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Abstract—Accumulation of amyloid-beta plaques and disrup-
tion of intrinsic brain networks are two important characteristics
of Alzheimer’s disease (AD), yet the relationship between amyloid
accumulation and network dysfunction remains unclear. In this
study, we integrated [18F]Florbetapir PET and resting-state
fMRI (rsfMRI) derived Functional Network Connectivity (FNC)
from 552 temporally matched longitudinal PET–rsfMRI sessions
across 395 participants spanning Cognitively Normal (CN), Mild
Cognitive Impairment (MCI), and AD stages. With a model order
of 11, joint Independent Component Analysis (jICA) was applied
to the fused PET–FNC data, identifying 11 stable components,
of which 9 PET-derived components corresponded to previously
characterized brain regions or networks. The multimodal analysis
revealed disease progression markers, including (1) a pattern of
reduced subject loadings across clinical stages (CN > MCI >
AD) in white matter and cerebellar regions, reflecting structural
degeneration; (2) increased amyloid accumulation in affected
individuals in grey matter regions, particularly in frontal, sensori-
motor, extended hippocampal, and default mode network (DMN)
regions, accompanied by functional connectivity alterations that
reflected both compensatory and disruptive network dynamics.
We identified PET-derived components that captured distinct
stages of disease progression, with the DMN component emerg-
ing as a late-stage biomarker and a white matter component
showing early-stage changes with limited progression thereafter.
Additionally, several components showed significant variation in
loadings between APOE ε4 carriers and non-carriers, linking the
multimodal signatures to a well-established genetic risk factor for
AD.

Index Terms—Multimodal fusion, Alzheimer’s disease, Inde-
pendent Component Analysis, Amyloid-beta, Positron Emission
Tomography, Resting-state fMRI, Functional Network Connec-
tivity, APOE genotype

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder and a leading cause of Dementia globally.
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Pathologically, AD is characterized by extracellular amyloid-
beta (Aβ) plaques and intracellular neurofibrillary tau tangles,
which disrupt synaptic function and neural connectivity, re-
sulting in cognitive decline, memory impairment, and reduced
functional capacity [1].

Positron Emission Tomography (PET) imaging with
amyloid-specific radiotracers, such as [18F]Florbetapir (FBP),
has emerged as an essential tool for detecting Aβ deposition.
FBP selectively binds to amyloid plaques, allowing precise
quantification of amyloid burden in cortical regions and hip-
pocampus [2]. Recent studies utilizing FBP-PET have demon-
strated significant amyloid accumulation within critical brain
networks such as the default mode network (DMN), salience
network, left and right temporal, and frontal region, under-
scoring their importance in AD pathology [3]. Concurrently,
resting-state functional magnetic resonance imaging (rsfMRI)
has independently identified functional network connectivity
(FNC) alterations in AD, particularly highlighting disrupted
connectivity within the DMN, salience, and frontal networks
[4], [5]; regions that also exhibit early amyloid accumulation in
PET studies. These converging findings support the hypothesis
that amyloid pathology and network-level dysfunction in AD
are spatially and mechanistically related.

Despite considerable advancements in unimodal biomarker
research, the multimodal relationship between amyloid pathol-
ogy and functional network disruptions remains insufficiently
explored. Amyloid-PET enables quantification of regional Aβ
deposition, while resting-state FNC derived from fMRI reflects
intrinsic communication between distributed brain networks.
Integrating these modalities may provide critical insights into
how amyloid pathology accompanies functional alterations. To
date, most analyses have relied on unimodal approaches, often
correlating PET-derived amyloid burden and fMRI-based FNC
metrics in a post hoc manner to infer cross-modal associations
[6], [7].

