
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE TRAINING CONVERGENCE OF TRANSFORM-
ERS FOR IN-CONTEXT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While transformers have demonstrated impressive capacities for in-context learn-
ing (ICL) in practice, theoretical understanding of the underlying mechanism en-
abling transformers to perform ICL is still in its infant stage. This work aims to
theoretically study the training dynamics of transformers for in-context classifica-
tion tasks. We demonstrate that, for in-context classification of Gaussian mixtures
under certain assumptions, a single-layer transformer trained via gradient descent
converges to a globally optimal model at a linear rate. We further quantify the
impact of the training and testing prompt lengths on the ICL inference error of
the trained transformer. We show that when the lengths of training and testing
prompts are sufficiently large, the prediction of the trained transformer approaches
the Bayes-optimal classifier. Experimental results corroborate the theoretical find-
ings.

1 INTRODUCTION

Large language models (LLMs) based on the transformer architecture (Vaswani et al., 2017) have
demonstrated remarkable in-context learning (ICL) abilities (Brown et al., 2020). When given a
prompt consisting of examples of a learning task, these models can learn to solve this task for new
test examples without any parameter updating. This behavior has been empirically demonstrated in
state-of-the-art models on real-world tasks (OpenAI, 2023; Touvron et al., 2023).

This impressive capacity of transformer-based models has inspired many recent works aiming to
understand the ICL abilities of transformers. A more comprehensive literature review can be found
in Appendix B. Garg et al. (2022) was the first to study the ICL abilities of transformers for various
function classes. They empirically showed that transformers can learn linear regression models in
context. Later on, a line of research was developed to theoretically explain how transformers perform
in-context linear regression. For example, Akyürek et al. (2022); Von Oswald et al. (2023); Bai et al.
(2024); Fu et al. (2023); Giannou et al. (2024) showed by construction that, some specially-designed
transformers can perform linear regression in context. Moreover, some recent works like Zhang
et al. (2023a); Huang et al. (2023); Chen et al. (2024) studied the training dynamics of a single-
layer transformer for in-context linear regression. They proved the convergence of their single-layer
transformers and showed their trained transformer are able to perform linear regression in context.

Building on the earlier works that largely focus on linear regression problems, several recent pa-
pers have started to investigate the ICL capabilities of transformers for non-linear problems such as
classification. For instance, Bai et al. (2024) showed that, by construction, multi-layer transformers
can be approximately viewed as multiple steps of gradient descents for logistic regression. Gian-
nou et al. (2024) further showcased that the constructed transformers can approximately perform
Newton’s method for logistic regression. Recently, Li et al. (2024) studied the training dynamics
of transformers for in-context binary classification. However, their analysis requires the data to be
pairwise orthogonal and the possible distribution of their data is highly limited. The learning dy-
namics of transformers for more general in-context classification problems is not well understood.
Moreover, to the best of our knowledge, existing literature (Bai et al., 2024; Giannou et al., 2024; Li
et al., 2024) studying the in-context classification of transformers focus only on binary classification.
How transformers perform in-context multi-class classification remains unexplored.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we study the learning dynamics of a singly-layer transformer for both in-context binary
and multi-class classification of Gaussian mixtures, a fundamental problem in machine learning. Our
main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to study the learning dynamics of transformers for
in-context classification of Gaussian mixtures, and we are the first to prove the training conver-
gence of transformers for in-context multi-class classification. We prove that with appropriately
distributed training data (Assumptions 3.1, 4.1), a single-layer transformer trained via gradient de-
scent will converge to its global minimizer at a linear rate (Theorems 3.1, 4.1) for both in-context
binary or multi-class classification problems.

• Due to the high non-linearity of our loss function, we cannot directly find the closed-form expres-
sion of the global minimizer. Instead, we prove an important property that the global minimizer
consists of a constant plus an error term that is induced by the finite training prompt length (N).
We further show that the max norm of this error term is bounded, and converges to zero at a rate
of O(1/N).

• With properly distributed test prompts (Assumptions 3.2, 4.2), we establish an upper bound of
the inference error (defined in Equation (3)) of the trained transformer and quantify the impact of
the training and testing prompt lengths on this error. We further prove that when the lengths of
training prompts (N) and testing prompts (M) approach infinity, this error converges to zero at
a rate of O(1/N + 1/

√
M) (Theorems 3.2, 4.2), and the prediction of the trained transformer is

Bayes-optimal, i.e., the optimal classifier given the data distribution.

2 PRELIMINARIES

Notations. We denote [n] = {1, 2, . . . , n}. For a matrix A ∈ Rm×n, we denote its Frobenius norm
as ∥A∥F , and its max norm as ∥A∥max = maxi∈[m],j∈[n] |Aij |. We use Aa,b (or Aab) to represent
the element of matrix A at the a-th row and b-th column, and use Aa:c,b to represent a vector of
dimension c− a+ 1 whose i-th element is A(a+i−1),b. We denote the l2 norm of a vector as ∥ · ∥2.
We denote the all-zero vector of size n as 0n and the all-zero matrix of size m×n as 0m×n. We use
σ(x) := 1/(1 + exp(−x)) to denote the sigmoid function. We define softmax(·) : Rk → (0, 1)k,
and its i-th element as softmax(·)i, where softmax(x)i = exp(xi)/(

∑k
j=1 exp(xj)).

2.1 SINGLE-LAYER TRANSFORMER

Given an input embedding matrix E ∈ Rde×dn , a single head self-attention module FSA (Vaswani
et al., 2017) with width de will output

FSA(E;WV ,WK ,WQ) = E +WV E · fattn

(
(WKE)⊤WQE

ρ

)
, (1)

where WV ,WK ,WQ ∈ Rde×de are the value, key, and query weight matrices, respectively, ρ > 0
is a normalization factor, and fattn is an activation function for attention. There are different choices
of fattn; for example Vaswani et al. (2017) adopts softmax.

In this work, similar to Zhang et al. (2023a); Wu et al. (2023), we set fattn(x) = x and define
WKQ = (WK)⊤WQ ∈ Rde×de . We use F to denote this simplified model. Then, the output of F
with an input embedding matrix E ∈ Rde×dn can be expressed as

F (E;WV ,WKQ) = E +WV E · E
⊤WKQE

ρ
. (2)

In the following theoretical study and the subsequent experiments (Section 5.2), we show that this
simplified transformer model has sufficient capability to approach the Bayes-optimal classifier for
in-context classification of Gaussian mixtures.

2.2 IN-CONTEXT LEARNING FRAMEWORK

We adopt a framework for in-context learning similar to that used in Bai et al. (2024). Under this
framework, the model receives a prompt P = (D, xquery) comprising a set of demonstrations D =

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

{(xi, yi)}i∈[N]
i.i.d.∼ P and a query xquery ∼ Px, where P is the joint distribution of (x, y) and Px is

the marginal distribution of x. Here, xi ∈ Rd is an in-context example, and yi is the corresponding
label for xi. For instance, in regression tasks, yi ∈ R is a scalar. In this paper, we focus on
classification tasks. Thus, the range of yi can be any set containing c different elements, such as
{1, . . . , c}, for classification problems involving c classes. The objective is to generate an output
ŷquery that approximates the target yquery ∼ Py|xquery

.

Since yquery is a discrete random variable, we use the total variation distance to measure the differ-
ence between ŷquery and yquery:

∆(yquery, ŷquery) = sup
z∈R(yquery)

|P (yquery = z)− P (ŷquery = z) |, (3)

where R(yquery) is the range of yquery. When ∆(yquery, ŷquery) = 0, ŷquery has the same distribution
as yquery, which means the output of the model perfectly approximates yquery.

Unlike standard supervised learning, in ICL, each prompt Pτ can be sampled from a different dis-
tribution Pτ . We say that a model has the ICL capability if it can approximate yτ,query for a broad
range of Pτ ’s with fixed parameters.

3 IN-CONTEXT BINARY CLASSIFICATION

In this section, we study the learning dynamics of a single-layer transformer for in-context binary
classification. It is a special case of the general multi-class classification. As a result, the analysis is
more concise. The general in-context multi-class classification problem is studied in Section 4.

We first introduce the prompt and the transformer structure we will use for in-context
binary classification. The prompt for in-context binary classification is denoted as
P = (x1, y1, . . . , xN , yN , xquery), where xi ∈ Rd and yi ∈ {−1, 1}. We can convert this prompt P
into its corresponding embedding matrix E(P) in the following form:

E = E(P) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (4)

Similar to Huang et al. (2023); Wu et al. (2023); Ahn et al. (2024), we set some of the parameters in
our model to 0 or 1 to simplify the optimization problem, and consider the parameters of our model
(WV ,WKQ) in the following sparse form:

WV =

(
0d×d 0d
0⊤d 1

)
, WKQ =

(
W 0d
0⊤d 0

)
, (5)

where W ∈ Rd×d. We set the normalization factor ρ equal to the length of the prompt N . Let
F (E(P);W) be the output matrix of the transformer. We then read out the bottom-right entry of
the output matrix through a sigmoid function, and denote this output as ŷout. The output ŷout of the
transformer with prompt P and parameters W can be expressed as

ŷout = σ
(
[F (E(P);W)](d+1),(N+1)

)
= σ

((
0⊤d 1

)(1
N

∑N
i=1 xix

⊤
i + 1

N xqueryx
⊤
query

1
N

∑N
i=1 xiyi

1
N

∑N
i=1 x

⊤
i yi

1
N

∑N
i=1 y

2
i

)(
W 0d
0⊤d 0

)(
xquery

0

))

= σ

((
1

N

N∑
i=1

yix
⊤
i

)
Wxquery

)
.

We denote the prediction of our model for xquery as ŷquery, which is a random variable depending on
ŷout. Consider generating a random variable u uniformly on [0, 1]. If u ≤ ŷout, we output ŷquery = 1;
if u > ŷout, we output ŷquery = −1. Then, we have P (ŷquery = 1) = ŷout, P (ŷquery = −1) =
1− ŷout.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 TRAINING PROCEDURE

We study the binary classification of two Gaussian mixtures and use the following definition.

Definition 3.1 We say a data pair (x, y) ∼ Pb(µ0, µ1,Λ) if y follows a Bernoulli distribution with
P (y = −1) = P (y = 1) = 1/2 and f(x|y = −1) = N(µ0,Λ), f(x|y = 1) = N(µ1,Λ), where
µ0, µ1 ∈ Rd and Λ ∈ Rd×d is a positive definite matrix.

We consider the case of B training tasks indexed by τ ∈ [B]. Each training task τ is associated with
a prompt Pτ = (xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,query) and a corresponding label yτ,query. We make
the following assumption in this section.

Assumption 3.1 For each learning task τ ∈ [B], we assume

(1) {xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query}
i.i.d.∼ Pb(µτ,0, µτ,1,Λ).

(2) µτ,0 is randomly sampled from N(0, Id), and µτ,1 = Uτ,Λµτ,0 where Uτ,Λ =

Λ1/2UτΛ
−1/2, and Uτ is uniformly distributed over the closed set of real unitary matrices

such that UτU
⊤
τ = Id.

We denote the distribution of (µτ,0, µτ,1) as Pb
Ω(Λ). Note that Uτ,Λ = Λ1/2UτΛ

−1/2 can be viewed
as a linear transformation that preserves the inner product of vectors in Λ−1-weighted norm, and we
have µ⊤

τ,0Λ
−1µτ,0 − µ⊤

τ,1Λ
−1µτ,1 = 0.

Let ŷτ,out = σ([F (E(Pτ);W)](d+1),(N+1)) be the output of our transformer for task τ . We define
the empirical risk over B independent tasks as

L̂(W) =
1

2B

B∑
τ=1

−(1 + yτ,query) log(ŷτ,out)− (1− yτ,query) log(1− ŷτ,out). (6)

Taking the limit of infinite training tasks B → ∞, the expected training loss can be defined as

L(W) = lim
B→∞

L̂(W) = −1

2
E [(1 + yτ,query) log(ŷτ,out) + (1− yτ,query) log(1− ŷτ,out)] , (7)

where the expectation is taken over (µτ,0, µτ,1) ∼ Pb
Ω(Λ), {xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query}

i.i.d.∼
Pb(µτ,0, µτ,1,Λ).

Applying gradient descent over the expected training loss (7), we have the following theorem.

Theorem 3.1 Under Assumption 3.1, the following statements hold.

(1) Optimizing the training loss L(W) in (7) with training prompt length N via gradient de-
scent W t+1 = W t − η∇L(W t), we have that for any t ≥ 1

∥W t −W ∗∥2F ≤ exp(−t/κ)∥W 0 −W ∗∥2F , (8)

where W 0 is the initial parameter and W ∗ is the global minimizer of L(W), and κ = l/α.
Here α, l are constants satisfying

0 < α ≤ λmin(∇2L(W)) ≤ λmax(∇2L(W)) ≤ l, for all W ∈ RW , (9)

where RW = {W ∈ Rd×d | ∥W −W ∗∥F ≤ ∥W 0 −W ∗∥F }.
(2) Denote W ∗ = 2(Λ−1+G), q = xτ,query, µ = µτ,1−µτ,0, u = 2(µτ,1+µτ,0), a = µ⊤Λ−1q

for simplicity. Then we have

∥G∥max ≤ 1

N
∥S−1(E[σ′(a)(4qq⊤ +

1

4
uu⊤Λ−1qq⊤)

+ σ′′(a)(
1

8
(u⊤Λ−1q)2µq⊤ + 2q⊤Λ−1qµq⊤)])∥max + o(1/N), (10)

where S = 4∇2L̃(2Λ−1), L̃(2Λ−1) = limN→∞ L(2Λ−1), σ′(·) and σ′′(·) are the first-
and second-order derivatives of σ(·), respectively, and the expectation is taken over (µτ,0,
µτ,1) ∼ Pb

Ω(Λ), xτ,query ∼ Pb
x(µτ,0, µτ,1,Λ).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The detailed proof of Theorem 3.1 can be found in Appendix E. In the following, we provide a brief
proof sketch to highlight the key ideas.

