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Abstract

In large deep neural networks that seem to perform surprisingly well on many tasks,
we also observe a few failures related to accuracy, social biases, and alignment
with human values, among others. Therefore, before deploying these models, it is
crucial to characterize this failure landscape for engineers to debug or audit models.
Nevertheless, it is infeasible to exhaustively test for all possible combinations of
factors that could lead to a model’s failure. In this workshop paper, we improve
the “Failures are fated, but can be faded” framework [1]—a post-hoc method to
explore and construct the failure landscape in pre-trained generative models—with
a variety of deep reinforcement learning algorithms, screening tests, and LLM-
based rewards and state generation. With the aid of limited human feedback, we
then demonstrate how to restructure the failure landscape to be more desirable by
moving away from the discovered failure modes. We empirically demonstrate the
effectiveness of the proposed method on diffusion models. We also highlight the
strengths and weaknesses of each algorithm in identifying failure modes.

1 Introduction

No dataset or model, regardless of its size, can encompass the full spectrum of real-world scenarios.
Consequently, they are expected to fail under certain conditions. However, unlike in white-box
modeling, where we construct models from first principles by clearly defining assumptions, it is
impossible to know a priori which factors contribute to the failures of deep learning models. These
failures often only become apparent after deployment, when the models are exposed to diverse and
unpredictable real-world data. To name a few examples of failures: commercial generative AI-based
platforms that are susceptible to producing stereotypical or racist outputs can cause societal stigma
and perpetuate bias. The importance of identifying such failure modes stems from two different
aspects. First, engineers and data scientists need to understand the numerous factors that affect
model performance to debug these models. Second, policymakers, legislative bodies, and insurance
companies need an accessible method to audit the capabilities of these models. As illustrated in
Fig. 1, the main requirement for both stakeholders is an efficient tool that can automatically explore
various areas of the failure landscape.

Although users of deep neural network-based systems frequently encounter failures, as evidenced
by daily social media posts, there have been relatively few attempts to develop techniques for
exploring the landscape of these failures. This is primarily due to the exceedingly high number of
test cases, rendering classical search techniques impractical. Models often fail due to combinations
of factors in the continuous, discrete, or hybrid domains. A model might fail in one case while
performing adequately in another seemingly similar case, emphasizing the stochastic nature of the
failure landscape and thus exacerbating the difficulty of the problem. For instance, as shown in the
histogram of Fig. 1, changing the profession in a text prompt result in bias.
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Figure 1: There are three main steps in the proposed failure discovery and mitigation framework. 1.
Discover: We propose a deep RL-based method to explore the failure landscape with microscopic
and macroscopic exploration strategies. It will discover regions where the model works and fails, with
varying levels of confidence. 2. Summarize: Results are qualitatively and quantitatively summarized
for the user to indicate preferences. 3. Restructure: Based on the user’s preferences from the
previous stage, the model can be fine-tuned to mitigate or shift away the failure modes to unlikely
regions. The center image shows images generated by Stable Diffusion v1-4 for the prompt “Create
an image of a distinctive <artist> analyzing data on a computer in a <research center>”. A user
selects the most likely failure in terms of image quality from the summary report. The fine-tuned
model, based on user preferences, has generated more naturalistic images.

To tackle these challenges, we need a method that can explore large spaces by taking many possible
actions while also taking into account the stochasticity of the system. As a solution, we propose a
deep Reinforcement Learning (deep RL)-based method to post-hoc characterize the failure landscape
of large-scale pre-trained deep neural networks. The deep RL-based algorithm iteratively interacts
with the environment (i.e., the model we want to audit) to learn a stochastic policy that can find
failures by satisfying criteria, either implicit or explicit, provided by a human. We propose various
operating modes of the deep RL-based algorithm to explore the failure landscape with different
specificities as engineers and legislative bodies have different needs.