Even among studies that incorporate both modalities, the



majority of studies adopt region of interest (ROI) based anal-
yses or focus on classification tasks, using features extracted
independently from each imaging modality. Multivariate meth-
ods such as canonical correlation analysis (CCA), along with
more recent machine learning and deep learning approaches,
have been applied to explore relationships between modalities
[8], [9], [10]. However, these methods typically treat PET and
fMRI as separate data streams rather than integrating them
at the feature level. Consequently, they prioritize predictive
performance over interpretability and often overlook the iden-
tification of shared, spatially distributed patterns that jointly
reflect molecular and functional alterations. To the best of
our knowledge, no prior study has jointly analyzed FBP-PET
and FNC to investigate whole-brain multimodal associations
in AD.

To address this gap, we employ a multimodal fusion
framework that combines FBP-PET and resting-state FNC
data to capture interdependent pathological and functional
processes in the brain. Specifically, we apply joint ICA to the
fused PET–FNC dataset, enabling the decomposition of high-
dimensional, cross-modal data into statistically independent
components (ICs). A key advantage of ICA-based methods
in multimodal fusion is their capacity to decompose data
into underlying source signals without prior knowledge or
explicit modeling assumptions, potentially revealing novel and
clinically relevant biomarkers. We hypothesize that these mul-
timodal ICs capture covariations between amyloid deposition
and connectivity disruptions across subjects and sessions, indi-
cating shared underlying biology of integrated functional and
metabolic brain states or dysfunctions. By jointly analyzing
Aβ pathology and functional connectivity, we aim to achieve
a more comprehensive understanding of AD pathophysiology,
potentially offering biomarkers reflective of both amyloid-
driven pathology and associated network adaptations.

II. MATERIALS AND METHODS

A. Participants and Data Acquisition

Longitudinal data were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (https://adni.
loni.usc.edu/), comprising 1,832 PET sessions (920 unique
participants) and 2,462 resting-state fMRI sessions (1,038
unique participants). PET and fMRI sessions were temporally
matched for each participant, retaining pairs with scan dates
within ±180 days. After filtering, 552 matched sessions from

TABLE I
DEMOGRAPHICS OF THE STUDY GROUP

Diagnosis N (N∗) Sex N (N∗) Age (mean ± SD)

CN 292 (195) Male 122 (81) 74.89 ± 7.63
Female 170 (114) 71.66 ± 7.14

MCI 150 (117) Male 82 (65) 75.69 ± 7.84
Female 68 (52) 75.47 ± 6.19

AD 110 (83) Male 46 (41) 77.70 ± 8.56
Female 64 (42) 75.17 ± 7.89

N: Number of total sessions, N∗: Number of participants

395 unique subjects were included in the analysis. Participants
were divided into three diagnostic groups: Cognitively Normal
(CN; 292 sessions from 195 subjects), Mild Cognitive Impair-
ment (MCI; 150 sessions from 117 subjects), and Alzheimer’s
disease (AD; 110 sessions from 83 subjects). Demographics,
including age and sex are summarized in Table I.

B. PET and FNC Data Acquisition

ADNI PET images were acquired following intravenous
administration of the FBP radiotracer for quantifying amyloid
deposition. PET data preprocessing included spatial normal-
ization to a standardized anatomical template using SPM
(https://www.fil.ion.ucl.ac.uk/spm/), smoothing with a 10-mm
Gaussian kernel, and spatial downsampling to a 3×3×3 mm3

resolution using AFNI (https://afni.nimh.nih.gov/). The PET
data were downsampled to reduce the dimensionality of PET
features and better align with the lower-dimensional FNC data
for balanced multimodal fusion.

Similarly, rsfMRI data from ADNI underwent standard
preprocessing steps, including motion and distortion correction
(using FMRIB Software Library; https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki), slice timing correction using SPM, spatial normal-
ization to MNI space, and spatial smoothing using a Gaussian
kernel with a full-width half maximum of 6 mm, as imple-
mented by [11]. Functional Network Connectivity (FNC)
matrices were then computed using the GIFT toolbox (https:
//trendscenter.org/software/gift/) [12] based on the Neuromark
2.2 template [13], which defines 105 multiscale intrinsic con-
nectivity networks (ICNs). These ICNs are grouped into seven
canonical functional domains: CB (Cerebellar), VI (Visual),
PL (Paralimbic), SC (Subcortical), SM (Sensorimotor), HC
(Higher Cognition), and TN (Triple Network). The resulting
FNC matrix for each session was a 105 × 105 correlation
matrix, yielding 5,460 unique connectivity edges. Detailed
information on the multiscale ICNs and subdomain definitions
is available in [13], [14].

