
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATED PARALLEL TEMPERING
VIA NEURAL TRANSPORTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Markov Chain Monte Carlo (MCMC) algorithms are essential tools in computa-
tional statistics for sampling from unnormalised probability distributions, but can
be fragile when targeting high-dimensional, multimodal, or complex target distri-
butions. Parallel Tempering (PT) enhances MCMC’s sample efficiency through
annealing and parallel computation, propagating samples from tractable reference
distributions to intractable targets via state swapping across interpolating distribu-
tions. The effectiveness of PT is limited by the often minimal overlap between
adjacent distributions in challenging problems, which requires increasing the com-
putational resources to compensate. We introduce a framework that accelerates
PT by leveraging neural samplers—including normalising flows, diffusion models,
and controlled diffusions—to reduce the required overlap. Our approach utilises
neural samplers in parallel, circumventing the computational burden of neural sam-
plers while preserving the asymptotic consistency of classical PT. We demonstrate
theoretically and empirically on a variety of multimodal sampling problems that
our method improves sample quality, reduces the computational cost compared to
classical PT, and enables efficient free energy/normalising constant estimation.

1 INTRODUCTION

Sampling from a probability distribution π(x) = exp(−U(x))/Z defined over a state-space X with
a tractable un-normalised density π̃ : X → R and intractable normalising constant Z =

∫
X π̃(x)dx

is a fundamental task in machine learning and natural sciences. Markov Chain Monte Carlo (MCMC)
methods are usually employed for such purposes, constructing an ergodic Markov chain (Xt)t∈N using
local moves leaving π invariant. While MCMC algorithms are guaranteed to converge asymptotically,
in practice, they struggle when the target is complex with multiple well-separated modes (Papamarkou
et al., 2022; Hénin et al., 2022). To handle such cases, Parallel Tempering (PT) (Swendsen & Wang,
1986; Geyer, 1991; Hukushima & Nemoto, 1996) is a popular class of MCMC methods designed to
improve the global mixing of locally efficient MCMC algorithms.

PT works by considering an annealing path π0, π1, . . . , πN of distributions over X interpolating
between a simple reference distribution π0 = η (e.g. a Gaussian) and the target πN = π. PT
algorithms construct a Markov chain Xt = (X0

t , . . . , X
N
t) on the extended state-space XN+1,

targeting the joint distribution π = π0 ⊗ · · · ⊗ πN . The PT chain Xt is constructed by alternating
between (1) a local exploration phase where the n-th chain 1 of Xt is updated according to a
πn-invariant MCMC algorithm; and (2) a communication phase which proposes a sequence of
swaps between neighbouring states accepted according to a Metropolis–Hastings correction ensuring
invariance (see Figure 1 (a)). Crucially, PT offsets the additional computation burden of simulating
the extended N chains through parallel computation, allowing for a similar effective computational
cost as a single chain when implemented in a maximally parallelised manner.

Typically, the chains Xn
t mix faster when closer to the reference and struggle closer towards the

target. Therefore, communication between the reference and target, facilitated through swaps, can
induce rapid mixing between modes of the target component (Woodard et al., 2009; Surjanovic et al.,
2024). While the importance of the swapping mechanism for PT has led to a literature dedicated to
optimising communication between the reference and target (Syed et al., 2021; 2022; Surjanovic
et al., 2022) such works still rely on the original swapping mechanism (Geyer, 1991).

1Following the PT literature, we also refer to components of Xt as chains.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝜋𝑛

𝜋𝑛−1

𝜋𝑛

𝜋𝑛−1

Local exploration

Rejected Swap

Accepted Swap

Standard PT APT
𝜋𝑛

𝜋𝑛−1

𝜋𝑛

𝜋𝑛−1

Local exploration

Rejected Swap

Accepted Swap

Standard PT APT

Figure 1: (Left) An illustration of the local exploration and communication step for PT vs APT.
(Middle) 1,000 samples of a Gaussian mixture model target obtained using PT vs APT with a standard
Gaussian reference. See Section 6.1 for more details. (Right) Round trips for PT and APT with
N = 6 chains over T = 100, 000 iterations of Algorithm 1.

As an alternative to PT, recent work has explored both continuous (Zhang & Chen, 2022; Vargas et al.,
2023; Berner et al., 2024; Akhound-Sadegh et al., 2024; Vargas et al., 2024; Máté & Fleuret, 2023;
Albergo & Vanden-Eijnden, 2024; Erives et al., 2025) and discrete (Noé et al., 2019; Papamakarios
et al., 2021; Midgley et al., 2023; Gabrié et al., 2022) flows for sampling, under the umbrella of
neural samplers. However, these methods usually incur a bias, foregoing theoretical guarantees
of MCMC, and can be expensive to implement and train. Due to these shortcomings, standard PT
provides a strong baseline that neural samplers struggle to match (He et al., 2025b).

Recent work (Arbel et al., 2021; Albergo & Vanden-Eijnden, 2024; Phillips et al., 2024; Chen et al.,
2025) has explored approaches to debias neural samplers using Sequential Monte Carlo (SMC)-
based ideas (Del Moral et al., 2006). Despite their consistency guarantees, these approaches do not
address the mode-collapsing nature of many modern neural samplers (He et al., 2025b). PT offers a
comparable but computationally dual framework to SMC, where the roles of parallelism and time are
reversed (Syed et al., 2024). In SMC, particles are generated in parallel, and approximate annealing
distributions are constructed sequentially. In contrast, in PT, particles are generated sequentially and
annealing distributions are built in parallel. This raises the question: just as neural samplers have
been integrated with SMC, can we integrate neural samplers with PT, combining the consistency of
PT with the flexibility of neural samplers?

We answer positively this question by formalising and exploiting the framework introduced by Ballard
& Jarzynski (2009; 2012) in physics for designing more flexible swap mechanisms, which we call
accelerated PT (APT). APT preserves PT’s asymptotic consistency and allows us to integrate easily
normalising flows, stochastic control, and diffusions into existing PT implementations. ATP uses
neural sampling in a parallelised manner, mitigating its high computational burden. Empirically, it
outperforms PT by accelerating the communication between the reference and target states, even
when controlling for the additional computation incurred by neural samplers.

A relevant prior work integrating PT with normalising flows is Invernizzi et al. (2022): it trains a
normalising flow to directly map configurations from the highest-temperature reference distribution
of a molecular system to the lowest-temperature target distribution, effectively bypassing the interme-
diate annealing distributions. By contrast, our framework leverages normalising flows to facilitate
exchanges between all neighbouring temperature levels, thereby enhancing sampling efficiency across
the entire annealing path and providing a more stable training objective.

2 PARALLEL TEMPERING

Let π0, π1, . . . , πN be an annealing path of probability distributions on X where π0 = η is the
reference and πN = π is the target. We assume the n-th annealing distribution admits density
πn(x) := π̃n(x)/Zn with respect to a base measure dx, where π̃n : X → R is the un-normalised
density which we can evaluate, with normalising constant Zn :=

∫
X π̃

n(x)dx. Our goal is to estimate
π[f] :=

∫
X f(x)π(dx), the expectation of f : X → R with respect to π = πT , and the normalising

constant Z = ZT .

There is considerable flexibility in choosing annealing distributions provided π0 = η with Z0 = 1
and πN = π with ZN = Z. Without loss of generality, we can assume πn = πβn where for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

β ∈ [0, 1], πβ continuously interpolates between reference and target as β increases from 0 to 1,
according to the annealing schedule 0 = β0 < · · · < βN = 1. A common choice is the geometric
path, πβ(x) =∝ η(x)1−βπ(x)β , which geometrically interpolates between reference and target in
log-space. See Masrani et al. (2021); Syed et al. (2021); Máté & Fleuret (2023); York (2023) for
alternative non-geometric annealing paths.

2.1 NON-REVERSIBLE PARALLEL TEMPERING

The PT algorithm constructs a Markov chain Xt = (X0
t , . . . , X

N
t) on the extended state-space

XN+1 invariant to the joint distribution π := π0 ⊗ · · · ⊗ πN . We construct Xt from Xt−1 by doing
(1) a local exploration step followed by (2) a communication step seen in the top of Figure 1 (a).
For n = 0, . . . , N , the n-th local exploration move (1) updates the n-th component of Xt−1 using a
πn-invariant Markov kernel Kn(x, dx′) on X corresponding to an MCMC move targetting πn,

Xn
t ∼ Kn(Xn

t−1, dx
n),

We additionally assume that K0(x, dx′) = η(dx′) corresponds to an independent sample from
the reference. The communication step (2) applies a sequence of swap moves between adjacent
components of Xt, where the n-th swap move illustrated in Figure 1 exchanges components Xn−1

t

and Xn
t in Xt = (X0

t , . . . , X
N
t) with probability αn(Xn−1

t , Xn
t), where for x, x′ ∈ X ,

αn(x, x′) := min

{
1,
wn(x)

wn(x′)

}
. (1)

Where wn : X → R is the incremental weight equal to the un-normalised Radon-Nikodym derivative:

wn(x) :=
Zn

Zn−1

dπn

dπn−1
(x) =

π̃n(x)

π̃n−1(x)
. (2)

In practice, it is advantageous to use a non-reversible communication (Okabe et al., 2001; Syed
et al., 2022), where the n-th swap move is proposed only at iterations with matching parity, n ≡ t
mod 2. Both local exploration and communication steps can be done in parallel, allowing distributed
implementations to leverage parallel computation to accelerate sampling (Surjanovic et al., 2023).

Round trips While the effective sample size (ESS) of samples generated by a Markov chain is the
gold standard for evaluating the performance of MCMC algorithms, in our setting, we are mainly
interested in improving the swap kernel within PT. As ESS measures the intertwined performance
of the local exploration and swap kernels, we are instead interested in maximising communication
between reference and target, which can be empirically measured by counting the total number of
round trips, RT tracking the number of independent reference samples transported to the target after
T iterations of PT (Katzgraber et al., 2006; Lingenheil et al., 2009). See Section A.1 for a formal
definition. The mixing time of the PT chain is related to the time it takes for a round trip to occur and
the total number of round trips is a measure of the particle diversity generated by PT and strongly
correlates with the ESS (Surjanovic et al., 2024).

3 ACCELERATED PARALLEL TEMPERING

A limitation of PT is its inflexible swap move, which only proposes directly exchangeable samples
between distributions, considering just the relative change in likelihood πn−1 and πn. Low acceptance
probability occurs when these distributions have minimal overlap. Addressing this requires increasing
the number of parallel chains N , which may not always be possible. We propose Accelerated
PT (APT), expanding the framework developed in Ballard & Jarzynski (2009; 2012) to improve
distributional overlap and accelerate communication for a fixed number of chains.

3.1 FORWARD AND BACKWARD ACCELERATORS

For n = 1, . . . , N , let Pn−1
k (xk−1, dxk) and Qn

k−1(xk, dxk−1), k = 1, . . . ,K, be two families of
K transition kernels which we call forward accelerators and backward accelerators. They induce
Pn−1
K and Qn

K , two time-inhomogeneous Markov processes obtained by propagating πn−1 forward
in time and πn backward in time respectively using the forward and the backward accelerators,

Pn−1
K (dx0:K) :=πn−1(dx0)

K∏
k=1

Pn−1
k (xk−1, dxk),Qn

K(dx0:K) :=πn(dxK)

K∏
k=1

Qn
k−1(xk, dxk−1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Accelerated Parallel Tempering

1: Initialise X0 = (X0
0 , . . . , X

N
0);

2: for t = 1, . . . , T do
3: Xt = (X0

t , . . . , X
N
t), Xn

t ∼ Kn(Xn
t−1, dx) ▷ Local exploration move

4: for n ≡ t mod 2 do ▷ Non-reversible communication
5:

⇀

Xn−1
t,0 ,

↼

Xn
t,K ← Xn−1

t , Xn
t ▷ Initialise forward/backward paths

6: for k = 1, . . . ,K do
7:

⇀

Xn−1
t,k ∼ Pn−1

k (
⇀

Xn−1
t,k−1, dx) ▷ Accelerate forward

8:
↼

Xn
t,K−k ∼ Qn

K−k(
↼

Xn
t,K−k+1, dx) ▷ Accelerate backward

9: end for
10:

⇀
wn

K,t,
↼
wn

K,t ←Wn
K(

⇀

Xn−1
t,0:K),Wn

K(
↼

Xn
t,0:K) ▷ Work of forward/backward paths

11: U ∼ Uniform([0, 1])

12: if logU <
⇀

Wn
K,t −

↼

Wn
K,t then ▷ Accelerated swap move

13: Xn−1
t , Xn

t ← Xn
t,0, X

n−1
t,K

14: end if
15: end for
16: end for
Output: Return: X1, . . . ,XT

We assume Pn−1
K and Qn

K are mutually absolutely continuous and we can evaluate wn
K : XK+1 → R,

the incremental weights between the forward and the backward paths, extending wn in Equation (2),

wn
K(x0:K) :=

Zn

Zn−1

dQn
K

dPn−1
K

(x0:K). (3)

3.2 NON-REVERSIBLE ACCELERATED PARALLEL TEMPERING

We construct the Markov chain Xt = (X0
t , . . . , X

N
t) for t = 1, . . . , T using the same local explo-

ration and non-reversible communication as classical PT, but we use the accelerated PT swap move
as described below and summarized in Algorithm 1. Given PT state Xt = (X0

t , . . . , X
N
t) ∈ XN+1

after the local exploration move, we define the n-th accelerated swap move as follows: generate paths
⇀

Xn−1
t,0:K , and

↼

Xn
t,0:K obtained by propagating Xn−1

t and Xn
t forward and backward in time using the

forward and backward transitions respectively,
⇀

Xn−1
t,0 = Xn−1

t ,
⇀

Xn−1
t,k ∼ Pn−1

k (
⇀

Xn−1
t,k−1, dxk),

↼

Xn
t,K = Xn

t ,
↼

Xn
t,k−1 ∼ Qn

k−1(
↼

Xn
t,k, dxk−1).

