_0).$$

309 We can parametrise the normalising flow T^n by a neural network trained to optimise the symmetric
 310 KL-divergence from Equation (4), $\mathcal{L}(T) = \sum_{n=1}^N \text{SKL}(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)$. See Section C.1 for details.
 311

312 5.2 CONTROLLED MONTE CARLO DIFFUSIONS ACCELERATED PT

313 Another common transport for sampling is based on the escorted Jarzynski equality (Vaikuntanathan
 314 & Jarzynski, 2008). One way to realise this in practice with neural networks is via Controlled
 315 Monte Carlo Diffusions (CMCD) (Vargas et al., 2024). Suppose $\mathcal{X} \subseteq \mathbb{R}^d$ and for $s \in [0, 1]$ we
 316 have $b_s^n \in \mathbb{R}^d$, $\sigma_s^n \in \mathbb{R}_+$, and $U_s^n = (1 - \phi_s^n)U^{n-1} + \phi_s^n U^n$, where $\phi_s^n \in [0, 1]$ is a monotonically
 317 increasing in s and $\phi_0^n = 0, \phi_1^n = 1$. For a fixed K , let $s_k = k/K$ and $\Delta s_k = 1/K$ be the uniform
 318 discretisation of the unit interval. We denote CMCD-APT as APT with k -th forward transition kernel,
 319

$$320 \quad P_k^{n-1}(x_{k-1}, dx_k) = \mathcal{N}(x_{k-1} - (\sigma_{s_{k-1}}^n)^2 \nabla U_{s_{k-1}}^n(x_{k-1}) \Delta s_k + b_{s_{k-1}}^n(x_{k-1}) \Delta s_k, 2(\sigma_{s_{k-1}}^n)^2 \Delta s_k),$$

321 and the backward transition,
 322

$$323 \quad Q_{k-1}^n(x_k, dx_{k-1}) = \mathcal{N}(x_k + (\sigma_{s_k}^n)^2 \nabla U_{s_k}^n(x_k) \Delta s_k + b_{s_k}^n(x_k) \Delta s_k, 2(\sigma_{s_k}^n)^2 \Delta s_k).$$

324 The corresponding weight function for CMCD-APT equals,
 325

$$326 \quad w_K^n(x_{0:K}) = \frac{\tilde{\pi}^n(x_K) \prod_{k=1}^K Q_{k-1}^n(x_k, x_{k-1})}{\tilde{\pi}^{n-1}(x_0) \prod_{k=1}^K P_k^n(x_{k-1}, x_k)} \quad (5)$$

327 where $P_k^{n-1}(x_{k-1}, x_k)$ and $Q_k^n(x_k, x_{k-1})$ are the Gaussian densities of the forward and backwards
 328 kernel transitions with respect to the Lebesgue measure. We learn the neural transport b_s^n , the
 329 time schedule ϕ_s^n and the diffusion coefficient σ_s^n . We use a symmetrised KL-divergence loss
 330 $\mathcal{L}(b_s, \phi_s, \sigma_s) = \sum_{n=1}^N \text{SKL}(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)$, where we also learn ϕ_s^n, σ_s^n following [Geffner & Domke \(2023\)](#)³. While in theory, once the vectorised field b_s^n is perfectly learned, any σ_s^n can be used, we
 331 found that learning σ_s^n can significantly stabilise the training and enhance the results. Note that other
 332 divergences and losses can be used, such as ([Máté & Fleuret, 2023](#); [Richter & Berner, 2023](#); [Albergo & Vanden-Eijnden, 2024](#)). We discuss the form of the transition kernels, the weight function and
 333 loss in the limit at $K \rightarrow \infty$ in Section [C.2](#).
 334

335 5.3 DIFFUSION ACCELERATED PT

336 Given $\mathcal{X} = \mathbb{R}^d$, the Variance-Preserving (VP) diffusion model ([Ho et al., 2020](#); [Song et al., 2020](#)) is
 337 defined by the SDE $dY_s = -\gamma_s Y_s ds + \sqrt{2\gamma_s} dW_s$, with $s \in [0, 1]$, $Y_0 \sim \pi$, and γ_s is a rate function
 338 from $[0, 1]$ to \mathbb{R}^+ . The time-reversal SDE $(X_s)_{s \in [0, 1]} = (Y_{1-s})_{s \in [0, 1]}$ has the form $dX_s = [\gamma_{1-s} X_s +$
 339 $2\gamma_{1-s} \nabla \log \pi_s^{\text{VP}}(X_s)] ds + \sqrt{2\gamma_{1-s}} dW_s$ where π_s^{VP} is the density of Y_{1-s} and $X_0 \sim \pi_0^{\text{VP}} = \mathcal{N}(0, \mathbf{I})$
 340 is close to a standard Gaussian in the common scenario that $\int_0^1 \gamma_s ds \gg 1$. The score $\nabla \log \pi_s^{\text{VP}}$ is
 341 unknown but can be learned by score-matching objectives.
 342

343 We introduce for $s \in [0, 1]$ an energy-based model ([Salimans & Ho, 2021](#)) with potential $\tilde{U}_s^{\text{VP}} : \mathcal{X} \mapsto$
 344 \mathbb{R} and corresponding annealing distributions $\tilde{\pi}_s^{\text{VP}} \propto \exp(-\tilde{U}_s^{\text{VP}})$ to approximate π_s^{VP} while satisfying
 345 the boundary conditions $\tilde{\pi}_0^{\text{VP}} = \mathcal{N}(0, \mathbf{I})$ and $\tilde{\pi}_1^{\text{VP}} = \pi$. For some schedule $0 = s_0 < \dots < s_N = 1$,
 346 we consider the annealing path $\pi^n = \tilde{\pi}_{s_n}^{\text{VP}}$. For a fixed K , we denote Diff-APT as APT with
 347 forward and backward kernels respectively given by some K -step integrator of the time-reverse
 348 SDE and the forward SDE between s_{n-1} and s_n . For instance, the Euler integrator with step-size
 349 $\delta_n = (s_n - s_{n-1})/K$ and interpolating times $s_{n,k} = s_{n-1} + k\delta_n$ yields:
 350

$$351 \quad P_k^{n-1}(x_{k-1}, dx_k) = \mathcal{N}(x_{k-1} + \delta_n \gamma_{1-s_{n,k}} x_{k-1} - 2\gamma_{1-s_{n,k}} \nabla \tilde{U}_{s_{n,k}, \theta}^{\text{VP}}(x_{k-1}), 2\delta_n) \quad (6)$$

$$352 \quad Q_{k-1}^n(x_k, dx_{k-1}) = \mathcal{N}(x_k - \delta_n \gamma_{1-s_{n,k}} x_k, 2\delta_n). \quad (7)$$

353 The resulting weight function w_K^n coincides with Equation (5) from CMCD-APT, replacing the
 354 forward backward transitions P_k^{n-1} and Q_{k-1}^n for CMCD-APT with Equation (6) and Equation (7).
 355 Further, we parametrise \tilde{U}_s^{VP} by a neural network trained to minimise the standard score matching
 356 objective. Since we cannot access samples from $X_1 \sim \pi$, we iteratively train on approximate
 357 samples from π obtained by sampling from Diff-APT. We stress that a parallelised implementation of
 358 Diff-APT allows for generating a sample from π with a similar effective cost as a single discretisation
 359 step solving the time-reversal SDE. For further details, see Section [C.3](#).
 360

361 6 EXPERIMENTS

362 In this section, we evaluate our proposed accelerated parallel tempering and its three variants on a
 363 variety of targets. We defer all experimental details to Section [D](#).
 364

365 6.1 COMPARISON OF ACCELERATION METHODS

366 We evaluate the three variants of APT introduced in Section 5: Flow-APT, CMCD-APT and Diff-APT,
 367 against the baseline of PT using the geometric path with reference $\pi_0 = \mathcal{N}(0, \mathbf{I})$, on a 40-mode
 368 Gaussian mixture model in 10 dimensions (GMM-10) ([Midgley et al., 2023](#)). Table 1 compares
 369 the performance of PT vs the APT variants for $N = 6, 10, 30$ chains. We choose these numbers to
 370 represent: (1) the smallest N where standard PT obtains round trips (2) the regime $N \approx \Lambda$ where
 371

372 ³We note that in standard CMCD, we cannot use symmetrised KL-divergence as the objective, as we only
 373 have access to data from one side.
 374

378
 379
 380
 381
 382
 383
 Table 1: PT versus APT with different acceleration methods, targeting a 40-mode Gaussian Mixture
 384 model (GMM) target in 10 dimensions and standard Gaussian reference using $N = 6, 10, 30$ parallel
 385 chains for $T = 100,000$ iterations. For each method, we report the round trips (R), round trips per
 386 likelihood evaluation, denoted as compute-normalised round trips (CN-R), the number of neural
 387 network evaluations per parallel chain every iteration, and Λ estimated using $N = 30$ chains ($\hat{\Lambda}$).
 388

# Chain Method	Neural Call (↓) 1	$\hat{\Lambda}$ (↓) 7.198	$N = 6$		$N = 10$		$N = 30$	
			R (↑) 194	CN-R (↑) 97.0	R (↑) 1655	CN-R (↑) 827.5	R (↑) 2441	CN-R (↑) 1220.5
NF-APT	1	7.198	194	97.0	1655	827.5	2441	1220.5
CMCD-APT ($K = 1$)	2	6.911	234	117.0	2126	1063.0	3264	1632.0
CMCD-APT ($K = 2$)	3	5.932	526	175.3	3287	1092.7	4767	1589.0
CMCD-APT ($K = 5$)	6	4.822	1743	290.5	5525	920.8	6231	1038.5
Diff-APT ($K = 1$)	2	9.025	375	187.5	1551	775.5	2820	1410.0
Diff-APT ($K = 2$)	3	7.298	748	249.3	2064	688.0	3480	1160.0
Diff-APT ($K = 5$)	6	5.795	1565	260.8	3080	513.3	4334	722.3
Diff-PT ($K = 0$)	2	8.932	204	102.0	734	367.0	1586	793.0
PT	0	8.346	17	8.5	681	340.5	1888	944.0

396
 397 PT is stable, and (3) the regime where $N \gg \Lambda$ and PT is close to optimal. All three APT variants
 398 substantially improve over classical PT, with increased round trips with N and K . In the small N
 399 regime (1) resulted in a 10x to 100x improvement and highlights the potential of APT for challenging
 400 problems where PT struggles and parallel chains are constrained. By contrast, when $N \gg \Lambda$ and the
 401 improvements over standard PT are less dramatic, they might not offset the cost of additional neural
 402 evaluations. Notably, CMCD with $K = 5$ and $N = 30$ matches the performance of the theoretical
 403 limit $T/(2 + 2\Lambda) \approx 5,349$ for standard PT when $N \rightarrow \infty$ as predicted by Theorem 2.

6.2 SCALING WITH DIMENSIONS

404
 405 To understand the theoretical performance
 406 of K -step APT for a fixed number of
 407 chains when we scale the dimension d , we
 408 use the fact that the path of distributions
 409 $(\pi_s^{\text{VP}})_{s \in [0,1]}$ induced by a VP diffusion pro-
 410 cess initialised at GMM- d is analytically
 411 tractable, in order to run K -step Diff-APT
 412 with the true diffusion path. In Figure 2, we
 413 compare the resulting round trip rate and
 414 compute-normalised round trip rate of the
 415 different algorithms when we fix the num-
 416 ber of chains to 30. For all values of d , the
 417 round trip rate of Diff-APT monotonically
 418 increases over PT as we increase K , with
 419 greater gains for larger values of d , demon-
 420 strating that the accelerated swap improves the communication of states over the standard PT swap.
 421 We see a substantial improvement in round trip rate (right) with acceleration compared to PT ($K = 0$)
 422 and a minor difference between algorithms as K increases when normalised for compute (Right),
 423 suggesting the extra computation for APT is justified.

6.3 LOG-NORMALISING CONSTANT (FREE-ENERGY) ESTIMATOR

424
 425 As we described in Section 3.2, a by-product of Algorithm 1 is the estimation of change in free energy
 426 $\Delta F = -\log Z$. We compare free energy estimates from CMCD-APT and Diff-APT against PT on
 427 two targets: DoubleWell(DW)-4, a particle system in Cartesian coordinates; and ManyWell(MW)-32,
 428 a highly multi-modal density introduced by Midgley et al. (2023). Figure 3 presents box-plots of 30
 429 free energy estimates for DW-4 and MW-32 using 1,000 samples each.

430
 431 Several key observations emerge: (1) Both CMCD-APT and Diff-APT exhibit markedly lower
 432 variance and bias than classical PT, across both targets. (2) For CMCD/Diff-APT, the variance and
 433 bias reduce steadily as K increases. (3) For both PT and CMCD/Diff-APT, the variance and bias

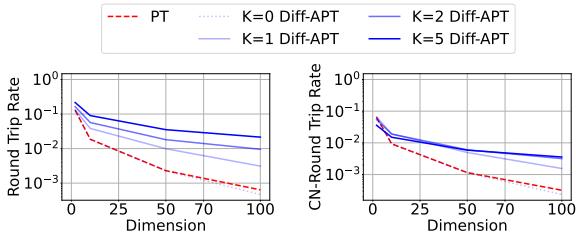
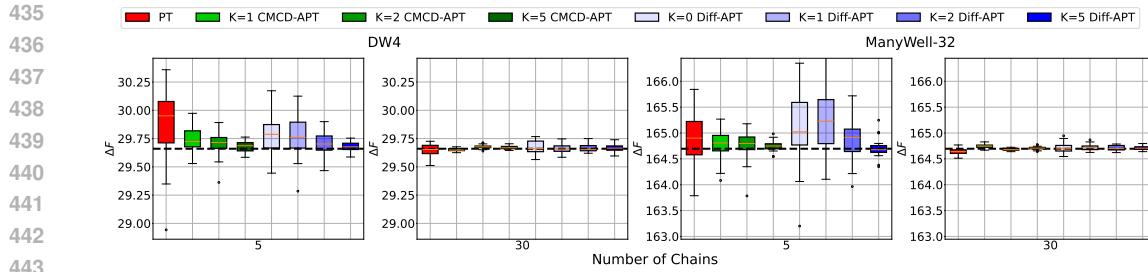


Figure 2: Round trip metrics for K -step Diff-APT ($K = 1, 2, 5$) and Diff-PT using the true diffusion path, and Geometric-PT targeting GMM- d for $d = 2, 10, 50, 100$ when using 30 chains. (Left) Round trip rate against d . (Right) Compute-normalised round trip rate against d .