C. Multimodal Feature Construction

To ensure balanced contributions from both modalities,
PET voxels and FNC edges were standardized using z-score
normalization separately. For each matched session, the PET
image (voxel-wise) and FNC matrix (edge-wise) were flattened
into 1D vectors and concatenated, forming a multimodal
feature vector (PET + FNC). The final data matrix dimensions
were 552 sessions × 73,695 multimodal features.

D. Multimodal Independent Component Analysis (ICA)

The concatenated multimodal PET–FNC dataset was de-
composed using joint ICA with the Infomax algorithm via
the FIT toolbox (https://trendscenter.org/software/fit/). Model
order selection for ICA was guided by the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC)
[15], both supporting 11 independent components (ICs) as
optimal.

To ensure stability, ICASSO algorithm was applied with
100 bootstrap iterations, resulting in highly stable components
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Fig. 1. Schematic of joint ICA applied to fused multimodal (PET + FNC)
data, decomposing into joint independent components.

(cluster quality index > 0.96). Mathematically, ICA decom-
poses the data matrix X as:

Xn×f︸ ︷︷ ︸
session × features

= An×k︸ ︷︷ ︸
session × components

· Sk×f︸ ︷︷ ︸
components × features

(1)
Where, matrix A represents session-specific loadings (mix-

ing matrix), and matrix S contains the independent compo-
nents (ICs), each with two subcomponents: (1) a PET spatial
map of regional amyloid deposition and (2) an FNC ma-
trix of functional connectivity patterns. After decomposition,
PET subcomponents were remapped to identify Aβ-related
signal sources, and FNC subcomponents were reshaped into
105×105 matrices (Fig. 1).

E. Linear Mixed-Effects Model (LMM) Analysis

To assess diagnostic group differences in IC weights while
accounting for repeated measures, a linear mixed-effects
model (LMM) was applied to session-specific ICA weights.
To minimize site-related bias, imaging sites contributing fewer
than 10 different sessions or containing sessions from only a
single diagnostic group were excluded, leaving 347 sessions
(241 unique individuals) for LMM analysis. The model in-
cluded fixed effects for diagnosis (CN/MCI/AD), age, sex,
site, race, and head motion, with a subject-specific random
intercept to account for within-subject variability. The model
was specified as:

session loadingij ∼ 1 + dxi + agei + genderi + sitei
+ racei + head motioni + (1 | ridi)

(2)

Here, session loadingij represents the loading of the jth

IC for the ith session. The variable RID denotes the unique
subject identifier, allowing the grouping of multiple sessions
per subject and modeling subject-specific random intercepts to
capture baseline inter-subject variability.

F. APOE ε4 Carrier-Based Group Comparison

To examine the association between APOE ε4 status and
multimodal component loadings, a separate group comparison
was conducted using genotype data from the ADNI database,
without inclusion of additional covariates. This analysis aimed
to assess whether APOE ε4 genotype alone influences com-
ponent expression, independent of demographic or diagnostic
variables. Sessions were grouped as ε4 carriers (having at least
one ε4 allele) or non-carriers, reflecting established genetic
risk classification.

Among the 347 site-corrected sessions used in the earlier
LMM analysis (Section II-E), APOE information was available
for 346 sessions, including 145 ε4 carrier sessions (57 CN, 35
MCI, 53 AD) and 201 non-carrier sessions (110 CN, 61 MCI,
30 AD). Group differences in IC loadings were assessed using
two-sample t-tests, conducted separately for each independent
component that showed a significant diagnostic effect. A
Bonferroni-corrected threshold (α = 0.0045) was applied to
account for multiple comparisons across the 11 components.