Proof sketch for Theorem 3.1. As a first step, we prove in Lemma E.2 that the expected loss
function L(W) in (7) is strictly convex with respect to (w.r.t.) W and is strongly convex in any
compact set of Rd×d. Moreover, we prove L(W) has one unique global minimizer W ∗. Since
the loss function L(W) we consider is highly non-linear, we cannot directly find the closed-form
expression of W ∗, as is often done in the prior literature. We address this technical challenge via
the following method. First, in Lemma E.3, by analyzing the Taylor expansion of L(W), we prove
that as N → ∞, our loss function L(W) converges to L̃(W) pointwisely (defined in (25)), and the
global minimizer W ∗ converges to 2Λ−1. Thus, we denote W ∗ = 2(Λ−1 +G), and prove ∥G∥max

is bounded and scales as ∥G∥max = O(N−1/2). Next, in Lemma E.4, by further analyzing the
Taylor expansion of the equation ∇L(W ∗) = 0 at the point 2Λ−1, we establish a tighter bound
∥G∥max = O(N−1). In Lemma E.5, we prove that our loss function is l-smooth and provide an
upper bound for l. Thus, in a compact set RW , our loss function is α-strongly convex and l-smooth.
Finally, leveraging the standard results from the convex optimization, we prove Theorem 3.1.

According to Theorem 3.1, we have W t = W ∗ + Ht where ∥Ht∥max ≤ exp(−t/(2κ))∥W 0 −
W ∗∥F . If we set T ≥ 2κ log(N · ∥W 0−W ∗∥F), we have ∥HT ∥max ≤ 1/N . Denoting Ŵ = WT ,
we have Ŵ = 2(Λ−1+G+HT /2) = 2(Λ−1+ Ĝ), where Ĝ = G+HT /2, ∥Ĝ∥max ≤ ∥G∥max+
∥HT ∥max = O(1/N). Thus, we have the following corollary.

Corollary 3.1 If we optimize the expected loss L(W) in (7) via gradient descent with training
prompt length N , initial parameters W 0, and learning rate η = 1/l, then, under Assumption 3.1,
after T ≥ 2κ log(N∥W 0 −W ∗∥F) steps, the updated model Ŵ satisfies

Ŵ = 2(Λ−1 + Ĝ), (11)

where ∥Ĝ∥max = O(1/N), κ = l/α, and α, l are constants defined in (9).

Theorem 3.1 and Corollary 3.1 show that training a single-layer transformer with properly dis-
tributed data (Assumption 3.1) for binary classification via gradient descent can linearly converge to
its global minimum W ∗ = 2(Λ−1+G). Furthermore, when the prompt length N grows, this global
minimum W ∗ will converge to 2Λ−1 at a rate of O(1/N).

3.2 IN-CONTEXT INFERENCE

Next, we analyze the performance of the trained transformer (11) for in-context binary classification
tasks. We make the following assumption.

Assumption 3.2 For an in-context test prompt Ptest = (x1, y1, . . . , xM , yM , xquery), we assume

(1) {xi, yi}Mi=1
i.i.d.∼ Pb(µ0, µ1,Λ), xquery ∈ Rd.

(2) µ⊤
0 Λ

−1µ0 = µ⊤
1 Λ

−1µ1.

With this assumption, for yquery ∼ Pb
y|xquery

(µ0, µ1,Λ), according to the Bayes’ theorem, we have

P (yquery = 1|xquery) =
f(xquery|yquery = 1)P (yquery = 1)∑

z∈{±1} f(xquery|yquery = z)P (yquery = z)
= σ((µ1 − µ0)

⊤Λ−1xquery).

If we test the trained transformer with parameters Ŵ in (11) and Ptest, by a simple calculation, we
have

ŷout = σ

((
2

M

M∑
i=1

yix
⊤
i

)
(Λ−1 + Ĝ)xquery

)
. (12)

Intuitively, when the training prompt length N → ∞, we have Ĝ → 0, and when the test
prompt length M → ∞, we have 2

M

∑M
i=1 yix

⊤
i → (µ1 − µ0)

⊤. Thus, when N,M → ∞,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

P (ŷquery = 1) = ŷout → σ((µ1 − µ0)
⊤Λ−1xquery) = P (yquery = 1|xquery), and the prediction of

the trained transformer ŷquery perfectly matches with the distribution of the ground truth label yquery.

By analyzing the Taylor expansion of ŷout at point σ((µ1 − µ0)
⊤Λ−1xquery), we formally present

the aforementioned intuition in the following theorem, which establishes an upper bound of the total
variation distance between yquery and ŷquery.

Theorem 3.2 Consider a test prompt Ptest satisfying Assumption 3.2, and let yquery ∼
Pb
y|xquery

(µ0, µ1,Λ). Let ŷquery be the prediction of the trained transformer with parameters Ŵ in
(11). Then, for the inference error defined in (3), we have

E[∆(yquery, ŷquery)]

≤ σ′(µ⊤Λ−1q)

∥Ĝ∥max

∑
i,j∈[d]

|µiqj |+
1√
M

1

2
|u⊤Λ−1q|+ 2

√
2√
π

∑
i,j∈[d]

|Λ−1/2
ij qj |


+ o

(
1

N
+

1√
M

)
,

where µ = µ1 − µ0, u = 2(µ1 + µ0), q = xquery, and the expectation is taken over {xi, yi}Mi=1
i.i.d.∼

Pb(µ0, µ1,Λ).

The proof of Theorem 3.2 can be found in Appendix F. Since ∥Ĝ∥max = O(1/N), Theorem 3.2
suggests that if we ignore the constants regarding µ0, µ1,Λ, xquery, the expected total variation dis-
tance between yquery and ŷquery is at most O(1/N + 1/

√
M). On the other hand, for data pair

(x, y) ∼ Pb(µ0, µ1,Λ), the Bayes-optimal classifier is P(y = 1|x) = f(x|y)P(y = 1)/f(x) =
σ((µ1 − µ0)

⊤Λ−1x), which corresponds to the logistic regression model σ(w⊤x+ b) with param-
eters w = Λ−1(µ1 − µ0) and b = 0. Therefore, when N,M → ∞, the prediction of the trained
transformer is Bayes-optimal, and is equivalent to the optimal logistic regressor for binary classi-
fication problems with distribution Pb(µ0, µ1,Λ). Note that different from Assumption 3.1 which
states that µτ,0, µτ,1, xτ,query are sampled according to some specific distributions during training,
Assumption 3.2 does not impose strong distributional constraints on µ0, µ1 and xquery, which shows
the strong generalization ability of the trained transformer. We also discuss the consequences when
Assumption 3.2 does not hold in Remark F.1, which highlights the necessity of Assumption 3.2.
Moreover, even if M → ∞, the distribution variation between yquery and ŷquery does not disappear
unless N → ∞. Thus, the ICL ability of trained transformers for binary classification is limited
by the finite length of training prompts. Similar behaviors have also been observed in Zhang et al.
(2023a) for in-context linear regression.

4 IN-CONTEXT MULTI-CLASS CLASSIFICATION

We now extend the study of the learning dynamics of a single-layer transformer to in-context multi-
class classification, generalizing the results of the previous section. We will present the detailed
formulation and then focus on the main differences to binary classification.

We first introduce the prompt and the transformer structure that will be used for in-context multi-
class classification. The prompt for in-context multi-class classification involving c ≥ 2 classes can
be expressed as P = (x1, y1, . . . , xN , yN , xquery), where xi ∈ Rd, yi ∈ {e1, e2, . . . , ec}, and ei is
the i-th standard unit vector of Rc. Its embedding matrix can be formulated as

E = E(P) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0c

)
∈ R(d+c)×(N+1). (13)

Similar to the binary case, we set some of the parameters in our model as 0 and 1 to simplify
the optimization problem and consider the parameters of our model (WV ,WKQ) in the following
sparse form:

WV =

(
0d×d 0d×c

0c×d Ic

)
, WKQ =

(
W 0d×c

0c×d 0c×c

)
, (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where W ∈ Rd×d. We set the normalization factor ρ equal to the length of the prompt N . We read
out the bottom-right c-dimensional column vector from the output matrix with a softmax function
as the output, denoted as ŷout. With parameters W and a prompt P = (x1, y1, . . . , xN , yN , xquery),
the output can be expressed as

ŷout = softmax
(
[F (E(P);W)](d+1):(d+c),(N+1)

)
= softmax

((
1

N

N∑
i=1

yix
⊤
i

)
Wxquery

)
.

We denote the prediction of the model for xquery as ŷquery, which is a random variable depending
on ŷout. Randomly sample a random variable u that is uniformly distributed on [0, 1]. If u ∈[∑i−1

j=1(ŷout)j ,
∑i

j=1(ŷout)j
)
, where (ŷout)j is the j-th element of ŷout, we let ŷquery = ei. Thus,

P (ŷquery = ei) = (ŷout)i.

4.1 TRAINING PROCEDURE

We focus on the multi-class classification of Gaussian mixtures and use the following definition.

Definition 4.1 We say a data pair (x, y) ∼ Pm(µ,Λ) if P (y = ei) = 1/c and f(x|y = ei) =
N(µi,Λ) for i ∈ [c], where µ = (µ1, . . . , µc) ∈ Rd×c and Λ ∈ Rd×d is a positive definite matrix.

We consider the case of B training tasks indexed by τ ∈ [B]. Each training task τ is associated with
a prompt Pτ = (xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,query) and a corresponding label yτ,query. We make
the following assumption in this section.

Assumption 4.1 For each learning task τ ∈ [B], we assume

(1) {xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query}
i.i.d.∼ Pm(µτ = (µτ,1, . . . , µτ,c),Λ).

(2) µτ,1 is sampled from N(0, Id), and µτ,k = Uτ,k,Λµτ,1, k = 2, 3, . . . , c, where Uτ,k,Λ =

Λ1/2Uτ,kΛ
−1/2, and Uτ,k are uniformly distributed over the closed set of real unitary

matrices such that Uτ,kU
⊤
τ,k = Id.

We denote the distribution of µτ as Pm
Ω (Λ). Note that Uτ,k,Λ = Λ1/2Uτ,kΛ

−1/2 can
be viewed as linear transformations that preserve the inner product of vectors in the Λ−1

weighted norm, and we have µ⊤
τ,iΛ

−1µτ,i = µ⊤
τ,jΛ

−1µτ,j , for i, j ∈ [c]. Let ŷτ,out =

softmax
(
[F (E(Pτ);W)](d+1):(d+c),(N+1)

)
be the output of the transformer for task τ . We define

the empirical risk over B independent tasks as

L̂(W) =
1

B

B∑
τ=1

c∑
k=1

−(yτ,query)k log((ŷτ,out)k). (15)

Taking the limit of infinite training tasks B → ∞, the expected training loss can be defined as

L(W) = lim
B→∞

L̂(W) = −E

[
c∑

k=1

(yτ,query)k log((ŷτ,out)k)

]
, (16)

where the expectation is taken over µτ ∼ Pm
Ω (Λ), {xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query}

i.i.d.∼
Pm(µτ ,Λ).

Applying gradient descent over the expected training loss (16), we have the following theorem.

Theorem 4.1 (Informal) Under Assumption 4.1, the following statements hold.

(1) Optimizing training loss L(W) in (16) with training prompt length N via gradient descent
W t+1 = W t − η∇L(W t), for any t ≥ 1, we have

∥W t −W ∗∥2F ≤ exp(−t/κ)∥W 0 −W ∗∥2F , (17)

where W 0 is the initial parameter and W ∗ is the global minimizer of L(W), κ = l/α.
Here, α, l are constants such that

0 < α ≤ λmin(∇2L(W)) ≤ λmax(∇2L(W)) ≤ l, for all W ∈ RW , (18)

where RW = {W ∈ Rd×d | ∥W −W ∗∥F ≤ ∥W 0 −W ∗∥F }.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(2) Denoting W ∗ = c(Λ−1 +G), we have ∥G∥max = O(c/N).
(3) After T ≥ 2κ log(N · ∥W 0 −W ∗∥F) steps, denoting the updated model Ŵ satisfies

Ŵ = c(Λ−1 + Ĝ), (19)

where ∥Ĝ∥max = O(c/N).

The formal statement and proof of Theorem 4.1 can be found in Appendix G. Technically, the proof
of Theorem 4.1 builds on that of Theorem 3.1, but the more complicated cross terms in the Taylor
expansions of the softmax functions, which are due to the nature of multi-class classification, bring
new challenges to the analysis. To address these issues, we derived new bounds on the expected
errors of the cross terms in Lemma G.1, G.2, which may be of independent interest to other similar
problems.

Theorem 4.1 shows that training a single-layer transformer with properly distributed data (Assump-
tion 4.1) for in-context multi-class classification via gradient descent can linearly converge to its
global minimum W ∗ = c(Λ−1 +G). When the prompt length N grows, this global minimum W ∗

will converge to cΛ−1 at a rate of O(c/N). Compared to the binary case, the new results establish
the scaling behavior w.r.t. the number of classes c.

4.2 IN-CONTEXT INFERENCE

Assumption 4.2 For an in-context test prompt Ptest = (x1, y1, . . . , xM , yM , xquery), we assume

(1) {xi, yi}Mi=1
i.i.d.∼ Pm(µ,Λ), µ = (µ1, . . . , µc) ∈ Rd×c, xquery ∈ Rd.