432 markedly decrease as the number of chains N increases, thereby empirically validating Proposition 1.
 433

434



444 Figure 3: Estimates of ΔF for DW4 and ManyWell-32 by PT, CMCD-APT ($K = 1, 2, 5$) and
 445 Diff-APT ($K = 0, 1, 2, 5$) using 1,000 samples. Each box consists of 30 estimates. The black dashed
 446 lines denotes the reference constant $\Delta F \approx 29.660$ estimated with PT using 60 chains and 100,000
 447 samples and $\Delta F \approx 164.696$ from [Midgley et al. \(2023\)](#) for ManyWell-32.

448

449

450 6.4 COMPARING APT WITH NEURAL SAMPLERS

451

452 A significant advantage of APT is its asymptotic consistency: unlike most neural samplers, the
 453 Metropolis correction ensures APT does not incur a bias if the neural proposal is poorly trained.
 454 In Figure 4, we demonstrate this property for both Diff-APT and CMCD-APT. Specifically, for
 455 CMCD-APT and Diff-APT, we take the trained model and map samples directly from the reference
 456 distribution to the target by concatenating the learned transports between each successive pair of
 457 intermediate distributions, labelled as *CMCD* and *Diffusion* respectively in Figure 4.

458

494

459 As we can see, directly using the learned neural sampler dramatically drops performance, especially
 460 for small K . The diffusion model performs better than CMCD but still misallocates probability mass
 461 across two modes. On the contrary, all variants of CMCD-APT and Diff-APT recover the correct
 462 mode weights and align closely with the ground truth.

463

464

465

466

467

468

469

470

471

472

473

474

475

476 6.5 ALANINE DIPEPTIDE

477 Finally, to provide a realistic target on which to evaluate APT, we take the Boltzmann distribution of
 478 Alanine Dipeptide in Cartesian coordinates at 300K, where we compare PT against CMCD-APT with
 479 $N = 4$. This is a small molecule with 22 atoms
 480 (66 dimensions in total) which is highly challenging
 481 to sample from, due to many prohibitive energy
 482 barriers and high multimodality. Following the
 483 convention of molecular dynamics, we take the reference
 484 distribution to be a tempered version of the target,
 485 corresponding to 1200K. We run each algorithm for $T = 50,000$ iterations and report the results in
 Table 2. We can see that CMCD-APT is able to provide significant acceleration in this realistic setting.

473 Table 2: PT versus CMCD-APT targeting Alanine Dipeptide. We use the same metrics as
 474 defined in Table 1.

Method	$\hat{\Lambda} (\downarrow)$	$R (\uparrow)$	$CN-R (\uparrow)$
CMCD-APT ($K = 1$)	3.23	465	232.5
CMCD-APT ($K = 2$)	3.15	597	199
CMCD-APT ($K = 5$)	3.09	627	104.5
PT	3.38	199	99.5

486 **7 CONCLUSION**
 487

488 In this work, we formalise a framework integrating neural samplers to improve the sample efficiency of
 489 PT. However, several limitations, common to neural samplers, remain, including the additional burden
 490 of well optimising a neural network which has a large impact on performance - i.e. a poorly trained
 491 neural sampler may underperform PT. Further, while our approach accelerates PT by increasing
 492 the round trip rate, it incurs additional neural network evaluations. This can be computationally
 493 expensive for complex architectures. Future work should therefore develop principled criteria for
 494 deciding when to rely on PT or accelerated PT for robustness.

495 **REFERENCES**
 496

497 Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
 498 Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nicolas
 499 Malkin, and Alexander Tong. Iterated denoising energy matching for sampling from Boltzmann
 500 densities. In *International Conference on Machine Learning*, 2024.

501

502 Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. *arXiv
 503 preprint arXiv:2410.02711*, 2024.

504 Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport Monte Carlo. In
 505 *International Conference on Machine Learning*, 2021.

506

507 Andrew J Ballard and Christopher Jarzynski. Replica exchange with nonequilibrium switches.
 508 *Proceedings of the National Academy of Sciences*, 106(30):12224–12229, 2009.

509

510 Andrew J Ballard and Christopher Jarzynski. Replica exchange with nonequilibrium switches:
 511 Enhancing equilibrium sampling by increasing replica overlap. *The Journal of Chemical Physics*,
 512 136(19), 2012.

513

514 Charles H Bennett. Efficient estimation of free energy differences from Monte Carlo data. *Journal of
 515 Computational Physics*, 22(2):245–268, 1976.

516

517 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
 518 generative modeling. *Transactions on Machine Learning Research*, 2024.

519

520 Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, and Nikolay Malkin. From
 521 discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster
 522 training. *arXiv preprint arXiv:2501.06148*, 2025.

523

524 Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima Anand-
 525 kumar. Sequential controlled Langevin diffusions. In *International Conference on Learning
 526 Representations*, 2025.

527

528 Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. *Journal of the
 529 Royal Statistical Society Series B: Statistical Methodology*, 68(3):411–436, 2006.

530

531 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
 532 *International Conference on Learning Representations*, 2017.

533

534 Ezra Erives, Bowen Jing, Peter Holderrieth, and Tommi Jaakkola. Continuously tempered diffusion
 535 samplers. In *Frontiers in Probabilistic Inference: Learning meets Sampling*, 2025.

536

537 Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. Adaptive Monte Carlo augmented
 538 with normalizing flows. *Proceedings of the National Academy of Sciences*, 119(10):e2109420 119,
 539 2022.

540

541 Tomas Geffner and Justin Domke. Langevin diffusion variational inference. In *International
 542 Conference on Artificial Intelligence and Statistics*, pp. 576–593, 2023.

543

544 Charles J Geyer. Markov chain Monte Carlo maximum likelihood. In *Computing Science and
 545 Statistics: Proceedings of the 23rd Symposium on the Interface*, 1991.

540 István Gyöngy. Existence and uniqueness results for semilinear stochastic partial differential equations. *Stochastic processes and their applications*, 73(2):271–299, 1998.

541

542

543 Aljoscha M. Hahn and Holger Then. Characteristic of Bennett’s acceptance ratio method. *Physical Review E*, 80:031111, 2009.

544

545 Jiajun He, Yuanqi Du, Francisco Vargas, Yuanqing Wang, Carla P Gomes, José Miguel Hernández-
546 Lobato, and Eric Vanden-Eijnden. Feat: Free energy estimators with adaptive transport. *arXiv*
547 preprint arXiv:2504.11516, 2025a.

548

549 Jiajun He, Yuanqi Du, Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla
550 Gomes, and José Miguel Hernández-Lobato. No trick, no treat: Pursuits and challenges towards
551 simulation-free training of neural samplers. *arXiv preprint arXiv:2502.06685*, 2025b.

552 Jérôme Hénin, Tony Lelièvre, Michael R Shirts, Omar Valsson, and Lucie Delemotte. Enhanced
553 sampling methods for molecular dynamics simulations. *Living Journal of Computational Molecular
554 Science*, 4(1), 2022.

555

556 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in
557 Neural Information Processing Systems*, 2020.

558

559 Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and application to spin glass
560 simulations. *Journal of the Physical Society of Japan*, 65(6):1604–1608, 1996.

561

562 Michele Invernizzi, Andreas Kramer, Cecilia Clementi, and Frank Noé. Skipping the replica exchange
563 ladder with normalizing flows. *The Journal of Physical Chemistry Letters*, 13(50):11643–11649,
564 2022.

565

566 Christopher Jarzynski. Nonequilibrium equality for free energy differences. *Physical Review Letters*,
567 78(14):2690, 1997.

568

569 Christopher Jarzynski. Targeted free energy perturbation. *Physical Review E*, 65(4):046122, 2002.

570

571 Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. Feedback-optimized
572 parallel tempering Monte Carlo. *Journal of Statistical Mechanics: Theory and Experiment*, 2006
573 (03):P03018, 2006.

574

575 Peter E Kloeden and Andreas Neuenkirch. The pathwise convergence of approximation schemes
576 for stochastic differential equations. *LMS journal of Computation and Mathematics*, 10:235–253,
577 2007.

578

579 Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
580 symmetric densities. In *International Conference on Machine Learning*, 2020.

581

582 Martin Lingenheil, Robert Denschlag, Gerald Mathias, and Paul Tavan. Efficiency of exchange
583 schemes in replica exchange. *Chemical Physics Letters*, 478(1-3):80–84, 2009.

584

585 Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg,
586 and Frank Wood. q-paths: Generalizing the geometric annealing path using power means. In
587 *Uncertainty in Artificial Intelligence*, 2021.

588

589 Bálint Máté and François Fleuret. Learning interpolations between Boltzmann densities. *Transactions
590 on Machine Learning Research*, 2023.

591

592 Alexander G. D. G. Matthews, Michael Arbel, Danilo J. Rezende, and Arnaud Doucet. Continual
593 repeated annealed flow transport Monte Carlo. In *International Conference on Machine Learning*,
594 2022.

595

596 Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and José Miguel
597 Hernández-Lobato. Flow annealed importance sampling bootstrap. In *International Conference
598 on Learning Representations*, 2023.

599

600 David DL Minh and John D Chodera. Optimal estimators and asymptotic variances for nonequilibrium
601 path-ensemble averages. *The Journal of Chemical Physics*, 131(13), 2009.

594 Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
 595 states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147, 2019.
 596

597 Tsuneyasu Okabe, Masaaki Kawata, Yuko Okamoto, and Masuhiro Mikami. Replica-exchange
 598 Monte Carlo method for the isobaric–isothermal ensemble. *Chemical Physics Letters*, 335(5-6):
 599 435–439, 2001.

600 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 601 Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of
 602 Machine Learning Research*, 22(57):1–64, 2021.

603 Theodore Papamarkou, Jacob Hinkle, M Todd Young, and David Womble. Challenges in Markov
 604 chain Monte Carlo for Bayesian neural networks. *Statistical Science*, 37(3):425–442, 2022.
 605

606 Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis,
 607 and Arnaud Doucet. Particle denoising diffusion sampler. In *International Conference on Machine
 608 Learning*, 2024.

609 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International
 610 Conference on Machine Learning*, 2015.

611 Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. *arXiv preprint
 612 arXiv:2307.01198*, 2023.

613 Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and MCMC
 614 algorithms. *Probability Surveys*, 1:20–71, 2004.

615 Tim Salimans and Jonathan Ho. Should EBMs model the energy or the score? In *Energy Based
 616 Models Workshop-ICLR 2021*, 2021.

617 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
 618 In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

619 Michael R Shirts, Eric Bair, Giles Hooker, and Vijay S Pande. Equilibrium free energies from
 620 nonequilibrium measurements using maximum-likelihood methods. *Physical Review Letters*, 91
 621 (14):140601, 2003.

622 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 623 Poole. Score-based generative modeling through stochastic differential equations. In *International
 624 Conference on Learning Representations*, 2020.

625 Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, and Trevor Campbell. Parallel
 626 tempering with a variational reference. In *Advances in Neural Information Processing Systems*,
 627 2022.

628 Nikola Surjanovic, Miguel Biron-Lattes, Paul Tiede, Saifuddin Syed, Trevor Campbell, and Alexandre
 629 Bouchard-Côté. Pigeons. jl: Distributed sampling from intractable distributions. *arXiv preprint
 630 arXiv:2308.09769*, 2023.

631 Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, and Trevor Campbell. Uniform
 632 ergodicity of parallel tempering with efficient local exploration. *arXiv preprint arXiv:2405.11384*,
 633 2024.

634 Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. *Physical
 635 Review Letters*, 57:2607–2609, 1986.

636 Saifuddin Syed, Vittorio Romaniello, Trevor Campbell, and Alexandre Bouchard-Côté. Parallel
 637 tempering on optimized paths. In *International Conference on Machine Learning*, 2021.

638 Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Non-
 639 reversible parallel tempering: a scalable highly parallel MCMC scheme. *Journal of the Royal
 640 Statistical Society Series B: Statistical Methodology*, 84(2):321–350, 2022.

641 Saifuddin Syed, Alexandre Bouchard-Côté, Kevin Chern, and Arnaud Doucet. Optimised annealed
 642 sequential Monte Carlo samplers. *arXiv preprint arXiv:2408.12057*, 2024.

648 Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
649 *Communications in Mathematical Sciences*, 8(1):217–233, 2010.
650

651 Luke Tierney. A note on Metropolis-Hastings kernels for general state spaces. *The Annals of Applied
652 Probability*, 8(1):1 – 9, 1998.

653 Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations:
654 Improving convergence by reducing dissipation. *Physical Review Letters*, 100(19):190601, 2008.
655

656 Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations. *The
657 Journal of chemical physics*, 134(5), 2011.

658 Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In *International
659 Conference on Learning Representations*, 2023.

660

661 Francisco Vargas, Nikolas Nüsken, Shreyas Padhy, and Denis Blessing. Transport meets varia-
662 tional inference: Controlled Monte Carlo diffusions. In *International Conference on Learning
663 Representations*, 2024.

664 Xinyan Wang, Jichen Li, Lan Yang, Feiyang Chen, Yingze Wang, Junhan Chang, Junmin Chen, Wei
665 Feng, Linfeng Zhang, and Kuang Yu. Dmff: an open-source automatic differentiable platform
666 for molecular force field development and molecular dynamics simulation. *Journal of Chemical
667 Theory and Computation*, 19(17):5897–5909, 2023.

668

669 Dawn B Woodard, Scott C Schmidler, and Mark Huber. Conditions for rapid mixing of parallel
670 and simulated tempering on multimodal distributions. *The Annals of Applied Probability*, 19(2):
671 617–640, 2009.

672

673 Darrin M York. Modern alchemical free energy methods for drug discovery explained. *ACS Physical
674 Chemistry Au*, 3(6):478–491, 2023.

675

676 Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling.
677 In *International Conference on Machine Learning*, 2022.