The n-th accelerated swap move illustrated in Figure 1 replaces componentsXn−1
t andXn

t in Xt with
↼

Xn
t,0 and

⇀

Xn−1
t,K respectively with probability αn

K(
⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K), where for x0:K , x′0:K ∈ XK+1,

αn
K(x0:K , x

′
0:K) = min

{
1,
wn

K(x0:K)

wn
K(x′0:K)

}
.

When K = 0, the accelerated swap coincides with the traditional PT swap in Equation (1). However,
an accelerated swap can obtain an acceptance of 1 even if πn−1 ̸= πn provided Pn−1

K = Qn
K .

Therefore, we aim to choose the forward and backward accelerators to make the laws of simulated
forward and backward paths as close to each other as possible. Theorem 1 shows we can quantify this
discrepancy in through the rejection rate, r(Pn−1

K ,Qn
K) := ∥Pn−1

K ⊗Qn
K −Qn

K ⊗ Pn−1
K ∥TV which

by Pinsker inequality is controlled by the symmetric KL divergence between Pn−1
K and Qn

K ,

r(Pn−1
K ,Qn

K)2 ≤ 1

2
Pn−1
K [− logwn

K] +
1

2
Qn

K [logwn
K] =: SKL(Pn−1

K ,Qn
K).2 (4)

Theorem 1. The APT Markov chain Xt generated by Algorithm 1 is ergodic and π-invariant.
Moreover, the probability the n-th accelerated swap is rejected at stationarity equals r(Pn−1

K ,Qn
K).

2We note that [·] represents expectation with respect to the measure on the left.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Expectation and free energy estimators As a by-product of Algorithm 1, we obtain a consistent
estimator π̂n

T [f] =
1
T

∑T
t=1 f(X

n) for the expectation of f : X → R with respect to πn by taking the
Monte Carlo average over the n-th chain Xn

t . To also obtain free energy estimates, we can average
over ⇀

wn
K,t := wn

K(
⇀

Xn−1
t,0:K) and ↼

wn
K,t := wn

K(
↼

Xn
t,0:K), the weights of the forward and backward

accelerated paths generated during the n-th accelerated swap at time t during the communication
phase of Algorithm 1, to obtain consistent estimators ∆

⇀

ZT and ∆
↼

ZT for Z respectively as T →∞,

⇀

ZT :=

N∏
n=1

2

T

∑
n≡t mod 2

⇀
wn

K,t,
1

↼

ZT

:=

N∏
n=1

2

T

∑
n≡t mod 2

1
↼
wn

K,t

.

We then obtain a consistent estimator ẐT = (
⇀

ZT

↼

ZT)
1/2 for Z by by taking the geometric mean of the

forward and backward estimators. When we consider the classical PT with K = 0, these estimators
degrade back to free energy perturbation (FEP) (Zwanzig, 1954); when the path is deterministic
(e.g., implemented through normalising flow), these estimators recover the target FEP (Jarzynski,
2002); and when the path is stochastic, the estimators can be viewed as a form of Jarzynski equality
(Jarzynski, 1997) or escorted Jarzynski equality (Vaikuntanathan & Jarzynski, 2008). Additionally,
following He et al. (2025a, Proposition 3.2), we can also apply Bennett acceptance ratio using the
weight for the paths (Bennett, 1976; Shirts et al., 2003; Hahn & Then, 2009; Minh & Chodera, 2009;
Vaikuntanathan & Jarzynski, 2011) to achieve reduced variance without additional functional calls.

Proposition 1. The estimators π̂n
T [f] and ∆ẐT a.s. converge to πn[f] and Z respectively as T →∞.

Moreover, if Pn−1
K = Qn

K for all n, then ẐT
a.s.
= Z.

4 ANALYSIS OF ACCELERATED PT

We analyse how the performance, measured by the round trip observed after T iterations, RT , scales
with increasing parallel chains N and acceleration time K. It is equivalent to analyse the round
trip rate τ := limT→∞ E[RT]/T , defined as the expected percentage of PT iterations, where a
round trip occurs (Katzgraber et al., 2006; Lingenheil et al., 2009), which coincides with slope in
Figure 1 (Right). To derive theoretical insights independent of the problem-specific local exploration
move, we make an efficient local exploration assumption analogous to Syed et al. (2021; 2022);
Surjanovic et al. (2024), which assumes the weight of forward and backward accelerated paths is
independent across chains and PT iterations.
Assumption 1 (Efficient local exploration). For all n = 1, . . . , N , (⇀

wn
K,t,

↼
wn

K,t) are iid in t and

equal in distribution to (wn
K(

⇀

Xn−1
0:K), wn

K(
↼

Xn
0:K)) where (

⇀

Xn−1
0:K ,

↼

Xn
0:K) ∼ Pn−1

K ⊗Qn
K .

Proposition 2 relates the round trip rate to the rejections, extending Syed et al. (2021, Corollary 2).

Proposition 2. If Assumption 1 holds, then τ = τ(P0:N−1
K ,Q1:N

K) where,

τ(P0:N−1
K ,Q1:N

K) :=

(
2 + 2

N∑
n=1

r(Pn−1
K ,Qn

K)

1− r(Pn−1
K ,Qn

K)

)−1

.

Asymptotic scaling with acceleration time. We now fix N and use Proposition 2 to study how
the round trip rate scales with K. We focus on a special case where Pn−1

K and Qn
K arise as K-step

discretisations of an underlying stochastic differential equation (SDE) which bridge πn−1 and πn

with path measure Pn−1
∞ and Qn

∞ as K →∞.
Proposition 3. Under appropriate conditions on the drifts of the SDE (Section B.2), as K → ∞,
τ(P0:N−1

K ,Q1:N
K) converges to τ(P0:N−1

∞ ,Q1:N
∞) and r(Pn−1

K ,Qn
K) ≤ r(Pn−1

∞ ,Qn
∞) +O(1√

K
).

The main appeal of accelerated PT comes from the fact that for well-designed P0:N−1
K ,Q1:N

K , that
aim to induce approximately the same measure, we have

r(Pn−1
∞ ,Qn

∞) ≈ 0≪ r(πn−1, πn).

Thus, increasing K can dramatically reduce the rejection rate and increase the round trip rate in
challenging scenarios. In practice, we find that for moderate values of K, this benefit overweights the
increased computational cost as seen in Table 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Asymptotic scaling with increased parallelism. To understand how accelerated PT scales with
increased parallelism, as N → ∞ for a fixed number of acceleration steps K. For each N , we
assume πn discretizes a continuous annealing path πβ interpolating between reference and target at
β = βn for some annealing schedule 0 = β0 < · · · < βn = 1. Additionally we assume Pn−1

K and
Qn

K discretize the mutually absolutely continuous forward/backward accelerators Pβ,β′

K and Qβ,β′

K

between πβ and πβ′ at β = βn−1 and β′ = βn respectively with weight function W β,β′

K .

Theorem 2. Suppose Pβ,β′

K and Qβ,β′

K are sufficiently regular and satisfy Assumptions 2–4 in
Section B.3. As N →∞ if maxn≤N |βn − βn−1| = O(N−1), then

∑N
n=1 r(P

n−1
K ,Qn

K) converges
to ΛK and τ(P0:N−1

K ,Q1:N
K) converges to τ̄K = (2 + 2ΛK)−1, where ΛK equals,

ΛK :=

∫ 1

0

1

2
E[|ẇβ

K(
↼

Xβ
0:K)− ẇβ

K(
⇀

Xβ
0:K)|]dβ, (

⇀

Xβ
0:K

↼

Xβ
0:K) ∼ Pβ,β

K ⊗Qβ,β
K ,

and ẇβ
K : XK+1 → R is the partial derivative with respect to β′ of logwβ,β′

K at β′ = β.

Theorem 2 shows that as N → ∞, the round trip rate is controlled by the global barrier for APT,
ΛK , and can be approximated by rejection rates obtained in Algorithm 1. Notably, APT observes a
sharp deterioration in round trip when N ≪ ΛK , begins to stabilise when N ≈ ΛK and observes
a marginal improvement when N ≫ ΛK . As discussed in Proposition 3, for a reasonable choice
of accelerators we expect ΛK to decrease with K, which suggests APT can substantially improve
compared to classical PT (K = 0) for challenging problems where N ≈ Λ0 > ΛK . Finally, we
explore the trade-off between increasing parallelism and increasing acceleration time in Section B.

5 DESIGN SPACE FOR DIFFUSION PT

5.1 NORMALISING FLOW ACCELERATED PT

Normalising flows (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015) provide a flexible
framework for approximating complex probability distributions by transforming a simple base
distribution (e.g., a Gaussian) through a sequence of invertible, differentiable mappings.

Let Tn : X → X be such a diffeomorphism. We denote NF-APT as APT with forward and backward
accelerators to deterministically transport by normalising flow Tn and its inverse, respectively,
motivated by the use of normalising flows to map between annealing distributions in Arbel et al.
(2021) and Matthews et al. (2022) in the context of SMC samplers (Del Moral et al., 2006),

Pn−1
1 (x0, dx1) = δTn(x0)(dx1), Qn

0 (x1, dx0) = δ(Tn)−1(x1)(dx0).

Then the weight functional equals,

Wn
1 (x0, x1) = Un(x1)− Un−1(x0)− log | det∇Tn(x0)|, x1 = Tn(x0).

We can parametrise the normalising flow Tn by a neural network trained to optimise the symmetric
KL-divergence from Equation (4), L(T) =

∑N
n=1 SKL(Pn−1

K ,Qn
K). See Section C.1 for details.

5.2 CONTROLLED MONTE CARLO DIFFUSIONS ACCELERATED PT

Another common transport for sampling is based on the escorted Jarzynski equality (Vaikuntanathan
& Jarzynski, 2008). One way to realise this in practice with neural networks is via Controlled
Monte Carlo Diffusions (CMCD) (Vargas et al., 2024). Suppose X ⊆ Rd and for s ∈ [0, 1] we
have bns ∈ Rd, σn

s ∈ R+, and Un
s = (1− ϕns)Un−1 + ϕnsU

n, where ϕns ∈ [0, 1] is a monotonically
increasing in s and ϕn0 = 0, ϕn1 = 1. For a fixed K, let sk = k/K and ∆sk = 1/K be the uniform
discretisation of the unit interval. We denote CMCD-APT as APT with k-th forward transition kernel,

Pn−1
k (xk−1, dxk) = N (xk−1 − (σn

sk−1
)2∇Un

sk−1
(xk−1)∆sk + bnsk−1

(xk−1)∆sk, 2(σ
n
sk−1

)2∆sk),

and the backward transition,

Qn
k−1(xk, dxk−1) = N (xk + (σn

sk
)2∇Un

sk
(xk)∆sk + bnsk(xk)∆sk, 2(σ

n
sk
)2∆sk).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The corresponding weight function for CMCD-APT equals,

wn
K(x0:K) =

π̃n(xK)
∏K

k=1Q
n
k−1(xk, xk−1)

π̃n−1(x0)
∏K

k=1 P
n
k (xk−1, xk)

(5)

where Pn−1
k (xk−1, xk) and Qn

k (xk, xk−1) are the Gaussian densities of the forward and backwards
kernel transitions with respect to the Lebesgue measure. We learn the neural transport bns , the
time schedule ϕns and the diffusion coefficient σn

s . We use a symmetrised KL-divergence loss
L(bs, ϕs, σs) =

∑N
n=1 SKL(Pn−1

K ,Qn
K), where we also learn ϕns , σ

n
s following Geffner & Domke

(2023)3. While in theory, once the vectorised field bns is perfectly learned, any σn
s can be used, we

found that learning σn
s can significantly stabilise the training and enhance the results. Note that other

divergences and losses can be used, such as (Máté & Fleuret, 2023; Richter & Berner, 2023; Albergo
& Vanden-Eijnden, 2024). We discuss the form of the transition kernels, the weight function and
loss in the limit at K →∞ in Section C.2.

5.3 DIFFUSION ACCELERATED PT

Given X = Rd, the Variance-Preserving (VP) diffusion model (Ho et al., 2020; Song et al., 2020) is
defined by the SDE dYs = −γsYsds+

√
2γsdWs, with s ∈ [0, 1], Y0 ∼ π, and γs is a rate function

from [0, 1] to R+. The time-reversal SDE (Xs)s∈[0,1] = (Y1−s)s∈[0,1] has the form dXs = [γ1−sXs+

2γ1−s∇ log πVP
s (Xs)]ds+

√
2γ1−sdWs where πVP

s is the density of Y1−s and X0 ∼ πVP
0 = N (0, I)

is close to a standard Gaussian in the common scenario that
∫ 1

0
γsds≫ 1. The score ∇ log πVP

s is
unknown but can be learned by score-matching objectives.