(2) µ⊤
i Λ

−1µi = µ⊤
j Λ

−1µj , for i, j ∈ [c].

With this assumption, for yquery ∼ Pm
y|xquery

(µ,Λ), according to the Bayes’ theorem, we have

P (yquery = ek|xquery) =
f(xquery|yquery = ek)P (yquery = ek)∑c
j=1 f(xquery|yquery = ej)P (yquery = ej)

= softmax(µ⊤Λ−1xquery)k.

If we test the trained transformer with parameters Ŵ in (19) and prompt Ptest, by a simple calcula-
tion, we have

ŷout = softmax

((
c

M

M∑
i=1

yix
⊤
i

)
(Λ−1 + Ĝ)xquery

)
. (20)

Note that, when the training prompt length N → ∞, we have Ĝ → 0, and when the test prompt
length M → ∞, we have c

M

∑M
i=1 yix

⊤
i → µ⊤. Thus, when N,M → ∞, P (ŷquery = ek) =

(ŷout)k → softmax(µ⊤Λ−1xquery)k = P (yquery = ek|xquery), i.e., the prediction of the trained
transformer ŷquery matches the ground truth label yquery.

By analyzing the Taylor expansion of ŷout at point softmax(µ⊤Λ−1xquery), we crystallize the afore-
mentioned intuition in the following theorem, which establishes an upper bound of the total variation
distance between yquery and ŷquery.

Theorem 4.2 (Informal) Let Ptest satisfy Assumption 4.2 and yquery ∼ Pm
y|xquery

(µ,Λ). Denote ŷquery
as the prediction of the trained transformer with parameter Ŵ in (19). Then, for the inference error
defined in (3), we have

E[∆(yquery, ŷquery)] = O(c2N−1 + c3/2M−1/2),

where the expectation is taken over {xi, yi}Mi=1
i.i.d.∼ Pm(µ,Λ).

The formal statement and proof of Theorem 4.2 can be found in Appendix H. We can see that
the convergence rate of the inference error in multi-class classification w.r.t. N and M is sim-
ilar to that in the binary classification, except for the constant coefficient c. This suggests that
classification tasks with more classes may have higher errors than those with fewer classes. On

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the other hand, for data pair (x, y) ∼ Pm(µ,Λ), the Bayes-optimal classifier is P(y = ek|x) =
f(x|y)P(y = ek)/f(x) = softmax(µ⊤Λ−1x)k, which corresponds to a softmax regression model
softmax(Wx + b) with parameters W = µ⊤Λ−1 and b = 0. When N,M → ∞, the prediction
of the trained transformer is Bayes-optimal, and is equivalent to the optimal softmax regressor for
multi-class classification problems with distribution Pm(µ,Λ). Note that different from Assump-
tion 4.1 which states that µτ , xτ,query are sampled according to some specific distributions during
training, Assumption 4.2 impose strong distributional constraints on µ or xquery, which shows the
strong generalization ability of the trained transformer. We also discuss the consequences when
Assumption 4.2 does not hold in Remark H.1, which highlights the necessity of Assumption 4.2.
Moreover, even if M → ∞, the distribution variation between yquery and ŷquery does not disappear
unless N → ∞. Thus, the ICL ability of the trained transformers for multi-class classification is
limited by the finite length of training prompts. Similar behaviors have also been observed in Zhang
et al. (2023a) for in-context linear regression and in Section 3.2 for in-context binary classification.

5 EXPERIMENTS

In this section, we report the experiment results on multi-layer, nonlinear transformers to investigate
their similarities and differences to the single-layer, linear transformer we theoretically analyzed in
the pervious sections. Detailed experimental settings and additional results can be found in Ap-
pendix I.

(a) c = 10 (b) N = 80

Figure 1: ’1-layer’: single-layer transformer defined in Section 4, ’3-layer’: 3-layer transformers with softmax
attention. N : training prompt length. c: number of Gaussian mixtures.

We train single-layer and multi-layer transformers for in-context classification of Gaussian mixtures
with different numbers of Gaussian mixtures c, different lengths of training prompts N , and test
them with different test prompt lengths M . The results are reported in Figure 1. We can see that for
both single-layer and multi-layer transformers, the inference errors decrease as N and M increase,
and they increase as c increases, which not only verify our theoretical claims but also show that,
the simplified model we have studied indeed exhibits behavioral similarities to the more complex
multi-layer, nonlinear transformers, and some of our observations for this simplified model also hold
for more complex transformers.

5.1 VARYING COVARIANCES AND NORMS

Note that in Assumption 3.1, 4.1, 3.2, 4.2, we assume that the covariance Λ during pre-training and
during inference are the same, and the means of all Gaussian components {µτ,i, i ∈ [c]} have the
same Λ−1 weighted norm. In Remark F.1, H.1, we also discuss the situation when Assumption 3.2,
4.2 does not hold and show the necessities of Assumption 3.2, 4.2. In this subsection, we consider
training transformers with data of varying covariances Λ and with Gaussian component means of
unequal Λ−1 weighted norms, and examine how these factors affect the ICL abilities of transformers.
Results are shown in Figure 2. From Figure 2 (a), we can see that both models perform better
when their µτ,i have the same Λ−1 weighted norm (’same norm’), however, in the ’different norms’
setting, the performance of ’1-layer’ deteriorates more significantly, while transformers with a more
complex structure (’3-layer’) show better robustness under this distribution shift. Similar situations
also happen in Figure 2 (b), where ’3-layer’ also shows better tolerance to the covariance shifts than

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

’1-layer’. Experimental results in Figure 2 show the necessities of Assumption 3.1, 4.1, 3.2, 4.2 for
the single-layer transformers we considered in this paper, also demonstrates the better robustness of
multi-layer, nonlinear transformers. Developing a better understanding of the robustness of more
complex transformers is an intriguing direction for future research.

(a) Norm (b) Covariance

Figure 2: All models are trained with prompt length N = 100, tested with prompts satisfying Assumption
4.2 with Λ. c = 3. (a): (same norm): pre-training data are sampled according to Assumption 4.1 with Λ.
’different norms’: For each τ , with probability P (k = j) = 1/10, µτ,i ∼ N(k, Id), j = 0, 1, ..., 9. (b):
(same covariance): pre-training data are sampled according to Assumption 4.1 for the fixed Λ. (different
covariances): Sample additional Λ1,Λ2,Λ3. Then, generate pre-training data according to Assumption 4.1
with Λ,Λ1,Λ2,Λ3.

5.2 COMPARISON OF TRANSFORMERS WITH OTHER MACHINE LEARNING ALGORITHMS

Figure 3: ’1-layer, sparse’: single-layer transformer defined in Section 4, ’1-layer, full’: single-layer trans-
former with full parameters (59), ’3-layer’: a 3-layer transformer with softmax attention, ’softmax’: softmax
regression, ’SVM, linear’: SVM with linear kernel, ’SVM, gaussian’: SVM with Gaussian kernel, ’1-NN’: 1-
nearest neighbor, ’3-NN’: 3-nearest neighbor. All three transformers are trained with prompt length N = 100.

Additionally, we conduct experiments comparing the ICL performances of the transformers with
other machine learning algorithms for the classification of three Gaussian mixtures. Form Figure 3,
we can see that all three transformer models significantly outperform the classical methods (softmax
regression, SVM, K-nearest neighbor), demonstrating the strong ICL capacities of transformers.

6 CONCLUSION

We studied the learning dynamics of transformers for in-context classification of Gaussian mixtures,
and showed that with properly distributed data, a single-layer transformer trained via gradient de-
scent converges to its global minimum. Moreover, we established the upper bounds of the inference
errors of the trained transformers and discussed how the training and test prompt lengths influence
the performance of the model. Experimental results also corroborated the theoretical claims. There
are some directions worth further exploring. One potential avenue is to investigate whether the
assumptions regrading the training and test prompts can be relaxed. Additionally, we have only ex-
amined single-layer transformers with linear attention and sparse parameters. The learning dynam-
ics of multi-layer transformers with nonlinear attention (e.g., softmax) for in-context classification
problems remain an interesting area for future investigation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck. Convex optimization: Algorithms and complexity, 2015.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528, 2023.

Ishita Dasgupta, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell, Dharshan Kumaran,
James L McClelland, and Felix Hill. Language models show human-like content effects on rea-
soning. arXiv preprint arXiv:2207.07051, 2022.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order op-
timization methods for in-context learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971, 2023.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–811. Springer, 2016.

Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-field
dynamics on the attention landscape. arXiv preprint arXiv:2402.01258, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. Training nonlinear trans-
formers for efficient in-context learning: A theoretical learning and generalization analysis. arXiv
preprint arXiv:2402.15607, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023a.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023b.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI. GPT-4 technical report, 2023.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
regression mixture models. arXiv preprint arXiv:2311.08362, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
as support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are implicitly topic models: Explaining and finding good demonstrations for in-
context learning. In Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? arXiv
preprint arXiv:2310.08391, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
Contextual generalization of trained transformers. arXiv preprint arXiv:2408.10147, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Ruiqi Zhang, Jingfeng Wu, and Peter L Bartlett. In-context learning of a linear transformer block:
benefits of the mlp component and one-step gd initialization. arXiv preprint arXiv:2402.14951,
2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

A APPENDIX

The Appendix is organized as follows. In Section B, we provide a literature review of the related
works that studied the ICL abilities of transformers. In Section C, we introduce the additional
notations for the proofs in the Appendix. In Section D, we introduce some useful Lemmas we adopt
from previous literature. In Sections E, F, G, H, we present the proofs of Theorem 3.1, 3.2, 4.1, 4.2
respectively. In Section I, we provide additional results and details of our experiments.

B RELATED WORK

It has been observed that transformer-based models have impressive ICL abilities in natural language
processing (Brown et al., 2020; Nye et al., 2021; Wei et al., 2022; Dasgupta et al., 2022; Zhang et al.,
2022). Garg et al. (2022) first initiated the study of the ICL abilities of transformers in a mathemati-
cal framework and they empirically showed that transformers can in-context learn linear regression,
two-layer ReLU networks, and decision trees. Subsequently, numerous works have been developed
to explain the ICL capacities of transformers in solving in-context mathematical problems. These
works mainly use two approaches: constructing specific transformers capable of performing certain
in-context learning tasks, and studying the training dynamics of transformers for such tasks.

Constructions of transformers. Akyürek et al. (2022); Von Oswald et al. (2023) showed by con-
struction that multi-layer transformers can be viewed as multiple steps of gradient descent for lin-
ear regression. Akyürek et al. (2022) also showed that constructed transformers can implement
closed-form ridge regression. Guo et al. (2023) showed that constructed transformers can perform
in-context learning with representations. Bai et al. (2024) proved that constructed transformers
can perform various statistical machine learning algorithms through in-context gradient descent and
showed that constructed transformers can perform in-context model selection. Lin et al. (2023)
demonstrated that constructed transformers can approximate several in-context reinforcement learn-
ing algorithms. Fu et al. (2023); Giannou et al. (2024) further proved that constructed transform-
ers can perform higher-order optimization algorithms like Newton’s method. Pathak et al. (2023)
showed that transformers can learn mixtures of linear regressions. Giannou et al. (2023) proved that
looped transformers that can emulate various in-context learning algorithms. Cheng et al. (2023)
showed that transformers can perform functional gradient descent for learning non-linear functions
in context. Zhang et al. (2024) showed that a linear attention layer followed by a linear layer can
learn and encode a mean signal vector for in-context linear regression.

Training dynamics of transformers. Mahankali et al. (2023); Ahn et al. (2024) proved that the
global minimizer of the in-context learning loss of linear transformer can be equivalently viewed
as one-step preconditioned gradient descent for linear regression. Zhang et al. (2023a) proved the
convergence of gradient flow on a single-layer linear transformer and discussed how training and
test prompt length will influence the prediction error of transformers for linear regression. Huang
et al. (2023) proved the convergence of gradient descent on a single-layer transformer with softmax
attention with certain orthogonality assumptions on the data features. Li et al. (2023b) showed that
trained transformers can learn topic structure. Wu et al. (2023) analyzed the task complexity bound
for pretraining single-layer linear transformers on in-context linear regression tasks. Tarzanagh

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

et al. (2023) built the connections between single-layer transformers and support vector machines
(SVMs). Nichani et al. (2024) showed that transformers trained via gradient descent can learn causal
structure. Chen et al. (2024) proved the convergence of gradient flow on a multi-head softmax
attention model for in-context multi-task linear regression. Kim & Suzuki (2024); Yang et al. (2024)
proved that trained transformers can learn nonlinear features in context.

Recently, Li et al. (2024) studied the training dynamics of a single layer transformer for in-context
classification problems. However, they only studied the binary classification tasks with finite pat-
terns. They generated their data as x = µj + κvk, where {µj}M1

j=1 are in-domain-relevant patterns
and {νk}M2

k=1 are in-domain-irrelevant patterns, M1 ≥ M2 and these patterns are all pairwise or-
thogonal. Thus, the possible distribution of their data is finite and highly limited. In contrast, our
work explores the ICL capabilities of transformers for both binary and multi-class classification of
Gaussian mixtures. Specifically, our data is drawn according to Pb(µ0, µ1,Λ) or Pm(µ,Λ), and
the range and possible distributions of our data are infinite. Furthermore, the transformer architec-
tures analyzed in their work also differ from those in our study, thereby highlighting the distinct
contributions and independent interests of our work.