678

679 Robert W Zwanzig. High-temperature equation of state by a perturbation method. i. nonpolar gases.
680 *The Journal of Chemical Physics*, 22(8):1420–1426, 1954.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THEORETICAL ANALYSIS OF ACCELERATED PT
703704 A.1 FURTHER DETAILS OF ROUND TRIPS
705

706 Consider the APT Markov chain $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ constructed by Algorithm 1. Assume there are
707 $m = 0, \dots, N$ parallel threads, each storing a component of \mathbf{X}_t at time t . During the communication
708 step, it is equivalent to swap indices rather than states. This has computational advantages in a
709 distributed implementation of PT since swapping states across machines incurs a cost of $O(d)$
710 compared to the $O(1)$ cost of swapping indices. By tracking how the indices are shuffled, we can
711 recover the PT state and also track the communication between reference and target through the
712 dynamics of the permuted indices. See (Syed et al., 2022; Surjanovic et al., 2023, Algorithm 5) for
713 details on implementing PT with a distributed implementation.
714

715 Summarising Syed et al. (2022), we define the *index process* $(\mathbf{I}_t, \epsilon_t)$ where $\mathbf{I}_t = (I_t^0, \dots, I_t^N)$ is a
716 sequence of permutations of $[N] = \{0, \dots, N\}$ that tracks the underlying communication of states in
717 \mathbf{X}_t , and $\epsilon_t = (\epsilon_t^0, \dots, \epsilon_t^N)$ with $\epsilon_t^m \in \{-1, 1\}$ tracks the direction of the swap proposal on machine
718 m .
719

720 We initialize $I_0^m = m$ and $\epsilon_0^m = -1$ if m is even and $\epsilon_0^m = 1$ if m is odd. The subsequent values
721 of \mathbf{I}_t are then determined by the swap moves. At iteration t of PT, we apply the same swaps to the
722 components of \mathbf{I}_t that are proposed and accepted during the communication phase. As discussed in
723 Syed et al. (2022), for non-reversible communication, I_t^m and ϵ_t^m satisfy the recursion:
724

$$I_t^m = \begin{cases} I_{t-1}^m + \epsilon_{t-1}^m, & \text{if } S_t^{I_{t-1}^m \vee I_{t-1}^m + \epsilon_{t-1}^m} = 1 \\ I_{t-1}^m, & \text{if } S_t^{I_{t-1}^m \vee I_{t-1}^m + \epsilon_{t-1}^m} = 0 \end{cases},$$

$$\epsilon_t^m = \begin{cases} \epsilon_{t-1}^m, & \text{if } I_t^m = I_{t-1}^m + \epsilon_{t-1}^m \\ -\epsilon_{t-1}^m, & \text{if } I_t^m = I_{t-1}^m \end{cases}.$$

725 Here $S_t^n = 1$ if the n -th swap at time t was accepted and $S_t^n = 0$ otherwise.
726

727 Hence, for a realization of \mathbf{X}_t with T steps, we define the *round trips for index* $n \in [N]$ as the number
728 of times the index n in \mathbf{I}_t completes the journey from the 0-th component to the N -th component and
729 then back to the 0-th component—i.e., completes the round trip from the reference to the target and
730 back again.
731

732 For $m \in [N]$, let $T_{\downarrow,0}^m := \inf\{t : (I_t^m, \epsilon_t^m) = (0, -1)\}$ and for $j \geq 1$ define $T_{\uparrow,j}^m$ and $T_{\downarrow,j}^m$ recursively
733 as follows:
734

$$T_{\uparrow,j}^m = \inf\{t > T_{\downarrow,j-1}^m : (I_t^m, \epsilon_t^m) = (N, 1)\},$$

$$T_{\downarrow,j}^m = \inf\{t > T_{\uparrow,j}^m : (I_t^m, \epsilon_t^m) = (0, -1)\}.$$

735 Notably, $T_{\downarrow,j}^m$ represents the j -th time the index for machine m has traversed from 0 to N and back to
736 0, thus defining a *round trip*. A round trip indicates that a sample on machine m from the reference
737 propagated a reference sample to the target independent of previously visited target states on the same
738 machine. Let $R_T^m = \max\{j : T_{\downarrow,j}^m \leq T\}$ denote the number of round trips that occur on machine m
739 by iteration T . The overall *round trips* count is then defined as the sum of round trips over all index
740 values: $R_T = \sum_{m=0}^N R_T^m$. Finally, the empirical round trip rate $\tau_T = R_T/T$ represents the fraction
741 of PT iterations during which a round trip occurred, and our objective is to maximise the expected
742 round trip rate τ as $T \rightarrow \infty$:
743

$$\tau := \lim_{T \rightarrow \infty} \mathbb{E}[\tau_T] = \lim_{T \rightarrow \infty} \frac{\mathbb{E}[R_T]}{T}.$$

744 A.2 PROOF OF THEOREM 1
745746 A.2.1 PROOF OF ERGODICITY (THEOREM 1, PART 1)
747

748 *Proof.* At stationary, we have $(X_t^{n-1}, X_t^n) \sim \pi^{n-1} \otimes \pi^n$. We next simulate the two paths $\vec{X}_{t,0:K}^{n-1} =$
749 $(\vec{X}_{t,0}^{n-1}, \dots, \vec{X}_{t,K}^{n-1})$ and $\tilde{X}_{t,0:K}^n = (\tilde{X}_{t,0}^n, \dots, \tilde{X}_{t,K}^n)$ as described in Section 3 and calculate the
750 acceptance probability
751

$$\alpha = \alpha_K^n(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n)$$

given in Section 3.2. The new states $\hat{X}_t^{n-1}, \hat{X}_t^n$ are determined by

$$(\hat{X}_t^{n-1}, \hat{X}_t^n) = \begin{cases} (\tilde{X}_{t,0}^n, \vec{X}_{t,K}^{n-1}) & \text{with probability } \alpha, \\ (\vec{X}_{t,0}^{n-1}, \tilde{X}_{t,K}^n) & \text{with probability } 1 - \alpha. \end{cases}$$

We would like to prove that the swap operation keeps the target distribution invariant, that is, for any real-valued test function φ we have

$$\mathbb{E} [\varphi(\hat{X}_t^{n-1}, \hat{X}_t^n)] = \mathbb{E} [\varphi(X_t^{n-1}, X_t^n)]. \quad (8)$$

One way to do this is to consider the extended target distribution

$$\vec{X}_{t,0:K}^{n-1} \otimes \tilde{X}_{t,0:K}^n \sim \mathbb{P}_K^{n-1}(dx_{0:K}^{n-1}) \otimes \mathbb{Q}_K^n(dx_{0:K}^n)$$

and the involution

$$\mathfrak{T}(x_{0:K}, y_{0:K}) = (y_{0:K}, x_{0:K})$$

and to apply an instance of MCMC algorithms with a deterministic proposal (Tierney, 1998), here given by \mathfrak{T} . For completeness we give a self-contained proof. Write

$$\begin{aligned} \mathbb{E} [\varphi(\hat{X}_t^{n-1}, \hat{X}_t^n)] &= \mathbb{E} [\varphi(\tilde{X}_{t,0}^n, \vec{X}_{t,K}^{n-1})\alpha + \varphi(\vec{X}_{t,0}^{n-1}, \tilde{X}_{t,K}^n)(1 - \alpha)] \\ &= \mathbb{E} [\varphi(X_t^{n-1}, X_t^n)] - \mathbb{E} [\varphi(\tilde{X}_{t,0}^n, \vec{X}_{t,K}^{n-1})\alpha] + \\ &\quad + \mathbb{E} [\varphi(\tilde{X}_{t,0}^n, \vec{X}_{t,K}^{n-1})\alpha]. \end{aligned}$$

To arrive at Equation (8) we need to show that

$$\mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} [\varphi \circ \psi(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n)\alpha] = \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} [\varphi \circ \psi(\tilde{X}_{t,0:K}^n, \vec{X}_{t,0:K}^{n-1})\alpha] \quad (9)$$

where $\psi(x_{0:K}, y_{0:K}) := (x_0, y_K)$ and the notation $\mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}}$ means that the expectation is taken with respect to $\mathbb{P}_K^{n-1}(dx_{0:K}^{n-1}) \otimes \mathbb{Q}_K^n(dx_{0:K}^n)$. Noting that

$$\alpha = \alpha_K^n(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n) = 1 \wedge \frac{d\mathbb{Q}/d\mathbb{P}(\vec{X}_{t,0:K}^{n-1})}{d\mathbb{Q}/d\mathbb{P}(\tilde{X}_{t,0:K}^n)}$$

we write

$$\begin{aligned} &\mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} [\varphi \circ \psi(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n)\alpha] \\ &= \mathbb{E}_{\mathbb{Q} \otimes \mathbb{P}} \left[\varphi \circ \psi(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n)\alpha \frac{d\mathbb{P} \otimes \mathbb{Q}}{d\mathbb{Q} \otimes \mathbb{P}}(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n) \right] \\ &= \mathbb{E}_{\mathbb{Q} \otimes \mathbb{P}} \left[\varphi \circ \psi(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n)\alpha \frac{d\mathbb{Q}/d\mathbb{P}(\tilde{X}_{t,0:K}^n)}{d\mathbb{Q}/d\mathbb{P}(\vec{X}_{t,0:K}^{n-1})} \right] \\ &= \mathbb{E}_{\mathbb{Q} \otimes \mathbb{P}} \left[\varphi \circ \psi(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n) \left\{ \frac{d\mathbb{Q}/d\mathbb{P}(\tilde{X}_{t,0:K}^n)}{d\mathbb{Q}/d\mathbb{P}(\vec{X}_{t,0:K}^{n-1})} \wedge 1 \right\} \right] \\ &= \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} \left[\varphi \circ \psi(\tilde{X}_{t,0:K}^n, \vec{X}_{t,0:K}^{n-1}) \left\{ \frac{d\mathbb{Q}/d\mathbb{P}(\vec{X}_{t,0:K}^{n-1})}{d\mathbb{Q}/d\mathbb{P}(\tilde{X}_{t,0:K}^n)} \wedge 1 \right\} \right] \\ &= \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} [\varphi \circ \psi(\tilde{X}_{t,0:K}^n, \vec{X}_{t,0:K}^{n-1})\alpha]. \end{aligned}$$

Thus Equation (9) is established.

Finally, the accelerated-PT Markov chain is aperiodic because the swaps can be rejected. The chain is clearly irreducible if each exploration kernel is irreducible. (In fact it can be proved, using more complicated arguments, that the chain is irreducible if the exploration kernel for the reference is irreducible and, for all n , the two distributions \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n are mutually absolutely continuous.) By Roberts & Rosenthal (2004, Theorem 4, Fact 5), the Markov chain is ergodic and in particular the law of large numbers hold. \square

810 A.2.2 PROOF OF REJECTION RATE (THEOREM 1, PART 2)
811812 *Proof.* The rejection rate at stationary is defined as
813

814
$$r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) := \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} \left[1 - \alpha_K^n(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n) \right] \quad (10)$$

815

816 where $\mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}}$ is a shorthand for the expectation under $\mathbb{P}_K^{n-1} \otimes \mathbb{Q}_K^n$ and the acceptance ratio α_K^n is
817 given by

818
$$\alpha_K^n(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n) := 1 \wedge \frac{d\mathbb{Q}_K^n/d\mathbb{P}_K^{n-1}(\vec{X}_{t,0:K}^{n-1})}{d\mathbb{Q}_K^n/d\mathbb{P}_K^{n-1}(\tilde{X}_{t,0:K}^n)} = 1 \wedge \frac{d(\mathbb{Q}_K^n \otimes \mathbb{P}_K^{n-1})}{d(\mathbb{P}_K^{n-1} \otimes \mathbb{Q}_K^n)}(\vec{X}_{t,0:K}^{n-1}, \tilde{X}_{t,0:K}^n). \quad (11)$$

819
820

821 From Equation (10), Equation (11), and Lemma 1 below we have
822

823
$$r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) = \|\mathbb{P}_K^{n-1} \otimes \mathbb{Q}_K^n - \mathbb{Q}_K^n \otimes \mathbb{P}_K^{n-1}\|_{\text{TV}}.$$

824

□
825826 **Lemma 1.** *Let μ_1 and μ_2 be two mutually absolutely continuous measures. Then*
827

828
$$\|\mu_1 - \mu_2\|_{\text{TV}} = \mathbb{E}_{\mu_1} \left[1 - \min \left(1, \frac{d\mu_2}{d\mu_1} \right) \right].$$

829
830

831 *Proof.* Recall the definition of the TV distance
832

833
$$\|\mu_1 - \mu_2\|_{\text{TV}} := \sup_{h: \mathcal{X} \rightarrow [0,1]} |\mathbb{E}_{\mu_1}[h] - \mathbb{E}_{\mu_2}[h]|.$$

834

835 First, we remark that the absolute value in the definition can be omitted since
836

837
$$\begin{aligned} \|\mu_1 - \mu_2\|_{\text{TV}} &= \sup_{h: \mathcal{X} \rightarrow [0,1]} \max(\mathbb{E}_{\mu_1}[h] - \mathbb{E}_{\mu_2}[h], \mathbb{E}_{\mu_2}[h] - \mathbb{E}_{\mu_1}[h]) \\ &= \sup_{h: \mathcal{X} \rightarrow [0,1]} \max(\mathbb{E}_{\mu_1}[h] - \mathbb{E}_{\mu_2}[h], \mathbb{E}_{\mu_1}[1-h] - \mathbb{E}_{\mu_2}[1-h]) \\ &= \sup_{h: \mathcal{X} \rightarrow [0,1]} \mathbb{E}_{\mu_1}[h] - \mathbb{E}_{\mu_2}[h]. \end{aligned}$$

838
839
840
841
842

843 Therefore

844
$$\begin{aligned} \|\mu_1 - \mu_2\|_{\text{TV}} &= \sup_{h: \mathcal{X} \rightarrow [0,1]} \mathbb{E}_{\mu_1} \left[h \cdot \left(1 - \frac{d\mu_2}{d\mu_1} \right) \right] \\ &\leq \sup_{h: \mathcal{X} \rightarrow [0,1]} \mathbb{E}_{\mu_1} \left[h \cdot \left(1 - \min \left(1, \frac{d\mu_2}{d\mu_1} \right) \right) \right] \\ &\leq \mathbb{E}_{\mu_1} \left[1 - \min \left(1, \frac{d\mu_2}{d\mu_1} \right) \right]. \end{aligned} \quad (12)$$

845
846
847
848
849
850
851

852 On the other hand, let $B := \{x \in \mathcal{X} \text{ such that } d\mu_2/d\mu_1(x) \leq 1\}$ and put $h^*(x) := \mathbb{1}_B(x)$. Using
853

854
$$h^*(x) = 1 - \min \left(1, \frac{d\mu_2}{d\mu_1}(x) \right) + \frac{d\mu_2}{d\mu_1}(x) \mathbb{1}_B(x)$$

855

856 write

857
$$\begin{aligned} \|\mu_1 - \mu_2\|_{\text{TV}} &\geq \mathbb{E}_{\mu_1}[h^*] - \mathbb{E}_{\mu_2}[h^*] \\ &= \mathbb{E}_{\mu_1} \left[1 - \min \left(1, \frac{d\mu_2}{d\mu_1} \right) \right] + \mathbb{E}_{\mu_1} \left[\frac{d\mu_2}{d\mu_1} \mathbb{1}_B \right] - \mathbb{E}_{\mu_2}[\mathbb{1}_B] \\ &= \mathbb{E}_{\mu_1} \left[1 - \min \left(1, \frac{d\mu_2}{d\mu_1} \right) \right]. \end{aligned} \quad (13)$$