Characterizing the failure landscape is not useful if it cannot be used to improve the model. By
taking a limited amount of human feedback, we show how the harmful and frequent failures can be
mitigated, showing the effectiveness of our failure detection and representation mechanisms. In this
workshop paper, we make several improvements to “Failures are Fated, But Can be Faded” [1]:

1. A method to automate reward and state collection through LLMs is devised.
2. In addition to DQN, the framework is generalized to add other RL algorithms such as PPO

and A2C. We also show how different RL algorithms explores failure modes differently.
3. Inspired by design of experiments (DOE) [2], a screening mechanism to reduce the action

space is introduced.

2 Related Work

Formal verification and validation of neural networks is an active field of research [3]. Statistical
approaches have also been used for verifying neural networks [4]. While the advances in these
fields are important, in its current state, these approaches struggle with scaling to SOTA deep neural
networks. Therefore, considering the rapid deployment of these models, taking a completely empirical
approach, we develop alternative techniques to characterize the failure landscape. Accurate failure
categorization is crucial for understanding model limitations as demonstrated by methods such as
those applied in deep regression models [5].

Out-of-distribution (OOD) detection research aims to determine whether a given input is OOD [6,
7, 8]. In most cases, it is challenging to discern whether the learned model is underperforming or the
data is genuinely OOD. To address these challenges, recent methods, such as [9] leverages LLMs
and VLMs to detect failures by aligning visual features to core attributes, [10] estimate uncertainty
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by accounting for prediction inconsistencies under biased data. Rather than focusing on detecting
OOD inputs, our work emphasizes identifying regions where failures are likely to occur.

Adversarial attacks [11, 12] can be thought as a way to make data points OOD by applying a small
perturbation. They, if necessary, can be categorized as a sub-case of our exploration around the origin
of the concept space. However, this paper, specifically looks at characterizing the whole failure
landscape of interest, rather than the sensitivity to small perturbations. This complete characterization
is more actionable, providing an interface for the engineers to debug models or auditing bodies to
understand limits.

Reinforcement Learning We explore three popular RL algorithm Deep Q-Network (DQN) [13],
Proximal Policy Optimization (PPO) [14], Advantage Actor-Critic (A2C) [15]. DQN combines
Q-learning with deep neural networks to approximate Q-values for each state-action pair. PPO is a
policy gradient method that balances between policy improvement and stability. It employs a clipped
surrogate objective to prevent large policy updates, leading to more stable and efficient training.
A2C is a synchronous version of the actor-critic method that estimates the advantage function to
reduce variance in policy updates. The actor learns the policy, while the critic evaluates the current
policy by learning a value function. RL has been shown to be an effective search strategy in a
wide range of applications, such as drug discovery [16] etc. Previously, MDPs with solvers such as
Monte Carlo Tree Search have been applied to perturb individual LIDAR points or pixels [17] and
states of aircraft and autonomous vehicles [18]. Such techniques, while ideal for the applications
considered, become quickly infeasible in high-dimensional continuous action spaces as in testing
foundation models. Further, since such data-driven stress testing methods in aeronautics engineering
can be formulated as reinforcement learning-based adversarial attacks in machine learning [19, 20],
limitations of adversarial attacks still hold. Rather than devising methods for adversarial attacks, our
aim is to red team and characterize the whole failure landscape to subsequently mitigate them. Most
work on red teaming [21, 22, 23, 24], except [1, 25], do not pose failure discovery as a reinforcement
learning problem. [25] is limited to LLMs, whereas we improve the usability of the text-to-image
generation in [1] through LLMs. The scalability of the proposed method is primarily attributed to the
capabilities of deep RL to manage large and high-dimensional action spaces effectively.

3 Characterizing the Failure Landscape

3.1 Defining Failures

Let us consider a deep neural network1 fθ, parameterized by θ, produces an output y. Like any model,
fθ operates only under certain conditions, although these conditions are not evident for deep neural
networks. Even if we can find all the valid operating conditions, merely enumerating them is not
sufficient to address the model’s issues. Therefore, our goal is to identify a set of specific operating
conditions, which we refer to as concepts C, under which the model fθ is most likely to fail.

Definition 1 Let m(.) be a scoring function that evaluates an output of a neural network. The
discrepancy ∆, under concepts C, is defined as the difference between the score of the human-
specified output m(yhuman) and the score of the model’s output m(y). The model is considered to
have failed under C, if ∆(m(yhuman),m(y)|C) > ϵ, for some non-negative ϵ.