Some works also studied the ICL from other perspectives. To name a few, Xie et al. (2021) explained
the ICL as implicit Bayesian inference; Wang et al. (2023) explained the LLMs as latent variable
models; Zhang et al. (2023b) explained the ICL abilities of transformers as implicitly implementing
a Bayesian model averaging algorithm; and Li et al. (2023a) studied the generalization and stabil-
ity of the ICL abilities of transformers. Hahn & Goyal (2023) showed that ICL can arise through
recombination of compositional structure found in linguistic data. They derived an information-
theoretic bound showing how ICL abilities arise from generic next-token prediction and provided
a theoretical justification for the benefits of chain-of-thought. They also observed that as prompt
length increases, their information-theoretic bound converge to zero. However, they considered the
ICL with data generated by Compositional Attribute Grammar (CAG) and for an idealized predic-
tor, which is not a predictor of actual transformers or LLMs, while we prove the convergence of
transformers for ICL of classification of Gaussian mixtures and derived the ICL error respect to the
trained transformer. Thus, our paper has its own independent contributions and intellectual merits.

C ADDITIONAL NOTATIONS

We denote X ∼ Bin(n, p) if a random variable X follows the binomial distribution with param-
eters n ∈ N and p ∈ [0, 1], which means P (X = k) = n!

k!(n−k)!p
k(1 − p)n−k. We denote

X ∼ Multin(n, p) if random variables X = (X1, X2, . . . , Xk) follow the Multinomial distribution
with parameters n ∈ N and p1 = p2 = · · · = pk = 1/k, which means P (X = (x1, x2, . . . , xk)) =

n!∏k
i=1 xk!

k−n. We denote ζi(x) = softmax(x)i = exp(xi)/(
∑k

j=1 exp(xj)) for simplicity. We

define δii = 1, δij = 0, i ̸= j. For x ∈ N, we define t1(x) = ⌊(x − 1)/d⌋ + 1, t2(x) =
((x− 1) mod d) + 1.

D USEFUL LEMMAS

Lemma D.1 ((Karimi et al., 2016)) If f : Rd → R is µ-strongly convex, then

f(x)−min
x

f(x) ≥ µ

2
∥x∗ − x∥22

where x∗ = argminx f(x).

Lemma D.2 ((Bubeck, 2015)) Suppose f : Rd → R is α-strongly convex and β-smooth for some
0 < α ≤ β. Then, the gradient descent iterating wt+1 = wt−η∇f(wt) with learning rate η = 1/β
and initialization w0 ∈ Rd satisfies that for any t ≥ 1,

∥wt − w∗∥22 ≤ exp(−t/κ)∥w0 − w∗∥22

where κ = β/α is the condition number of f , and w∗ = argminw∈Rd f(w) is the minimizer of f .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E TRAINING PROCEDURE FOR IN-CONTEXT BINARY CLASSIFICATION

In this section, we present the proof of Theorem 3.1.

E.1 PROOF SKETCH

First, we prove in Lemma E.2 that the expected loss function L(W) in (7) is strictly convex w.r.t. W
and is strongly convex in a compact set of Rd×d. Moreover, we prove L(W) has one unique global
minimizer W ∗. Then, in Lemma E.3, by analyzing the Taylor expansion of L(W), we prove that as
N → ∞, our loss function L(W) point wisely converges to L̃(W) (defined in (25)), and the global
minimizer W ∗ converge to 2Λ−1. We denote W ∗ = 2(Λ−1+G), and prove ∥G∥max = O(N−1/2).
Next, in Lemma E.4, by further analyzing the Taylor expansion of the equation ∇L(W ∗) = 0 at the
point 2Λ−1, we establish a tighter bound ∥G∥max = O(N−1). In Lemma E.5, we prove that our
loss function is l-smooth and provide an upper bound for l. Thus, in a compact set RW , our loss
function is α-strongly convex and l-smooth. Finally, leveraging the standard results from convex
optimization, we prove Theorem 3.1 in subsection E.4.

In this section, we use the following notations.

E.2 NOTATIONS

Recall the expected loss function (7) is

L(W) = −1

2
E [(1 + yτ,query) log(ŷτ,out) + (1− yτ,query) log(1− ŷτ,out)] , (21)

where

ŷτ,out = σ

((
2

N

N∑
i=1

yτ,ix
⊤
τ,i

)
W

2
xτ,query

)
is the output of the transformer, and the label of the data follows the distribution

P (yτ,query = 1|xτ,query) = σ((µτ,1 − µτ,0)
⊤Λ−1xτ,query)).

In this section, we introduce the following notations to analyze (7). We denote µ = µτ , µ1 = µτ,1,
µ0 = µτ,0 and q = xτ,query. Then with probability P (yτ,query = 1) = 1/2 we have q = µ1 + v,
and with probability P (yτ,query = 0) = 1/2 we have q = µ0 + v, where v ∼ N(0,Λ). We define
p = 2

N

∑N
i=1 yτ,ixτ,i. Since with probability P (yτ,i = 1) = 1/2 we have xτ,i = µ1 + vi, and

with probability P (yτ,i = 0) = 1/2 we have xτ,i = µ0 + vi, where vi ∼ N(0,Λ), we known
p = 2N1µ1/N − 2N0µ0/N + g, where g = 2

N

∑N
i=1 vi, g ∼ N(0, 4Λ/N), N1 ∼ Bin(N, 1/2).

Defining h = N1/N − 1/2, u = 2(µ1 + µ0), we have N0/N = 1/2− h and

p = µ+ hu+ g. (22)

Then, the expected loss function (7) can be expressed as

L(W) = E[−σ(µ⊤Λ−1q) log(σ(p⊤Wq/2))− (1− σ(µ⊤Λ−1q)) log(1− σ(p⊤Wq/2))]. (23)

The gradient of the loss function (7) can be expressed as

∇L(W) =
1

2
E[(σ(p⊤Wq/2)− σ(µ⊤Λ−1q))pq⊤]. (24)

Moreover, we define a function L̃(W) as

L̃(W) = E[−σ(µ⊤Λ−1q) log(σ(µ⊤Wq/2))− (1− σ(µ⊤Λ−1q)) log(1− σ(µ⊤Wq/2))]. (25)

In Lemma E.3, we show that as N → ∞, L(W) will point wisely converge to L̃(W).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E.3 LEMMAS

Lemma E.1 Suppose N1 ∼ Bin(N, 1/2). Defining h = N1/N − 1/2, we have

E[h] = 0

E[h2] =
1

4N

E[h3] = 0

E[hn] = O(N−2), for n ≥ 4

E[|h|] ≤ 1

2N1/2

E[|h3|] = O(N−3/2).

Proof Since N1 ∼ Bin(N, 1/2), the moment-generating function of N1 is

MN1(t) =

(
1

2
+

1

2
exp(t)

)N

.

We can compute the moment-generating function of h as follows:

Mh(t) = exp

(
− t

2

)
MN1

(
t

N

)
=

(
exp −t

2N + exp t
2N

2

)N

=

(
cosh

(
t

2N

))N

=

(
1 +

t2

8N2
+

∞∑
i=2

t2i

(2i)!(2N)2i

)N

.

Thus, we know the coefficients of t, t2, t3 are 0, 1/(8N), 0 respectively, and the coefficients of
tn, n ≥ 4 are O(1/N2). We have

E[h] = 0

E[h2] =
1

4N

E[h3] = 0

E[hn] = O(1/N2), for n ≥ 4.

Moreover, according to the Jensen’s inequality, we have

E[|h|] ≤
(
E[h2]

)1/2
=

1

2N1/2

E[|h3|] ≤
(
E[h4]

)3/4
= O(N−3/2).

■

Lemma E.2 For the loss function L(W) (7), we have ∇2L(W) ≻ 0. For any compact set RW of
Rd×d, when W ∈ RW , we have ∇2L(W) ≻ γId for some γ > 0. Additionally, L(W) has one
unique global minimizer on Rd×d.

For L̃(W) defined in (25), we also have ∇2L̃(W) ≻ 0. For any compact set RW of Rd×d, when
W ∈ RW , we have ∇2L̂(W) ≻ γId for some γ > 0. Additionally, L̃(W) has one unique global
minimizer on Rd×d.

Proof We vectorize W as Vec(W) ∈ Rd2

, where Vec(W)i = Wt1(i),t2(i), t1(x) = ⌊(x− 1)/d⌋+
1, t2(x) = ((x− 1) mod d) + 1. Then, we have

(∇L(W))i = Ep,q

[
1

2
(σ(p⊤Wq/2)− σ(µ⊤Λ−1q))pt1(i)qt2(i)

]
. (26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The Hessian matrix of the loss function (7) is

(∇2L(W))ij = Ep,q

[
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))pt1(i)qt2(i)pt1(j)qt2(j)

]
.

Considering z ∈ Rd2

such that z ̸= 0, we have

z⊤∇2L(W)z =Eq,p

[
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

∑
ab

zazbpt1(a)qt2(a)pt1(b)qt2(b)

]

=

∫
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

 ∑
a∈[d2]

zapt1(a)qt2(a)

2

fpq(p, q)dpdq,

where fpq(p, q) are the probability density function (PDF) function of p, q. Since for any p, q,
σ(p⊤Wq/2)(1 − σ(p⊤Wq/2)) > 0, we have z⊤∇2L(W)z ≥ 0. Thus, ∇2L(W) ⪰ 0 and L(W)
is convex.

Moreover, for any z ̸= 0, we denote zij = z((i−1)d+j), i, j ∈ [d]. Suppose a, b ∈ argmaxi,j |zij |,
we consider a set of constants {c1pi, c2pi}, {c1qi, c2qi}, i, j ∈ [d], where c1pa = d, c2pa = d + 1,
c1qb = d, c2qb = d+ 1, and c1pi = 1/16, c2pi = 1/8, i ̸= a, c1qj = 1/16, c2qj = 1/8, j ̸= b. Then,
for any cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj]. We have∣∣∣∣∣∣

∑
i,j∈[d]

zijcpicqj

∣∣∣∣∣∣ ≥ [d2 − 2(d+ 1)(d− 1)/8− (d− 1)2/64
]
max
ij

|zij | ≥ d2 max
ij

|zij |/2.

Then, we define region Ω(a, b) ≜ {p =
∑

i cpiei, q =
∑

j cqjej ,cpi ∈ [c1pi, c2pi], cqj ∈
[c1qj , c2qj]}. We have

min
Ω(a,b)

 ∑
c∈[d2]

zcpt1(c)qt2(c)

2

≥ d4 max
ij

|zij |2/4 ≥ ∥z∥22/4.

Defining

C(Ω) = min
a∈[d],b∈[d]

∫
Ω(a,b)

fpq(p, q)dpdq,

S(Ω,W) = min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

}
,

we have S(Ω,W) > 0. Since with probability P (yτ,query = 1) = 1/2, q = µ1 + v, with probability
P (yτ,query = 0) = 1/2, q = µ0 + v, where v ∼ N(0,Λ) and p = µ + hu + g, where g ∼
N(0, 4Λ/N), v ∼ N(0,Λ), µ0 ∼ N(0, Id), the covariance matrices of p, q are positive definite and
we have fpq(p, q) > 0 for all p, q ∈ Rd. Moreover, Ω(a, b) are non-zero measures on Rd×d. Thus,
we have C(Ω) > 0. Then, for any z ̸= 0, we have

z⊤∇2L(W)z ≥
∫
Ω(a,b)

1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

(∑
l

zlpt1(l)qt2(l)

)2

fpq(p, q)dpdq

≥C(Ω)S(Ω,W)∥z∥22/4
>0.

Thus, we have ∇2L(W) ≻ 0. L(W) is strictly convex.

Moreover, for any compact set RW of Rd×d, for any W ∈ RW , we have

S(Ω) = min
W∈RW

min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

}
> 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then, for any W ∈ RW , for any z ̸= 0, we have

z⊤∇2L(W)z ≥
∫
Ω(a,b)

1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

(∑
l

zlpt1(l)qt2(l)

)2

fpq(p, q)dpdq

≥1

4
C(Ω)S(Ω)∥z∥22.

Thus, when W ∈ RW , where RW is a compact set, we have ∇2L(W) ≻ C(Ω)S(Ω)Id/4 and the
loss function L(W) is γ−strongly convex, where γ = C(Ω)S(Ω)/4.

Because our loss function is strictly convex in Rd×d, it has at most one global minimizer in Rd×d.
Next, we prove all level sets of our loss function are compact, i.e. Vα = {W ∈ Rd×d |L(W) ≤ α}
is compact for all α. We prove it by contradiction. Suppose Vα is not compact for some α. Since
our loss function is continuous and convex, Vα is an unbounded convex set. Since the dimension of
Vα is d2, consider a point Wα ∈ Vα, there must exists a W k ̸= 0d×d such that {Wα + tW k | t =
[0,∞)} ∈ Vα. For this W k ̸= 0d×d, there must exist a set of constants 0 < c3pi < c4pi, 0 < c3qj <
c4qj such that for any cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj], we have

|
∑
ij

cpicqjW
k
ij | ≠ 0.

Thus, we have

lim
t→∞

|
∑
ij

cpicqj(W
α
ij + tW k

ij)| = ∞.