We introduce for s ∈ [0, 1] an energy-based model (Salimans & Ho, 2021) with potential ŨVP
s : X 7→

R and corresponding annealing distributions π̃VP
s ∝ exp(−ŨVP

s) to approximate πVP
s while satisfying

the boundary conditions π̃VP
0 = N (0, I) and π̃VP

1 = π. For some schedule 0 = s0 < · · · < sN = 1,
we consider the annealing path πn = π̃VP

sn . For a fixed K, we denote Diff-APT as APT with
forward and backward kernels respectively given by some K-step integrator of the time-reverse
SDE and the forward SDE between sn−1 and sn. For instance, the Euler integrator with step-size
δn = (sn − sn−1)/K and interpolating times sn,k = sn−1 + kδn yields:

Pn−1
k (xk−1, dxk) = N (xk−1 + δnγ1−sn,k

xk−1 − 2γ1−sn,k
∇ŨVP

sn,k,θ
(xk−1), 2δn) (6)

Qn
k−1(xk, dxk−1) = N (xk − δnγ1−sn,k

xk, 2δn). (7)

The resulting weight function wn
K coincides with Equation (5) from CMCD-APT, replacing the

forward backward transitions Pn−1
k and Qn

n−1 for CMCD-APT with Equation (6) and Equation (7).
Further, we parametrise ŨVP

s by a neural network trained to minimise the standard score matching
objective. Since we cannot access samples from X1 ∼ π, we iteratively train on approximate
samples from π obtained by sampling from Diff-APT. We stress that a parallelised implementation of
Diff-APT allows for generating a sample from π with a similar effective cost as a single discretisation
step solving the time-reversal SDE. For further details, see Section C.3.

6 EXPERIMENTS

In this section, we evaluate our proposed accelerated parallel tempering and its three variants on a
variety of targets. We defer all experimental details to Section D.

6.1 COMPARISON OF ACCELERATION METHODS

We evaluate the three variants of APT introduced in Section 5: Flow-APT, CMCD-APT and Diff-APT,
against the baseline of PT using the geometric path with reference π0 = N (0, I), on a 40-mode
Gaussian mixture model in 10 dimensions (GMM-10) (Midgley et al., 2023). Table 1 compares
the performance of PT vs the APT variants for N = 6, 10, 30 chains. We choose these numbers to
represent: (1) the smallest N where standard PT obtains round trips (2) the regime N ≈ Λ where

3We note that in standard CMCD, we cannot use symmetrised KL-divergence as the objective, as we only
have access to data from one side.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: PT versus APT with different acceleration methods, targeting a 40-mode Gaussian Mixture
model (GMM) target in 10 dimensions and standard Gaussian reference using N = 6, 10, 30 parallel
chains for T = 100, 000 iterations. For each method, we report the round trips (R), round trips per
likelihood evaluation, denoted as compute-normalised round trips (CN-R), the number of neural
network evaluations per parallel chain every iteration, and Λ estimated using N = 30 chains (Λ̂) .

Chain N = 6 N = 10 N = 30

Method Neural Call (↓) Λ̂ (↓) R (↑) CN-R (↑) R (↑) CN-R (↑) R (↑) CN-R (↑)
NF-APT 1 7.198 194 97.0 1655 827.5 2441 1220.5

CMCD-APT (K = 1) 2 6.911 234 117.0 2126 1063.0 3264 1632.0
CMCD-APT (K = 2) 3 5.932 526 175.3 3287 1092.7 4767 1589.0
CMCD-APT (K = 5) 6 4.822 1743 290.5 5525 920.8 6231 1038.5

Diff-APT (K = 1) 2 9.025 375 187.5 1551 775.5 2820 1410.0
Diff-APT (K = 2) 3 7.298 748 249.3 2064 688.0 3480 1160.0
Diff-APT (K = 5) 6 5.795 1565 260.8 3080 513.3 4334 722.3

Diff-PT (K = 0) 2 8.932 204 102.0 734 367.0 1586 793.0

PT 0 8.346 17 8.5 681 340.5 1888 944.0

PT is stable, and (3) the regime where N ≫ Λ and PT is close to optimal. All three APT variants
substantially improve over classical PT, with increased round trips with N and K. In the small N
regime (1) resulted in a 10x to 100x improvement and highlights the potential of APT for challenging
problems where PT struggles and parallel chains are constrained. By contrast, when N ≫ Λ and the
improvements over standard PT are less dramatic, they might not offset the cost of additional neural
evaluations. Notably, CMCD with K = 5 and N = 30 matches the performance of the theoretical
limit T/(2 + 2Λ) ≈ 5, 349 for standard PT when N →∞ as predicted by Theorem 2.

6.2 SCALING WITH DIMENSIONS

0 25 50 70 100
Dimension

10 3

10 2

10 1

100

Ro
un

d
Tr

ip
 R

at
e

0 25 50 70 100
Dimension

10 3

10 2

10 1

100

CN
-R

ou
nd

 Tr
ip

 R
at

e
PT

K=0 Diff-APT
K=1 Diff-APT

K=2 Diff-APT
K=5 Diff-APT

Figure 2: Round trip metrics for K-step Diff-APT
(K = 1, 2, 5) and Diff-PT using the true diffusion
path, and Geometric-PT targeting GMM-d for d =
2, 10, 50, 100 when using 30 chains. (Left) Round trip
rate against d. (Right) Compute-normalised round trip
rate against d.

To understand the theoretical performance
of K-step APT for a fixed number of
chains when we scale the dimension d, we
use the fact that the path of distributions
(πVP

s)s∈[0,1] induced by a VP diffusion pro-
cess initialised at GMM-d is analytically
tractable, in order to run K-step Diff-APT
with the true diffusion path. In Figure 2, we
compare the resulting round trip rate and
compute-normalised round trip rate of the
different algorithms when we fix the num-
ber of chains to 30. For all values of d, the
round trip rate of Diff-APT monotonically
increases over PT as we increase K, with
greater gains for larger values of d, demon-
strating that the accelerated swap improves the communication of states over the standard PT swap.
We see a substantial improvement in round trip rate (right) with acceleration compared to PT (K = 0)
and a minor difference between algorithms as K increases when normalised for compute (Right),
suggesting the extra computation for APT is justified.

6.3 LOG-NORMALISING CONSTANT (FREE-ENERGY) ESTIMATOR

As we described in Section 3.2, a by-product of Algorithm 1 is the estimation of change in free energy
∆F = − logZ. We compare free energy estimates from CMCD-APT and Diff-APT against PT on
two targets: DoubleWell(DW)-4, a particle system in Cartesian coordinates; and ManyWell(MW)-32,
a highly multi-modal density introduced by Midgley et al. (2023). Figure 3 presents box-plots of 30
free energy estimates for DW-4 and MW-32 using 1,000 samples each.

Several key observations emerge: (1) Both CMCD-APT and Diff-APT exhibit markedly lower
variance and bias than classical PT, across both targets. (2) For CMCD/Diff-APT, the variance and
bias reduce steadily as K increases. (3) For both PT and CMCD/Diff-APT, the variance and bias

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

markedly decrease as the number of chains N increases, thereby empirically validating Proposition 1.

5
29.00

29.25

29.50

29.75

30.00

30.25

F

30
29.00

29.25

29.50

29.75

30.00

30.25

F
5163.0

163.5

164.0

164.5

165.0

165.5

166.0

F

30163.0

163.5

164.0

164.5

165.0

165.5

166.0

F

 DW4 ManyWell-32

 Number of Chains

PT K=1 CMCD-APT K=2 CMCD-APT K=5 CMCD-APT K=0 Diff-APT K=1 Diff-APT K=2 Diff-APT K=5 Diff-APT

Figure 3: Estimates of ∆F for DW4 and ManyWell-32 by PT, CMCD-APT (K = 1, 2, 5) and
Diff-APT (K = 0, 1, 2, 5) using 1,000 samples. Each box consists of 30 estimates. The black dashed
lines denotes the reference constant ∆F ≈ 29.660 estimated with PT using 60 chains and 100,000
samples and ∆F ≈ 164.696 from Midgley et al. (2023) for ManyWell-32.

6.4 COMPARING APT WITH NEURAL SAMPLERS

A significant advantage of APT is its asymptotic consistency: unlike most neural samplers, the
Metropolis correction ensures APT does not incur a bias if the neural proposal is poorly trained.
In Figure 4, we demonstrate this property for both Diff-APT and CMCD-APT. Specifically, for
CMCD-APT and Diff-APT, we take the trained model and map samples directly from the reference
distribution to the target by concatenating the learned transports between each successive pair of
intermediate distributions, labelled as CMCD and Diffusion respectively in Figure 4.

As we can see, directly using the learned neural sampler dramatically drops performance, especially
for small K. The diffusion model performs better than CMCD but still misallocates probability mass
across two modes. On the contrary, all variants of CMCD-APT and Diff-APT recover the correct
mode weights and align closely with the ground truth.

0 2 4 6 8
CMCD

0.0

0.2

0.4

0.6

De
ns

ity

0 2 4 6 8
CMCD-APT

0.0

0.2

0.4

0.6

De
ns

ity

0 2 4 6 8
Diffusion

0.0

0.2

0.4

0.6

De
ns

ity

0 2 4 6 8
Diff-APT

0.0

0.2

0.4

0.6

De
ns

ity

K=1 K=2 K=5 Ground Truth

Figure 4: Interatomic distance dij of 5,000 samples by CMCD, CMCD-APT, Diffusion, Diff-APT
with 30 chains, K = 1, 2, 5 on DW4. We take 100,000 samples by PT with 60 chains as ground truth.

6.5 ALANINE DIPEPTIDE

Table 2: PT versus CMCD-APT targeting Ala-
nine Dipeptide. We use the same metrics as
defined in Table 1.

Method Λ̂ (↓) R (↑) CN-R (↑)
CMCD-APT (K = 1) 3.23 465 232.5
CMCD-APT (K = 2) 3.15 597 199
CMCD-APT (K = 5) 3.09 627 104.5

PT 3.38 199 99.5

Finally, to provide a realistic target on which to eval-
uate APT, we take the Boltzmann distribution of
Alanine Dipeptide in Cartesian coordinates at 300K,
where we compare PT against CMCD-APT with
N = 4. This is a small molecule with 22 atoms
(66 dimensions in total) which is highly challeng-
ing to sample from, due to many prohibitive energy
barriers and high multimodality. Following the con-
vention of molecular dynamics, we take the reference
distribution to be a tempered version of the target,
corresponding to 1200K. We run each algorithm for T = 50, 000 iterations and report the results in
Table 2. We can see that CMCD-APT is able to provide significant acceleration in this realistic setting.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 CONCLUSION

In this work, we formalise a framework integrating neural samplers to improve the sample efficiency of
PT. However, several limitations, common to neural samplers, remain, including the additional burden
of well optimising a neural network which has a large impact on performance - i.e. a poorly trained
neural sampler may underperform PT. Further, while our approach accelerates PT by increasing
the round trip rate, it incurs additional neural network evaluations. This can be computationally
expensive for complex architectures. Future work should therefore develop principled criteria for
deciding when to rely on PT or accelerated PT for robustness.

REFERENCES

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nicolas
Malkin, and Alexander Tong. Iterated denoising energy matching for sampling from Boltzmann
densities. In International Conference on Machine Learning, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2024.

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport Monte Carlo. In
International Conference on Machine Learning, 2021.

Andrew J Ballard and Christopher Jarzynski. Replica exchange with nonequilibrium switches.
Proceedings of the National Academy of Sciences, 106(30):12224–12229, 2009.

Andrew J Ballard and Christopher Jarzynski. Replica exchange with nonequilibrium switches:
Enhancing equilibrium sampling by increasing replica overlap. The Journal of Chemical Physics,
136(19), 2012.

Charles H Bennett. Efficient estimation of free energy differences from Monte Carlo data. Journal of
Computational Physics, 22(2):245–268, 1976.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. Transactions on Machine Learning Research, 2024.

Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, and Nikolay Malkin. From
discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster
training. arXiv preprint arXiv:2501.06148, 2025.

Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima Anand-
kumar. Sequential controlled Langevin diffusions. In International Conference on Learning
Representations, 2025.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

Ezra Erives, Bowen Jing, Peter Holderrieth, and Tommi Jaakkola. Continuously tempered diffusion
samplers. In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025.

Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. Adaptive Monte Carlo augmented
with normalizing flows. Proceedings of the National Academy of Sciences, 119(10):e2109420 119,
2022.

Tomas Geffner and Justin Domke. Langevin diffusion variational inference. In International
Conference on Artificial Intelligence and Statistics, pp. 576–593, 2023.

Charles J Geyer. Markov chain Monte Carlo maximum likelihood. In Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, 1991.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

István Gyöngy. Existence and uniqueness results for semilinear stochastic partial differential equa-
tions. Stochastic processes and their applications, 73(2):271–299, 1998.

Aljoscha M. Hahn and Holger Then. Characteristic of Bennett’s acceptance ratio method. Physical
Review E, 80:031111, 2009.

Jiajun He, Yuanqi Du, Francisco Vargas, Yuanqing Wang, Carla P Gomes, José Miguel Hernández-
Lobato, and Eric Vanden-Eijnden. Feat: Free energy estimators with adaptive transport. arXiv
preprint arXiv:2504.11516, 2025a.

Jiajun He, Yuanqi Du, Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla
Gomes, and José Miguel Hernández-Lobato. No trick, no treat: Pursuits and challenges towards
simulation-free training of neural samplers. arXiv preprint arXiv:2502.06685, 2025b.