Here, yhuman can be annotated ground truth labels or run-time human evaluations [26]. Therefore,
yhuman indicates human’s expectation on what the output should be. The discrepancy ∆ can simply
be a scoring scheme used in generative AI image evaluation. For example, in the case of a text-
conditioned image generation task, yhuman can be a combination of image quality, gender bias, and
art style, while C can be a combination of profession-related terms and grammatical mistakes in the
text prompt. Certain combinations of C, results in larger ∆. Since discovering all inputs that lead
to failures under C is neither feasible nor useful, our objective is to craft an algorithm to efficiently
modify these concepts to adequately explore the failure landscape.

1A generative model f : Z → X ′ is a mapping from the space of learned latent variables, z ∈ Z, to the space
of generated data, y ∈ X ′. To keep the subsequent discussion clearer, we have intentionally abused notation
here by reusing and overloading f and y. Therefore, intuitively, y is the output of the network during inference.
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3.2 Discovering Failures

Our objective is to modify concepts C in such a way that the model fails. To handle the stochasticity
of the input-output mapping and large continuous or discrete concept set for large datasets, we frame
this as a deep RL problem. We want to find a policy π that can alter the values of these concepts by
applying actions a on concepts C. For instance, if C = {gender = {male, female}, profession =
{professor, musician, chef}}, actions for a prompt Generate a <gender><profession> under C, will
consider different combinations of C. An example of an action is Generate a male chef.

To learn the policy that can suggest the best actions, we consider a Markov Decision Process (MDP),
defined by the tuple (S,A, P,R, γ), for set of states (observation space) S, set of actions (action
space) A, a transition probability function P : S ×A× S → [0, 1], reward function R : S ×A→ R,
and a discount factor γ ∈ [0, 1]. An agent in state s ∈ S takes the action a ∈ A and transition to the
next state s′ ∈ S with transition probability P (s′|s, a). In other words, the RL algorithm samples a
prompt s and changes the value of the concept c according to a, and obtain a new image or a prompt
s′, altered under c. By passing this new prompt through the neural network, we collect a reward
R(s′, a). To encourage discovering failures, we define the reward function in such a way that the
higher the probability of failure, the higher the R is.

Algorithm 1 Action Screening
1: Input: Actions A, states S, reward function R
2: Output: High-rewarding actions A′

3: Initialize R_sums[a]← 0 for each a ∈ A
4: for each s ∈ S do
5: for each C ⊆ A do
6: reward← R(C, s)
7: for each a ∈ C do
8: R_sums[a]← R_sums[a] + reward
9: end for

10: end for
11: end for
12: mean_R← 1

|A|
∑

a∈A R_sums[a]

13: A′ ← {a ∈ A : R_sums[a] ≥ mean_R}
14: return A′

Exploration: We define the concept value set
C to contain all possible combinations of ac-
tions. The exploration is designed to caste a
wide net to explore various areas quickly and
identify regions of the action space where the
model fails. These regions might be scattered
across the space and not contiguous with the
model’s known operating region (i.e., the re-
gion where there are no failures).

Screening Experiments for the Factorial De-
sign: Since C can increase exponentially with
more actions, we perform a preliminary test
to limit the selection of a to high-rewarding
actions. We evaluate all C using the rewards
obtained from randomly sampled states. We
then calculate reward given by each individual
actions. If an action’s reward is below the mean

average, we exclude it from consideration. In design of experiments [2] terms, we screen main effects
before considering all interaction effects. The final results are shown in Appendix D

3.3 The Deep RL Formulation with LLM-based States and Rewards

We developed an RL environment based on the OpenAI’s Gym library [27], focusing on text-to-image
generation tasks.

Figure 2: Wordcloud of prompts from a) predefined states b) LLM generated states

Problem setup: We utilize Stable Diffusion-v1-4 (SD v1-4) [28], a text-to-image model to generate
images prompts, according to C. The action space consists of words from three sets of personal
attribute, profession, and place (See Appendix D). These three categories were chosen because they
represent key aspects of human identity and contextual scenarios that significantly influence the
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content and style of the generated images. By varying attributes (e.g., "unique" or "visionary"),
profession (e.g., "mathematician" or "writer"), and place (e.g., "corporate office" or "research center"),
we can systematically explore how different combinations affect the model’s output, ensuring a wide
range of scenarios are covered for testing failure modes.