We define Ω0 = {p =
∑

i cpiei, q =
∑

j cqjej , cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj], ∥µ∥22 ≤∑
i c

2
4pi + c24qj}. Then, defining

C(Ω0) =

∫
Ω0

fpq(p, q)dpdq,

S(Ω0) = min
Ω0

{
min{σ(µ⊤Λ−1q), (1− σ(µ⊤Λ−1q))}

}
,

we have S(Ω0) > 0. Since Ω0 are non-zero measures for p, q, we have C(Ω0) > 0. Then, we have

lim
t→∞

L(Wα + tW k)

= lim
t→∞

E[−σ(µ⊤Λ−1q) log(σ(p⊤(Wα + tW k)q/2))− (1− σ(µ⊤Λ−1q)) log(1− σ(p⊤(Wα + tW k)q/2))]

≥ lim
t→∞

∫
Ω0

[−σ(µ⊤Λ−1q) log(σ(
∑
ij

cpicqj(W
α
ij + tW k

ij)/2))]fpq(p, q)dpdq

+ lim
t→∞

∫
Ω0

[−(1− σ(µ⊤Λ−1q)) log(1− σ(
∑
ij

cpicqj(W
α
ij + tW k

ij)/2))]fpq(p, q)dpdq

≥C(Ω0)S(Ω0) ·min
Ω0

 lim
t→∞

[− log(σ(
∑
ij

cpicqj(W
α
ij + tW k

ij)/2))]


+C(Ω0)S(Ω0) ·min

Ω0

 lim
t→∞

[− log(1− σ(
∑
ij

cpicqj(W
α
ij + tW k

ij)/2))]


=∞.

This contradicts the assumption L(Wα + tW k) ≤ α. Thus, all level sets of the loss function L(W)
are compact, which means there exists a global minimizer for L(W). Together with the fact that
L(W) is strictly convex, L(W) has one unique global minimizer on Rd×d.

Similarly, we can prove the same conclusions for L̃(W). ■

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma E.3 Denoting the global minimizer of the loss function (7) as W ∗, we have W ∗ = 2(Λ−1+
G), where ∥G∥max = O(N−1/2).

Proof Let a = µ⊤Λ−1q, s = µ⊤Wq/2, r = (hu + g)⊤Wq/2. Performing the Taylor expansion
on (7), we have

L(W) =E [−σ(a) log(σ(s+ r))− (1− σ(a)) log(1− σ(s+ r))]

=E [−σ(a) log(σ(s))− (1− σ(a)) log(1− σ(s))]

− E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r]

+ E
[
σ(ξ(s, r))(1− σ(ξ(s, r)))r2/2

]
=L̃(W)− E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r]

+ E
[
σ(ξ(s, r))(1− σ(ξ(s, r)))r2/2

]
,

where ξ(s, r) are real numbers between s and s + r. According to Lemma E.1, we have E [r] =
E
[
(hu+ g)⊤Wq/2

]
= 0. Thus, we have

E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r] = Eµ,u,q [(σ(a)(1− σ(s))− (1− σ(a))σ(s)))Eg,h [r]] = 0.

Moreover, we have
E
[
σ(ξ(s, r))(1− σ(ξ(s, r))r2/2

]
≤E

[
r2
]

=E[h2u⊤Wqu⊤Wq + g⊤Wqg⊤Wq]

(a)
=E[u⊤Wqu⊤Wq/(4N) + 4(ΛWq)⊤Wq/N]

≤Cl∥W∥2max/N,

where (a) is due to Lemma E.1, g⊤Wqg⊤Wq =
∑

i,j,k,l∈[d] giWijqjgkWklql =∑
i,j,k,l∈[d] gigkWklqlWijqj = (gg⊤Wq)⊤Wq and E[gg⊤] = 4Λ/N . Cl is a constant indepen-

dent of N and W . Thus, we have∣∣∣L̃(W)− L(W)
∣∣∣ ≤ Cl∥W∥2max/N.

This shows that L(W) point wisely converges to L̃(W).

According to Lemma E.2, L̃(W) has one unique global minimizer. Consider the equation:

∇L̃(W) = E[σ(µ⊤Wq/2)− σ(µ⊤Λ−1q)] = 0.

We can easily find that ∇L̃(2Λ−1) = 0 and W = 2Λ−1 is the global minimizer of L̃(W).

Considering a compact set RW = {W | ∥W − 2Λ−1∥F ≤ ρW }, we have ∥W∥max ≤ CW for
W ∈ RW . Here ρW , CW are some positive finite constants. Then, we have∣∣∣L̃(W)− L(W)

∣∣∣ ≤ C ′
l/N, W ∈ RW ,

where C ′
l = ClC

2
W is a constant independent of N and W . This shows that, for W ∈ RW , our loss

function L(W) uniformly converge to L̃(W).

Denote W ∗ as the global minimizer of the loss function L(W) with prompt length N . Then, we
show that, when N is sufficiently large, W ∗ ∈ RW . We first denote ∂RW = {W | ∥W−2Λ−1∥F =

ρW } and ∆ = minW∈∂RW
L̃(W)− L̃(2Λ−1) > 0. Then, for N ≥ 4C ′

l/∆, and for any W ∈ RW ,
we have ∣∣∣L̃(W)− L(W)

∣∣∣ ≤ ∆/4,

This means
min

W∈∂RW

L(W)− min
W∈RW

L(W)

≥ min
W∈∂RW

L(W)− L(2Λ−1)

≥ min
W∈∂RW

L̃(W)− L̃(2Λ−1)−∆/2

≥∆/2 > 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since L(W) is strictly convex, we have W ∗ = argminW L(W) ∈ RW .

Then, we have

|L̃(W ∗)− L(W ∗)| ≤ C ′
l/N

|L̃(2Λ−1)− L(2Λ−1)| ≤ C ′
l/N

L̃(W ∗) ≤ L(W ∗) + C ′
l/N ≤ L(2Λ−1) + C ′

l/N ≤ L̃(2Λ−1) + 2C ′
l/N.

According to Lemma E.2, for W ∈ RW , we have ∇2L̃(W) ≻ γId, where γ is a positive constant
independent of N . Thus, L̃(W) is γ-strongly convex in RW . According to Lemma D.1, we have

∥W ∗ − 2Λ−1∥2F ≤ 2

γ
(L̃(W ∗)− L̃(2Λ−1)) ≤ 4C ′

l

γN
.

Thus, when N → ∞, we have W ∗ → 2Λ−1. Denoting W ∗ = 2(Λ−1 + G), we have ∥G∥max =

O(1/
√
N). ■

Lemma E.4 The global minimizer of the loss function (7) is W ∗ = 2(Λ−1 +G), where

∥G∥max ≤ 1

N
∥S−1(E[σ′(a)(4qq⊤ + uu⊤Λ−1qq⊤/4)

+ σ′′(a)((u⊤Λ−1q)2µq⊤/8 + 2q⊤Λ−1qµq⊤)])∥max + o(1/N),

a = µ⊤Λ−1q, S = 4∇2L̃(2Λ−1).

Proof According to Lemma E.2, the loss function L(W) has a unique global minimizer W ∗. We
have

∇L(W ∗) = E
[
(σ(p⊤W ∗q/2)− σ(µ⊤Λ−1q))pq⊤

]
= 0. (27)

Let W ∗ = 2(Λ−1 +G), a = µ⊤Λ−1q, b = (µ+ hu+ g)⊤Gq + (hu+ g)⊤Λ−1q. We have

p⊤W ∗q/2

=(µ+ hu+ g)⊤(Λ−1 +G)q

=(µ+ hu+ g)⊤Gq + (hu+ g)⊤Λ−1q + µ⊤Λ−1q = a+ b.

The Taylor expansion of σ(a+ b) at point a with an Lagrange form of remainder is

σ(a+ b)pq⊤ = σ(a)pq⊤ + σ′(a)bpq⊤ +
σ′′(a)

2
b2pq⊤ +

σ′′′(ξ(a, b))

3!
b3pq⊤,

where ξ(a, b) are real numbers between a and a+ b. Thus, our equation (27) become

Eµ,u,g,h,q

[
σ′(a)bpq⊤ +

σ′′(a)

2
b2pq⊤ +

σ′′′(ξ(a, b))

3!
b3pq⊤

]
= 0. (28)

Note that E[σ′(a)bpq⊤] = Eµ,u,q

[
σ′(a)Eg,h

[
bpq⊤

]]
. For Eg,h[bpq

⊤], according to Lemma E.1
and g ∼ N(0, 4Λ/N), we have

Eg,h[bpq
⊤]

=E[µ⊤Gqµq⊤ + g⊤Λ−1qgq⊤ + g⊤Gqgq⊤ + h2u⊤Gquq⊤ + h2u⊤Λ−1quq⊤]

=µµ⊤Gqq⊤ + 4qq⊤/N + 4ΛGqq⊤/N + uu⊤Gqq⊤/(4N) + uu⊤Λ−1qq⊤/(4N). (29)

Then, we have

∥Eµ,u,q[σ
′(a)(4ΛGqq⊤/N + uu⊤Gqq⊤/(4N))]∥max ≤ c1∥G∥max/N,

where c1 = maxij |E [
∑

kl 4σ
′(a) (Λikqlqj) +

∑
kl σ

′(a) (uiukqlqj/4)]| is a constant independent
of N . According to Lemma E.3, ∥G∥max = O(1/

√
N) = o(1), we have

∥Eµ,u,q[σ
′(a)(4ΛGqq⊤/N + uu⊤Gqq⊤/(4N))]∥max = o(1/N), (30)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Similarly for E[σ′′(a)b2pq⊤/2], we have

Eg,h[b
2pq⊤]

=E[µ⊤Gqµ⊤Gqµq⊤ + h2u⊤Gqu⊤Gqµq⊤ + g⊤Gqg⊤Gqµq⊤ + 2h2u⊤Gqµ⊤Gquq⊤ + 2g⊤Gqµ⊤Gqgq⊤]︸ ︷︷ ︸
(i)

+ E[2h2u⊤Gqu⊤Λ−1qµq⊤ + 2g⊤Gqg⊤Λ−1qµq⊤ + 2h2µ⊤Gqu⊤Λ−1quq⊤ + 2µ⊤Gqg⊤Λ−1qgq⊤]︸ ︷︷ ︸
(ii)

+ E[h2u⊤Λ−1qu⊤Λ−1qµq⊤ + g⊤Λ−1qg⊤Λ−1qµq⊤]︸ ︷︷ ︸
(iii)

.

For each term in (i), it contains two G. Thus, their max norms are at most smaller than O(∥G∥2max).
For each term in (ii), it contains one G and h2 or contains one G and two g. According to E[h2] =
1/(4N) in Lemma E.1, the max norm of terms with one G and h2 are smaller than O(∥G∥max/N).
Defining ḡ = N1/2Λ−1/2g/2, we have ḡ ∼ N(0, Id) and g = 2N−1/2Λ1/2ḡ. Thus, converting two
g to ḡ, we have a coefficient of N−1. Therefore, the max norms of terms with one G and two g are
also smaller than O(∥G∥max/N). Therefore, for terms (i), (ii), we have

∥E[σ′′(a)(i)/2]∥max ≤ O(∥G∥2max) = o(∥G∥max), (31)

∥E[σ′′(a)(ii)/2]∥max ≤ O(∥G∥max/N) = o(1/N). (32)

For term (iii), according to Lemma E.1 and g ∼ N(0, 4Λ/N), we have

∥E[σ′′(a)(iii)/2]∥max

=∥E
[
σ′′(a)(h2u⊤Λ−1qu⊤Λ−1qµq⊤ + g⊤Λ−1qg⊤Λ−1qµq⊤)/2

]
∥max (33)

=
1

N
∥E
[
σ′′(a)((u⊤Λ−1q)2µq⊤/8 + 2q⊤Λ−1qµq⊤)

]
∥max. (34)

For E[σ′′′(ξ(a, b))b3pq⊤/3!], we have

∥E[σ′′′(ξ(a, b))b3pq⊤/3!]∥max

≤max
z∈R

|σ′′′(z)|/3! ·max
ij

E
[∣∣b3piqj∣∣]

≤O(1) ·max
ij

E
[∑
ϕ1,ϕ2,ϕ3∈{µ,hu,g}

∣∣ϕ⊤
1 Gqϕ⊤

2 Gqϕ⊤
3 Gqpiqj

∣∣
︸ ︷︷ ︸

(∗)

+
∑

ϕ1,ϕ2∈{µ,hu,g},ϕ3∈{hu,g}

∣∣ϕ⊤
1 Gqϕ⊤

2 Gqϕ⊤
3 Λ

−1qpiqj
∣∣

︸ ︷︷ ︸
(∗)

+
∑

ϕ1∈{µ,hu,g},ϕ2,ϕ3∈{hu,g}

∣∣ϕ⊤
1 Gqϕ⊤

2 Λ
−1qϕ⊤

3 Λ
−1qpiqj

∣∣
︸ ︷︷ ︸

(∗∗)

+
∑

ϕ1,ϕ2,ϕ3∈{hu,g}

∣∣ϕ⊤
1 Λ

−1qϕ⊤
2 Λ

−1qϕ⊤
3 Λ

−1qpiqj
∣∣

︸ ︷︷ ︸
(∗∗∗)

]
.

For terms in (∗) containing two or three G, these terms’ expected absolute values are at most smaller
than O(∥G∥2max). For terms in (∗∗) containing one G, these terms must contain n1 number of h
and n2 number of elements of g, where n1 + n2 = 2, 3, 4, n1, n2 ∈ N. According to Lemma
E.1, we know that for n1 = 1, 2, 3, 4, E|hn1 | ≤ O(N−n1/2). Defining ḡ = N1/2Λ−1/2g/2,
we have ḡ ∼ N(0, Id) and g = 2N−1/2Λ1/2ḡ. Converting g to ḡ, we have a coefficient of
N−n2/2. Thus, for terms in (∗∗), these terms’ expected absolute values are at most smaller than

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

O(∥G∥maxN
−(n1+n2)/2) ≤ O(∥G∥maxN

−1). For terms in (∗ ∗ ∗) without G, these terms must
contain n1 number of h and n2 number of elements of g, we have n1+n2 = 3, 4, n1, n2 ∈ N. Simi-
larly, these term’s expected absolute values are at most smaller than O(N−(n1+n2)/2) ≤ O(N−3/2).
Therefore, we have

∥E[σ′′′(ξ(a, b))b3pq⊤/3!]∥max

≤max
ij

E
[∣∣b3piqj∣∣] ·max

z
|σ′′′(z)|/3!