Jérôme Hénin, Tony Lelièvre, Michael R Shirts, Omar Valsson, and Lucie Delemotte. Enhanced
sampling methods for molecular dynamics simulations. Living Journal of Computational Molecular
Science, 4(1), 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996.

Michele Invernizzi, Andreas Kramer, Cecilia Clementi, and Frank Noé. Skipping the replica exchange
ladder with normalizing flows. The Journal of Physical Chemistry Letters, 13(50):11643–11649,
2022.

Christopher Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters,
78(14):2690, 1997.

Christopher Jarzynski. Targeted free energy perturbation. Physical Review E, 65(4):046122, 2002.

Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. Feedback-optimized
parallel tempering Monte Carlo. Journal of Statistical Mechanics: Theory and Experiment, 2006
(03):P03018, 2006.

Peter E Kloeden and Andreas Neuenkirch. The pathwise convergence of approximation schemes
for stochastic differential equations. LMS journal of Computation and Mathematics, 10:235–253,
2007.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
symmetric densities. In International Conference on Machine Learning, 2020.

Martin Lingenheil, Robert Denschlag, Gerald Mathias, and Paul Tavan. Efficiency of exchange
schemes in replica exchange. Chemical Physics Letters, 478(1-3):80–84, 2009.

Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg,
and Frank Wood. q-paths: Generalizing the geometric annealing path using power means. In
Uncertainty in Artificial Intelligence, 2021.

Bálint Máté and François Fleuret. Learning interpolations between Boltzmann densities. Transactions
on Machine Learning Research, 2023.

Alexander G. D. G. Matthews, Michael Arbel, Danilo J. Rezende, and Arnaud Doucet. Continual
repeated annealed flow transport Monte Carlo. In International Conference on Machine Learning,
2022.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and José Miguel
Hernández-Lobato. Flow annealed importance sampling bootstrap. In International Conference
on Learning Representations, 2023.

David DL Minh and John D Chodera. Optimal estimators and asymptotic variances for nonequilibrium
path-ensemble averages. The Journal of Chemical Physics, 131(13), 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Tsuneyasu Okabe, Masaaki Kawata, Yuko Okamoto, and Masuhiro Mikami. Replica-exchange
Monte Carlo method for the isobaric–isothermal ensemble. Chemical Physics Letters, 335(5-6):
435–439, 2001.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

Theodore Papamarkou, Jacob Hinkle, M Todd Young, and David Womble. Challenges in Markov
chain Monte Carlo for Bayesian neural networks. Statistical Science, 37(3):425–442, 2022.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis,
and Arnaud Doucet. Particle denoising diffusion sampler. In International Conference on Machine
Learning, 2024.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, 2015.

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. arXiv preprint
arXiv:2307.01198, 2023.

Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and MCMC
algorithms. Probability Surveys, 1:20–71, 2004.

Tim Salimans and Jonathan Ho. Should EBMs model the energy or the score? In Energy Based
Models Workshop-ICLR 2021, 2021.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Michael R Shirts, Eric Bair, Giles Hooker, and Vijay S Pande. Equilibrium free energies from
nonequilibrium measurements using maximum-likelihood methods. Physical Review Letters, 91
(14):140601, 2003.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2020.

Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, and Trevor Campbell. Parallel
tempering with a variational reference. In Advances in Neural Information Processing Systems,
2022.

Nikola Surjanovic, Miguel Biron-Lattes, Paul Tiede, Saifuddin Syed, Trevor Campbell, and Alexandre
Bouchard-Côté. Pigeons. jl: Distributed sampling from intractable distributions. arXiv preprint
arXiv:2308.09769, 2023.

Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, and Trevor Campbell. Uniform
ergodicity of parallel tempering with efficient local exploration. arXiv preprint arXiv:2405.11384,
2024.

Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. Physical
Review Letters, 57:2607–2609, 1986.

Saifuddin Syed, Vittorio Romaniello, Trevor Campbell, and Alexandre Bouchard-Côté. Parallel
tempering on optimized paths. In International Conference on Machine Learning, 2021.

Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Non-
reversible parallel tempering: a scalable highly parallel MCMC scheme. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(2):321–350, 2022.

Saifuddin Syed, Alexandre Bouchard-Côté, Kevin Chern, and Arnaud Doucet. Optimised annealed
sequential Monte Carlo samplers. arXiv preprint arXiv:2408.12057, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

Luke Tierney. A note on Metropolis-Hastings kernels for general state spaces. The Annals of Applied
Probability, 8(1):1 – 9, 1998.

Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations:
Improving convergence by reducing dissipation. Physical Review Letters, 100(19):190601, 2008.

Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations. The
Journal of chemical physics, 134(5), 2011.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In International
Conference on Learning Representations, 2023.

Francisco Vargas, Nikolas Nüsken, Shreyas Padhy, and Denis Blessing. Transport meets varia-
tional inference: Controlled Monte Carlo diffusions. In International Conference on Learning
Representations, 2024.

Xinyan Wang, Jichen Li, Lan Yang, Feiyang Chen, Yingze Wang, Junhan Chang, Junmin Chen, Wei
Feng, Linfeng Zhang, and Kuang Yu. Dmff: an open-source automatic differentiable platform
for molecular force field development and molecular dynamics simulation. Journal of Chemical
Theory and Computation, 19(17):5897–5909, 2023.

Dawn B Woodard, Scott C Schmidler, and Mark Huber. Conditions for rapid mixing of parallel
and simulated tempering on multimodal distributions. The Annals of Applied Probability, 19(2):
617–640, 2009.

Darrin M York. Modern alchemical free energy methods for drug discovery explained. ACS Physical
Chemistry Au, 3(6):478–491, 2023.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling.
In International Conference on Machine Learning, 2022.

Robert W Zwanzig. High-temperature equation of state by a perturbation method. i. nonpolar gases.
The Journal of Chemical Physics, 22(8):1420–1426, 1954.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF ACCELERATED PT

A.1 FURTHER DETAILS OF ROUND TRIPS

Consider the APT Markov chain Xt = (X0
t , . . . , X

N
t) constructed by Algorithm 1. Assume there are

m = 0, . . . , N parallel threads, each storing a component of Xt at time t. During the communication
step, it is equivalent to swap indices rather than states. This has computational advantages in a
distributed implementation of PT since swapping states across machines incurs a cost of O(d)
compared to the O(1) cost of swapping indices. By tracking how the indices are shuffled, we can
recover the PT state and also track the communication between reference and target through the
dynamics of the permutated indices. See (Syed et al., 2022; Surjanovic et al., 2023, Algorithm 5) for
details on implementing PT with a distributed implementation.

Summarising Syed et al. (2022), we define the index process (It, ϵt) where It = (I0t , . . . , I
N
t) is a

sequence of permutations of [N] = {0, . . . , N} that tracks the underlying communication of states in
Xt, and ϵt = (ϵ0t , . . . , ϵ

N
t) with ϵmt ∈ {−1, 1} tracks the direction of the swap proposal on machine

m.

We initialize Im0 = m and ϵm0 = −1 if m is even and ϵm0 = 1 if m is odd. The subsequent values
of It are then determined by the swap moves. At iteration t of PT, we apply the same swaps to the
components of It that are proposed and accepted during the communication phase. As discussed in
Syed et al. (2022), for non-reversible communication, Imt and ϵmt satisfy the recursion:

Imt =

{
Imt−1 + ϵmt−1, if S

Im
t−1∨Im

t−1+ϵmt−1

t = 1

Imt−1, if S
Im
t−1∨Im

t−1+ϵmt−1

t = 0
,

ϵmt =

{
ϵmt−1, if Imt = Imt−1 + ϵmt−1

−ϵmt−1, if Imt = Imt−1

.

Here Sn
t = 1 if the n-th swap at time t was accepted and Sn

t = 0 otherwise.

Hence, for a realization of Xt with T steps, we define the round trips for index n ∈ [N] as the number
of times the index n in It completes the journey from the 0-th component to the N -th component and
then back to the 0-th component—i.e., completes the round trip from the reference to the target and
back again.

For m ∈ [N], let Tm
↓,0 := inf{t : (Imt , ϵmt) = (0,−1)} and for j ≥ 1 define Tm

↑,j and Tm
↓,j recursively

as follows:

Tm
↑,j = inf{t > Tm

↓,j−1 : (Imt , ϵ
m
t) = (N, 1)},

Tm
↓,j = inf{t > Tm

↑,j : (I
m
t , ϵ

m
t) = (0,−1)}.

Notably, Tm
↓,j represents the j-th time the index for machine m has traversed from 0 to N and back to

0, thus defining a round trip. A round trip indicates that a sample on machine m from the reference
propagated a reference sample to the target independent of previously visited target states on the same
machine. Let Rm

T = max{j : Tm
↓,j ≤ T} denote the number of round trips that occur on machine m

by iteration T . The overall round trips count is then defined as the sum of round trips over all index
values: RT =

∑N
m=0R

m
T . Finally, the empirical round trip rate τT = RT /T represents the fraction

of PT iterations during which a round trip occurred, and our objective is to maximise the expected
round trip rate τ as T →∞:

τ := lim
T→∞

E[τT] = lim
T→∞

E[RT]

T
.

A.2 PROOF OF THEOREM 1

A.2.1 PROOF OF ERGODICITY (THEOREM 1, PART 1)

Proof. At stationary, we have (Xn−1
t , Xn

t) ∼ πn−1 ⊗ πn. We next simulate the two paths
⇀

Xn−1
t,0:K =

(
⇀

Xn−1
t,0 , . . . ,

⇀

Xn−1
t,K) and

↼

Xn
t,0:K = (

↼

Xn
t,0, . . . ,

↼

Xn
t,K) as described in Section 3 and calculate the

acceptance probability
α = αn

K(
⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

given in Section 3.2. The new states X̂n−1
t , X̂n

t are determined by

(X̂n−1
t , X̂n

t) =

{
(

↼

Xn
t,0,

⇀

Xn−1
t,K) with probability α,

(
⇀

Xn−1
t,0 ,

↼

Xn
t,K) with probability 1− α.

We would like to prove that the swap operation keeps the target distribution invariant, that is, for any
real-valued test function φ we have

E
[
φ(X̂n−1

t , X̂n
t)
]
= E

[
φ(Xn−1

t , Xn
t)
]
. (8)

One way to do this is to consider the extended target distribution
⇀

Xn−1
t,0:K ⊗

↼

Xn
t,0:K ∼ Pn−1

K (dxn−1
0:K)⊗Qn

K(dxn0:K)

and the involution
T(x0:K , y0:K) = (y0:K , x0:K)

and to apply an instance of MCMC algorithms with a deterministic proposal (Tierney, 1998), here
given by T. For completeness we give a self-contained proof. Write

E
[
φ(X̂n−1

t , X̂n
t)
]
= E

[
φ(

↼

Xn
t,0,

⇀

Xn−1
t,K)α+ φ(

⇀

Xn−1
t,0 ,

↼

Xn
t,K)(1− α)

]
= E

[
φ(Xn−1

t , Xn
t)
]
− E

[
φ(

⇀

Xn−1
t,0 ,

↼

Xn
t,K)α

]
+

+ E
[
φ(

↼

Xn
t,0,

⇀

Xn−1
t,K)α

]
.

To arrive at Equation (8) we need to show that

EP⊗Q

[
φ ◦ ψ(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)α

]
= EP⊗Q

[
φ ◦ ψ(

↼

Xn
t,0:K ,

⇀

Xn−1
t,0:K)α

]
(9)

where ψ(x0:K , y0:K) := (x0, yK) and the notation EP⊗Q means that the expectation is taken with
respect to Pn−1

K (dxn−1
0:K)⊗Qn

K(dxn0:K). Noting that

α = αn
K(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K) = 1 ∧

dQ/dP(
⇀

Xn−1
t,0:K)

dQ/dP(
↼

Xn
t,0:K)

we write

EP⊗Q

[
φ ◦ ψ(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)α

]
= EQ⊗P

[
φ ◦ ψ(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)α

dP⊗Q
dQ⊗ P

(
⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)

]
= EQ⊗P

[
φ ◦ ψ(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)α

dQ/dP(
↼

Xn
t,0:K)

dQ/dP(
⇀

Xn−1
t,0:K)

]

= EQ⊗P

[
φ ◦ ψ(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)

{
dQ/dP(

↼

Xn
t,0:K)

dQ/dP(
⇀

Xn−1
t,0:K)

∧ 1

}]

= EP⊗Q

[
φ ◦ ψ(

↼

Xn
t,0:K ,

⇀

Xn−1
t,0:K)

{
dQ/dP(

⇀

Xn−1
t,0:K)

dQ/dP(
↼

Xn
t,0:K)

∧ 1

}]
= EP⊗Q

[
φ ◦ ψ(

↼

Xn
t,0:K ,

⇀

Xn−1
t,0:K)α

]
.

Thus Equation (9) is established.

Finally, the accelerated-PT Markov chain is aperiodic because the swaps can be rejected. The chain
is clearly irreducible if each exploration kernel is irreducible. (In fact it can be proved, using more
complicated arguments, that the chain is irreducible if the exploration kernel for the reference is
irreducible and, for all n, the two distributions Pn−1

K and Qn
K are mutually absolutely continuous.)