858
859
860
861
862
863

864 Combining Equation (12) and Equation (13) we get the desired result. □

864 A.2.3 PROOF OF PROPOSITION 1
865

866 *Proof.* We will show the consistency of the expectation and free energy estimator separately. By
867 Theorem 1, the PT chain $\mathbf{X}_t = (X_t^0, \dots, X_t^N)$ is ergodic with stationary distribution $\pi^0 \otimes \dots \otimes \pi^N$.
868 By the ergodic theorem, we have

$$869 \hat{\pi}_T^n[f] = \frac{1}{T} \sum_{t=1}^T f(X_t^n) \xrightarrow[T \rightarrow \infty]{a.s.} \pi^n[f].$$

872 We will now show the consistency of the free energy estimator. By definition of W_K^n in Equation (3),
873 we can write ΔF_n in terms of expectations of W_K^n and the Radon-Nikodym derivative between \mathbb{P}_K^{n-1}
874 and \mathbb{Q}_K^n respectively:
875

$$876 \frac{Z_n}{Z_{n-1}} \frac{d\mathbb{Q}_K^n}{d\mathbb{P}_K^{n-1}} = w_K^n, \quad \frac{Z_{n-1}}{Z_n} \frac{d\mathbb{P}_K^{n-1}}{d\mathbb{Q}_K^n} = \frac{1}{w_K^n}.$$

878 By taking expectations of the left and right expressions with respect to \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n respectively,
879 and taking the product over $n = 1, \dots, N$, we obtain the following expressions for Z and Z^{-1}
880 respectively:
881

$$882 Z = \prod_{n=1}^N \mathbb{P}_K^{n-1} [w_K^n], \quad Z^{-1} = \prod_{n=1}^N \mathbb{Q}_K^n [(w_K^n)^{-1}]. \quad (14)$$

883 Since \mathbf{X}_t is ergodic, \vec{Z}_T and \tilde{Z}_T are consistent estimators for Z respectively. Therefore $\hat{Z}_T =$
884 $(\vec{Z}_T \tilde{Z}_T)^{1/2}$ is consistent as well. Finally, note that if $\mathbb{P}_K^{n-1} = \mathbb{Q}_K^n$, then $w_K^n(x_{0:K}) \xrightarrow{a.s.} Z_n/Z_{n-1}$,
885 and hence $\vec{Z}_T = \tilde{Z}_T \xrightarrow{a.s.} Z$. \square
886

887 A.3 ACCELERATED PT AS VANILLA PT ON EXTENDED SPACE

888 In this section we establish the theoretical relationship between accelerated PT and vanilla PT. We
889 state an equivalence between accelerated PT and a particular vanilla PT problem which “linearises” it.
890 More concretely, we define a sequence of distributions $\pi_{\text{ex}}^0, \dots, \pi_{\text{ex}}^N$ supported on an extended space,
891 such that if we run *vanilla* PT on it, we obtain the same round trip rate as if we ran *accelerated* PT on
892 π^0, \dots, π^N .
893

894 We consider the case $K = 1$ and simplify the notations of forward and backward kernels to
895 $P^n(x^{n-1}, dx^n)$ and $Q^{n-1}(x^n, dx^{n-1})$. This does not incur any loss of generality since conceptually
896 multiple Markov steps can be collapsed into one.
897

898 Given a sequence of distributions π^0, \dots, π^N each supported on \mathcal{X} , define the distributions π_{ex}^n as:
899

$$900 \pi_{\text{ex}}^n(dx^0, \dots, dx^N) := \pi^n(dx^n) \prod_{i \geq n+1} P^i(x^{i-1}, dx^i) \prod_{j \leq n-1} Q^j(x^{j+1}, dx^j). \quad (15)$$

901 In particular we stress that the distributions π_{ex}^n are supported on \mathcal{X}^N and not \mathcal{X} .
902

903 The following proposition establishes the isometry between accelerated PT on π^1, \dots, π^N and vanilla
904 PT on $\pi_{\text{ex}}^1, \dots, \pi_{\text{ex}}^N$. Recall that we use $r(\mu_1, \mu_2)$ to denote the rejection between two distributions
905 μ_1 and μ_2 .
906

Proposition 4. *For all $1 \leq n \leq N$, we have $r(\pi^{n-1} \times P^n, Q^{n-1} \times \pi^n) = r(\pi_{\text{ex}}^{n-1}, \pi_{\text{ex}}^n)$.*
907

908 *Proof.* Since the rejection rate only depends on the Radon-Nikodym derivative, it suffices to verify
909 that
910

$$911 \frac{d\pi_{\text{ex}}^{n-1}}{d\pi_{\text{ex}}^n}(x^0, \dots, x^N) = \frac{d(\pi^{n-1} \times P^n)}{d(Q^{n-1} \times \pi^n)}(x^{n-1}, x^n)$$

912 which is straightforward from Equation (15). \square
913

914 This proposition shows that Accelerated PT outperforms traditional PT in two ways:
915

- 916 • First, while traditional PT bridges π^0 and π^N , accelerated PT bridges π_{ex}^0 and π_{ex}^N which
917 can be much closer to each other if the forward and backward kernels are good;
- 918 • In addition, accelerated PT inserts $N - 1$ distributions between π_{ex}^0 and π_{ex}^N .
919

918 A.4 PARALLELISM VERSUS ACCELERATION TIME
919920 Given two distributions π^{n-1} and π^n , should we apply K -step forward and backward kernels; or
921 insert $K - 1$ intermediate distributions $(\pi^{n-1,k})_{k=1}^{K-1}$ and use only one-step forward and backward
922 kernels instead?923 By Proposition 2, the inverse of the local round trip rate between π^{n-1} and π^n for the first method
924 (*time-accelerated*) is

925
$$\tau_{\text{TA}}^{-1} := 2 + 2 \frac{r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)}{1 - r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n)}.$$

926
927

928 The inverse of the local round trip rate between π^{n-1} and π^n for the second method (*parallel-
929 accelerated*) is

930
$$\tau_{\text{PA}}^{-1} := 2 + 2 \sum_{k=1}^K \frac{r(\pi^{n-1,k-1} \times P_k^{n-1}, Q_{k-1}^n \times \pi^{n-1,k})}{1 - r(\pi^{n-1,k-1} \times P_k^{n-1}, Q_{k-1}^n \times \pi^{n-1,k})}$$

931
932

933 where we make the convention $\pi^{n-1,0} \equiv \pi^{n-1}$ and $\pi^{n-1,K} \equiv \pi^n$.
934935 The following proposition analyses these local rates for both methods. As in Section A.3, the main
936 idea is to find a vanilla PT equivalent for both algorithms. We define

937
$$\tau_{\text{VA}}^{-1}(\mu_0, \dots, \mu_K) := 2 + \sum_{k=1}^K \frac{r(\mu_{k-1}, \mu_k)}{1 - r(\mu_{k-1}, \mu_k)}$$

938
939

940 as the inverse round trip rate of a vanilla PT algorithm on a sequence of distributions μ_0, \dots, μ_K .
941942 **Proposition 5.** Define the sequence of distributions $(\mathbb{S}_k)_{k=0}^K$ as

943
$$\mathbb{S}_k(dx_0, dx_1, \dots, dx_K) := \pi^{n-1,k}(dx_k) \times \prod_{i \geq k+1} P_i^{n-1}(x_{i-1}, dx_i) \prod_{j \leq k-1} Q_j^n(x_{j+1}, dx_j).$$

944
945

946 Then the following equalities hold
947

948
$$\tau_{\text{TA}} = \tau_{\text{VA}}(\mathbb{S}_0, \mathbb{S}_K) \tag{16}$$

949
$$\tau_{\text{PA}} = \tau_{\text{VA}}(\mathbb{S}_0, \mathbb{S}_1, \dots, \mathbb{S}_K). \tag{17}$$

950
951 *Proof.* The first point is straightforward. To show the second point, we need to check that
952

953
$$r(\pi^{n-1,k-1} \times P_k^{n-1}, Q_{k-1}^n \times \pi^{n-1,k}) = r(\mathbb{S}_{k-1}, \mathbb{S}_k).$$

954 Note that the rejection rates only depend on the Radon-Nikodym derivatives, so it suffices to verify
955 that

956
$$\frac{d\mathbb{S}_k}{d\mathbb{S}_{k-1}}(x_0, x_1, \dots, x_K) = \frac{d(Q_{k-1}^n \times \pi^{n-1,k})}{d(\pi^{n-1,k-1} \times P_k^{n-1})}(x_{k-1}, x_k)$$

957
958

959 which is straightforward from the definition of $(\mathbb{S}_k)_{k=0}^K$. \square
960961 This proposition shows that it is preferable to use the parallel-accelerated method, as the quantity
962 in Equation (17) is generally greater than that of Equation (16) thanks to the effect of the bridge
963 between \mathbb{S}_0 and \mathbb{S}_K . However, in practice the time-accelerated method consumes less memory and
964 so might be more suitable in certain circumstances.
965966 B FURTHER DETAILS ON ANALYSIS OF PT
967

968 B.1 PROOF OF PROPOSITION 2

969 Let S_t^n be the indicator random variable with $S_t^n = 1$ if the n -th swap is proposed and accepted at
970 iteration t , and $S_t^n = 0$ otherwise. By Assumption 1, the random variables S_t^n are i.i.d. in t with
971 $S_1^n, S_2^n, \dots \stackrel{d}{=} \text{Bernoulli}(s_n)$, where $s_n := 1 - r(\mathbb{P}^{n-1}, \mathbb{Q}^n)$. This implies that the index processes

(I_t^m, ϵ_t^m) form Markov chains on $\{0, \dots, N\} \times \{-1, 1\}$ with initial conditions $I_0^m = m$ and $\epsilon_0^m = -1$ when m is even, $\epsilon_0^m = 1$ when m is odd. For $t \geq 1$, each process satisfies the following recursion:

$$I_t^m \sim \begin{cases} I_{t-1}^m + \epsilon_{t-1}^m, & \text{with probability } s_{I_{t-1}^m \vee (I_{t-1}^m + \epsilon_{t-1}^m)}, \\ I_{t-1}^m, & \text{with probability } 1 - s_{I_{t-1}^m \vee (I_{t-1}^m + \epsilon_{t-1}^m)}, \end{cases} \quad (18)$$

$$\epsilon_t^m = \begin{cases} \epsilon_{t-1}^m, & \text{if } I_t^m = I_{t-1}^m + \epsilon_{t-1}^m, \\ -\epsilon_{t-1}^m, & \text{if } I_t^m = I_{t-1}^m. \end{cases} \quad (19)$$

The remainder of the proof follows identically to (Syed et al., 2022, Corollary 2).

B.2 PROOF OF PROPOSITION 3

We first spell out the full statement of Proposition 3.

Proposition. Suppose that \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n arise as K -step Euler-Maruyama discretizations of the following SDEs respectively

$$d\vec{X}_t^{n-1} = f(t, \vec{X}_t^{n-1})dt + \sigma dB_t, \quad (20)$$

$$d\tilde{X}_t^n = b(t, \tilde{X}_t^n)dt + \sigma dB_t, \quad (21)$$

where the second integral is integrated backwards in time. Assume that $f(t, \cdot)$ and $f(\cdot, x)$ are Lipschitz for all t and x with a global constant; and that the same holds for b . Moreover, suppose that there exists a $G \geq 0$ such that $\|f(t, x)\| + \|b(t, x)\| \leq G(1 + \|x\|)$. Then

$$\lim_{K \rightarrow \infty} r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) = r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n) \quad (22)$$

and

$$r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) \leq r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n) + \mathcal{O}(\frac{1}{\sqrt{K}}) \quad (23)$$

where $r(p, q) = \|p \times q - q \times p\|_{\text{TV}}$ and \mathbb{P}_∞^{n-1} and \mathbb{Q}_∞^n are respectively the full path measures of Equation (20) and Equation (21).

Proof. Let $\mathbb{P}_{\infty|K}^{n-1}$ and $\mathbb{Q}_{\infty|K}^n$ be the restrictions of the path measures \mathbb{P}_∞^{n-1} and \mathbb{Q}_∞^n to the time discretization points. (As such, $\mathbb{P}_{\infty|K}^{n-1}$ and $\mathbb{Q}_{\infty|K}^n$ are defined on the same space as \mathbb{P}_K^{n-1} and \mathbb{Q}_K^n .) We have

$$\begin{aligned} |r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) - r(\mathbb{P}_{\infty|K}^{n-1}, \mathbb{Q}_{\infty|K}^n)| &\leq 2 \left(\|\mathbb{P}_K^{n-1} - \mathbb{P}_{\infty|K}^{n-1}\|_{\text{TV}} + \|\mathbb{Q}_K^n - \mathbb{Q}_{\infty|K}^n\|_{\text{TV}} \right) \\ &\leq \mathcal{O}(1/\sqrt{K}) \end{aligned} \quad (24)$$

where the first inequality is elementary and the second follows from Proposition 6. By data processing inequality

$$r(\mathbb{P}_{\infty|K}^{n-1}, \mathbb{Q}_{\infty|K}^n) \leq r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n). \quad (25)$$

Equation (24) and Equation (25) establish Equation (23). On the other hand, putting

$$\begin{aligned} R_K(x_k) &:= \frac{d(\mathbb{Q}_K^n \times \mathbb{P}_K^{n-1})}{d(\mathbb{P}_K^{n-1} \times \mathbb{Q}_K^n)}(x_k); \\ R_\infty(x_\infty) &:= \frac{d(\mathbb{Q}_\infty^n \times \mathbb{P}_\infty^{n-1})}{d(\mathbb{P}_\infty^{n-1} \times \mathbb{Q}_\infty^n)}(x_\infty); \\ \varphi(\alpha) &:= 1 - \min(1, \alpha) \end{aligned}$$

we have by Lemma 1

$$r(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) = \mathbb{E}_{\mathbb{P}_K^{n-1} \times \mathbb{Q}_K^n} [\varphi \circ R_K]. \quad (26)$$

Since $\varphi(\alpha) \in [0, 1]$ the definition of the total variation distance implies

$$\left| \mathbb{E}_{\mathbb{P}_K^{n-1} \times \mathbb{Q}_K^n} [\varphi \circ R_K] - \mathbb{E}_{\mathbb{P}_{\infty|K}^{n-1} \times \mathbb{Q}_{\infty|K}^n} [\varphi \circ R_K] \right| \leq \mathcal{O}(1/\sqrt{K}). \quad (27)$$