State generation using an LLM: The states are represented by prompts that are dynamically generated
to simulate a wide range of scenarios for the diffusion model to process, this allows for scalability,
as the generation of a vast number of prompts can be achieved rapidly with minimal manual effort,
making it a highly efficient method for state generation in RL tasks. In contrast, [1] relied on
predefined prompts faced the limitation of a fixed and narrow set of scenarios, which restricted
exploration of diverse failure modes. Using LLM for state generation produced 1,310 unique words,
whereas using 21 self-defined prompts resulted in only 61 unique words, as shown in the form of
word-clouds in Fig. 2. We achieve this by utilizing the GPT-4o language model to create prompts
containing specific placeholders. The RL agent interacts with these states by selecting actions (such
as choosing specific words to fill the placeholders), which are designed to explore potential failure
modes of the diffusion model. The use of placeholders and GPT-4 allows for the rapid generation of
a large number of diverse prompts without manual crafting.

The agent selects an action from the combination of attributes, professions, and places (Total number
of combinations depends on the number of action we get after the screening) and combines it with
a base prompt from the observation space, and pass it through SD v1-4 to generate the image.
For example, if the agent returns the <attribute> to be unique, <profession> to be scientist and
<place> to be corporate office, a final prompt example can be: “Create an image of a unique scientist
brainstorming new ideas in a corporate office.”

RL Agent: The RL agent learns to identify which combination of words from attributes, professions,
and places results in worst image quality and has the most bias based on the given prompt from a
LLM based reward function inspired by the success of designing reward function using LLM [29, 30]
and code-as-policy methods in procedural content generation, where RL is used to optimize code
actions for task performance [31].

Prompt : Generate an 
image of a Panda

GPT-4o

Give a numerical value as 
reward for how inaccurate 
image representation is of 
the text.

eImageeText

Reward

Figure 3: LLM Reward Function

Reward estimation using an LLM: We employ a GPT-4o
based reward function to provide rewards to model. Since
collecting rewards through human feedback is an expensive
process. Given that foundation models are trained on large
datasets, they should provide more reliable and balanced
performance.

Rgpt = fo(etext, eimage, text, image) (1)
Here, fo represents the GPT-4o model, etext and eimage rep-
resent the CLIP [32] embeddings of the text and image,
respectively, and the function evaluates the alignment be-
tween the text prompt and the generated image. The model
is instructed to evaluate the inaccuracy of the image relative
to the text and to output a numerical reward representing this
inaccuracy, Examples of prompt-image-reward pairs can be
provided to fo to induce chain-of-thought reasoning for better performance. Automated reward
calculation allows for large-scale evaluations without the overhead of human involvement.

4 Obtaining Human Preferences

The RL agent traverses the failure landscape by imagining possible concepts that can lead to failures.
As a result, there is also a chance that it might discover failures that are less interesting from the
application’s perspective. Therefore it is crucial to identify and assess the significance/interest of
their failure modes.

In this section of the paper, we obtain human feedback to assess the quality of rewards obtained by
grounding them to the application at hand. Note that the human only provide a few—in practice,
one to four—post-hoc feedback, and hence, this approach needs not to be confused with iterative
reinforcement learning with human feedback (RLHF), in which the objective is to learn a reward
function. To show the discoveries of the algorithm to the human, we propose both qualitative and
quantitative approaches.
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Figure 4: a) A visualization of the failure landscape. b) We can observe sample failures, get
quantitative distances. We see a shift in the failure mode (yellow) after fine-tuning.

4.1 Qualitative Summary

As shown in Fig. 1, the failures discovered by the RL agent can be grouped in to three categories: 1)
regions in the concept space where failures occur, 2) regions in the concept space where failures do
not occur (i.e., operating region), and 3) the regions that we are uncertain about as the agent has very
less or never visited that region. In any region, the more frequent the agent visits a particular area,
the higher the epistemic confidence is. To visualize the failure landscape, we consider the rewards
obtained by the actions at a particular state because the rewards for taking certain actions in given
states serves as a measure of the potential success or failure of these actions.