III. RESULTS

Joint ICA of the fused FBP-PET and FNC data iden-
tified eleven stable multimodal components, reflecting dis-
tinct patterns of amyloid deposition and corresponding func-
tional connectivity across 552 sessions. Among these, nine
PET-derived subcomponents represented distinct spatial pat-
terns of amyloid accumulation across known brain re-
gions or networks (Fig. 2). These components are available
at https://github.com/Bikesh14/fMRI-PET-multimodal-fusion/
tree/main/independent-components. Two components (IC1 and
IC2) were localized to white matter (WM) regions. The
remaining seven PET components showed strong correspon-
dence with functional domains defined in the Neuromark
2.2 atlas [14], including: the cerebellar domain (CB; IC3),
sensorimotor domain (SM; IC4, IC5), visual domain (VIS;
IC6), frontal subdomain (FR; IC7), extended hippocampal sub-
domain (EH; IC8), and the default mode network subdomain
(DMN; IC9).

a) FNC components highlight both network disruption
and compensatory behavior: FNC patterns of the ICs revealed
distinct disruptions and potential compensatory changes re-
lated to amyloid burden (Fig. 2). In IC4, increased amyloid
accumulation in the sensorimotor (SM) domain was associated
with relatively neutral intra-domain connectivity but stronger
correlations with other domains and subdomains (Fig. 2(d)).
In IC6, with increased amyloid deposition in visual regions,
the component showed a pattern of anticorrelation among
visual subdomains, while connections between visual and
cerebellar regions appeared relatively stronger (Fig. 2(f)),
suggesting potential compensatory cross-network interactions.

https://github.com/Bikesh14/fMRI-PET-multimodal-fusion/tree/main/independent-components
https://github.com/Bikesh14/fMRI-PET-multimodal-fusion/tree/main/independent-components


Fig. 2. Multimodal ICs showing PET (amyloid-β deposition) and correspond-
ing FNC representations for Alzheimer’s-related networks. PET maps corre-
spond to: (a) white matter, (b) white matter, (c) cerebellar, (d) sensorimotor,
(e) sensorimotor, (f) visual, (g) frontal, (h) extended hippocampal, and (i)
default mode network regions.

IC7, linked to prefrontal amyloid deposition, showed disrupted
connectivity within visual networks, indicating cross-network
interference (Fig. 2(g)). In IC9, increased amyloid deposition
in DMN regions, particularly in the AD group, was associated
with stronger anticorrelation between the DMN and central
executive (CE) network (Fig. 2(i)).

b) Component loadings reveal diagnostic differences
across white and grey matter regions: LMM revealed signif-
icant group differences in IC session loadings (Fig. 3), with
multiple comparisons corrected using Bonferroni adjustment
across the 11 components (adjusted significance threshold:
α = 0.0045). Components highlighting white matter and
cerebellar regions (IC1, IC2, IC3) showed decreasing loadings
from CN to MCI to AD, while components localized to
grey matter regions (IC5, IC7, IC8, IC9) showed increasing
loadings with disease severity. The sensorimotor component
(IC5), frontal component (IC7), and extended hippocampal
component (IC8) demonstrated significant differences across
all three group comparisons (MCI–CN, AD–CN, and AD–

MCI). To highlight, the DMN component (IC9) differed sig-
nificantly in the AD–CN and AD–MCI comparisons, but not
in the MCI–CN comparison (p > α). We also observed that
IC1, while showing an overall decreasing trend similar to IC2
and IC3, did not show a significant difference in the AD–MCI
comparison (p > α).

c) Component loadings show significant associations
with APOE ε4 carrier status: When evaluated independently
as a post hoc analysis, APOE ε4 carrier status also showed sig-
nificant associations with the multimodal component loadings.
All of the components that showed diagnostic group effects,
except IC1, showed consistent patterns of significant differ-
ences in loadings between ε4 carriers and non-carriers, i.e.,
ε4 carriers showing similar directions of change in loadings
(Fig. 4) as observed in the AD group from the diagnostic
comparison (Fig. 3). These differences were also seen when
analyzing only the sessions from individuals in the AD group.
These findings indicate that: (1) overall ε4 carriers have a
higher chance of experiencing disrupted brain connectivity and
Aβ deposition as observed in the AD group; and (2) APOE
ε4 also contributes to variation in component loadings within
individual diagnostic groups, hinting at a possibility of genetic-
based heterogeneity.