By Roberts & Rosenthal (2004, Theorem 4, Fact 5), the Markov chain is ergodic and in particular the
law of large numbers hold.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 PROOF OF REJECTION RATE (THEOREM 1, PART 2)

Proof. The rejection rate at stationary is defined as

r(Pn−1
K ,Qn

K) := EP⊗Q

[
1− αn

K(
⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K)

]
(10)

where EP⊗Q is a shorthand for the expectation under Pn−1
K ⊗Qn−1

K and the acceptance ratio αn
K is

given by

αn
K(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K) := 1 ∧

dQn
K/dP

n−1
K (

⇀

Xn−1
t,0:K)

dQn
K/dP

n−1
K (

↼

Xn
t,0:K)

= 1 ∧
d(Qn

K ⊗ Pn−1
K)

d(Pn−1
K ⊗Qn

K)
(

⇀

Xn−1
t,0:K ,

↼

Xn
t,0:K). (11)

From Equation (10), Equation (11), and Lemma 1 below we have

r(Pn−1
K ,Qn

K) = ∥Pn−1
K ⊗Qn

K −Qn
K ⊗ Pn−1

K ∥TV.

Lemma 1. Let µ1 and µ2 be two mutually absolutely continuous measures. Then

∥µ1 − µ2∥TV = Eµ1

[
1−min

(
1,

dµ2

dµ1

)]
.

Proof. Recall the definition of the TV distance

∥µ1 − µ2∥TV := sup
h:X→[0,1]

|Eµ1
[h]− Eµ2

[h] |.

First, we remark that the absolute value in the definition can be omitted since

∥µ1 − µ2∥TV = sup
h:X→[0,1]

max (Eµ1
[h]− Eµ2

[h] ,Eµ2
[h]− Eµ1

[h])

= sup
h:X→[0,1]

max (Eµ1
[h]− Eµ2

[h] ,Eµ1
[1− h]− Eµ2

[1− h])

= sup
h:X→[0,1]

Eµ1
[h]− Eµ2

[h] .

Therefore

∥µ1 − µ2∥TV = sup
h:X→[0,1]

Eµ1

[
h ·
(
1− dµ2

dµ1

)]
≤ sup

h:X→[0,1]

Eµ1

[
h ·
(
1−min

(
1,

dµ2

dµ1

))]
≤ Eµ1

[
1−min

(
1,

dµ2

dµ1

)]
.

(12)

On the other hand, let B := {x ∈ X such that dµ2/dµ1(x) ≤ 1} and put h∗(x) := 1B(x). Using

h∗(x) = 1−min

(
1,

dµ2

dµ1
(x)

)
+

dµ2

dµ1
(x)1B(x)

write

∥µ1 − µ2∥TV ≥ Eµ1 [h
∗]− Eµ2 [h

∗]

= Eµ1

[
1−min

(
1,

dµ2

dµ1

)]
+ Eµ1

[
dµ2

dµ1
1B

]
− Eµ2

[1B]

= Eµ1

[
1−min

(
1,

dµ2

dµ1

)]
.

(13)

Combining Equation (12) and Equation (13) we get the desired result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2.3 PROOF OF PROPOSITION 1

Proof. We will show the consistency of the expectation and free energy estimator separately. By
Theorem 1, the PT chain Xt = (X0

t , . . . , X
N
t) is ergodic with stationary distribution π0 ⊗ · · · ⊗ πN .

By the ergodic theorem, we have

π̂n
T [f] =

1

T

T∑
t=1

f(Xn
t)

a.s.−−−−→
T→∞

πn[f].

We will now show the consistency of the free energy estimator. By definition of Wn
K in Equation (3),

we can write ∆Fn in terms of expectations of Wn
K and the Radon-Nikodym derivative between Pn−1

K
and Qn

K respectively:
Zn

Zn−1

dQn
K

dPn−1
K

= wn
K ,

Zn−1

Zn

dPn−1
K

dQn
K

=
1

wn
K

.

By taking expectations of the left and right expressions with respect to Pn−1
K and Qn

K respectively,
and taking the product over n = 1, . . . , N , we obtain the following expressions for Z and Z−1

respectively:

Z =

N∏
n=1

Pn−1
K [wn

K] , Z−1 =

N∏
n=1

Qn
K

[
(wn

K)−1
]
. (14)

Since Xt is ergodic,
⇀

ZT and
↼

ZT are consistent estimators for Z respectively. Therefore ẐT =

(
⇀

ZT

↼

ZT)
1/2 is consistent as well. Finally, note that if Pn−1

K = Qn
K , then wn

K(x0:K)
a.s.
= Zn/Zn−1,

and hence
⇀

ZT =
↼

ZT
a.s.
= Z.

A.3 ACCELERATED PT AS VANILLA PT ON EXTENDED SPACE

In this section we establish the theoretical relationship between accelerated PT and vanilla PT. We
state an equivalence between accelerated PT and a particular vanilla PT problem which “linearises” it.
More concretely, we define a sequence of distributions π0

ex, . . . , π
N
ex supported on an extended space,

such that if we run vanilla PT on it, we obtain the same round trip rate as if we ran accelerated PT on
π0, . . . , πN .

We consider the case K = 1 and simplify the notations of forward and backward kernels to
Pn(xn−1, dxn) and Qn−1(xn, dxn−1). This does not incur any loss of generality since conceptually
multiple Markov steps can be collapsed into one.

Given a sequence of distributions π0, . . . , πN each supported on X , define the distributions πn
ex as:

πn
ex(dx

0, . . . ,dxN) := πn(dxn)
∏

i≥n+1

P i(xi−1, dxi)
∏

j≤n−1

Qj(xj+1, dxj). (15)

In particular we stress that the distributions πn
ex are supported on XN and not X .

The following proposition establishes the isometry between accelerated PT on π1, . . . , πN and vanilla
PT on π1

ex, . . . , π
N
ex. Recall that we use r(µ1, µ2) to denote the rejection between two distributions

µ1 and µ2.
Proposition 4. For all 1 ≤ n ≤ N , we have r(πn−1 × Pn, Qn−1 × πn) = r(πn−1

ex , πn
ex).

Proof. Since the rejection rate only depends on the Randon-Nikodym derivative, it suffices to verify
that

dπn−1
ex

dπn
ex

(x0, . . . , xN) =
d(πn−1 × Pn)

d(Qn−1 × πn)
(xn−1, xn)

which is straightforward from Equation (15).

This proposition shows that Accelerated PT outperforms traditional PT in two ways:

• First, while traditional PT bridges π0 and πN , accelerated PT bridges π0
ex and πN

ex which
can be much closer to each other if the forward and backward kernels are good;

• In addition, accelerated PT inserts N − 1 distributions between π0
ex and πN

ex.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 PARALLELISM VERSUS ACCELERATION TIME

Given two distributions πn−1 and πn, should we apply K-step forward and backward kernels; or
insert K − 1 intermediate distributions (πn−1,k)K−1

k=1 and use only one-step forward and backward
kernels instead?

By Proposition 2, the inverse of the local round trip rate between πn−1 and πn for the first method
(time-accelerated) is

τ−1
TA := 2 + 2

r(Pn−1
K ,Qn

K)

1− r(Pn−1
K ,Qn

K)
.

The inverse of the local round trip rate between πn−1 and πn for the second method (parallel-
accelerated) is

τ−1
PA := 2 + 2

K∑
k=1

r(πn−1,k−1 × Pn−1
k , Qn

k−1 × πn−1,k)

1− r(πn−1,k−1 × Pn−1
k , Qn

k−1 × πn−1,k)

where we make the convention πn−1,0 ≡ πn−1 and πn−1,K ≡ πn.

The following proposition analyses these local rates for both methods. As in Section A.3, the main
idea is to find a vanilla PT equivalent for both algorithms. We define

τ−1
VA (µ0, . . . , µK) := 2 +

K∑
k=1

r(µk−1, µk)

1− r(µk−1, µk)

as the inverse round trip rate of a vanilla PT algorithm on a sequence of distributions µ0, . . . , µK .

Proposition 5. Define the sequence of distributions (Sk)Kk=0 as

Sk(dx0, dx1, . . . ,dxK) := πn−1,k(dxk) ×
∏

i≥k+1

Pn−1
i (xi−1, dxi)

∏
j≤k−1

Qn
j (xj+1, dxj).

Then the following equalities hold

τTA = τVA(S0, SK) (16)
τPA = τVA(S0, S1, . . . ,SK). (17)

Proof. The first point is straightforward. To show the second point, we need to check that

r(πn−1,k−1 × Pn−1
k , Qn

k−1 × πn−1,k) = r(Sk−1, Sk).

Note that the rejection rates only depend on the Radon-Nikodym derivatives, so it suffices to verify
that

dSk
dSk−1

(x0, x1, . . . , xK) =
d(Qn

k−1 × πn−1,k)

d(πn−1,k−1 × Pn−1
k)

(xk−1, xk)

which is straightforward from the definition of (Sk)Kk=0.

This proposition shows that it is preferable to use the parallel-accelerated method, as the quantity
in Equation (17) is generally greater than that of Equation (16) thanks to the effect of the bridge
between S0 and SK . However, in practice the time-accelerated method consumes less memory and
so might be more suitable in certain circumstances.

B FURTHER DETAILS ON ANALYSIS OF PT

B.1 PROOF OF PROPOSITION 2

Let Sn
t be the indicator random variable with Sn

t = 1 if the n-th swap is proposed and accepted at
iteration t, and Sn

t = 0 otherwise. By Assumption 1, the random variables Sn
t are i.i.d. in t with

Sn
1 , S

n
2 , . . .

d
= Bernoulli(sn), where sn := 1− r(Pn−1,Qn). This implies that the index processes

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(Imt , ϵ
m
t) form Markov chains on {0, . . . , N}×{−1, 1}with initial conditions Im0 = m and ϵm0 = −1

when m is even, ϵm0 = 1 when m is odd. For t ≥ 1, each process satisfies the following recursion:

Imt ∼

{
Imt−1 + ϵmt−1, with probability sIm

t−1∨(Im
t−1+ϵmt−1)

Imt−1, with probability 1− sIm
t−1∨(Im

t−1+ϵmt−1)
, (18)

ϵmt =

{
ϵmt−1, if Imt = Imt−1 + ϵmt−1

−ϵmt−1, if Imt = Imt−1

. (19)

The remainder of the proof follows identically to (Syed et al., 2022, Corollary 2).

B.2 PROOF OF PROPOSITION 3

We first spell out the full statement of Proposition 3.

Proposition. Suppose that Pn−1
K and Qn

K arise as K-step Euler-Maruyama discretizations of the
following SDEs respectively

d
⇀

Xn−1
t = f(t,

⇀

Xn−1
t)dt+ σdBt, (20)

d
↼

Xn
t = b(t,

↼

Xn
t)dt+ σdBt, (21)

where the second integral is integrated backwards in time. Assume that f(t, ·) and f(·, x) are
Lipschitz for all t and x with a global constant; and that the same holds for b. Moreover, suppose that
there exists a G ≥ 0 such that ||f(t, x)||+ ||b(t, x)|| ≤ G(1 + ||x||). Then

lim
K→∞

r(Pn−1
K ,Qn

K) = r(Pn−1
∞ ,Qn

∞) (22)

and
r(Pn−1

K ,Qn
K) ≤ r(Pn−1

∞ ,Qn
∞) +O(1√

K
) (23)

where r(p, q) = ∥p × q − q × p∥TV and Pn−1
∞ and Qn

∞ are respectively the full path measures of
Equation (20) and Equation (21).

Proof. Let Pn−1
∞|K and Qn

∞|K be the restrictions of the path measures Pn−1
∞ and Qn

∞ to the time
discretization points. (As such, Pn−1

∞|K and Qn
∞|K are defined on the same space as Pn−1

K and Qn
K .)

We have

|r(Pn−1
K ,Qn

K)− r(Pn−1
∞|K ,Q

n
∞|K)| ≤ 2

(
∥Pn−1

K − Pn−1
∞|K∥TV + ∥Qn

K −Qn
∞|K∥TV

)
≤ O(1/

√
K)

(24)

where the first inequality is elementary and the second follows from Proposition 6. By data processing
inequality

r(Pn−1
∞|K ,Q

n
∞|K) ≤ r(Pn−1

∞ ,Qn
∞). (25)

Equation (24) and Equation (25) establish Equation (23). On the other hand, putting

RK(xk) :=
d(Qn

K × Pn−1
K)

d(Pn−1
K ×Qn

K)
(xk);

R∞(x∞) :=
d(Qn

∞ × Pn−1
∞)

d(Pn−1
∞ ×Qn

∞)
(x∞);

φ(α) := 1−min(1, α)

we have by Lemma 1
r(Pn−1

K ,Qn
K) = EPn−1

K ×Qn
K
[φ ◦RK]. (26)

Since φ(α) ∈ [0, 1] the definition of the total variation distance implies∣∣∣EPn−1
K ×Qn

K
[φ ◦RK]− EPn−1

∞|K×Qn
∞|K

[φ ◦RK]
∣∣∣ ≤ O(1/√K). (27)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In addition let DK : C[0, 1]→ (Rd)K+1 be the discretisation operator which takes a continuous path
x∞ and extract its values at K + 1 discretisation points. Then

EPn−1
∞|K×Qn

∞|K
[φ ◦RK] = EPn−1

∞ ×Qn
∞
[φ ◦RK ◦DK]

K→∞−→ EPn−1
∞ ×Qn

∞
[φ ◦R∞] = r(Pn−1

∞ ,Qn
∞)

(28)

by dominated convergence theorem, taking into account the pathwise convergence of the Euler-
Maruyama schemes (Kloeden & Neuenkirch (2007); Gyöngy (1998), see also Berner et al. (2025,
Lemma B.7.a)). Equation (26), Equation (27), and Equation (28) entail Equation (22), finishing the
proof.