=O(∥G∥2max) +O(∥G∥max/N) +O(1/N−3/2)

=o(∥G∥max) + o(1/N). (35)

Moreover, we have {
Eµ,u,q[σ

′(a)µµ⊤Gqq⊤]

}
ij

=
∑
kl

sijklGkl, (36)

where sijkl = Eσ′(a)µiµkqlqj . We vectorize G as Vec(G)i = Gt1(i),t2(i). Define S ∈ Rd2×d2

,
where Sij = st1(i),t2(i),t1(j),t2(j) = Eσ′(a)µt1(i)qt2(i)µt1(j)qt2(j). Then (36) can be expressed as{

Eµ,v[σ
′(a)µµ⊤Gqq⊤]

}
= SG. (37)

Note that S = 4∇2L̃(2Λ−1). According to Lemma E.2, S is positive definite. Thus, combining
(28), (29), (30), (31), (32), (34), (35), (37), we have

∥G∥max

≤ 1

N
∥S−1

(
E[σ′(a)(4qq⊤ + uu⊤Λ−1qq⊤/4) + σ′′(a)((u⊤Λ−1q)2µq⊤/8 + 2q⊤Λ−1qµq⊤)]

)
∥max

+ o(1/N).

■

Lemma E.5 The loss function (7) is l-smooth, where l ≤ 1
4

∑
i∈[d2] E[(pt1(i)qt2(i))2].

Proof The Hessian matrix of the loss function is

(∇2L(W))ij =
1

4
E[σ(p⊤Wq/2)(1− σ(p⊤Wq/2))pt1(i)qt2(i)pt1(j)qt2(j)].

Considering z ∈ Rd2

such that z ̸= 0, we have

z⊤∇2L(W)z =E

[
1

4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

∑
ab

zazbpt1(a)qt2(a)pt1(b)qt2(b)

]

=E

1
4
σ(p⊤Wq/2)(1− σ(p⊤Wq/2))

 ∑
a∈[d2]

zapt1(a)qt2(a)

2


≤E

1
4

 ∑
a∈[d2]

zapt1(a)qt2(a)

2


(a)

≤ 1

4
∥z∥22

∑
i∈[d2]

E[(pt1(i)qt2(i))
2]

where (a) is due to the Cauchy–Schwarz inequality. Thus, ∇2L(W) ⪯ lId and L(W) is l-smooth,
where l is a constant smaller than 1

4

∑
i∈[d2] E[(pt1(i)qt2(i))2]. ■

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.4 PROOF OF THEOREM 3.1

Proof According to Lemma E.4, the global minimizer of L(W) is W ∗ = 2(Λ−1 +G), where

∥G∥max ≤ 1

N
∥S−1(E[σ′(a)(4qq⊤ +

1

4
uu⊤Λ−1qq⊤)

+ σ′′(a)(
1

8
(u⊤Λ−1q)2µq⊤ + 2q⊤Λ−1qµq⊤)])∥max + o(1/N). (38)

Define RW = {W ∈ Rd×d | ∥W−W ∗∥F ≤ ∥W 0−W ∗∥F }. RW is a compact set. Then, according
to Lemma E.2, for W ∈ RW , we have ∇2L(W) ⪰ αId. Here α > 0 is a positive constant number.
Thus, L(W) is α-strongly convex in RW . Moreover, according to Lemma E.5, L(W) is l-smooth.
Then according to Lemma D.2, applying gradient descent with η = 1/l, for any t ≥ 1, we have

∥W t −W ∗∥2F ≤ exp(−t/κ) · ∥W 0 −W ∗∥2F ,

where κ = l/α. ■

F IN-CONTEXT INFERENCE OF BINARY CLASSIFICATION

F.1 NOTATIONS

In this section, we use the following notations. We denote µ = µ1−µ0, u = 2(µ1+µ0), q = xquery.
Define p = 2

M

∑M
i=1 yixi. Since with probability P (yi = 1) = 1/2, xi = µ1 + vi, with probability

P (yi = 0) = 1/2, xi = µ0 + vi, where vi ∼ N(0,Λ), we have p = 2M1µ1/M − 2M0µ0/M + g,
where g = 2

M

∑M
i=1 vi, g ∼ N(0, 4Λ/M), M1 ∼ Bin(M, 1/2). Defining h = M1/N − 1/2,

u = 2(µ1 + µ0), we have M0/N = 1/2− h and

p = µ+ hu+ g. (39)

F.2 PROOF OF THEOREM 3.2

Proof The output of the trained transformer is

ŷout = σ

((
2

M

M∑
i=1

yix
⊤
i

)
(Λ−1 + Ĝ)xquery

)
= σ(p⊤(Λ−1 + Ĝ)q). (40)

The probability of yquery = 1 given xquery is

P (yquery = 1|xquery) = σ((µ1 − µ0)
⊤Λ−1xquery) = σ(µ⊤Λ−1q).

Defining a = µ⊤Λ−1q, b = (µ+ hu+ g)⊤Ĝq + (hu+ g)⊤Λ−1q, we have

p⊤(Λ−1 + Ĝ)q

=(µ+ hu+ g)⊤(Λ−1 + Ĝ)q

=(µ+ hu+ g)⊤Ĝq + (hu+ g)⊤Λ−1q + µ⊤Λ−1q = a+ b,

and

E
[
σ(p⊤(Λ−1 + Ĝ)q)

]
= E [σ(a+ b)] = E[σ(a) + σ′(a)b+ σ′′(ξ(a, b))b2/2],

where ξ are real numbers between a and a+ b. Thus, we have

E[|σ(a+ b)− σ(a)|]
≤E[

∣∣σ′(a)b+ σ′′(ξ(a, b))b2/2
∣∣]

≤σ′(a)E[|b|] + E[b2]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We first consider the term σ′(a)E[|b|]. Defining ḡ = Λ−1/2M1/2g/2, we have

σ′(a)E[|b|]

≤σ′(a)
[
|µ⊤Ĝq|+ E[|hu⊤Ĝq|] + E[|g⊤Ĝq|] + E[|hu⊤Λ−1q|] + E[|g⊤Λ−1q|]

]
(a)

≤σ′(a)

[
|µ⊤Ĝq|+ 1

2M1/2
|u⊤Ĝq|+ 2

M1/2
E[|ḡ⊤Λ1/2Ĝq|] + 1

2M1/2
|u⊤Λ−1q|+ 2

M1/2
E[|ḡ⊤Λ−1/2q|]

]
(b)

≤σ′(a)

∥Ĝ∥max

∑
i,j∈[d]

|µiqj |+
1

M1/2

1

2
|u⊤Λ−1q|+ 2

√
2√
π

∑
i,j∈[d]

|Λ−1/2
ij qj |

+ o

(
1

N
+

1√
M

)
,

where (a) is due to E[|h|] ≤ 1/(2M1/2) in Lemma E.1. (b) is because that ḡi ∼ N(0, 1) and
E[|ḡi|] =

√
2/
√
π, for i ∈ [d].

For E[b2], we have

E[b2] ≤ E
[
[(µ+ hu+ g)⊤Ĝq]2

]
+ E

[
[(hu+ g)⊤Λ−1q]2

]
+ 2E

[
(µ+ hu+ g)⊤Ĝq(hu+ g)⊤Λ−1q

]
.

Notice that terms in E
[
[(µ + hu + g)⊤Ĝq]2

]
contain two Ĝ. Thus, they are at most smaller than

O(∥Ĝ∥2max) = O(1/N2). Terms in E
[
[(hu + g)⊤Λ−1q]2

]
/2 contain two h, or two g, or one h

and one g. According to Lemma D.1, we have E[|h|] = O(1/
√
M), E[h2] = 1/(4M). Moreover,

g = 2M−1/2Λ1/2ḡ. Converting one g to ḡ, we have a coefficient of M−1/2. Thus, terms in
E
[
[(hu + g)⊤Λ−1q]2

]
/2 contain two h, or two g, or one h and one g are O(1/M). Terms in

E
[
(µ + hu + g)⊤Ĝq(hu + g)⊤Λ−1q

]
contain at least one Ĝ and one h or one Ĝ and one g.

Thus, they are at most smaller than O(∥Ĝ∥max/
√
M) = O(1/(N

√
M)). Therefore, we have

E[b2|]/2 = O(1/N2 + 1/M + 1/(N
√
M)) = o(1/N + 1/

√
M).

Finally, we have

E[∆(yquery, ŷquery)] = E[|ŷout − P (yquery = 1|xquery) |] = E[|σ(a+ b)− σ(a)|] ≤ σ′(a)E[|b|] + E[b2]

≤σ′(a)

∥Ĝ∥max

∑
i,j∈[d]

|µiqj |+
1

M1/2

1

2
|u⊤Λ−1q|+ 2

√
2√
π

∑
i,j∈[d]

|Λ−1/2
ij qj |

+ o

(
1

N
+

1√
M

)
.

■

Remark F.1 We note that Theorem 3.2 requires Assumption 3.2 to hold. For example, we need
the covariance Λ in training and testing to be the same. A similar consistency requirement of the
covariance Λ in training and testing had also been observed for in-context linear regression in
Zhang et al. (2023a).

Here, we discuss the consequences when Assumption 3.2 does not hold. For example, suppose
the labels of our data in test prompts are not balanced where P (y = 1) = p1,P (y = −1) = p0.
Besides, µ0, µ1 do not have the same Λ−1 weighted norm, and the covariance matrix of test data is
Γ ̸= Λ. Then, as N,M → ∞, we have

2

M

M∑
i=1

yix
⊤
i → 2(p1µ1 − p0µ0)

⊤,

and
P (ŷquery = 1) → σ(2(p1µ1 − p0µ0)

⊤Λ−1xquery).

On the other hand, the distribution of the ground truth label is

P (yquery = 1) = σ((µ1 − µ0)
⊤Γ−1xquery + (µ⊤

1 Λ
−1µ1 − µ⊤

0 Λ
−1µ0)/2 + log(p1/p0)).

Define z ≜ (µ1 − µ0)
⊤Γ−1xquery + (µ⊤

1 Λ
−1µ1 − µ⊤

0 Λ
−1µ0)/2 + log(p1/p0) and ẑ ≜ 2(p1µ1 −

p0µ0)
⊤Λ−1xquery. Then, we can notice that unless ẑ = z or |σ(ẑ)− σ(z)| is sufficiently small, the

transformer cannot correctly perform the in-context binary classification.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G TRAINING PROCEDURE FOR IN-CONTEXT MULTI-CLASS CLASSIFICATION

In this section, we present the proof of Theorem 4.1.

G.1 PROOF SKETCH

First, we prove in Lemma G.3 that the expected loss function L(W) (16) is strictly convex w.r.t.
W and is strongly convex in a compact set of Rd×d. Moreover, we prove L(W) has one unique
global minimizer W ∗. Then, in Lemma G.4, by analyzing the Taylor expansion of L(W), we prove
that as N → ∞, our loss function L(W) point wisely converges to L̃(W) (defined in (44)), and
the global minimizer W ∗ converge to 2Λ−1. Thus, we denote W ∗ = 2(Λ−1 + G), and prove
∥G∥max = O(N−1/4). Next, in Lemma G.5, by further analyzing the Taylor expansion of the
equation ∇L(W ∗) = 0 at the point 2Λ−1, we establish a tighter bound ∥G∥max = O(cN−1). In
Lemma G.6, we prove that our loss function is l-smooth and provide an upper bound for l. Thus,
in a compact set RW , our loss function is α-strongly convex and l-smooth. Finally, leveraging the
standard results from the convex optimization, we prove Theorem 4.1 in subsection G.3.

In this section, we use the following notations.

G.2 NOTATIONS

Recall the expected loss function (16) is

L(W) = −E

[
c∑

k=1

(yτ,query)k log((ŷτ,out)k)

]
, (41)

where

(ŷτ,out)k = softmax

(
1

c

(
c

N

N∑
i=1

yτ,ix
⊤
τ,i

)
Wxτ,query

)
k

is the output of the transformer, and the label of the data follows the distribution

P (yτ,query = ek|xτ,query) = softmax(µ⊤
τ Λ

−1xτ,query))k.

In this section, we introduce the following notations to analyze (16). We denote µk = µτ,k, µ =
(µ1, µ2, . . . , µk) ∈ Rd×c and q = xτ,query. Then with probability P (yτ,query = ek) = 1/c, q =

µk + v, where v ∼ N(0,Λ). We define pk = c
N

∑N
i=1(yτ,i)kxτ,i ∈ Rd and P = (p1, p2, . . . , pc) ∈

Rd×c. We have P⊤ = c
N

∑N
i=1 yix

⊤
τ,i ∈ Rc×d. Since with probability P (yτ,i = ek) = 1/c we

have xτ,i = µk + vi, where vi ∼ N(0,Λ), we known pk = c
N

∑N
i=1(yτ,i)kxτ,i = cNkµk/N + gk,

where gk = c
N

∑
i∈{i|yτ,i=ek} vi, gk ∼ N(0, c2NkΛ/N

2) and (N1, N2, . . . , Nc) ∼ Multin(n, 1/c).
Defining hk = Nk/N − 1/c, we have Nk/N = 1/c + hk and pk = µk + chkµk + gk. Defining
ḡk = Λ−1/2gk, we have ḡk ∼ N(0, c2NkId/N

2). Defining µh = (h1µ1, h2µ2, . . . , hkµk) ∈ Rd×c

and g = (g1, g2, . . . , gk) ∈ Rd×c, we have P = µ+ cµh + g.