In addition let $D_K : \mathcal{C}[0, 1] \rightarrow (\mathbb{R}^d)^{K+1}$ be the discretisation operator which takes a continuous path x_∞ and extract its values at $K + 1$ discretisation points. Then

$$\begin{aligned} \mathbb{E}_{\mathbb{P}_{\infty|K}^{n-1} \times \mathbb{Q}_{\infty|K}^n} [\varphi \circ R_K] &= \mathbb{E}_{\mathbb{P}_\infty^{n-1} \times \mathbb{Q}_\infty^n} [\varphi \circ R_K \circ D_K] \\ &\xrightarrow{K \rightarrow \infty} \mathbb{E}_{\mathbb{P}_\infty^{n-1} \times \mathbb{Q}_\infty^n} [\varphi \circ R_\infty] = r(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n) \end{aligned} \quad (28)$$

by dominated convergence theorem, taking into account the pathwise convergence of the Euler-Maruyama schemes (Kloeden & Neuenkirch (2007); Gyöngy (1998), see also Berner et al. (2025, Lemma B.7.a)). Equation (26), Equation (27), and Equation (28) entail Equation (22), finishing the proof. \square

Proposition 6. *Let $(X_t)_{t \in [0, 1]}$ be the solution of an SDE of the form*

$$dX_t = b(t, X_t)dt + \sigma dB_t, \quad (29)$$

where we assume that $b(t, \cdot)$ is L -Lipschitz continuous for all t and that $b(\cdot, x)$ is B -Lipschitz continuous for all x . We also assume a linear growth condition of the form $\|b(t, x)\| \leq G(1 + \|x\|)$. Consider the K -step Euler-Maruyama discretization $\hat{X}_{t_0}, \hat{X}_{t_1}, \dots, \hat{X}_{t_K}$ where $t_k = k/K$. Let \mathbb{P}_∞ be the path-measure of the process $(X_t)_{t \in [0, 1]}$, \mathbb{P}_K^* be the law of X_{t_0}, \dots, X_{t_K} , and \mathbb{P}_K be the law of $\hat{X}_{t_0}, \dots, \hat{X}_{t_K}$. Then

$$\|\mathbb{P}_K^* - \mathbb{P}_K\|_{\text{TV}} \in \mathcal{O}\left(\frac{1}{\sqrt{K}}\right).$$

Proof. Consider the continuous-time extension $(\hat{X}_t)_{t \in [0, 1]}$ of the K -step Euler-Maruyama discretization of the SDE in Equation (29) given by

$$d\hat{X}_t = b(t_k, \hat{X}_{t_k})dt + \sigma dB_t, \quad t \in [t_k, t_{k+1}].$$

We use $\hat{\mathbb{P}}_\infty = \hat{\mathbb{P}}_\infty^{(K)}$ to denote its path-measure. By Pinsker's inequality

$$\|\mathbb{P}_K^* - \mathbb{P}_K\|_{\text{TV}} \leq \sqrt{\frac{1}{2} \text{KL}(\mathbb{P}_K^* \|\mathbb{P}_K)}.$$

By the data-processing inequality and Girsanov's theorem, we have that

$$\text{KL}(\mathbb{P}_K^* \|\mathbb{P}_K) \leq \text{KL}(\mathbb{P}_\infty \|\hat{\mathbb{P}}_\infty) = \frac{1}{2\sigma^2} \sum_{k=0}^{K-1} \int_{t_k}^{t_{k+1}} \mathbb{E} \|b(t, X_t) - b(t_k, X_{t_k})\|^2 dt.$$

By the Lipschitz continuity of b , we have the following bound

$$\begin{aligned} \mathbb{E} \|b(t, X_t) - b(t_k, X_{t_k})\|^2 &\leq 2\mathbb{E} \|b(t, X_t) - b(t, X_{t_k})\|^2 + 2\mathbb{E} \|b(t, X_{t_k}) - b(t_k, X_{t_k})\|^2 \\ &\leq 2L^2 \mathbb{E} \|X_t - X_{t_k}\|^2 + 2B^2(t - t_k)^2 \mathbb{E} \|X_{t_k}\|^2. \end{aligned}$$

By the Cauchy-Schwarz inequality, the fact that $B_t - B_{t_k} \sim \mathcal{N}(0, (t - t_k)I_d)$ and the linear growth assumption, we obtain

$$\begin{aligned} \mathbb{E} \|X_t - X_{t_k}\|^2 &= \mathbb{E} \left\| \int_{t_k}^t b(s, X_s)ds + \sigma(B_t - B_{t_k}) \right\|^2 \\ &\leq 2(t - t_k) \int_{t_k}^t \mathbb{E} \|b(s, X_s)\|^2 ds + 2d\sigma^2(t - t_k) \\ &\leq 2G(t - t_k) \int_{t_k}^t \mathbb{E} (1 + \|X_s\|)^2 ds + 2d\sigma^2(t - t_k) \\ &\leq 4G(t - t_k) \int_{t_k}^t (1 + \mathbb{E} \|X_s\|^2) ds + 2d\sigma^2(t - t_k) \end{aligned}$$

1080 It is well known that under the assumptions in the proposition, there exists a constant M (independent
 1081 of K) such that $\mathbb{E}\|X_t\|^2 \leq M$ for all t . Putting all of this together, we have shown that
 1082

$$1083 \mathbb{E}\|b(t, X_t) - b(t_k, X_{t_k})\|^2 \leq 8GL^2(1+M)(t-t_k)^2 + 4d\sigma^2L^2(t-t_k) + 2MB^2(t-t_k)^2.$$

1084 Summing over k and integrating, this yields
 1085

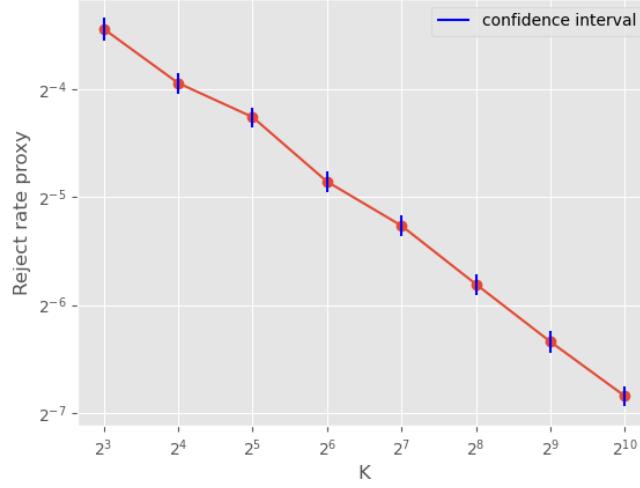
$$\begin{aligned} 1086 \frac{1}{2\sigma^2} \sum_{k=0}^{K-1} \int_{t_k}^{t_{k+1}} \mathbb{E}\|b(t, X_t) - b(t_k, X_{t_k})\|^2 dt \\ 1087 \\ 1088 \\ 1089 \leq \frac{1}{2\sigma^2} \sum_{k=0}^{K-1} \frac{8}{3} GL^2(1+M)(t_{k+1}-t_k)^3 + 2d\sigma^2L^2(t_{k+1}-t_k)^2 + \frac{2}{3} MB^2(t_{k+1}-t_k)^3 \\ 1090 \\ 1091 \leq \frac{4}{3\sigma^2} GL^2(1+M) \frac{1}{K^2} + dL^2 \frac{1}{K} + \frac{1}{3\sigma^2} MB^2 \frac{1}{K^2}. \\ 1092 \\ 1093 \end{aligned}$$

1094 Therefore

$$1095 \|\mathbb{P}_K^* - \mathbb{P}_K\|_{\text{TV}} \in \mathcal{O}(1/\sqrt{K}).$$

1096 \square

1097 We verify this result in practice by plotting the TV distance between \mathbb{P}_K and \mathbb{P}_∞ for the Orn-
 1098 stein–Uhlenbeck process in 1 dimension.
 1099



1120 B.3 FURTHER DETAILS ON SCALING WITH PARALLEL CHAINS

1121 B.3.1 REGULARITY ASSUMPTIONS

1122 Suppose $\pi^\beta(x) = \exp(-U^\beta(x))/Z_\beta$, where $Z_\beta = \int_{\mathcal{X}} \exp(-U^\beta(x))dx$. For $\beta = (\beta, \beta')$, suppose
 1123 $\mathbb{P}_K^\beta(dx_{0:K})$ and $\mathbb{Q}_K^\beta(dx_{0:K})$ are mutually absolutely continuous path measures on \mathcal{X}^{K+1} with
 1124 marginals $\mathbb{P}^\beta(x_0) = \pi^\beta(dx_0)$, and $\mathbb{Q}^\beta(dx_K) = \pi^{\beta'}(dx_K)$ with weight functional $w^\beta : \mathcal{X}^{K+1} \mapsto \mathbb{R}$,
 1125

$$1126 w^\beta(x_{0:K}) = \frac{Z_{\beta'}}{Z_\beta} \frac{d\mathbb{Q}^\beta}{d\mathbb{P}^\beta}(x_{0:K}),$$

1127 We will make the following regularity assumptions on \mathbb{P}^β and \mathbb{Q}^β analogous to Assumptions 5–7 in
 1128 [Syed et al. \(2024\)](#). Suppose there exists $\mathcal{F} = (\mathcal{F}_i)_{i \in \mathbb{N}}$ of a nested sequence $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \dots$ of vector
 1129 spaces of measurable function $f : \mathcal{X}^{K+1} \rightarrow \mathbb{R}$, such that (1) \mathcal{F}_i contains the constant functions, and
 1130 (2) \mathcal{F}_i is closed under domination, i.e., if g is a measurable function such that $|g| \leq |f|$ for some
 1131 $f \in \mathcal{F}_i$, then $g \in \mathcal{F}_i$.

1134 **Assumption 2.** For $i = 0, 1, 2$, and $\beta \mapsto \mathbb{P}^\beta[f]$ and $\beta \mapsto \mathbb{Q}^\beta[f]$ are i -times continuously differentiable for all $f \in \mathcal{F}_i$, there exists signed-measures $\partial_\beta^i \mathbb{P}^\beta$ and $\partial_\beta^i \mathbb{Q}^\beta$ integrable over \mathcal{F}_i such that for all $f \in \mathcal{F}_i$,

$$1137 \quad \partial_\beta^i \mathbb{P}^\beta[f] = \partial_\beta^i(\mathbb{P}^\beta[f]), \quad \partial_\beta^i \mathbb{Q}^\beta[f] = \partial_\beta^i(\mathbb{Q}^\beta[f]).$$

1138 **Assumption 3.** $\beta \mapsto W^\beta$ is 2-times continuously differentiable, and for $i = 0, 1, 2$ and $i_1, \dots, i_j \geq 1$
1139 and $i_1 + \dots + i_j = i$, we have $\bar{W}_{i_1} \cdots \bar{W}_{i_j} \in \mathcal{F}_{3-i}$, where $\bar{W}_i = \sup_\beta |\partial_\beta^i W^\beta|$.

1141 **Assumption 4.** For all β we have $\mathbb{P}^\beta := \mathbb{P}^{\beta, \beta} = \mathbb{Q}^{\beta, \beta} =: \mathbb{Q}^\beta$.

1142 **Lemma 2.** Let $g^\beta : \mathcal{X}^{K+1} \times \mathcal{X}^{K+1} \rightarrow \mathbb{R}$,

- 1144 • $\beta \mapsto g^\beta(x_{0:K}, x_{0:K})$ is continuously differentiable,
- 1145 • $x_{0:K} \mapsto g^\beta(x_{0:K}, x'_{0:K})$ and $x'_{0:K} \mapsto g^\beta(x_{0:K}, x'_{0:K})$ are in \mathcal{F}_1 ,
- 1146 • $x_{0:K} \mapsto \partial_\beta g^\beta(x_{0:K}, x'_{0:K})$ and $x'_{0:K} \mapsto \partial_\beta g^\beta(x_{0:K}, x'_{0:K})$ are in \mathcal{F}_0 .

1149 Then $\beta \mapsto \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[g^\beta]$ is continuously differentiable with derivative,

$$1151 \quad \partial_\beta(\mathbb{P}^\beta \otimes \mathbb{Q}^\beta[g^\beta]) = \partial_\beta \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[g] + \mathbb{P}^\beta \otimes \partial_\beta \mathbb{Q}^\beta[g] + \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\partial_\beta g^\beta].$$

1152 *Proof.* For notational convenience we denote $x := x_{0:K}$ and $x' := x_{0:K}$. Given $x \in \mathcal{X}^{K+1}$ let
1153 $g_x^\beta : \mathcal{X}^{K+1} \rightarrow \mathbb{R}$ be the marginal $g_x^\beta(x') = g(x, x')$ and let $q^\beta : \mathcal{X}^{K+1} \rightarrow \mathbb{R}$ denote the expectation
1154 of g_x^β with respect to \mathbb{Q}^β , i.e. $q^\beta(x) = \mathbb{Q}^\beta[g_x^\beta]$. By product rule for measure-valued derivatives, we
1155 have for all x , $\beta \mapsto q^\beta(x)$ is continuously differentiable with derivative,
1156

$$1157 \quad \begin{aligned} \partial_\beta q^\beta(x) &= \partial_\beta(\mathbb{Q}^\beta[g_x^\beta]) \\ 1158 &= \partial_\beta \mathbb{Q}^\beta[g_x^\beta] + \mathbb{Q}^\beta[\partial_\beta g_x^\beta]. \end{aligned}$$

1160 by taking expectation of both sides with respect to \mathbb{P}^β and using Fubini's theorem we have

$$1161 \quad \mathbb{P}^\beta[\partial_\beta q^\beta] = \mathbb{P}^\beta \otimes \partial_\beta \mathbb{Q}^\beta[g^\beta] + \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\partial_\beta g^\beta].$$

1162 Again, using the product rule for measure-valued derivatives,

$$1164 \quad \begin{aligned} \partial_\beta(\mathbb{P}^\beta \otimes \mathbb{Q}^\beta[g^\beta]) &= \partial_\beta(\mathbb{P}^\beta[q^\beta]) \\ 1165 &= \partial_\beta \mathbb{P}^\beta[q^\beta] + \mathbb{P}^\beta[\partial_\beta q^\beta]. \end{aligned}$$

1167 The result follows by noting that $\partial_\beta \mathbb{P}^\beta[q^\beta] = \partial_\beta \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[g^\beta]$ by Fubini's theorem. \square

1169 B.3.2 PROOF OF THEOREM 2

1170 For $\beta = (\beta, \beta')$ recall the rejection rate can be expressed as $r(\mathbb{P}^\beta, \mathbb{Q}^\beta) = 1 - \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\alpha^\beta]$, where
1171 $\mathbb{P}^\beta \otimes \mathbb{Q}^\beta$ is a measure over $\mathcal{X}^{K+1} \times \mathcal{X}^{K+1}$ is the product between the forward and backwards paths,
1172

$$1173 \quad \mathbb{P}^\beta \otimes \mathbb{Q}^\beta(dx_{0:K}, dx'_{0:K}) := \mathbb{P}^\beta(dx_{0:K}) \mathbb{Q}^\beta(dx'_{0:K}),$$

1174 $\alpha^\beta : \mathcal{X}^{K+1} \times \mathcal{X}^{K+1} \rightarrow [0, 1]$ is the acceptance probability for swap proposed,
1175

$$1176 \quad \alpha^\beta(x_{0:K}, x'_{0:K}) = \min \left\{ 1, \frac{w_K^\beta(x_{0:K})}{w_K^\beta(x'_{0:K})} \right\} = \exp \left(\min \left\{ 0, \Delta W_K^\beta(x_{0:K}, x'_{0:K}) \right\} \right)$$

1177 where $\Delta W^\beta : \mathcal{X}^{K+1} \times \mathcal{X}^{K+1} \rightarrow \mathbb{R}$ is the change in log-weight $W^\beta(x_{0:K}) := \log w^\beta(x_{0:K})$,

$$1180 \quad w^\beta(x_{0:K}, x'_{0:K}) := W^\beta(x_{0:K}) - W^\beta(x'_{0:K})$$

1181 **Lemma 3.** Suppose Assumptions 2–4 hold. For all $\beta = (\beta, \beta')$ with $\Delta\beta = \beta' - \beta > 0$, exists a
1182 constant $C > 0$ independent of β such that,
1183

$$1184 \quad \left| r(\mathbb{P}^\beta, \mathbb{Q}^\beta) - \int_\beta^{\beta'} \lambda_b db \right| \leq C \Delta\beta^2.$$

1187 where $\lambda_\beta := \frac{1}{2} \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\Delta \dot{W}^\beta]$ and $\Delta \dot{W}^\beta := \lim_{\beta' \rightarrow \beta} \partial_{\beta'} \Delta W^\beta$. Moreover, λ_β is continuously
1188 differentiable in β .