As illustrated in Fig. 4a, the three most prominent actions can be visualized in the 3D space using the
reward values. Since the RL policy can visit the same state, take the same action a multiple times but
result in different failure outcomes, we need to average all the rewards for a. The color of a point
in Fig. 4 indicates the mean reward 1

n

∑n
i=1 Rgpt(Si, a), whereas the size indicates its associated

confidence, or inverse standard deviation. Higher mean values, indicated in yellow, emphasize the
propensity of these actions to steer the model towards failures. As a metric of sensitivity, confidence
explains the variability inherent to these actions, highlighting a spectrum of potential states to which
the model may transition upon the execution of such actions. The human evaluator is able to interact
with the 3D plot and select any point in the space. It will show sample failure cases of images, text
articles, or prompts originating from that failure state.

4.2 Quantitative Summary

If the failure landscape cannot be clearly visualized using a 3D plot, especially for high-dimensional
action spaces, we need metrics to summarize the failures in a given region. By considering all the
points of interest in a given area, we consider the following Wasserstein barycenter,

argminµ♢

N∑
i=1

λiW
2(µi, µ♢) (2)

where W 2 = inf
∫
π
D(x, y)dπ(x, y) is the squared Wasserstein distance for dirac probability mea-

sures µ =
∑N

i=1 aiδi on the failure landscape on x, y.

Fig. 4b shows an example barycenter for a given radius as a Diamond. The Wasserstein barycenter
can be used to marginalize any number of dimensions in the failure space and observe a sliced view.
These qualitative and quantitative analyses inform the user whether to restructure the failure landscape
by shifting away certain failure modes.
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Figure 5: Failure mode shift in DQN, PPO and A2C, showing the frequency of each unique action
(X-axis) taken across different models.

5 Restructuring the Failure Landscape

Once the deep RL algorithm estimates the failure landscape, and a human selects which failure modes
are undesirable, we need to reduce the failures.

Definition 2 (Reduced Failures) For a set of actions A∗ ∈ A that the user wants to mit-
igate failures on, the failures are said to be reduced if E[∆ (m(fθ∗(x)),m(yhuman)|A∗] <
E[∆ (m(fθ(x)),m(yhuman)|A∗)] for discrepancies ∆ of scores m of the original model fθ and
modified model fθ∗ for all input x in the dataset.

Since retraining large-scale models from scratch is becoming increasingly ineffective, we resort
to fine-tuning the models thus restructuring the failure landscape. we fine-tune the model using
Low-Rank Adaptation (LoRA) [33]. However, by trying to reduce one or a few failure modes of
interest, there is a chance that another less-interesting failure mode might increase. Our interactive
failure discover-summarize-restructure framework allows iteratively reducing all failure modes of
interest with minimal human intervention. We now discuss the fine-tuning process for different tasks
discussed in Section 3.3.

To fine-tune SD v1-4, we need a small dataset of unbiased and high-quality im-
ages associated with the action that received the highest failure probability. For
that, we collect a fine-tuning dataset from DALL·E3. (more details are in Appendix

Figure 6: Improving gender bias.

C). Then we fine-tuned SD v1-4 on the collected dataset.
While fine-tuning using LoRA, we freeze the weights of
the generative model and add trainable rank-decomposition
matrices which helps model to adjust to new knowledge
while maintaining prior knowledge. LoRA computes h =
W0x + BAx as the final output for the x is the input, W0

frozen weights of the pretrained generative model, and A
and B rank decomposition matrices. While training we fine-
tune the rank-decomposition matrices instead of learning all
the model parameters (Appendix C).

Results: As shown in Fig. 5, the frequency of failures can be discovered using RL and then shifted
away. As shown in Table 1 PPO exhibited the highest entropy, indicating extensive exploration, while
DQN showed the lowest entropy, reflecting a strong focus on exploitation. DQN also demonstrated
the sharpest peak and most significant shift in failure action modes. In contrast, PPO and A2C
displayed broader shifts. The failure landscape for the algorithms are shown in Appendix A.