IV. DISCUSSION

This study highlights the value of integrating PET and
FNC to better understand the relationship between amyloid
pathology and network-level dysfunction in AD. By applying
joint ICA to multimodal data, we identified distinct patterns of
amyloid deposition and functional connectivity that reflect co-
occurring structural degeneration and adaptive neural mecha-
nisms.

The progressive decline in white matter (IC1, IC2) and
cerebellar (IC3) component weights across disease stages
(CN > MCI > AD) likely reflects structural degeneration
rather than amyloid-specific changes [16]. While FBP targets
amyloid plaques, it also binds nonspecifically to myelin in
white matter [17]. In the early stages, intact myelin leads to a
higher signal, but as AD progresses, demyelination and axonal
loss reduce tracer binding, resulting in a lower PET signal. The
cerebellar region appears to exhibit similar characteristics to
white matter, potentially undergoing myelin degeneration that
contributes to reduced tracer uptake as the disease progresses.
Together, these patterns suggest that even in regions not classi-
cally associated with early amyloid pathology, FBP-PET signal
changes may offer indirect but meaningful markers of disease
progression. The consistent decline in component loadings
across stages (Fig. 3) further supports their potential utility
as sensitive indicators of global neurodegenerative processes
in AD. In contrast, remaining components highlighting gray
matter regions—including sensorimotor (IC5), frontal (IC7),
extended hippocampal (IC8), and DMN (IC9)—exhibited in-
creasing amyloid deposition across disease stages, consistent
with previous unimodal PET findings [3].

Our multimodal fusion approach revealed unique covarying
patterns between regional amyloid deposition and network



Fig. 3. Violin plots of session loadings across diagnostic groups (CN, MCI, AD) for multimodal ICs. Each IC is labeled by its dominant spatial region.
Group differences (∆1: AD–CN, ∆2: MCI–CN, ∆3: AD–MCI) were assessed using linear mixed-effects models. Statistical significance was evaluated using
α = 0.0045 (Bonferroni corrected threshold).

Fig. 4. Violin plots of session loadings by APOE ε4 status (ε4 carriers vs. non-carriers) for multimodal ICs. Group differences were assessed using two-sample
t-tests. Statistical significance was evaluated using α = 0.0045 (Bonferroni corrected threshold).

connectivity, offering insights not readily captured by uni-
modal analyses. For example, increased Aβ accumulation in
the sensorimotor (SM) domain was associated with relatively
neutral intra-domain connectivity but stronger correlations
with other domains and subdomains (Fig. 2(d)), suggesting po-
tential task rerouting or adaptive cross-network engagement to
preserve SM function. Functional connectivity patterns further
reflected a mix of adaptive and disruptive behaviors. The visual
domain (IC6) showed stronger anticorrelations within the net-
work but increased coupling with cerebellar regions, consistent
with prior findings of enhanced FNC between visual and
cerebellar domains in AD [4]. In the DMN-related component
(IC9), increased amyloid-β deposition was associated with a
stronger anticorrelation between the DMN and the central ex-

ecutive subdomain. While such anticorrelation between these
two subdomains is characteristic of healthy brain interactions,
its persistence or amplification in the presence of elevated
amyloid levels may reflect a compensatory mechanism, where
the brain attempts to maintain functional segregation between
task-positive and task-negative networks despite accumulating
pathology.