Proposition 6. Let (Xt)t∈[0,1] be the solution of an SDE of the form

dXt = b(t,Xt)dt+ σdBt, (29)

where we assume that b(t, ·) is L-Lipschitz continuous for all t and that b(·, x) is B-Lipschitz
continuous for all x. We also assume a linear growth condition of the form ∥b(t, x)∥ ≤ G(1 + ∥x∥).
Consider the K-step Euler-Maruyama discretization X̂t0 , X̂t1 , . . . , X̂tK where tk = k/K. Let P∞
be the path-measure of the process (Xt)t∈[0,1], P∗

K be the law of Xt0 , . . . , XtK , and PK be the law
of X̂t0 , . . . , X̂tK . Then

∥P∗
K − PK∥TV ∈ O(

1√
K

).

Proof. Consider the continuous-time extension (X̂t)t∈[0,1] of the K-step Euler-Maruyama discretiza-
tion of the SDE in Equation (29) given by

dX̂t = b(tk, X̂tk)dt+ σdBt, t ∈ [tk, tk+1).

We use P̂∞ = P̂(K)
∞ to denote its path-measure. By Pinsker’s inequality

∥P∗
K − PK∥TV ≤

√
1

2
KL(P∗

K∥PK).

By the data-processing inequality and Girsanov’s theorem, we have that

KL(P∗
K∥PK) ≤ KL(P∞∥P̂∞) =

1

2σ2

K−1∑
k=0

∫ tk+1

tk

E∥b(t,Xt)− b(tk, Xtk)∥2dt.

By the Lipschitz continutity of b, we have the following bound

E∥b(t,Xt)− b(tk, Xtk)∥2 ≤ 2E∥b(t,Xt)− b(t,Xtk)∥2 + 2E∥b(t,Xtk)− b(tk, Xtk)∥2

≤ 2L2E∥Xt −Xtk∥2 + 2B2(t− tk)2E∥Xtk∥2.

By the Cauchy-Schwarz inequality, the fact that Bt −Btk ∼ N (0, (t− tk)Id) and the linear growth
assumption, we obtain

E∥Xt −Xtk∥2 = E
∥∥∥∥∫ t

tk

b(s,Xs)ds+ σ(Bt −Btk)

∥∥∥∥2
≤ 2(t− tk)

∫ t

tk

E ∥b(s,Xs)∥2 ds+ 2dσ2(t− tk)

≤ 2G(t− tk)
∫ t

tk

E(1 + ∥Xs∥)2ds+ 2dσ2(t− tk)

≤ 4G(t− tk)
∫ t

tk

(1 + E∥Xs∥2)ds+ 2dσ2(t− tk)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

It is well known that under the assumptions in the proposition, there exists a constant M (independent
of K) such that E∥Xt∥2 ≤M for all t. Putting all of this together, we have shown that

E∥b(t,Xt)− b(tk, Xtk)∥2 ≤ 8GL2(1 +M)(t− tk)2 + 4dσ2L2(t− tk) + 2MB2(t− tk)2.

Summing over k and integrating, this yields

1

2σ2

K−1∑
k=0

∫ tk+1

tk

E∥b(t,Xt)− b(tk, Xtk)∥2dt

≤ 1

2σ2

K−1∑
k=0

8

3
GL2(1 +M)(tk+1 − tk)3 + 2dσ2L2(tk+1 − tk)2 +

2

3
MB2(tk+1 − tk)3

≤ 4

3σ2
GL2(1 +M)

1

K2
+ dL2 1

K
+

1

3σ2
MB2 1

K2
.

Therefore

∥P∗
K − PK∥TV ∈ O(1/

√
K).

We verify this result in practice by plotting the TV distance between PK and P∞ for the Orn-
stein–Uhlenbeck process in 1 dimension.

B.3 FURTHER DETAILS ON SCALING WITH PARALLEL CHAINS

B.3.1 REGULARITY ASSUMPTIONS

Suppose πβ(x) = exp(−Uβ(x))/Zβ , where Zβ =
∫
X exp(−Uβ(x))dx. For β = (β, β′), suppose

Pβ
K(dx0:K) and Qβ

K(dx0:K) are mutually absolutely continuous path measures on XK+1 with
marginals Pβ(x0) = πβ(dx0), and Qβ(dxK) = πβ′

(dxK) with weight functional wβ : XK+1 7→
R,

wβ(x0:K) =
Zβ′

Zβ

dQβ

dPβ
(x0:K),

We will make the following regularity assumptions on Pβ and Qβ analogous to Assumptions 5–7 in
Syed et al. (2024). Suppose there exists F = (Fi)i∈N of a nested sequence F0 ⊂ F1 ⊂ · · · of vector
spaces of measurable function f : XK+1 → R, such that (1) Fi contains the constant functions, and
(2) Fi is closed under domination, i.e., if g is a measurable function such that |g| ≤ |f | for some
f ∈ Fi, then g ∈ Fi.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Assumption 2. For i = 0, 1, 2, and β 7→ Pβ[f] and β 7→ Qβ[f] are i-times continuously differen-
tiable for all f ∈ Fi, there exists signed-measures ∂iβPβ and ∂iβQβ integrable over Fi such that for
all f ∈ Fi,

∂iβPβ[f] = ∂iβ(Pβ[f]), ∂iβQβ[f] = ∂iβ(Qβ[f]).

Assumption 3. β 7→Wβ is 2-times continuously differentiable, and for i = 0, 1, 2 and i1, . . . , ij ≥ 1

and i1 + · · ·+ ij = i, we have W̄i1 · · · W̄ij ∈ F3−i, where W̄i = supβ

∣∣∣∂iβWβ
∣∣∣.

Assumption 4. For all β we have Pβ := Pβ,β = Qβ,β =: Qβ .
Lemma 2. Let gβ : XK+1 ×XK+1 → R,

• β 7→ gβ(x0:K , x0:K) is continuously differentiable,

• x0:K 7→ gβ(x0:K , x
′
0:K) and x′0:K 7→ gβ(x0:K , x

′
0:K) are in F1,

• x0:K 7→ ∂βg
β(x0:K , x

′
0:K) and x′0:K 7→ ∂βg

β(x0:K , x
′
0:K) are in F0.

Then β 7→ Pβ ⊗Qβ[gβ] is continuously differentiable with derivative,

∂β(Pβ ⊗Qβ[gβ]) = ∂βPβ ⊗Qβ[g] + Pβ ⊗ ∂βQβ[g] + Pβ ⊗Qβ[∂βg
β].

Proof. For notational convenience we denote x := x0:K and x′ := x0:K . Given x ∈ XK+1 let
gβx : XK+1 → R be the marginal gβx (x

′) = g(x, x′) and let qβ : XK+1 → R denote the expectation
of gβx with respect to Qβ, i.e. qβ(x) = Qβ[gβx]. By product rule for measure-valued derivatives, we
have for all x, β 7→ qβ(x) is continuously differentiable with derivative,

∂βq
β(x) = ∂β(Qβ[gβx])

= ∂βQβ[gβx] +Qβ[∂βg
β
x].

by taking expectation of both sides with respect to Pβ and using Fubini’s theorem we have

Pβ[∂βq
β] = Pβ ⊗ ∂βQβ[gβ] + Pβ ⊗Qβ[∂βg

β].

Again, using the product rule for measure-valued derivatives,

∂β(Pβ ⊗Qβ[gβ]) = ∂β(Pβ[qβ])

= ∂βPβ[qβ] + Pβ[∂βq
β].

The result follows by noting that ∂βPβ[qβ] = ∂βPβ ⊗Qβ[gβ] by Fubini’s theorem.

B.3.2 PROOF OF THEOREM 2

For β = (β, β′) recall the rejection rate can be expressed as r(Pβ,Qβ) = 1− Pβ ⊗Qβ[αβ], where
Pβ ⊗Qβ is a measure over XK+1 ×XK+1 is the product between the forward and backwards paths,

Pβ ⊗Qβ(dx0:K , dx
′
0:K) := Pβ(dx0:K)Qβ(dx′0:K),

αβ : XK+1 ×XK+1 → [0, 1] is the acceptance probability for swap proposed,

αβ(x0:K , x
′
0:K) = min

{
1,
wβ

K(x0:K)

wβ
K(x′0:K)

}
= exp

(
min

{
0,∆Wβ

K(x0:K , x
′
0:K)

})
where ∆Wβ : XK+1 ×XK+1 → R is the change in log-weight Wβ(x0:K) := logwβ(x0:K),

wβ(x0:K , x
′
0:K) :=Wβ(x0:K)−Wβ(x′0:K)

Lemma 3. Suppose Assumptions 2–4 hold. For all β = (β, β′) with ∆β = β′ − β > 0, exists a
constant C > 0 independent of β such that,∣∣∣∣∣r(Pβ,Qβ)−

∫ β′

β

λbdb

∣∣∣∣∣ ≤ C∆β2.

where λβ := 1
2P

β ⊗ Qβ [|∆Ẇ β |] and ∆Ẇ β := limβ′→β ∂β′∆Wβ. Moreover, λβ is continuously
differentiable in β.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Given an annealing schedule 0 = β0 < · · · < βN = 1, let βn = (βn−1, βn) and ∆βn = βn − βn−1.
It follows from Lemma 3 that the sum of the rejection satisfies,∣∣∣∣∣

N∑
n=1

r(Pβn ,Qβn)− Λ

∣∣∣∣∣ ≤ C
N∑

n=1

∆β2
n ≤ Cmax

n≤N
|∆βn|.

Therefore as N →∞ and maxn≤N |∆βn| → 0 we have the sum of the rejection rates converge to Λ.

For the same annealing schedule define τN (β0:N) as

τN (β0:N) :=

(
2 + 2

N∑
n=1

r(Pβn ,Qβn)

1− r(Pβn ,Qβn)

)−1

By Lemma 3 we have,

r(Pβn ,Qβn) ≤ r(Pβn ,Qβn)

1− r(Pβn ,Qβn)
≤ r(Pβn ,Qβn)

1−maxn≤N r(Pβn ,Qβn)
≤ r(Pβn ,Qβn)

1− supβ λβ maxn≤N |∆βn|
.

Therefore, by taking the sum over n and using the squeeze theorem, we have in the limit N →∞
and maxn≤N |∆βn| → 0,

lim
N→∞

N∑
n=1

r(Pβn ,Qβn)

1− r(Pβn ,Qβn)
= Λ

and hence limN→∞ τN (β0:N) = (2 + 2Λ)−1, which completes the proof.

Proof of Lemma 3. Since β 7→Wβ is twice differentiable, we have that β 7→ αβ is twice differen-
tiable when ∆Wβ ̸= 0, with first-order partial derivatives with respect to β′:

∂β′αβ = ∂β′∆Wβ exp(∆Wβ)1[∆Wβ < 0],

and the second-order partial derivative with respect to β′:

∂2β′αβ = [∂2β′∆Wβ + (∂β′∆Wβ)2] exp(∆Wβ)1[∆Wβ < 0].

By Taylor’s theorem, for ∆β > 0, we have

αβ = 1 + α̇β∆β + ϵβ,

where α̇β = limβ′→β+ ∂β′αβ and |ϵβ| ≤ 1
2 supβ |∂

2
β′αβ|∆β2. Therefore, the rejection rate equals:

r(Pβ,Qβ) = −Pβ ⊗Qβ[α̇β]∆β − Pβ ⊗Qβ[ϵβ]. (30)

We will first approximate the first term in Equation (30). Note that since ∆W β = 0 and ∂β′∆Wβ =

limβ′→β ∆W
β/∆β =: ∆Ẇβ, we have that α̇β satisfies:

α̇β = lim
β′→β

∂β′∆Wβ exp(∆Wβ)1

[
∆Wβ

∆β
< 0

]
= ∆Ẇ β1[∆Ẇ β < 0]

= −|∆Ẇ β |1[∆Ẇ β < 0].

We can bound α̇β uniformly in β in terms of W̄1:

|α̇β(x0:K , x
′
0:K)| ≤ |Ẇ β(x0:K)− Ẇ β(x′0:K)|

≤ W̄1(x0:K) + W̄1(x
′
0:K)

:= W̄1 ⊕ W̄1(x0:K , x
′
0:K).

It follows from Lemma 2 that β′ 7→ Pβ ⊗Qβ[α̇β] is differentiable in β′. By Lemma 2 and the mean
value theorem, there exists β̃ = (β, β̃′) with β ≤ β̃′ ≤ β′ such that

Pβ ⊗Qβ[α̇β]− Pβ ⊗Qβ [α̇β]

∆β
= ∂β′(Pβ ⊗Qβ[α̇β])|β=β̃

= ∂β′Pβ ⊗Qβ[α̇β]|β=β̃ + Pβ ⊗ ∂β′Qβ[α̇β]|β=β̃.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Using the triangle inequality and |α̇β | ≤ W̄1 ⊕ W̄1, we have:∣∣∣∣Pβ ⊗Qβ[α̇β]− Pβ ⊗Qβ [α̇β]

∆β

∣∣∣∣ ≤ sup
β
|∂β′Pβ| ⊗Qβ[W̄1 ⊕ W̄1]

+ sup
β

Pβ ⊗ |∂β′Qβ|[W̄1 ⊕ W̄1]

= sup
β

(
|∂β′Pβ|[1]Qβ[W̄1] + |∂β′Pβ|[W̄1]Qβ[1]

)
+ sup

β

(
Pβ[1]|∂β′Qβ|[W̄1] + Pβ[W̄1]|∂β′Qβ|[1]

)
.