Table 1: Comparative analysis of model performance across different algorithms.
Metric DQN PPO A2C

Max Count (↑) 812.00 26.00 47.00∑
Reward (↑) 362130.34 444624.30 437237.82
Entropy 1.67 5.95 5.60

Also SD v1-4 initially generated more male images for the prompts of interest. As shown in Fig. 6,
after discovering this bias with DQN, fine-tuning resulted in dropping the male to female bias ratio
from 1.65 to 1.16, with an additional overall improvement in the quality of generated images as well.
Concurrently, there was a 43% drop in ambiguous image (i.e., difficult for a human to assess the
gender due to poor quality, occlusion, etc.).
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Figure 7: Action frequency distribution for PPO, DQN, and A2C, showing the frequency of each
unique action (X-axis) taken across different models.
Fig. 7 highlights that DQN shows a clear preference for a specific action, with a notably higher
frequency compared to others, whereas PPO and A2C exhibit a more balanced distribution of actions.
In the context of failure detection in generative AI systems, this difference in action selection strategies
suggests that DQN may be more efficient in narrowing down particular failure modes, while PPO and
A2C provide broader exploration. Depending on the focus of the detection task whether it requires
targeted or more exploratory action selection, each method offers distinct advantages that should be
considered for the use case.

DQN is a value-based method and tends to aggressively exploit actions that seem to provide high
rewards early in training. If an action leads to a failure, DQN may be useful for consistently identifying
that failure. However, if we are looking for a broader exploration of failure cases, this tendency
can be limiting. In DQN an action at at time step t is selected according to the ϵ-greedy policy:

10
20

30
40

...
800 PPO

DQN
A2C

Figure 8: Action landscape mapping.
The radial axis represents the action
number, the magnitude axis indicates
the number of detected failures.

at =

{
random action with probability ϵ

argmaxa Q(st, a; θ) with probability 1− ϵ
(3)

As ϵ decreases with training, actions with higher Q-values are
selected more frequently. This can further reduce exploration
in later stages, which may prevent the discovery of new failure
cases.

PPO and A2C are more exploration-oriented algorithms com-
pared to DQN. Being policy-based methods, they inherently
encourage a broader exploration of actions, leading to a more
balanced action selection frequency. This exploration is fa-
cilitated by their reliance on a probability distribution over
actions, rather than selecting a single action with the highest
estimated value, as in DQN. Consequently, PPO and A2C
explore a wider range of potential failure cases before con-
verging on an optimal strategy. In PPO and A2C, actions are
sampled from the learned policy π(a|st; θ):

at ∼ π(a|st; θ) (4)

Here, π(a|st; θ) represents the probability distribution over actions, ensuring that the agent explores
a wide range of actions at each time step t. The difference between A2C and PPO lies in how the
policy is updated. A2C updates the policy using the advantage function, while PPO uses a clipped
objective to ensure the policy does not change too drastically between updates.

PPO and A2C are more suitable for to discover a wide range of failure cases as shown in Fig. 8 where
they identify failures across a wider range of actions, demonstrating their more exploratory tendencies
and ability to find diverse failure modes. PPO is particularly effective for mapping the entire action
landscape, as it encourages broader exploration due to its higher entropy, allowing it to cover diverse
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regions of the action space. A2C, on the other hand, excels at identifying multiple failure cases within
a single run, making it ideal for environments where various failures arise from different parts of the
action space. In contrast, DQN is more efficient at quickly identifying a single failure, particularly in
environments with discrete actions as shown in Fig. 8 where DQN displays a strong concentration
of failures around specific actions, reflecting its exploitative behavior. However, while DQN can
efficiently exploit that one failure, discovering multiple distinct failure modes may require several
independent runs due to its more focused action exploitation. Thus, for simpler environments, DQN
works well for finding individual failures rapidly, but for complex environments requiring diverse
exploration, PPO or A2C provide more comprehensive and robust failure detection.