Additionally, significant group differences in IC9 (DMN)
were observed only between CN and AD, not between CN and
MCI, supporting the notion that DMN disruption manifests in
later disease stages. This aligns with previous work [18],
which suggested DMN as one of the last networks to be
affected in AD. In contrast, IC1 (associated with white matter)
showed a significant difference between MCI and CN, but not



between AD and MCI. This suggests that the major changes
in this component may happen early in the disease, possibly
during the transition from normal aging to MCI, with no
significant changes in later stages. These findings highlight
the potential of understudied WM for the early detection of
AD-related changes.

The observed differences in component loadings between
APOE ε4 carriers and non-carriers suggest that APOE geno-
type may influence how these multimodal brain patterns are
expressed. These differences were not solely tied to clinical
diagnosis, indicating that genetic factors like APOE status may
play a role in shaping individual variability in the combined
expression of amyloid accumulation and functional network
changes. Incorporating such genetic information may improve
the interpretation of multimodal brain signatures and promise
further strengthened imaging-genomic biomarkers for stratifi-
cation in Alzheimer’s disease studies.

By fusing PET and FNC, we captured shared variations
between amyloid burden and network dysfunction that are
often missed by unimodal approaches. In future work, we plan
to validate these findings in larger longitudinal cohorts and
extend the framework to incorporate additional modalities such
as tau-PET, CSF biomarkers, and genomics. Overall, this inte-
grative framework offers a promising direction for improving
early detection, enhancing patient stratification, and deepening
our understanding of Alzheimer’s disease progression.

V. CONCLUSION

Our study highlights the potential of multimodal fusion to
improve early detection and characterization of Alzheimer’s
disease. Through joint independent component analysis of
combined amyloid-PET and functional network connectivity
data, we identified integrated biomarkers that reveal the in-
terplay between amyloid pathology and functional disruption,
offering insights not accessible through unimodal approaches.
This framework offers a more comprehensive view of disease
progression and supports the development of more sensitive
diagnostic tools.

REFERENCES

[1] G. S. Bloom, “Amyloid-β and tau: the trigger and bullet in Alzheimer
disease pathogenesis,” JAMA Neurol., vol. 71, no. 4, pp. 505–508, Apr.
2014, doi: 10.1001/jamaneurol.2013.5847.

[2] N. Okamura and K. Yanai, “Florbetapir (18F), a PET imaging agent
that binds to amyloid plaques for the potential detection of Alzheimer’s
disease,” IDrugs Investig. Drugs J., vol. 13, no. 12, pp. 890–899, Dec.
2010.

[3] N. Khasayeva et al., “Revealing Alzheimer’s Disease Dementia Pat-
terns in [18F]Florbetapir PET with Independent Component Analy-
sis,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med.
Biol. Soc. Annu. Int. Conf., vol. 2024, pp. 1–4, Jul. 2024, doi:
10.1109/EMBC53108.2024.10782873.

[4] Z. Fu et al., “Altered static and dynamic functional network connectivity
in Alzheimer’s disease and subcortical ischemic vascular disease: shared
and specific brain connectivity abnormalities,” Hum. Brain Mapp., vol.
40, no. 11, pp. 3203–3221, Aug. 2019, doi: 10.1002/hbm.24591.

[5] M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-mode
network activity distinguishes Alzheimer’s disease from healthy aging:
evidence from functional MRI,” Proc. Natl. Acad. Sci. U. S. A., vol.
101, no. 13, pp. 4637–4642, Mar. 2004, doi: 10.1073/pnas.0308627101.

[6] F. Han, X. Liu, R. B. Mailman, X. Huang, and X. Liu, “Resting-state
global brain activity affects early β-amyloid accumulation in default
mode network,” Nat. Commun., vol. 14, no. 1, p. 7788, Nov. 2023, doi:
10.1038/s41467-023-43627-y.

[7] Y. I. Sheline et al., “Amyloid Plaques Disrupt Resting State De-
fault Mode Network Connectivity in Cognitively Normal Elderly,”
Biol. Psychiatry, vol. 67, no. 6, pp. 584–587, Mar. 2010, doi:
10.1016/j.biopsych.2009.08.024.