Since 1 and W̄1 are in F1, we have that each of the terms on the right-hand side is continuous and
hence by the extreme value theorem, there exists C1 such that

|Pβ ⊗Qβ[α̇β]− Pβ ⊗Qβ [α̇β]| ≤ C1∆β.

For the second term in Equation (30), we have

|Pβ ⊗Qβ[ϵβ]| ≤ ∆β2

2
Pβ ⊗Qβ[sup

β
|∂2β′αβ|]

≤ ∆β2

2
Pβ ⊗Qβ[W̄2 ⊕ W̄2 + (W̄1 ⊕ W̄1)

2]

≤ ∆β2

2
sup
β

Pβ ⊗Qβ[W̄2 ⊕ W̄2 + (W̄1 ⊕ W̄1)
2]

:= C2∆β
2,

where W̄2 ⊕ W̄2(x0:K , x
′
0:K) := W̄2(x0:K) + W̄2(x

′
0:K). Assumption 2 guarantees that the expec-

tation in the second-to-last line is continuous in β, and hence C2 is finite. Next, we note that since
|∆Ẇ β(x0:K , x

′
0:K)| = |∆Ẇ β(x′0:K , x0:K)| is symmetric and Pβ = Qβ , we have:

Pβ ⊗Qβ [α̇β] = Pβ ⊗Qβ [−|∆Ẇ β |1[∆Ẇ β < 0]]

= −1

2
Pβ ⊗Qβ [|∆Ẇ β |]

= −λβ .

By Lemma 2, β 7→ λβ is continuously differentiable. Since λβ∆β is a right Riemann sum for the
integral of λβ with error:∣∣∣∣∣λβ∆β −

∫ β′

β

λb db

∣∣∣∣∣ = 1

2
sup
β′

∣∣∣∣dλβdβ

∣∣∣∣∆β2 =: C3∆β
2.

Finally, by the triangle inequality:∣∣∣∣∣r(Pβ,Qβ)−
∫ β′

β

λb db

∣∣∣∣∣ ≤ C∆β2,

for C := C1 + C2 + C3.

C FURTHER DETAILS ON DESIGN-SPACE FOR ACCELERATED PT

C.1 FURTHER DETAILS ON FLOW APT

C.1.1 WORK FORMULA FOR DETERMINISTIC FLOWS

Proposition 7. Let X = Rd and suppose that πn−1 and πn admit strictly positive densities π̃n−1

and π̃n with respect to the Lebesgue measure. Let Tn : Rd → Rd be a diffeomorphism with Jacobian
matrix JTn

(x). If we choose the one-step forward and backward kernels Pn−1 and Qn such that

Pn−1(xn−1, dxn∗) = δTn(xn−1)(dx
n
∗), Qn(xn, dxn−1

∗) = δ(Tn)−1(xn)(dx
n−1
∗),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

then, for all (zn−1, zn) such that Tn(zn−1) = zn, we have the following expression for the weight
defined in Equation (3):

wn(zn−1, zn) =
π̃n(zn)

π̃n−1(zn−1)
| detJTn(zn−1)|

and the acceptance rate αn defined in Section 3.2 becomes

αn(xn−1, xn;xn−1
∗ , xn∗) = 1 ∧

[
π̃n−1(xn−1

∗)π̃n(xn∗)

π̃n−1(xn−1)π̃n(xn)
· | det(JT

n(xn−1))|
| det(JTn(xn−1

∗))|

]
. (31)

Proof. Let S := {(zn−1, zn) ∈ Rd × Rd such that Tn(zn−1) = zn}. Recall the definition of the
extended measures Pn−1 and Qn:

Pn−1(dzn−1, dzn) = πn−1(dzn−1)Pn−1(zn−1, dzn),

Qn(dzn−1, dzn) = πn(dzn)Qn(zn, dzn−1).

Moreover for (zn−1, zn) ∈ S,

Pn−1(dzn−1, dzn) = (Tn#πn−1)(dzn)Qn(zn, dzn−1).

Therefore

dQn

dPn−1
(zn−1, zn) =

πn(dzn)

(Tn#πn−1)(dzn)

=
πn(zn)

πn−1((Tn)−1(zn))| det(J(Tn)−1(zn))|
=
πn(zn)| det(JTn(zn−1))|

πn−1(zn−1)
(32)

which justifies the identity for the weight. Applying this at (zn−1, zn) = (xn−1, xn∗) ∈ S gives

dQn

dPn−1
(xn−1, xn∗) =

πn(xn∗)| det(JTn(xn−1))|
πn−1(xn−1)

. (33)

Similarly, applying Equation (32) at (zn−1, zn) = (xn−1
∗ , xn) ∈ S gives

dQn

dPn−1
(xn−1

∗ , xn) =
πn(xn)| det(JTn(xn−1

∗))|
πn−1(xn−1

∗)
. (34)

Together Equation (33) and Equation (34) establish the proposition.

C.1.2 TRAINING

Since APT provides approximate samples from both the target and reference densities for each flow, it
enables a range of training objectives. Some choices include maximum likelihood estimation (MLE)
(equivalent to forward KL), reverse KL, and symmetric KL (SKL), which averages the two. Each
has trade-offs: forward KL promotes mode-covering, reverse KL is more mode-seeking, and SKL
balances both. APT’s parallel structure makes SKL particularly effective by providing access to
samples at each intermediate annealing distribution, a feature many other methods lack. For example,
sequential Monte Carlo (SMC)-based approaches such as FAB (Midgley et al., 2023) and CRAFT
(Matthews et al., 2022) rely on samples from only one side, limiting their choice of loss functions.

Additionally, one can explore loss functions based on APT’s rejection rates, such as the analytic round
trip rate, see Proposition 2. Since higher round trip rates indicate more efficient mixing, optimizing
for this metric improves sampling performance. Empirically, we found that using SKL yielded the
most stable and robust results across different settings. This loss was therefore used in our final
experiments. However, we leave it to future work to study other possible losses in more detail.

There are also possible variants to the training pipeline. In each case, we initialize normalizing flows
to the identity transformation. One option is to run the APT algorithm with the current flows. After
every (or several) steps of the APT algorithm, the current samples can be used to update the flow
parameters. Since the flows are initialized at the identity transformation, the initial sampling of APT
behaves similarly to PT. A second possible training pipeline is to instead use PT directly to generate
a large batch of samples, and then use this batch of samples to update the flows. The latter approach
is more stable and is thus what we employed in the final experiments. We provide more details in
Section D. We note that the first training pipeline has the potential to allow for better exploration, and
we therefore leave a more detailed exploration of it to future work.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.2 FURTHER DETAILS ON CONTROL ACCELERATED PT

At the limit K →∞, following (Berner et al., 2025, Lemma B.7), and by the controlled Crooks fluc-
tuation theorem (Vaikuntanathan & Jarzynski, 2008; Vargas et al., 2024), we arrive at the generalised
work functional

Wn
∞(x) := − logwn

∞(x)

=

∫ 1

0

−∇ · bns (xs) +∇Un
s (xs) · bns (xs) + ∂sU

n
s (xs)ds,

inducing the corresponding continuous processes (Xs)s∈[0,1], (X ′
s)s∈[0,1] for Pn−1

∞ , Qn
∞ respectively,

that is for the forward process

X0 ∼ πn−1, dXs = −(σn
s)

2∇Un
s (Xs)ds+ bns (Xs)ds+ σn

s

√
2d

⇀

Bs,

and for the backwards process

X ′
1 ∼ πn, dX ′

s = (σn
s)

2∇Un
s (X

′
s)ds+ bns (X

′
s)ds+ σn

s

√
2d

↼

Bs.

The training objective is

L(bs, ϕs, σs) =
N∑

n=1

SKL(Pn−1
K ,Qn

K) −−−−→
K→∞

N∑
n=1

SKL(Pn−1
∞ ,Qn

∞).

Note that the discrete version discussed in the main text is not the only discretisation choice. Other
options (Albergo & Vanden-Eijnden, 2024; Máté & Fleuret, 2023) may also be applied.

C.3 FURTHER DETAILS ON DIFF-APT

Annealing path We use the following Variance-Preserving (VP) diffusion process

dYs = −βsYsds+
√
2βsdWs, Y0 ∼ π,

with the choice of schedule βs = 1
2(1−s) to define the path of distributions (πVP

s)s∈(0,1] by Ys ∼ πVP
1−s.

Due to the singularity at s = 1, πVP
0 is not defined by the path, but we can define this point to be a

standard Gaussian as the path converges to this distribution in the limit as s approaches 1 in order to
define the full annealing path (πVP

s)s∈[0,1].

Accelerators For a given annealing schedule 0 = s0 < . . . < sN = 1, we construct Pn−1
k , Qn

k−1

through the linear discretisation of the time-reversal SDE on the time interval [sn−1, sn] with step
size δn = (sn − sn−1)/K and interpolating times sn,k = sn−1 + kδn.

In particular, we take Qn
k−1(xk, dxk−1) to be N (

√
1− αn,k−1xk, αn,k−1I) where αn,k−1 = 1 −

exp(−2
∫ 1−sn,k−1

1−sn,k
γsds) which is the closed-form kernel transporting πVP

sn,k
to πVP

sn,k−1
. Furthermore,

we take Pn−1
k (xk−1, dxk) to be the exponential integrator given by N (µn,k−1(xk−1), αn,k−1I)

where

µn,k−1(x) =
√

1− αn,k−1x+ 2(1−
√
1− αn,k−1)(x+∇ log πVP

sn,k−1
(x)).

Network parametrisation We parametrise an energy-based model as outlined in Phillips et al.
(2024) but modified to ensure that πθ

0(x) ∝ N(x; 0, I). For completeness, we specifically take
log πθ

s(x) = log gθs(x)− 1
2 ||x||

2 where

log gθ(x, s) = [rθ(1)− rθ(s)][rθ(s)− rθ(0)]⟨Nθ(x, s), x⟩
+[1 + rθ(1)− rθ(s)] log g0(

√
sx),

where g1(x) ∝ π(x)N(x; 0, I). Here, r is a scalar-valued neural network and N is a vector-valued
function in Rd. We also note that πθ

1(x) ∝ π, hence πθ
s serves as a valid annealing path between

N(0, I) and π.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

D.1 TARGET DISTRIBUTIONS

GMM-d We take the 40-mode Gaussian mixture model (GMM-2) in 2 dimensions from Midgley
et al. (2023) where to extend this distribution to higher dimensions d, we extend the means with zero
padding to a vector in Rd and keep the covariances as the identity matrix but now within Rd. This
helps to disentangle the effect of multi-modality from the effect of dimensionality on performance as
we essentially fix the structure of the modes across different values of d. Following previous work
(Akhound-Sadegh et al., 2024; Phillips et al., 2024), we also scale the distribution GMM-d by a factor
of 40 to ensure the modes are contained within the range [−1, 1]d for our experiments with APT,
where we also use the same scaling for the PT baseline to ensure a fair comparison.

DW-4 We take the DW-4 target from Köhler et al. (2020) which describes the energy landscape for
a toy system of 4 particles {x1, x2, x3, x4} and xi ∈ R2 given by

π(x) ∝ exp

− 1

2τ

∑
i̸=j

a(dij − d0) + b(dij − d0)2 + c(dij − d0)4
 ,

where dij = ||xi − xj || and we set a = 0, b = −4, c = 0.9, τ = 1 in accordance with previous work.

MW-32 We take the ManyWell-32 target from Midgley et al. (2023) formed from concatenating 16
copies of the 2-dimensional distribution

π̂(x1, x2) ∝ exp

(
−x41 + 6x21 +

1

2
x1 −

1

2
x22

)
,

i.e. the distribution π(x) =
∏16

i=1 π̂(x2i−1, x2i) where x ∈ R32. Each copy of π̂ has 2 modes and
hence π contains in total 216 modes.

Alanine Dipeptide This is a small molecule with 22 atoms, each of which has 3 dimensions. The
target energy is defined with the amber14/protein.ff14SB forcefield in vacuum using the
DMFF library in JAX (Wang et al., 2023).

D.2 NETWORK AND TRAINING DETAILS

NF-APT For GMM-d, we use 20 RealNVP layers where we employ a 2-layer MLP with 128
hidden units for the scale and translation functions (Dinh et al., 2017). We initialize the flow at the
identity transformation. We use the Adam optimizer with a learning rate of 1e-3, perform gradient
clipping with norm 1 and employ EMA with decay parameter 0.99.

We use the same training pipeline as for CMCD-APT. See further details in the CMCD-APT descrip-
tion below. Note that we also employ the SKL loss for training and the linear annealing path with a
standard Gaussian as the reference distribution.

CMCD-APT For both GMM-d and MW-32, we use a 4-layer MLP with 512 hidden units, and
for DW-4, we use a 4-layer EGNN (Satorras et al., 2021) with 64 hidden units. Recall that in
CMCD-APT, we use the linear path, Uβ(x) = (1−β) log η(x)+βU(x), which linearly interpolates
between reference and target in log-space. Therefore, our network is conditional on the β. We
optimise the MLP by Adam with a learning rate of 1e-3 and EGNN with a learning rate of 1e-4.
We additionally use gradient clipping with norm 1 for stability.