7 Conclusions

We proposed a discover-summarize-restructure pipeline to characterize the failure landscape of
diffusion models by taking an empirical approach. Deep RL-based failure discoveries are actionable
as they can be used to reduce common failures. The proposed approach is better at finding hidden
failures in seemingly well-performing models, making it ideal for pre-deployment assessments of
foundation models. Our findings highlight that while DQN effectively exploits specific high-reward
failure cases, its value-based nature may limit broader exploration of the failure landscape. In contrast,
policy-based methods like PPO and A2C exhibited more balanced action selection, making them
better suited for discovering a wider range of failure cases in complex environments. Therefore, the
choice of RL algorithm is critical: policy-based methods offer a more robust approach for capturing
diverse failures.
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Appendix

A Failure Landscape

This section shows the failure landscape plotted before and after fine-tuning (FT) for all the algorithms
PPO 9, DQN 10 and A2C 11. The X, Y, Z axis in failure landscape corresponds to each index in
personal attribute(X), profession(Y), and place(Z). Refer to Appendix D for the values.

FT

Figure 9: PPO: Failure Landscape before and after fine-tuning

FT

Figure 10: DQN: Failure Landscape before and after fine-tuning

FT

Figure 11: A2C: Failure Landscape before and after fine-tuning
The Failure with the most reward was found to be failure mode [1,1,1] in PPO, failure mode [1,0,3]
in DQN and failure mode [3,0,3] in A2C.
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B Computing resources

We present the system configuration used for our computing experiments. The system is built on
an x86_64 architecture with support for both 32-bit and 64-bit CPU operating modes. It operates
in a Little Endian byte order and features address sizes of 39 bits physical and 48 bits virtual. The
core of the system is a 13th Gen Intel(R) Core(TM) i7-13700F processor. This processor has 24
CPUs (numbered 0 to 23) and operates with a base frequency of 941.349 MHz, capable of reaching a
maximum frequency of 5200.0000 MHz and a minimum of 800.0000 MHz. Each CPU is a single-
threaded core in a single-socket, 16-core configuration, with the entire system comprising one NUMA
node.

C Datasets and Models

Base model stable diffusion (SD) v1-4: The SD-v1-4 checkpoint was initialized with the weights
of the SD-v1-2 checkpoint and subsequently fine-tuned on 225k steps at resolution 512x512 on
"laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve classifier-free guidance
sampling

Fine-tuned SD v1-4: To efficiently adapt the SD-v1-4 model’s parameters on our custom dataset, we
made use of a rank 4 LoRA matrix with gaussian initialization. Fine-tuning was carried out for 10
epochs with batch size of 4. AdamW was used as the optimizer with the learning rate of 1e-4, cosine
learning rate scheduler, and weight decay of 1e-2. The training took place in mixed precision for
efficient memory optimization.

Dataset : For generation task, we first created a set of base prompts which was randomly sampled
from the observation states (Section 3.3 state generation). which can be combined with any attributes,
profession and place to form final prompt. This way we were able to generate a variety of creative
scenarios for inputs.

A custom dataset was created using DALL·E3. The action that resulted in the most varied clip
embedding of prompt and image during the RL experiment were used on all prompts from the
observation space to create a equal number of male and female generated images.

D Action Screening

The following action space was considered for the screening test:

1. personal attribute: [“unique”, “visionary”, “charismatic”, “dynamic”]
2. profession: [“mathematician”, “entrepreneur”, “writer”, “inventor”]
3. place: [“high-tech startup”, “think tank”, “corporate office”, “research center”]

After action screening using GPT 4o the action space consisted of:

1. personal attribute: [“unique”, “distinctive”, “cool”, “innovative”, “creative”, “charismatic”,
“visionary”, “inspirational”, “dynamic”]

2. profession: [“scientist”, “artist”, “professor”, “engineer”, “entrepreneur”, “inventor”, “re-
searcher”, “mathematician”, “philosopher”, “writer”]

3. place: [“corporate office”, “classroom”, “innovation lab”, “research center”, “art studio”,
“university campus”, “high-tech startup”, “conference room”, “think tank”, “tech hub”]

All the prompts were generated using actions derived from the selected keywords following the action
screening test.
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