[8] G. Castellano, A. Esposito, E. Lella, G. Montanaro, and G. Vessio,
“Automated detection of Alzheimer’s disease: a multi-modal approach
with 3D MRI and amyloid PET,” Sci. Rep., vol. 14, no. 1, p. 5210, Mar.
2024, doi: 10.1038/s41598-024-56001-9.

[9] R. Sapkota, B. Thapaliya, P. Suresh, B. Ray, V. D. Calhoun, and
J. Liu, “Multimodal Imaging Feature Extraction with Reference
Canonical Correlation Analysis Underlying Intelligence,” in ICASSP
2024 - 2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Apr. 2024, pp. 2071–2075. doi:
10.1109/ICASSP48485.2024.10448219.

[10] B. Thapaliya et al., “Graph-based deep learning models in the pre-
diction of early-stage Alzheimers,” in 2024 46th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Jul. 2024, pp. 1–5. doi: 10.1109/EMBC53108.2024.10782267.

[11] R. Ballem et al., “Mapping the Psychosis Spectrum – Imaging Neuro-
subtypes from Multi-Scale Functional Network Connectivity,” Mar. 28,
2025, bioRxiv. doi: 10.1101/2025.02.11.637551.

[12] A. Iraji, A. Faghiri, N. Lewis, Z. Fu, S. Rachakonda, and V. D. Calhoun,
“Tools of the trade: estimating time-varying connectivity patterns from
fMRI data,” Soc. Cogn. Affect. Neurosci., vol. 16, no. 8, pp. 849–874,
Aug. 2021, doi: 10.1093/scan/nsaa114.

[13] A. Iraji et al., “Identifying canonical and replicable multi-scale in-
trinsic connectivity networks in 100k+ resting-state fMRI datasets,”
Hum. Brain Mapp., vol. 44, no. 17, pp. 5729–5748, Oct. 2023, doi:
10.1002/hbm.26472.

[14] K. M. Jensen, J. A. Turner, V. D. Calhoun, and A. Iraji, “Address-
ing inconsistency in functional neuroimaging: A replicable data-driven
multi-scale functional atlas for canonical brain networks,” bioRxiv, p.
2024.09.09.612129, Jan. 2024, doi: 10.1101/2024.09.09.612129.

[15] S. L. Sclove, “Using Model Selection Criteria to Choose the Number
of Principal Components,” J. Stat. Theory Appl., vol. 20, no. 3, pp.
450–461, Sep. 2021, doi: 10.1007/s44199-021-00002-4.

[16] J. Ottoy et al., “Amyloid-PET of the white matter: Relationship to free
water, fiber integrity, and cognition in patients with dementia and small
vessel disease,” J. Cereb. Blood Flow Metab., vol. 43, no. 6, pp. 921–936,
Jun. 2023, doi: 10.1177/0271678X231152001.

[17] A. Moscoso et al., “18F-florbetapir PET as a marker of myelin integrity
across the Alzheimer’s disease spectrum,” Eur. J. Nucl. Med. Mol.
Imaging, vol. 49, no. 4, pp. 1242–1253, 2022, doi: 10.1007/s00259-
021-‘05493-y.

[18] M. S. E. Sendi et al., “Alzheimer’s Disease Projection From Normal
to Mild Dementia Reflected in Functional Network Connectivity: A
Longitudinal Study,” Front. Neural Circuits, vol. 14, Jan. 2021, doi:
10.3389/fncir.2020.593263.


	Introduction
	Materials and Methods
	Participants and Data Acquisition
	PET and FNC Data Acquisition
	Multimodal Feature Construction
	Multimodal Independent Component Analysis (ICA)
	Linear Mixed-Effects Model (LMM) Analysis
	APOE ε4 Carrier-Based Group Comparison

	Results
	Discussion
	Conclusion
	References