Given an annealing schedule $0 = \beta_0 < \dots < \beta_N = 1$, let $\beta_n = (\beta_{n-1}, \beta_n)$ and $\Delta\beta_n = \beta_n - \beta_{n-1}$. It follows from Lemma 3 that the sum of the rejection satisfies,

$$\left| \sum_{n=1}^N r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n}) - \Lambda \right| \leq C \sum_{n=1}^N \Delta\beta_n^2 \leq C \max_{n \leq N} |\Delta\beta_n|.$$

Therefore as $N \rightarrow \infty$ and $\max_{n \leq N} |\Delta\beta_n| \rightarrow 0$ we have the sum of the rejection rates converge to Λ .

For the same annealing schedule define $\tau^N(\beta_{0:N})$ as

$$\tau^N(\beta_{0:N}) := \left(2 + 2 \sum_{n=1}^N \frac{r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})}{1 - r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})} \right)^{-1}$$

By Lemma 3 we have,

$$r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n}) \leq \frac{r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})}{1 - r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})} \leq \frac{r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})}{1 - \max_{n \leq N} r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})} \leq \frac{r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})}{1 - \sup_{\beta} \lambda_{\beta} \max_{n \leq N} |\Delta\beta_n|}.$$

Therefore, by taking the sum over n and using the squeeze theorem, we have in the limit $N \rightarrow \infty$ and $\max_{n \leq N} |\Delta\beta_n| \rightarrow 0$,

$$\lim_{N \rightarrow \infty} \sum_{n=1}^N \frac{r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})}{1 - r(\mathbb{P}^{\beta_n}, \mathbb{Q}^{\beta_n})} = \Lambda$$

and hence $\lim_{N \rightarrow \infty} \tau^N(\beta_{0:N}) = (2 + 2\Lambda)^{-1}$, which completes the proof.

Proof of Lemma 3. Since $\beta \mapsto W^{\beta}$ is twice differentiable, we have that $\beta \mapsto \alpha^{\beta}$ is twice differentiable when $\Delta W^{\beta} \neq 0$, with first-order partial derivatives with respect to β' :

$$\partial_{\beta'} \alpha^{\beta} = \partial_{\beta'} \Delta W^{\beta} \exp(\Delta W^{\beta}) 1[\Delta W^{\beta} < 0],$$

and the second-order partial derivative with respect to β' :

$$\partial_{\beta'}^2 \alpha^{\beta} = [\partial_{\beta'}^2 \Delta W^{\beta} + (\partial_{\beta'} \Delta W^{\beta})^2] \exp(\Delta W^{\beta}) 1[\Delta W^{\beta} < 0].$$

By Taylor's theorem, for $\Delta\beta > 0$, we have

$$\alpha^{\beta} = 1 + \dot{\alpha}^{\beta} \Delta\beta + \epsilon^{\beta},$$

where $\dot{\alpha}^{\beta} = \lim_{\beta' \rightarrow \beta^+} \partial_{\beta'} \alpha^{\beta}$ and $|\epsilon^{\beta}| \leq \frac{1}{2} \sup_{\beta} |\partial_{\beta'}^2 \alpha^{\beta}| |\Delta\beta|^2$. Therefore, the rejection rate equals:

$$r(\mathbb{P}^{\beta}, \mathbb{Q}^{\beta}) = -\mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}] \Delta\beta - \mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\epsilon^{\beta}]. \quad (30)$$

We will first approximate the first term in Equation (30). Note that since $\Delta W^{\beta} = 0$ and $\partial_{\beta'} \Delta W^{\beta} = \lim_{\beta' \rightarrow \beta} \Delta W^{\beta} / \Delta\beta =: \Delta \dot{W}^{\beta}$, we have that $\dot{\alpha}^{\beta}$ satisfies:

$$\begin{aligned} \dot{\alpha}^{\beta} &= \lim_{\beta' \rightarrow \beta} \partial_{\beta'} \Delta W^{\beta} \exp(\Delta W^{\beta}) 1\left[\frac{\Delta W^{\beta}}{\Delta\beta} < 0\right] \\ &= \Delta \dot{W}^{\beta} 1[\Delta \dot{W}^{\beta} < 0] \\ &= -|\Delta \dot{W}^{\beta}| 1[\Delta \dot{W}^{\beta} < 0]. \end{aligned}$$

We can bound $\dot{\alpha}^{\beta}$ uniformly in β in terms of \bar{W}_1 :

$$\begin{aligned} |\dot{\alpha}^{\beta}(x_{0:K}, x'_{0:K})| &\leq |\dot{W}^{\beta}(x_{0:K}) - \dot{W}^{\beta}(x'_{0:K})| \\ &\leq \bar{W}_1(x_{0:K}) + \bar{W}_1(x'_{0:K}) \\ &:= \bar{W}_1 \oplus \bar{W}_1(x_{0:K}, x'_{0:K}). \end{aligned}$$

It follows from Lemma 2 that $\beta' \mapsto \mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}]$ is differentiable in β' . By Lemma 2 and the mean value theorem, there exists $\tilde{\beta} = (\beta, \tilde{\beta}')$ with $\beta \leq \tilde{\beta}' \leq \beta'$ such that

$$\begin{aligned} \frac{\mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}] - \mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}]}{\Delta\beta} &= \partial_{\beta'} (\mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}])|_{\beta=\tilde{\beta}} \\ &= \partial_{\beta'} \mathbb{P}^{\beta} \otimes \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}]|_{\beta=\tilde{\beta}} + \mathbb{P}^{\beta} \otimes \partial_{\beta'} \mathbb{Q}^{\beta} [\dot{\alpha}^{\beta}]|_{\beta=\tilde{\beta}}. \end{aligned}$$

Using the triangle inequality and $|\dot{\alpha}^\beta| \leq \bar{W}_1 \oplus \bar{W}_1$, we have:

$$\begin{aligned}
\left| \frac{\mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\dot{\alpha}^\beta] - \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\dot{\alpha}^\beta]}{\Delta\beta} \right| &\leq \sup_{\beta} |\partial_{\beta'} \mathbb{P}^\beta| \otimes \mathbb{Q}^\beta [\bar{W}_1 \oplus \bar{W}_1] \\
&\quad + \sup_{\beta} \mathbb{P}^\beta \otimes |\partial_{\beta'} \mathbb{Q}^\beta| [\bar{W}_1 \oplus \bar{W}_1] \\
&= \sup_{\beta} \left(|\partial_{\beta'} \mathbb{P}^\beta| [1] \mathbb{Q}^\beta [\bar{W}_1] + |\partial_{\beta'} \mathbb{P}^\beta| [\bar{W}_1] \mathbb{Q}^\beta [1] \right) \\
&\quad + \sup_{\beta} \left(\mathbb{P}^\beta [1] |\partial_{\beta'} \mathbb{Q}^\beta| [\bar{W}_1] + \mathbb{P}^\beta [\bar{W}_1] |\partial_{\beta'} \mathbb{Q}^\beta| [1] \right).
\end{aligned}$$

Since 1 and \bar{W}_1 are in \mathcal{F}_1 , we have that each of the terms on the right-hand side is continuous and hence by the extreme value theorem, there exists C_1 such that

$$|\mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\dot{\alpha}^\beta] - \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\dot{\alpha}^\beta]| \leq C_1 \Delta \beta.$$

For the second term in Equation (30), we have

$$\begin{aligned}
|\mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\epsilon^\beta]| &\leq \frac{\Delta\beta^2}{2} \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\sup_\beta |\partial_\beta^2 \alpha^\beta|] \\
&\leq \frac{\Delta\beta^2}{2} \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\bar{W}_2 \oplus \bar{W}_2 + (\bar{W}_1 \oplus \bar{W}_1)^2] \\
&\leq \frac{\Delta\beta^2}{2} \sup_\beta \mathbb{P}^\beta \otimes \mathbb{Q}^\beta[\bar{W}_2 \oplus \bar{W}_2 + (\bar{W}_1 \oplus \bar{W}_1)^2] \\
&:= C_2 \Delta\beta^2,
\end{aligned}$$

where $\bar{W}_2 \oplus \bar{W}_2(x_{0:K}, x'_{0:K}) := \bar{W}_2(x_{0:K}) + \bar{W}_2(x'_{0:K})$. Assumption 2 guarantees that the expectation in the second-to-last line is continuous in β , and hence C_2 is finite. Next, we note that since $|\Delta \dot{W}^\beta(x_{0:K}, x'_{0:K})| = |\Delta \dot{W}^\beta(x'_{0:K}, x_{0:K})|$ is symmetric and $\mathbb{P}^\beta = \mathbb{Q}^\beta$, we have:

$$\begin{aligned}\mathbb{P}^\beta \otimes \mathbb{Q}^\beta [\dot{\alpha}^\beta] &= \mathbb{P}^\beta \otimes \mathbb{Q}^\beta [-|\Delta \dot{W}^\beta| 1[\Delta \dot{W}^\beta < 0]] \\ &= -\frac{1}{2} \mathbb{P}^\beta \otimes \mathbb{Q}^\beta [|\Delta \dot{W}^\beta|] \\ &= -\lambda_\beta.\end{aligned}$$

By Lemma 2, $\beta \mapsto \lambda_\beta$ is continuously differentiable. Since $\lambda_\beta \Delta \beta$ is a right Riemann sum for the integral of λ_β with error:

$$\left| \lambda_\beta \Delta \beta - \int_\beta^{\beta'} \lambda_b \, db \right| = \frac{1}{2} \sup_{\beta'} \left| \frac{d\lambda_\beta}{d\beta} \right| \Delta \beta^2 =: C_3 \Delta \beta^2.$$

Finally, by the triangle inequality:

$$\left| r(\mathbb{P}^\beta, \mathbb{Q}^\beta) - \int_{\beta}^{\beta'} \lambda_b \, db \right| \leq C \Delta \beta^2,$$

for $C := C_1 + C_2 + C_3$

C FURTHER DETAILS ON DESIGN-SPACE FOR ACCELERATED PT

C.1 FURTHER DETAILS ON FLOW APT

C.1.1 WORK FORMULA FOR DETERMINISTIC FLOWS

Proposition 7. Let $\mathcal{X} = \mathbb{R}^d$ and suppose that π^{n-1} and π^n admit strictly positive densities $\tilde{\pi}^{n-1}$ and $\tilde{\pi}_n$ with respect to the Lebesgue measure. Let $T^n : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a diffeomorphism with Jacobian matrix $J_{T^n}(x)$. If we choose the one-step forward and backward kernels P^{n-1} and Q^n such that

$$P^{n-1}(x^{n-1}, \mathrm{d}x_*^n) = \delta_{T^n(x^{n-1})}(\mathrm{d}x_*^n), \quad Q^n(x^n, \mathrm{d}x_*^{n-1}) = \delta_{(T^n)^{-1}(x^n)}(\mathrm{d}x_*^{n-1}),$$

1296 then, for all (z^{n-1}, z^n) such that $T^n(z^{n-1}) = z^n$, we have the following expression for the weight
 1297 defined in Equation (3):
 1298

$$1299 w^n(z^{n-1}, z^n) = \frac{\tilde{\pi}^n(z^n)}{\tilde{\pi}^{n-1}(z^{n-1})} |\det J_{T^n}(z^{n-1})|$$

1300 and the acceptance rate α^n defined in Section 3.2 becomes
 1301

$$1302 \alpha^n(x^{n-1}, x^n; x_*^{n-1}, x_*^n) = 1 \wedge \left[\frac{\tilde{\pi}^{n-1}(x_*^{n-1})\tilde{\pi}^n(x_*^n)}{\tilde{\pi}^{n-1}(x^{n-1})\tilde{\pi}^n(x^n)} \cdot \frac{|\det(J_{T^n}(x^{n-1}))|}{|\det(J_{T^n}(x_*^{n-1}))|} \right]. \quad (31)$$

1305 *Proof.* Let $S := \{(z^{n-1}, z^n) \in \mathbb{R}^d \times \mathbb{R}^d \text{ such that } T^n(z^{n-1}) = z^n\}$. Recall the definition of the
 1306 extended measures \mathbb{P}^{n-1} and \mathbb{Q}^n :
 1307

$$1308 \mathbb{P}^{n-1}(dz^{n-1}, dz^n) = \pi^{n-1}(dz^{n-1})P^{n-1}(z^{n-1}, dz^n),$$

$$1309 \mathbb{Q}^n(dz^{n-1}, dz^n) = \pi^n(dz^n)Q^n(z^n, dz^{n-1}).$$

1310 Moreover for $(z^{n-1}, z^n) \in S$,

$$1311 \mathbb{P}^{n-1}(dz^{n-1}, dz^n) = (T^n \# \pi^{n-1})(dz^n)Q^n(z^n, dz^{n-1}).$$

1312 Therefore

$$1314 \frac{d\mathbb{Q}^n}{d\mathbb{P}^{n-1}}(z^{n-1}, z^n) = \frac{\pi^n(dz^n)}{(T^n \# \pi^{n-1})(dz^n)}$$

$$1316 = \frac{\pi^n(z^n)}{\pi^{n-1}((T^n)^{-1}(z^n))|\det(J_{(T^n)^{-1}}(z^n))|} = \frac{\pi^n(z^n)|\det(J_{T^n}(z^{n-1}))|}{\pi^{n-1}(z^{n-1})} \quad (32)$$

1318 which justifies the identity for the weight. Applying this at $(z^{n-1}, z^n) = (x^{n-1}, x_*^n) \in S$ gives
 1319

$$1320 \frac{d\mathbb{Q}^n}{d\mathbb{P}^{n-1}}(x^{n-1}, x_*^n) = \frac{\pi^n(x_*^n)|\det(J_{T^n}(x^{n-1}))|}{\pi^{n-1}(x^{n-1})}. \quad (33)$$

1322 Similarly, applying Equation (32) at $(z^{n-1}, z^n) = (x_*^{n-1}, x^n) \in S$ gives
 1323

$$1324 \frac{d\mathbb{Q}^n}{d\mathbb{P}^{n-1}}(x_*^{n-1}, x^n) = \frac{\pi^n(x^n)|\det(J_{T^n}(x_*^{n-1}))|}{\pi^{n-1}(x_*^{n-1})}. \quad (34)$$

1326 Together Equation (33) and Equation (34) establish the proposition. \square

1328 C.1.2 TRAINING

1329 Since APT provides approximate samples from both the target and reference densities for each flow, it
 1330 enables a range of training objectives. Some choices include maximum likelihood estimation (MLE)
 1331 (equivalent to forward KL), reverse KL, and symmetric KL (SKL), which averages the two. Each
 1332 has trade-offs: forward KL promotes mode-covering, reverse KL is more mode-seeking, and SKL
 1333 balances both. APT’s parallel structure makes SKL particularly effective by providing access to
 1334 samples at each intermediate annealing distribution, a feature many other methods lack. For example,
 1335 sequential Monte Carlo (SMC)-based approaches such as FAB (Midgley et al., 2023) and CRAFT
 1336 (Matthews et al., 2022) rely on samples from only one side, limiting their choice of loss functions.