Then, the expected loss function (16) can be expressed as

L(W) = E

[
c∑

k=1

−softmax(µ⊤Λ−1q)k log(softmax(P⊤Wq/c)k)

]
. (42)

The gradient of the loss function (16) can be expressed as

∇L(W) = E

[
c∑

k=1

[
(softmax(P⊤Wq/c)k − softmax(µ⊤Λ−1q)k)pkq

⊤/c
]]

. (43)

Moreover, we define a function L̃(W) as

L̃(W) = E[
c∑

k=1

−softmax(µ⊤Λ−1q)k log(softmax(µ⊤Wq/c)k)]. (44)

In Lemma G.4, we show that as N → ∞, L(W) will point wisely converge to L̃(W).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma G.1 Suppose (N1, N2, . . . , Nc) ∼ Multin(N, 1/c). Defining hk = Nk/N − 1/c, we have

E[hk] = 0

E[h2
k] =

1

N

(
1

c
− 1

c2

)
E[hihj] = − 1

Nc2
, i ̸= j

E[
c∏

k=1

hnk

k] = O
(
N−2

)
,
∑
k

nk ≥ 3

E[|hj |] ≤ N−1/2c−1/2(1− 1/c)1/2

E[|hihj |] = O(N−1)

E[|hihjhk|] = O
(
N−3/2

)
E[|hihjhkhl|] = O

(
N−2

)
,

where i, j, k, l ∈ [c].

Proof Since (N1, N2, . . . , Nc) ∼ Multin(N, 1/c), the moment-generating function of
(N1, N2, . . . , Nc) is

MN (t) =

(
1

c

c∑
i=1

exp(ti)

)N

We can compute the moment-generating function of h = (h1, h2, . . . , hc) as follows:

Mh(t) = exp

(
−

c∑
i=1

ti/c

)
MN (t/N) =

1

c

c∑
i=1

exp

 1

N

ti −
c∑

j=1

tj/c

N

=

1 + 1

Nc

 c∑
i=1

ti − c

c∑
j=1

tj/c

+
1

2N2c

 c∑
i=1

ti −
c∑

j=1

tj/c

2


+

∞∑
k=3

1

k!Nkc

 c∑
i=1

ti −
c∑

j=1

tj/c

k


N

=

1 + c∑
i=1

1

2N
(1/c− 1/c2)t2i −

∑
i ̸=j∈[c]

1

2Nc2
titj +

∞∑
k=3

1

k!Nkc

 c∑
i=1

ti −
c∑

j=1

tj/c

k



Observing the coefficients of h, we have

E[hk] = 0

E[h2
k] =

1

N

(
1

c
− 1

c2

)
E[hihj] = − 1

Nc2
, i ̸= j

E[
c∏

k=1

hnk

k] = O
(
N−2

)
,
∑
k

nk ≥ 3,

where i, j, k ∈ [c].

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Iteratively applying the Hölder’s inequality, we have

E[|hj |] ≤
(
E[h2

j]
)1/2

= N−1/2c−1/2(1− 1/c)1/2

E[|hihj |] ≤
(
E[h2

ih
2
j]
)1/2

= O(N−1)

E[|hi|3] ≤ E[|hi|4]3/4 = (N−3/2)

E[|hihjhk|] ≤ E[|hi|3]1/3E[|hj |3]1/3E[|hk|3]1/3 = O
(
N−3/2

)
E[|hihjhkhl|] ≤ E[|hi|4]1/4E[|hj |4]1/4E[|hk|4]1/4E[|hl|4]1/4 = O

(
N−2

)
where i, j, k, l ∈ [c]. ■

Lemma G.2 Suppose gk ∼ N(0, c2NkΛ/N
2) and (N1, N2, . . . , Nc) ∼ Multin(N, 1/c), define

ḡk = Λ−1/2gk and Nk/N = 1/c+ hk, we have

E[(ḡk)i] = 0

E[(ḡk)i(ḡl)j] = δklδijc/N

E[(ḡk1
)ii(ḡk2

)i2(ḡk3
)i3] = 0

E[(ḡk)4i] = E[3c2/N2(1 + chk)
2] = O(N−2)

E[hm(ḡk)i(ḡl)j] = E[c2δklδijhmhk/N] = O(N−2)

E[hmhl(ḡk)i] = 0

where i, j, i1, i2, i3 ∈ [d], k, l,m, k1, k2, k3 ∈ [c].

For any n1k, n2ki satisfying
∑

k∈[c] n1k +
∑

k∈[c],i∈[d] n2ki = 1, 2, 3, we have

E[
∏

k∈[c],i∈[d]

hn1k

k (ḡk)
n2ki
i] = O(N−1)

Moreover, we have

E[|(ḡk)i|] ≤ E[(ḡk)2i]1/2 = N−1/2c1/2

E[|(ḡk)i|3] ≤ E[(ḡk)4i]3/4 = O(N−3/2)

where i ∈ [d], k ∈ [c].

For any n1k, n2ki satisfying
∑

k∈[c] n1k +
∑

k∈[c],i∈[d] n2ki = n, n = 1, 2, 3, 4, we have

E[
∏

k∈[c],i∈[d]

|hn1k

k (ḡk)
n2ki
i |] = O(N−n/2)

Proof Since gk ∼ N(0, c2NkΛ/N
2) and ḡk ∼ N(0, c2NkId/N

2) = N(0, (c/N + c2hk/N)Id), we
have

E[(ḡk)i] = 0

E[(ḡk)i(ḡl)j] = δklδijc/N

E[(ḡk1
)ii(ḡk2

)i2(ḡk3
)i3] = 0

E[(ḡk)4i] = E[3c2/N2(1 + chk)
2] = O(N−2)

E[hm(ḡk)i(ḡl)j] = E[c2δklδijhmhk/N] = O(N−2)

E[hmhl(ḡk)i] = 0

where i, j, i1, i2, i3 ∈ [d], k, l,m, k1, k2, k3 ∈ [c]. Thus, with the results from Lemma G.1, for any
n1k, n2ki satisfying

∑
k∈[c] n1k +

∑
k∈[c],i∈[d] n2ki = 1, 2, 3, we have

E[
∏

k∈[c],i∈[d]

hn1k

k (ḡk)
n2ki
i] = O(N−1)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Moreover, according to the Jensen’s inequality, we have

E[|(ḡk)i|] ≤ E[(ḡk)2i]1/2 = N−1/2c1/2

E[|(ḡk)i|3] ≤ E[(ḡk)4i]3/4 = O(N−3/2)

where i ∈ [d], k ∈ [c]. Thus, with the results from Lemma G.1, for any n1k, n2ki satisfying∑
k∈[c] n1k +

∑
k∈[c],i∈[d] n2ki = n, n = 1, 2, 3, 4, we have

E[
∏

k∈[c],i∈[d]

|hn1k

k (ḡk)
n2ki
i |] ≤

∏
k∈[c],i∈[d]

E[|hn
k |]n1k/nE[|(ḡk)ni |]n2ki/n = O(N−n/2).

■

Lemma G.3 For the loss function L(W) (16), we have ∇2L(W) ≻ 0. For any compact set RW ,
when W ∈ RW , we have ∇2L(W) ≻ γId for some γ > 0. Additionally, L(W) has one unique
global minimizer on Rd×d.

For L̃(W) defined in (44), we also have ∇2L̃(W) ≻ 0. For any compact set RW , when W ∈ RW ,
we have ∇2L̂(W) ≻ γId for some γ > 0. Additionally, L̃(W) has one unique global minimizer on
Rd×d.

Proof We vectorize W as Vec(W) ∈ Rd2

, where Vec(W)i = Wt1(i),t2(i), t1(x) = ⌊(x− 1)/d⌋+
1, t2(x) = ((x− 1) mod d) + 1. Then, we have

(∇L(W))i = E

[
c∑

k=1

[
(softmax(P⊤Wq/c)k − softmax(µ⊤Λ−1q)k)(pk)t1(i)qt2(i)/c

]]
(45)

Note that

softmax(P⊤Wq/c)k = σ(ak)

∇softmax(P⊤Wq/c)k = σ(ak)(1− σ(ak))∇ak,

where ak = − log(
∑

l=1,...,c,l ̸=k exp ((pl − pk)Wq/c)). For ∇ak, we have

∇ak =

∑
l=1,...,c,l ̸=k exp

(
(pl − pk)

⊤Wq/c
)
(pk − pl)q

⊤/c∑
l=1,...,c,l ̸=k exp ((pl − pk)⊤Wq/c)

=

∑
l=1,...,c,l ̸=k exp

(
p⊤l Wq/c

)
(pk − pl)q

⊤/c∑
l=1,...,c,l ̸=k exp

(
p⊤l Wq/c

) .

Then we have

∇softmax(P⊤Wq/c)k =softmax(P⊤Wq/c)k

∑
l=1,...,c,l ̸=k exp

(
p⊤l Wq

)
(pk − pl)q

⊤/c∑
n=1,...,c exp (p

⊤
nWq/c)

=
∑

l=1,...,c,l ̸=k

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l(pk − pl)q
⊤/c

and

(∇softmax(P⊤Wq/c)k)j =
∑

l=1,...,c,l ̸=k

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l(pk − pl)t1(j)qt2(j)/c.

We can express the Hessian matrix of the loss function with the following form:

(∇2L(W))ij =E

 c∑
k=1

∑
l=1,...,c,l ̸=k

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l(pk)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2


=E

[
c∑

k=2

k−1∑
l=1

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l(pk − pl)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2

]
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Considering z ∈ Rd2

such that z ̸= 0, we have

z⊤∇2L(W)z =E

[
1

c2

c∑
k=2

k−1∑
l=1

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l
∑
ab

zazb(pk − pl)t1(a)qt2(a)(pk − pl)t1(b)qt2(b)

]

=E

 1

c2

c∑
k=2

k−1∑
l=1

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l

 ∑
a∈[d2]

za(pk − pl)t1(a)qt2(a)

2


Since for any P, q, k, l, softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l > 0, we have z⊤∇2L(W)z ≥ 0.
Thus, ∇2L(W) ⪰ 0 and L(W) is convex.

Defining p̃ = p1 − p2, we have

z⊤∇2L(W)z

≥E

 1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

 ∑
a∈[d2]

za(p1 − p2)t1(a)qt2(a)

2


=

∫
1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

 ∑
a∈[d2]

zap̃t1(a)qt2(a)

2

fPq(P, q)dPdq

where fPq(P, q) are the PDF function of P, q. For any z ̸= 0, we denote zij = z((i−1)d+j),
suppose a, b ∈ argmaxi,j |zij |, we consider a set of constants {c1pi, c2pi}, {c1qi, c2qi}, i, j ∈ [d],
where c1pa = d, c2pa = d + 1, c1qb = d, c2qb = d + 1, and c1pi = 1/16, c2pi = 1/8, i ̸= a,
c1qj = 1/16, c2qj = 1/8, j ̸= b. Then, for any cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj], we have∣∣∣∣∣∣

∑
i,j∈[d]

zijcpicqj

∣∣∣∣∣∣ ≥ [d2 − 2(d+ 1)(d− 1)/8− (d− 1)2/64
]
max
ij

|zij | ≥ d2 max
ij

|zij |/2.

Then, we define region Ω(a, b) = {p̃ =
∑

i cpiei, q =
∑

j cqjej ,cpi ∈ [c1pi, c2pi], cqj ∈
[c1qj , c2qj], ∥P∥2F ≤ c2(

∑
i c

2
2pi + c22qj)}. We have

min
Ω(a,b)

∑
l∈[d2]

zlp̃t1(l)qt2(l)

2

≥ d4 max
ij

|zij |2/4 ≥ ∥z∥22/4.

Defining

C(Ω) = min
a∈[d],b∈[d]

∫
Ω(a,b)

fPq(P, q)dPdq,

S(Ω,W) = min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

}
,

we have S(Ω,W) > 0. Since we have fPq(P, q) > 0 for all P, q and Ω(a, b) are non-zero measures
for P, q. Thus, we have C(Ω) > 0. Then, for any z ̸= 0, we have

z⊤∇2L(W)z

≥
∫
Ω(a,b)

1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

∑
l∈[d2]

zlp̃t1(l)qt2(l)

2

fPq(P, q)dPdq

≥C(Ω)S(Ω,W)∥z∥22/4 > 0

Thus, we have ∇2L(W) ≻ 0. L(W) is strictly convex.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Moreover, for any compact set RW of Rd×d, for any W ∈ RW , we have

S(Ω) = min
W∈RW

min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

}
> 0.

Then, for any W ∈ RW , for any z ̸= 0, we have
z⊤∇2L(W)z

≥
∫
Ω(a,b)

1

c2
softmax(P⊤Wq/c)1softmax(P⊤Wq/c)2

∑
l∈[d2]

zlp̃t1(l)qt2(l)

2

fPq(P, q)dPdq

≥C(Ω)S(Ω)∥z∥22/4.
Thus, when W ∈ RW , RW is a compact set, we have ∇2L(W) ≻ C(Ω)S(Ω)Id/4, our loss function
is γ−strongly convex, where γ = C(Ω)S(Ω)/4.