Furthermore, our training pipeline following the 3 stages outlined below:

• Tuning PT: We define {βn}Nn=1 uniformly from 0 to 1. Then, we run PT for 600 steps,
remove the first 100 steps as burn-in, and take the last 500 steps to calculate the rejection
rate between adjacent chains. We then tune the value of βn to ensure the rejection rate even,
according to Syed et al. (2021). We repeat this process 10 times to ensure {βn}Nn=1 is stable.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Collecting data and training: We use PT with the tuned schedule to collect data. For
experiments with 5 chains, we run 200K steps to collect 200K samples for each chain. For
experiments with 10 and 30 chains, we run 65536 steps to collect data. We then train CMCD
for 100,000 iterations with a batch size of 512. In each batch, we randomly select the chain
index and samples according to the chain to train CMCD using SKL. We repeat this step
twice to ensure the network is well-trained until convergence.

• Testing: We follow Algorithm 1, running CMCD-APT for 100K steps, and calculate the
round trip.

Diff-APT For GMM-d, we use a 3-layer MLP with 128 hidden units, for MW-32, we use a 3-layer
MLP with 256 hidden units and for DW-4, we use a 3 layer EGNN with 128 hidden units. For all
models, we use a learning rate of 5e-4, gradient clipping with norm 1 for stability and EMA with
decay parameter of 0.99. For training, we follow the same pipeline as CMCD-APT, but we only
retain samples at the target chain in order to optimise the standard score matching objective. At
sampling time, we tune the annealing schedule by running Diff-APT for 1,100 steps, discarding the
first 100 samples as burn-in and using the last 1,000 steps to calculate rejection rates to apply the
schedule tuning algorithm from Syed et al. (2021). We then repeat this 10 times where we initialise
from the uniform schedule.

PT For all experiments with PT, we use the linear path with a standard Gaussian as our reference
distribution. We tune the annealing schedule in the same manner as with Diff-APT to ensure
comparisons with a strong baseline.

D.3 FURTHER DETAILS ON COMPARISON OF ACCELERATION METHODS

For both training and testing for all methods, we take a single step of HMC with step size of 0.03 and
5 leapfrog steps as our local exploration step across each annealing chain. We note that while we
could have improved performance by tuning the step size for each annealing distribution, we keep
this fixed to disentangle the effect of local exploration from our communication steps.

Compute-normalised round trips The compute-normalised round trips, as reported in Table 1, is
computed by dividing the original round trips by the number of potential evaluations that a single
“machine” is required to implement within a parallelised implementation of PT/APT - i.e. the number
of potential evaluations required by the computation of Wn

K(
⇀

Xn−1
t,0:K) (or equivalently Wn

K(
↼

Xn
t,0:K)

for a single n and t. Similarly, we count the number of neural calls in the corresponding manner.

• NF-APT: We need 2 potential evaluations for πn−1(
⇀

Xn−1
t,0) and πn(

⇀

Xn−1
t,1) and single

network evaluation.

• CMCD-APT: For K > 0, we need to calculate the potential and score4 of πn−1 at
⇀

Xn−1
t,0

and πn at
⇀

Xn−1
t,K . We also need to compute the score of Un

sk
at

⇀

Xn−1
t,k for k = 1, . . . ,K − 1.

We note that we can reuse all of the above score evaluations for both the forward and reverse
transition kernels of Pn−1

k and Qn
k−1. In total, this requires K + 1 potential and network

evaluations.

• Diff-APT: For K > 0, we require K + 1 potential and network evaluations following the
same logic as for CMCD. For K = 0, we require 2 potential and network evaluations for
πn−1(Xn−1) and πn(Xn−1) as we parametrise our annealing path in terms of the target
distribution π and a neural network.

• PT: We need 2 potential evaluations for πn−1(Xn−1) and πn(Xn−1) and we do not require
any network evaluation.

D.4 FURTHER DETAILS ON SCALING WITH DIMENSION

For all methods, we take a single step of HMC with step size of 0.03 and 5 leapfrog steps as our local
exploration step across each annealing chain and take 100,000 samples. Additionally, we report the

4We count this as a single potential evaluation.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(compute-normalised) round trip rate which involves dividing the (compute-normalised) round trips
by the number of sampling steps. We note that we use the same methodology as above for computing
compute-normalised round trips.

D.5 FURTHER DETAILS ON FREE ENERGY ESTIMATOR

For CMCD-APT, we take a single step of HMC with step size 0.22 and 5 leapfrog steps for our local
exploration step across each annealing chain for both DW-4 and MW-32. For Diff-APT, we take two
steps of HMC with 5 leapfrog steps and step size of 0.2 and 0.22 respectively for DW-4 and MW-32
for our local exploration step across each annealing chain.

For all methods, we generate 100,000 samples at the target distribution. For each estimate of ∆F , we
subsample 1,000 samples uniformly without replacement from the 100,000 to compute the APT free
energy estimator. This is then repeated 30 times for each method.

We take the ground truth free energy of DW-4 from estimating ∆F with the APT estimator using
100,000 samples from PT with 60 chains (after tuning). We take the ground truth free energy of
MW-32 from Midgley et al. (2023) which calculates the normalising constant of a single copy of π̂
numerically allowing for the trivial computation of the overall normalising constant.

D.6 FURTHER DETAILS ON COMPARING APT WITH NEURAL SAMPLERS

For CMCD, we take our CMCD-APT model on DW-4 with 30 chains and K = 1, 2, 5 from Section
6.3, and instead of sampling from these models using APT, we collect 5,000 independent samples
from our reference distribution to which we apply our learned kernels

∏N
n=1

∏K
k=1 P

n−1
k which we

recall are explicitly trained to transport samples from the reference to the target distribution. With our
final samples, we then plot the histogram of dij values for i ̸= j.

For Diffusion, we follow the same procedure but we tune our annealing schedule with the same
schedule tuning algorithm from Syed et al. (2021) as mentioned above (this step is not required for
CMCD as the annealing schedule is required to be fixed during training) before we collect samples
by applying Pn−1

k .

For CMCD-APT and Diff-APT, we simply sample from each method to generate 5,000 samples at
the target distribution before plotting the histogram of dij values.

D.7 FURTHER DETAILS ON ALANINE DIPEPTIDE

We run CMCD-APT using 5 chains and K = 1, 2, 5. For the local move, we adopt HMC with a
dynamic step size: when the acceptance rate is larger than 0.9, we increase the step size by 1.2; if
the acceptance rate is smaller than 0.8, we divide the step size by 1.2. Other settings are the same as
those of other targets.

D.8 LICENSE

Our implementation is based on the following codebases:

• https://github.com/lollcat/fab-jax (Midgley et al., 2023) (MIT License)

• https://github.com/noegroup/bgflow (MIT License)

• https://github.com/angusphillips/particle_denoising_
diffusion_sampler (Phillips et al., 2024) (No License)

• https://github.com/gerkone/egnn-jax (MIT License)

D.9 COMPUTING RESOURCES

The experiments conducted in this paper are not resource-intensive. We use a mixture of 24GB GTX
3090 and 80GB A100 GPU, but all experiments can be conducted on a single 80GB A100 GPU.

29

https://github.com/lollcat/fab-jax
https://github.com/noegroup/bgflow
https://github.com/angusphillips/particle_denoising_diffusion_sampler
https://github.com/angusphillips/particle_denoising_diffusion_sampler
https://github.com/gerkone/egnn-jax

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 VISUALISATION OF MANYWELL-32

In Figures 5 and 6, we visualise ManyWell-32 samples generated by 1,000 consecutive CMCD-APT
and Diff-APT steps with N = 5, 10, 30 and K = 1, 5 from ManyWell-32 via marginal projections
over the first four dimensions. We also show 1,000 independent ground truth samples in Figure 7 for
comparison. We choose to report only 1,000 steps to illustrate how fast our sampler mixes. As we
can see, the mode weights become more accurate as we increase N and K.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(a) N = 5,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(b) N = 5,K = 5.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(c) N = 10,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(d) N = 10,K = 5.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(e) N = 30,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(f) N = 30,K = 5.

Figure 5: Visualisation of ManyWell-32 samples generated by 1,000 consecutive CMCD-APT steps.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(a) N = 5,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(b) N = 5,K = 5.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(c) N = 10,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(d) N = 10,K = 5.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(e) N = 30,K = 1.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

(f) N = 30,K = 5.

Figure 6: ManyWell-32 samples generated by 1,000 consecutive Diff-APT steps.

2 0 2
3

2

1

0

1

2

3

2 0 2 2 0 2 2 0 2

Figure 7: 1,000 independent ground truth samples from ManyWell-32

E.2 COMPARISON OF ACCELERATION METHODS FOR MANYWELL-32 AND DW-4

We take our trained models from Section 6.3 and provide the same comparison with PT as in Table 1
for ManyWell-32 and DW-4 below.

Table 3: PT versus APT with different acceleration methods, targeting ManyWell-32 in 32 dimensions
and standard Gaussian reference using N = 5, 10, 30 parallel chains for T = 100, 000 iterations.
For each method, we report the round trips (R), round trips per potential evaluation, denoted as
compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain
every iteration, and Λ estimated using N = 30 chains.

Chain N = 5 N = 10 N = 30

Method Neural Call (↓) Λ̂ (↓) R (↑) CN-R (↑) R (↑) CN-R (↑) R (↑) CN-R (↑)
CMCD-APT (K = 1) 2 4.384 1154 577.0 2802 1401.0 4729 2364.5
CMCD-APT (K = 2) 3 3.827 1587 529.0 3640 1213.3 5544 1848.0
CMCD-APT (K = 5) 6 3.148 2878 479.7 4790 798.3 6678 1113.0

Diff-APT (K = 1) 2 6.663 425 212.5 2402 1201 4398 2199
Diff-APT (K = 2) 3 5.225 1387 462.3 4022 1340.7 5894 1964.7
Diff-APT (K = 5) 6 3.94 3627 604.5 5704 950.7 7634 1272.3

Diff-PT (K = 0) 2 7.423 251 125.5 1561 780.5 3440 1720

PT 0 5.475 550 275 1879 939.5 3733 1866.5

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 4: PT versus APT with different acceleration methods, targeting DW-4 in 10 dimensions
and standard Gaussian reference using N = 5, 10, 30 parallel chains for T = 100, 000 iterations.
For each method, we report the round trips (R), round trips per potential evaluation, denoted as
compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain
every iteration, and Λ estimated using N = 30 chains.

Chain N = 5 N = 10 N = 30

Method Neural Call (↓) Λ̂ (↓) R (↑) CN-R (↑) R (↑) CN-R (↑) R (↑) CN-R (↑)
CMCD-APT (K = 1) 2 3.173 3020 1510.0 6407 3203.5 9456 4728.0
CMCD-APT (K = 2) 3 2.671 4239 1413.0 7549 2516.3 10538 3512.7
CMCD-APT (K = 5) 6 2.107 6971 1161.8 9808 1634.7 12634 2105.7

Diff-APT (K = 1) 2 4.565 4331 2165.5 7397 3698.5 7729 3864.5
Diff-APT (K = 2) 3 3.810 7187 2395.7 10176 3392 9176 3058.7
Diff-APT (K = 5) 6 4.358 12456 2076 12740 2123.3 8104 1350.7

Diff-PT (K = 0) 2 4.739 2962 1481 5862 2921 7067 3533.5

PT 0 4.016 2329 1164.5 5128 2564 7610 3805

32

	Introduction
	Parallel Tempering
	Non-Reversible Parallel Tempering

	Accelerated Parallel Tempering
	Forward and Backward Accelerators
	Non-Reversible Accelerated Parallel Tempering

	Analysis of Accelerated PT
	Design Space for Diffusion PT
	Normalising Flow Accelerated PT
	Controlled Monte Carlo Diffusions Accelerated PT
	Diffusion Accelerated PT

	Experiments
	Comparison of Acceleration Methods
	Scaling with Dimensions
	Log-normalising constant (free-energy) Estimator
	Comparing APT with Neural Samplers
	Alanine Dipeptide

	Conclusion
	Theoretical Analysis of Accelerated PT
	Further Details of Round Trips
	Proof of thm:validityswapgen
	Proof of Ergodicity (thm:validityswapgen, Part 1)
	Proof of Rejection Rate (thm:validityswapgen, Part 2)
	Proof of prop:estimators

	Accelerated PT as Vanilla PT on Extended Space
	Parallelism versus Acceleration Time

	Further Details on Analysis of PT
	Proof of prop:rtr-formula
	Proof of prop:scaling-K
	Further Details on Scaling with Parallel Chains
	Regularity Assumptions
	Proof of thm:barrier

	Further Details on Design-Space for Accelerated PT
	Further Details on Flow APT
	Work Formula for Deterministic flows
	Training

	Further Details on Control Accelerated PT
	Further Details on Diff-APT

	Experimental Details
	Target Distributions
	Network and Training Details
	Further Details on Comparison of Acceleration Methods
	Further Details on Scaling with Dimension
	Further Details on Free Energy Estimator
	Further Details on Comparing APT with Neural Samplers
	Further Details on Alanine Dipeptide
	License
	Computing Resources

	Additional Experimental Results
	Visualisation of ManyWell-32
	Comparison of Acceleration Methods for ManyWell-32 and DW-4