1337 Additionally, one can explore loss functions based on APT’s rejection rates, such as the analytic round
 1338 trip rate, see Proposition 2. Since higher round trip rates indicate more efficient mixing, optimizing
 1339 for this metric improves sampling performance. Empirically, we found that using SKL yielded the
 1340 most stable and robust results across different settings. This loss was therefore used in our final
 1341 experiments. However, we leave it to future work to study other possible losses in more detail.

1342 There are also possible variants to the training pipeline. In each case, we initialize normalizing flows
 1343 to the identity transformation. One option is to run the APT algorithm with the current flows. After
 1344 every (or several) steps of the APT algorithm, the current samples can be used to update the flow
 1345 parameters. Since the flows are initialized at the identity transformation, the initial sampling of APT
 1346 behaves similarly to PT. A second possible training pipeline is to instead use PT directly to generate
 1347 a large batch of samples, and then use this batch of samples to update the flows. The latter approach
 1348 is more stable and is thus what we employed in the final experiments. We provide more details in
 1349 Section D. We note that the first training pipeline has the potential to allow for better exploration, and
 we therefore leave a more detailed exploration of it to future work.

1350 C.2 FURTHER DETAILS ON CONTROL ACCELERATED PT
1351

1352 At the limit $K \rightarrow \infty$, following (Berner et al., 2025, Lemma B.7), and by the controlled Crooks fluctuation theorem (Vaikuntanathan & Jarzynski, 2008; Vargas et al., 2024), we arrive at the generalised
1353 work functional
1354

$$1355 \begin{aligned} W_\infty^n(x) &:= -\log w_\infty^n(x) \\ 1356 &= \int_0^1 -\nabla \cdot b_s^n(x_s) + \nabla U_s^n(x_s) \cdot b_s^n(x_s) + \partial_s U_s^n(x_s) ds, \end{aligned}$$

1359 inducing the corresponding continuous processes $(X_s)_{s \in [0,1]}$, $(X'_s)_{s \in [0,1]}$ for \mathbb{P}_∞^{n-1} , \mathbb{Q}_∞^n respectively,
1360 that is for the forward process
1361

$$1362 X_0 \sim \pi^{n-1}, \quad dX_s = -(\sigma_s^n)^2 \nabla U_s^n(X_s) ds + b_s^n(X_s) ds + \sigma_s^n \sqrt{2} d\vec{B}_s,$$

1363 and for the backwards process
1364

$$1365 X'_1 \sim \pi^n, \quad dX'_s = (\sigma_s^n)^2 \nabla U_s^n(X'_s) ds + b_s^n(X'_s) ds + \sigma_s^n \sqrt{2} d\vec{B}_s.$$

1367 The training objective is
1368

$$1369 \mathcal{L}(b_s, \phi_s, \sigma_s) = \sum_{n=1}^N \text{SKL}(\mathbb{P}_K^{n-1}, \mathbb{Q}_K^n) \xrightarrow{K \rightarrow \infty} \sum_{n=1}^N \text{SKL}(\mathbb{P}_\infty^{n-1}, \mathbb{Q}_\infty^n).$$

1372 Note that the discrete version discussed in the main text is not the only discretisation choice. Other
1373 options (Albergo & Vanden-Eijnden, 2024; Máté & Fleuret, 2023) may also be applied.
1374

1375 C.3 FURTHER DETAILS ON DIFF-APT
1376

1377 **Annealing path** We use the following Variance-Preserving (VP) diffusion process
1378

$$dY_s = -\beta_s Y_s ds + \sqrt{2\beta_s} dW_s, \quad Y_0 \sim \pi,$$

1380 with the choice of schedule $\beta_s = \frac{1}{2(1-s)}$ to define the path of distributions $(\pi_s^{\text{VP}})_{s \in (0,1]}$ by $Y_s \sim \pi_{1-s}^{\text{VP}}$.
1381 Due to the singularity at $s = 1$, π_0^{VP} is not defined by the path, but we can define this point to be a
1382 standard Gaussian as the path converges to this distribution in the limit as s approaches 1 in order to
1383 define the full annealing path $(\pi_s^{\text{VP}})_{s \in [0,1]}$.
1384

1385 **Accelerators** For a given annealing schedule $0 = s_0 < \dots < s_N = 1$, we construct P_k^{n-1}, Q_{k-1}^n
1386 through the linear discretisation of the time-reversal SDE on the time interval $[s_{n-1}, s_n]$ with step
1387 size $\delta_n = (s_n - s_{n-1})/K$ and interpolating times $s_{n,k} = s_{n-1} + k\delta_n$.
1388

1389 In particular, we take $Q_{k-1}^n(x_k, dx_{k-1})$ to be $\mathcal{N}(\sqrt{1 - \alpha_{n,k-1}} x_k, \alpha_{n,k-1} \mathbf{I})$ where $\alpha_{n,k-1} = 1 -$
1390 $\exp(-2 \int_{1-s_{n,k}}^{1-s_{n,k-1}} \gamma_s ds)$ which is the closed-form kernel transporting $\pi_{s_{n,k}}^{\text{VP}}$ to $\pi_{s_{n,k-1}}^{\text{VP}}$. Furthermore,
1391 we take $P_k^{n-1}(x_{k-1}, dx_k)$ to be the exponential integrator given by $\mathcal{N}(\mu_{n,k-1}(x_{k-1}), \alpha_{n,k-1} \mathbf{I})$
1392 where
1393

$$\mu_{n,k-1}(x) = \sqrt{1 - \alpha_{n,k-1}} x + 2(1 - \sqrt{1 - \alpha_{n,k-1}})(x + \nabla \log \pi_{s_{n,k-1}}^{\text{VP}}(x)).$$

1395 **Network parametrisation** We parametrise an energy-based model as outlined in Phillips et al.
1396 (2024) but modified to ensure that $\pi_0^\theta(x) \propto N(x; 0, \mathbf{I})$. For completeness, we specifically take
1397 $\log \pi_s^\theta(x) = \log g_s^\theta(x) - \frac{1}{2} \|x\|^2$ where
1398

$$1399 \begin{aligned} \log g_\theta(x, s) &= [r_\theta(1) - r_\theta(s)][r_\theta(s) - r_\theta(0)] \langle N_\theta(x, s), x \rangle \\ 1400 &\quad + [1 + r_\theta(1) - r_\theta(s)] \log g_0(\sqrt{s}x), \end{aligned}$$

1402 where $g_1(x) \propto \pi(x)N(x; 0, \mathbf{I})$. Here, r is a scalar-valued neural network and N is a vector-valued
1403 function in \mathbb{R}^d . We also note that $\pi_1^\theta(x) \propto \pi$, hence π_s^θ serves as a valid annealing path between
1404 $N(0, \mathbf{I})$ and π .
1405

1404 **D EXPERIMENTAL DETAILS**
14051406 **D.1 TARGET DISTRIBUTIONS**
1407

1408 **GMM- d** We take the 40-mode Gaussian mixture model (GMM-2) in 2 dimensions from [Midgley et al. \(2023\)](#) where to extend this distribution to higher dimensions d , we extend the means with zero
1409 padding to a vector in \mathbb{R}^d and keep the covariances as the identity matrix but now within \mathbb{R}^d . This
1410 helps to disentangle the effect of multi-modality from the effect of dimensionality on performance as
1411 we essentially fix the structure of the modes across different values of d . Following previous work
1412 ([Akhound-Sadegh et al., 2024](#); [Phillips et al., 2024](#)), we also scale the distribution GMM- d by a factor
1413 of 40 to ensure the modes are contained within the range $[-1, 1]^d$ for our experiments with APT,
1414 where we also use the same scaling for the PT baseline to ensure a fair comparison.
1415

1416 **DW-4** We take the DW-4 target from [Köhler et al. \(2020\)](#) which describes the energy landscape for
1417 a toy system of 4 particles $\{x_1, x_2, x_3, x_4\}$ and $x_i \in \mathbb{R}^2$ given by
1418

$$1419 \pi(x) \propto \exp \left(-\frac{1}{2\tau} \sum_{i \neq j} a(d_{ij} - d_0) + b(d_{ij} - d_0)^2 + c(d_{ij} - d_0)^4 \right),$$

1420 where $d_{ij} = \|x_i - x_j\|$ and we set $a = 0, b = -4, c = 0.9, \tau = 1$ in accordance with previous work.
1421

1422 **MW-32** We take the ManyWell-32 target from [Midgley et al. \(2023\)](#) formed from concatenating 16
1423 copies of the 2-dimensional distribution
1424

$$1425 \hat{\pi}(x_1, x_2) \propto \exp \left(-x_1^4 + 6x_1^2 + \frac{1}{2}x_1 - \frac{1}{2}x_2^2 \right),$$

1426 i.e. the distribution $\pi(x) = \prod_{i=1}^{16} \hat{\pi}(x_{2i-1}, x_{2i})$ where $x \in \mathbb{R}^{32}$. Each copy of $\hat{\pi}$ has 2 modes and
1427 hence π contains in total 2^{16} modes.
1428

1429 **Alanine Dipeptide** This is a small molecule with 22 atoms, each of which has 3 dimensions. The
1430 target energy is defined with the `amber14/protein.ff14SB` forcefield in vacuum using the
1431 DMFF library in JAX ([Wang et al., 2023](#)).
1432

1433 **D.2 NETWORK AND TRAINING DETAILS**
1434

1435 **NF-APT** For GMM- d , we use 20 RealNVP layers where we employ a 2-layer MLP with 128
1436 hidden units for the scale and translation functions ([Dinh et al., 2017](#)). We initialize the flow at the
1437 identity transformation. We use the Adam optimizer with a learning rate of $1e-3$, perform gradient
1438 clipping with norm 1 and employ EMA with decay parameter 0.99.
1439

1440 We use the same training pipeline as for CMCD-APT. See further details in the CMCD-APT descrip-
1441 tion below. Note that we also employ the SKL loss for training and the linear annealing path with a
1442 standard Gaussian as the reference distribution.
1443

1444 **CMCD-APT** For both GMM- d and MW-32, we use a 4-layer MLP with 512 hidden units, and
1445 for DW-4, we use a 4-layer EGNN ([Satorras et al., 2021](#)) with 64 hidden units. Recall that in
1446 CMCD-APT, we use the *linear path*, $U^\beta(x) = (1 - \beta) \log \eta(x) + \beta U(x)$, which linearly interpolates
1447 between reference and target in log-space. Therefore, our network is conditional on the β . We
1448 optimise the MLP by Adam with a learning rate of $1e-3$ and EGNN with a learning rate of $1e-4$.
1449 We additionally use gradient clipping with norm 1 for stability.
1450

1451 Furthermore, our training pipeline following the 3 stages outlined below:
1452

- 1453 • Tuning PT: We define $\{\beta_n\}_{n=1}^N$ uniformly from 0 to 1. Then, we run PT for 600 steps,
1454 remove the first 100 steps as burn-in, and take the last 500 steps to calculate the rejection
1455 rate between adjacent chains. We then tune the value of β_n to ensure the rejection rate even,
1456 according to [Syed et al. \(2021\)](#). We repeat this process 10 times to ensure $\{\beta_n\}_{n=1}^N$ is stable.
1457

- Collecting data and training: We use PT with the tuned schedule to collect data. For experiments with 5 chains, we run 200K steps to collect 200K samples for each chain. For experiments with 10 and 30 chains, we run 65536 steps to collect data. We then train CMCD for 100,000 iterations with a batch size of 512. In each batch, we randomly select the chain index and samples according to the chain to train CMCD using SKL. We repeat this step twice to ensure the network is well-trained until convergence.
- Testing: We follow Algorithm 1, running CMCD-APT for 100K steps, and calculate the round trip.

Diff-APT For GMM- d , we use a 3-layer MLP with 128 hidden units, for MW-32, we use a 3-layer MLP with 256 hidden units and for DW-4, we use a 3 layer EGNN with 128 hidden units. For all models, we use a learning rate of $5e-4$, gradient clipping with norm 1 for stability and EMA with decay parameter of 0.99. For training, we follow the same pipeline as CMCD-APT, but we only retain samples at the target chain in order to optimise the standard score matching objective. At sampling time, we tune the annealing schedule by running Diff-APT for 1,100 steps, discarding the first 100 samples as burn-in and using the last 1,000 steps to calculate rejection rates to apply the schedule tuning algorithm from Syed et al. (2021). We then repeat this 10 times where we initialise from the uniform schedule.

PT For all experiments with PT, we use the linear path with a standard Gaussian as our reference distribution. We tune the annealing schedule in the same manner as with Diff-APT to ensure comparisons with a strong baseline.

D.3 FURTHER DETAILS ON COMPARISON OF ACCELERATION METHODS

For both training and testing for all methods, we take a single step of HMC with step size of 0.03 and 5 leapfrog steps as our local exploration step across each annealing chain. We note that while we could have improved performance by tuning the step size for each annealing distribution, we keep this fixed to disentangle the effect of local exploration from our communication steps.

Compute-normalised round trips The compute-normalised round trips, as reported in Table 1, is computed by dividing the original round trips by the number of potential evaluations that a single “machine” is required to implement within a parallelised implementation of PT/APT - i.e. the number of potential evaluations required by the computation of $W_K^n(\vec{X}_{t,0:K}^{n-1})$ (or equivalently $W_K^n(\vec{X}_{t,0:K}^n)$ for a single n and t). Similarly, we count the number of neural calls in the corresponding manner.

- NF-APT: We need 2 potential evaluations for $\pi^{n-1}(\vec{X}_{t,0}^{n-1})$ and $\pi^n(\vec{X}_{t,1}^{n-1})$ and single network evaluation.
- CMCD-APT: For $K > 0$, we need to calculate the potential and score⁴ of π^{n-1} at $\vec{X}_{t,0}^{n-1}$ and π^n at $\vec{X}_{t,K}^{n-1}$. We also need to compute the score of $U_{s_k}^n$ at $\vec{X}_{t,k}^{n-1}$ for $k = 1, \dots, K-1$. We note that we can reuse all of the above score evaluations for both the forward and reverse transition kernels of P_k^{n-1} and Q_{k-1}^n . In total, this requires $K+1$ potential and network evaluations.
- Diff-APT: For $K > 0$, we require $K+1$ potential and network evaluations following the same logic as for CMCD. For $K=0$, we require 2 potential and network evaluations for $\pi^{n-1}(X^{n-1})$ and $\pi^n(X^{n-1})$ as we parametrise our annealing path in terms of the target distribution π and a neural network.
- PT: We need 2 potential evaluations for $\pi^{n-1}(X^{n-1})$ and $\pi^n(X^{n-1})$ and we do not require any network evaluation.

D.4 FURTHER DETAILS ON SCALING WITH DIMENSION

For all methods, we take a single step of HMC with step size of 0.03 and 5 leapfrog steps as our local exploration step across each annealing chain and take 100,000 samples. Additionally, we report the

⁴We count this as a single potential evaluation.

1512 (compute-normalised) round trip rate which involves dividing the (compute-normalised) round trips
 1513 by the number of sampling steps. We note that we use the same methodology as above for computing
 1514 compute-normalised round trips.

1516 D.5 FURTHER DETAILS ON FREE ENERGY ESTIMATOR

1518 For CMCD-APT, we take a single step of HMC with step size 0.22 and 5 leapfrog steps for our local
 1519 exploration step across each annealing chain for both DW-4 and MW-32. For Diff-APT, we take two
 1520 steps of HMC with 5 leapfrog steps and step size of 0.2 and 0.22 respectively for DW-4 and MW-32
 1521 for our local exploration step across each annealing chain.

1522 For all methods, we generate 100,000 samples at the target distribution. For each estimate of ΔF , we
 1523 subsample 1,000 samples uniformly without replacement from the 100,000 to compute the APT free
 1524 energy estimator. This is then repeated 30 times for each method.

1525 We take the ground truth free energy of DW-4 from estimating ΔF with the APT estimator using
 1526 100,000 samples from PT with 60 chains (after tuning). We take the ground truth free energy of
 1527 MW-32 from [Midgley et al. \(2023\)](#) which calculates the normalising constant of a single copy of $\hat{\pi}$
 1528 numerically allowing for the trivial computation of the overall normalising constant.

1530 D.6 FURTHER DETAILS ON COMPARING APT WITH NEURAL SAMPLERS

1532 For CMCD, we take our CMCD-APT model on DW-4 with 30 chains and $K = 1, 2, 5$ from Section
 1533 [6.3](#), and instead of sampling from these models using APT, we collect 5,000 independent samples
 1534 from our reference distribution to which we apply our learned kernels $\prod_{n=1}^N \prod_{k=1}^K P_k^{n-1}$ which we
 1535 recall are explicitly trained to transport samples from the reference to the target distribution. With our
 1536 final samples, we then plot the histogram of d_{ij} values for $i \neq j$.

1537 For Diffusion, we follow the same procedure but we tune our annealing schedule with the same
 1538 schedule tuning algorithm from [Syed et al. \(2021\)](#) as mentioned above (this step is not required for
 1539 CMCD as the annealing schedule is required to be fixed during training) before we collect samples
 1540 by applying P_k^{n-1} .

1542 For CMCD-APT and Diff-APT, we simply sample from each method to generate 5,000 samples at
 1543 the target distribution before plotting the histogram of d_{ij} values.

1544 D.7 FURTHER DETAILS ON ALANINE DIPEPTIDE

1547 We run CMCD-APT using 5 chains and $K = 1, 2, 5$. For the local move, we adopt HMC with a
 1548 dynamic step size: when the acceptance rate is larger than 0.9, we increase the step size by 1.2; if
 1549 the acceptance rate is smaller than 0.8, we divide the step size by 1.2. Other settings are the same as
 1550 those of other targets.

1552 D.8 LICENSE

1554 Our implementation is based on the following codebases:

- 1555 • <https://github.com/lollcat/fab-jax> ([Midgley et al., 2023](#)) (MIT License)
- 1556 • <https://github.com/noegroup/bgflow> (MIT License)
- 1557 • https://github.com/angusphillips/particle_denoising_diffusion_sampler ([Phillips et al., 2024](#)) (No License)
- 1558 • <https://github.com/gerkone/egnn-jax> (MIT License)
- 1559
- 1560
- 1561
- 1562
- 1563

D.9 COMPUTING RESOURCES

1564 The experiments conducted in this paper are not resource-intensive. We use a mixture of 24GB GTX
 1565 3090 and 80GB A100 GPU, but all experiments can be conducted on a single 80GB A100 GPU.

1566
1567

E ADDITIONAL EXPERIMENTAL RESULTS

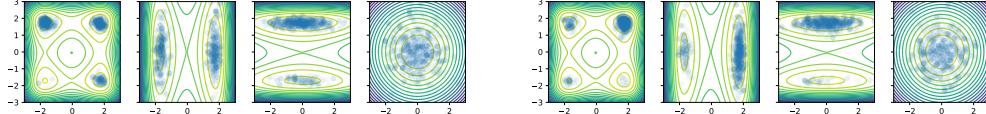
1568
1569

E.1 VISUALISATION OF MANYWELL-32

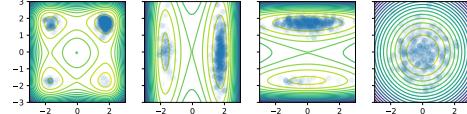
1570
1571
1572
1573
1574

In Figures 5 and 6, we visualise ManyWell-32 samples generated by 1,000 consecutive CMCD-APT and Diff-APT steps with $N = 5, 10, 30$ and $K = 1, 5$ from ManyWell-32 via marginal projections over the first four dimensions. We also show 1,000 independent ground truth samples in Figure 7 for comparison. We choose to report only 1,000 steps to illustrate how fast our sampler mixes. As we can see, the mode weights become more accurate as we increase N and K .

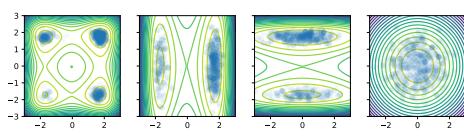
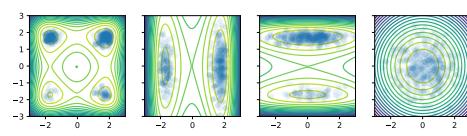
1575

1576
1577
1578
1579(a) $N = 5, K = 1$.

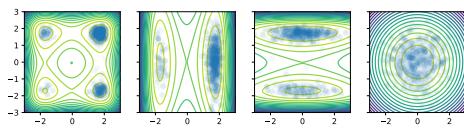
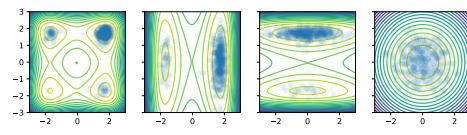
1580

1581
1582
1583
1584
1585(b) $N = 5, K = 5$.

1586

(c) $N = 10, K = 1$.(d) $N = 10, K = 5$.

1587

1588
1589
1590(e) $N = 30, K = 1$.(f) $N = 30, K = 5$.

1591

1592

Figure 5: Visualisation of ManyWell-32 samples generated by 1,000 consecutive CMCD-APT steps.

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

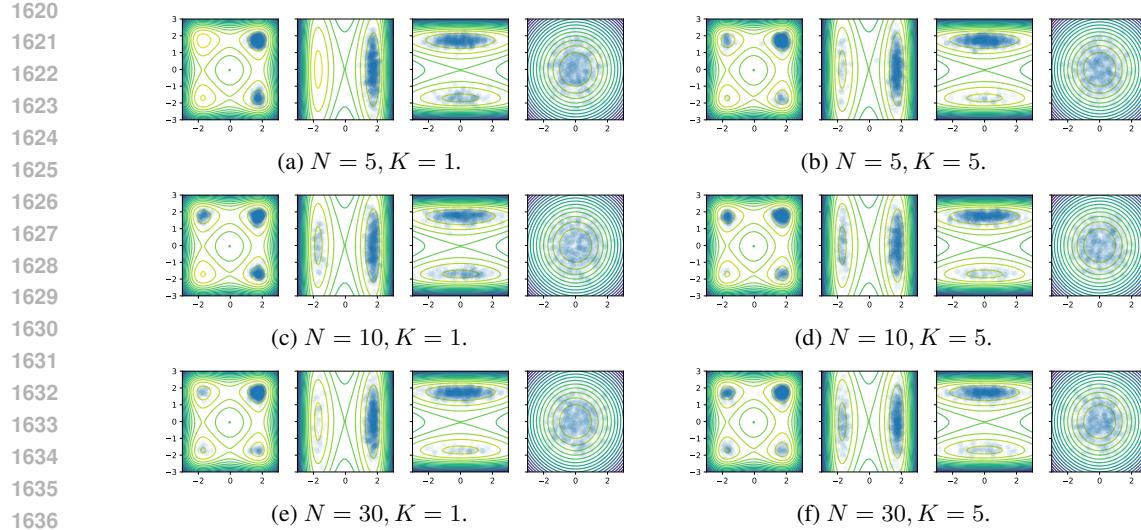


Figure 6: ManyWell-32 samples generated by 1,000 consecutive Diff-APT steps.

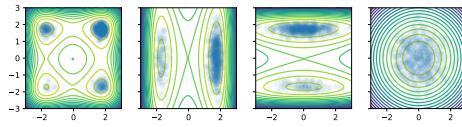


Figure 7: 1,000 independent ground truth samples from ManyWell-32

1648 E.2 COMPARISON OF ACCELERATION METHODS FOR MANYWELL-32 AND DW-4

1649 We take our trained models from Section 6.3 and provide the same comparison with PT as in Table 1
 1650 for ManyWell-32 and DW-4 below.

1651
 1652 Table 3: PT versus APT with different acceleration methods, targeting ManyWell-32 in 32 dimensions
 1653 and standard Gaussian reference using $N = 5, 10, 30$ parallel chains for $T = 100,000$ iterations.
 1654 For each method, we report the round trips (R), round trips per potential evaluation, denoted as
 1655 compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain
 1656 every iteration, and $\hat{\Lambda}$ estimated using $N = 30$ chains.

1658 # Chain	1659 $N = 5$				1660 $N = 10$				1661 $N = 30$	
	1662 Method	1663 Neural Call (\downarrow)	1664 $\hat{\Lambda} (\downarrow)$	1665 R (\uparrow)	1666 CN-R (\uparrow)	1667 R (\uparrow)	1668 CN-R (\uparrow)	1669 R (\uparrow)	1670 CN-R (\uparrow)	1671
1672 CMCD-APT ($K = 1$)	1673 2	1674 4.384	1675 1154	1676 577.0	1677 2802	1678 1401.0	1679 4729	1680 2364.5	1681	1682
1683 CMCD-APT ($K = 2$)	1684 3	1685 3.827	1686 1587	1687 529.0	1688 3640	1689 1213.3	1690 5544	1691 1848.0	1692	1693
1694 CMCD-APT ($K = 5$)	1695 6	1696 3.148	1697 2878	1698 479.7	1699 4790	1700 798.3	1701 6678	1702 1113.0	1703	1704
1706 Diff-APT ($K = 1$)	1707 2	1708 6.663	1709 425	1710 212.5	1711 2402	1712 1201	1713 4398	1714 2199	1715	1716
1717 Diff-APT ($K = 2$)	1718 3	1719 5.225	1720 1387	1721 462.3	1722 4022	1723 1340.7	1724 5894	1725 1964.7	1726	1727
1728 Diff-APT ($K = 5$)	1729 6	1730 3.94	1731 3627	1732 604.5	1733 5704	1734 950.7	1735 7634	1736 1272.3	1737	1738
1739 Diff-PT ($K = 0$)	1740 2	1741 7.423	1742 251	1743 125.5	1744 1561	1745 780.5	1746 3440	1747 1720	1748	1749
1750 PT	1751 0	1752 5.475	1753 550	1754 275	1755 1879	1756 939.5	1757 3733	1758 1866.5	1759	1760

1674
 1675 Table 4: PT versus APT with different acceleration methods, targeting DW-4 in 10 dimensions
 1676 and standard Gaussian reference using $N = 5, 10, 30$ parallel chains for $T = 100,000$ iterations.
 1677 For each method, we report the round trips (R), round trips per potential evaluation, denoted as
 1678 compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain
 1679 every iteration, and Λ estimated using $N = 30$ chains.

Method	Neural Call (↓)	$\hat{\Lambda}$ (↓)	$N = 5$		$N = 10$		$N = 30$	
			R (↑)	CN-R (↑)	R (↑)	CN-R (↑)	R (↑)	CN-R (↑)
CMCD-APT ($K = 1$)	2	3.173	3020	1510.0	6407	3203.5	9456	4728.0
CMCD-APT ($K = 2$)	3	2.671	4239	1413.0	7549	2516.3	10538	3512.7
CMCD-APT ($K = 5$)	6	2.107	6971	1161.8	9808	1634.7	12634	2105.7
Diff-APT ($K = 1$)	2	4.565	4331	2165.5	7397	3698.5	7729	3864.5
Diff-APT ($K = 2$)	3	3.810	7187	2395.7	10176	3392	9176	3058.7
Diff-APT ($K = 5$)	6	4.358	12456	2076	12740	2123.3	8104	1350.7
Diff-PT ($K = 0$)	2	4.739	2962	1481	5862	2921	7067	3533.5
PT	0	4.016	2329	1164.5	5128	2564	7610	3805

1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727