Because our loss function is strictly convex in Rd×d, it has at most one global minimizer in Rd×d.
Next, we prove all level sets of our loss function are compact, i.e. Vα = {W ∈ Rd×d |L(W) ≤ α}
is compact for all α. We prove it by contradiction. Suppose Vα is not compact for some α. Since our
loss function is continuous and convex, Vα is an unbounded convex set. Since the dimension of Vα is
d2, consider a point Wα ∈ Vα, there must exists a W k ̸= 0d×d that {Wα+tW k | t = [0,∞)} ∈ Vα.
For this W k ̸= 0d×d, there must exist a set of constants 0 < c3pi < c4pi, 0 < c3qj < c4qj such that
for any cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj], we have

|
∑
ij

cpicqjW
k
ij | ≠ 0.

Thus, we have

lim
t→∞

|
∑
ij

cpicqj(W
α
ij + tW k

ij)| = ∞.

We define Ω0 = {p̃ =
∑

i cpiei, q =
∑

j cqjej , cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj], ∥P∥2F ≤
c2(
∑

i c
2
4pi + c24qj), ∥µ∥2F ≤ c2(

∑
i c

2
4pi + c24qj)}. Then, defining

C(Ω0) =

∫
Ω0

fPq(P, q)dPdq,

S(Ω0) = min
Ω0

{
min{softmax(µ⊤Wq/c)1, softmax(µ⊤Wq/c)2}

}
we have S(Ω0) > 0. Since Ω0 are non-zero measures for P, q, we have C(Ω0) > 0. Then, we have

lim
t→∞

L(Wα + tW k)

= lim
t→∞

E[
c∑

l=1

−softmax(µ⊤Λ−1q)l log(softmax(P⊤(Wα + tW k)q/c)l)]

≥ lim
t→∞

∫
Ω0

[−softmax(µ⊤Λ−1q)1 log(softmax(P⊤(Wα + tW k)q/c)1)]fPq(P, q)dPdq

+ lim
t→∞

∫
Ω0

[−softmax(µ⊤Λ−1q)2 log(softmax(P⊤(Wα + tW k)q/c)2)]fPq(P, q)dPdq

≥ lim
t→∞

∫
Ω0

[−softmax(µ⊤Λ−1q)1 log(σ(p̃
⊤(Wα + tW k)q/c))]fPq(P, q)dPdq

+ lim
t→∞

∫
Ω0

[−softmax(µ⊤Λ−1q)2 log(σ(−p̃⊤(Wα + tW k)q/c))]fPq(P, q)dPdq

≥C(Ω0)S(Ω0) ·min
Ω0

 lim
t→∞

[− log(σ(
∑
ij

cpicqj(W
α
ij + tW k

ij)/c))]


+C(Ω0)S(Ω0) ·min

Ω0

 lim
t→∞

[− log(σ(−
∑
ij

cpicqj(W
α
ij + tW k

ij)/c))]


=∞

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

This contradicts the assumption L(Wα + tW k) ≤ α. Thus, all level sets of the loss function L(W)
are compact, which means there exists a a global minimizer for L(W). Together with the fact that
L(W) is strictly convex, L(W) has one unique a global minimizer on Rd×d.

Similarly, we can prove the same conclusions for L̃(W). ■

Lemma G.4 Denoting the global minimizer of our loss function (16) as W ∗, we have W ∗ =
c(Λ−1 +G), where ∥G∥max = O(N−1/4).

Proof Let a = µ⊤Λ−1q, s = µ⊤Wq/c, r = (µh + g)⊤Wq/c, ak = µ⊤
k Λ

−1q, sk = µ⊤
k Wq/c,

rk = (chkµk + gk)
⊤Wq/c. Performing the Taylor expansion on (16), we have

L(W) =E

[
c∑

k=1

−ζk(a) log(ζk(s+ r))

]

=E

 c∑
k=1

−ζk(a) log(ζk(s))−
c∑

k,l=1

ζk(a)Rkl(s, r)rl


=L̃(W)− E

 c∑
k,l=1

ζk(a)Rkl(s, r)rl


where |Rkl(s, r)| ≤ supy |

∂ log(ζk(y))
∂yl

| supy | 1
ζk(y)

∂ζk(y)
∂yl

| = supy |δkl − ζl(y)| ≤ 1. Thus, we have∣∣∣L̃(W)− L(W)
∣∣∣

≤c

c∑
l=1

E [|rl|]

≤
c∑

l=1

cE
[
|hlµ

⊤
l Wq|

]
+ E

[
|g⊤l Wq|

]
≤O(1)∥W∥maxE[|hl|] +O(1)∥W∥maxE[|(ḡl)i|]
≤Cl∥W∥maxN

−1/2

where the last inequality is due to Lemma G.1, G.2. Cl is a constant independent of N and W . This
shows that L(W) point wisely converge to L̃(W).

According to Lemma E.2, L̃(W) has one unique global minimizer. Considering the equation:

∇L̃(W) = E[
c∑

k=1

−softmax(µ⊤Λ−1q)k log(softmax(µ⊤Wq/c)k)] = 0

We can easily find that ∇L̃(cΛ−1) = 0 and W = cΛ−1 is the global minimizer of L̃(W).

Considering a compact set RW = {W | ∥W − 2Λ−1∥F ≤ ρW }, we have ∥W∥max ≤ CW for any
W ∈ RW . Here ρW , CW are some positive finite constants. Then, we have∣∣∣L̃(W)− L(W)

∣∣∣ ≤ C ′
lN

−1/2, W ∈ RW

where C ′
l = ClCW is a constant independent of N and W . This shows that, for any W ∈ RW ,

L(W) uniformly converge to L̃(W).

Denote W ∗ as the global minimizer of L(W) with prompt length N . Then, we show that, when
N is sufficiently large, W ∗ ∈ RW . We first denote ∂RW = {W | ∥W − cΛ−1∥F = ρW } ,
∆ = minW∈∂RW

L̃(W) − L̃(cΛ−1) > 0. Then, for N ≥ (4C ′
l/∆)2, and for any W ∈ RW , we

have ∣∣∣L̃(W)− L(W)
∣∣∣ ≤ ∆/4

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

min
W∈∂RW

L(W)− min
W∈RW

L(W) ≥ min
W∈∂RW

L(W)− L(cΛ−1) ≥ ∆/2 > 0

Since L(W) is strictly convex, we have W ∗ = argminW L(W) ∈ RW .

Then, we have

|L̃(W ∗)− L(W ∗)| ≤ C ′
l/N

|L̃(cΛ−1)− L(cΛ−1)| ≤ C ′
l/N

L̃(W ∗) ≤ L(W ∗) + C ′
l/N ≤ L(cΛ−1) + C ′

l/N ≤ L̃(cΛ−1) + 2C ′
lN

−1/2

According to Lemma E.2, for W ∈ RW , we have ∇2L̃(W) ≻ γId, where γ is a positive constant
independent of N . Thus, L̃(W) is γ-strongly convex in RW . According to Lemma D.1, we have

∥W ∗ − cΛ−1∥2F ≤ 2

γ
(L̃(W ∗)− L̃(cΛ−1)) ≤ 4C ′

l

γN1/2

Thus, when N → ∞, we have W ∗ → cΛ−1. Denoting W ∗ = c(Λ−1 + G), we have ∥G∥max =
O(N−1/4). ■

Lemma G.5 The global minimizer of the loss function (16) is W ∗ = c(Λ−1 +G). We have

∥G∥max ≤ 1

N

∥∥∥∥∥S−1E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

⊤
l Λ

−1qq⊤ +

c∑
k=1

∂ζk(a)

∂ak
cqq⊤

+

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ⊤

l Λ
−1qµ⊤

nΛ
−1qµkq

⊤/2 +

c∑
k,l=1

∂2ζk(a)

∂a2l
cq⊤Λ−1qµkq

⊤/2

]∥∥∥∥∥
max

+ o(1/N),

where a = µ⊤Λ−1q, ak = µ⊤
k Λ

−1q, S = c2∇2L̃(cΛ−1). Ignoring constants other than c,N , we
have ∥G∥max ≤ O(c/N).

Proof According to Lemma G.3, the loss function L(W) has a unique global minimizer W ∗. We
have

∇L(W ∗) = E

[
c∑

k=1

[
(ζk(P

⊤W ∗q/c)− ζk(µ
⊤Λ−1q))pkq

⊤/c
]]

= 0. (46)

Let W ∗ = c(Λ−1 +G), a = µ⊤Λ−1q, ak = µ⊤
k Λ

−1q, b = (µ+ cµh + g)⊤Gq+(cµh + g)⊤Λ−1q,
bk = (µk + chkµk + gk)

⊤Gq + (chkµk + gk)
⊤Λ−1q. The Taylor expansion of ζk(a+ b) at point

a is

ζk(a+ b) = ζk(a) +

c∑
l=1

∂ζk(a)

∂al
bl +

c∑
l,n=1

∂2ζk(a)

∂al∂an
blbn/2! +

c∑
l,n,m=1

Rklnm(a, b)blbnbm/3!,

where |Rklnm(a, b)| ≤ supx |
∂3ζk(x)

∂xl∂xn∂xm
|. Thus, our equation (46) become

E

 c∑
k,l=1

∂ζk(a)

∂al
blpkq

⊤ +

c∑
k,l,n=1

∂2ζ(a)

∂al∂an
blbnpkq

⊤/2! +

c∑
k,l,n,m=1

Rklnm(a, b)blbnbmpkq
⊤/3!

 = 0.

(47)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

For the first term
∑c

k,l=1
∂ζk(a)
∂al

blpkq
⊤, according to Lemma G.1, we have

E

 c∑
k,l=1

∂ζk(a)

∂al
blpkq

⊤


=E

 c∑
k,l=1

∂ζk(a)

∂al

[
µ⊤
l Gqµkq

⊤ + c2hlhkµ
⊤
l Gqµkq

⊤ + c2hlhkµ
⊤
l Λ

−1qµkq
⊤ + g⊤l Λ

−1qgkq
⊤ + g⊤l Gqgkq

⊤]
=E

[
c∑

k,l=1

∂ζk(a)

∂al

(
µkµ

⊤
l Gqq⊤ + (cδkl − 1)µkµ

⊤
l Gqq⊤/N + (cδkl − 1)µkµ

⊤
l Λ

−1qq⊤/N
)

+

c∑
k=1

∂ζk(a)

∂ak

(
cqq⊤/N + cΛGqq⊤/N

)]
. (48)

According to Lemma G.4, O(∥G∥max) = O(N−1/4) = o(1), we have∥∥∥∥∥E
[

c∑
k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

⊤
l Gqq⊤/N +

c∑
k=1

∂ζk(a)

∂ak
cΛGqq⊤/N

]∥∥∥∥∥
max

≤O(∥G∥max/N) = o(1/N) (49)

For the second term
∑c

k,l,n=1
∂2ζk(a)
∂al∂an

blbnpkq
⊤/2!, we have

E

 c∑
k,l,n=1

∂2ζk(a)

∂al∂an
blbnpkq

⊤/2!


=
1

2
E

[
c∑

k,l,n=1

∂2ζk(a)

∂al∂an

(∑
ϕ1∈{µl,chlµl,gl},ϕ2∈{µn,chnµn,gn}

ϕ⊤
1 Gqϕ⊤

2 Gqpkq
⊤

︸ ︷︷ ︸
(i)

+
∑

ϕ1∈{µl,chlµl,gl},ϕ2∈{chnµn,gn}

2ϕ⊤
1 Gqϕ⊤

2 Λ
−1qpkq

⊤

︸ ︷︷ ︸
(ii)

+
∑

ϕ1∈{chlµl,gl},ϕ2∈{chnµn,gn}

ϕ⊤
1 Λ

−1qϕ⊤
2 Λ

−1qpkq
⊤

︸ ︷︷ ︸
(iii)

)]
.

For terms (i) having two G, their max norms are at most smaller than O(∥G∥2max). For terms (ii)
having one G, define ḡl = Λ−1/2gl, these terms must contain n1j number of hj and n2ji number of
(ḡj)i, we have

∑
j∈[c],i∈[d] n1j + n2ji = nt, nt = 1, 2, 3. According to Lemma G.2, we know that

for nt = 1, 2, 3,

E[
∏

j∈[c],i∈[d]

h
n1j

j (ḡj)
n2ji

i] = O(N−1)

Thus, the max norm of expectations of terms in (ii) are at most smaller than O(∥G∥maxN
−1).

Therefore, for terms (i), (ii), we have

∥E[(i)]∥max ≤ O(∥G∥2max) = o(∥G∥max) (50)
∥E[(ii)]∥max ≤ O(∥G∥max/N) = o(1/N) (51)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

For terms (iii) without G, we have

∥E[(iii)]∥max

=

∥∥∥∥∥E
[

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
c2hlhnµ

⊤
l Λ

−1qµ⊤
nΛ

−1qµkq
⊤/2 +

c∑
k,l=1

∂2ζk(a)

∂a2l
g⊤l Λ

−1qg⊤l Λ
−1qµkq

⊤/2

+

c∑
k,l=1

∂2ζk(a)

∂al∂ak
chlµ

⊤
l Λ

−1qg⊤k Λ
−1qgkq

⊤ +

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
c3hlhnhkµ

⊤
l Λ

−1qµ⊤
nΛ

−1qµkq
⊤/2

]∥∥∥∥∥
max

≤ 1

2N

∥∥∥∥∥E
 c∑
k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ⊤

l Λ
−1qµ⊤

nΛ
−1qµkq

⊤ +

c∑
k,l=1

∂2ζk(a)

∂a2l
cq⊤Λ−1qµkq

⊤

∥∥∥∥∥
max

+O(1/N2) (52)

where the last inequity is due to Lemma G.1, G.2.

For the third term
∑c

k,l,n,m=1 Rklnm(a, b)blbnbmpkq
⊤/3!, we have∥∥∥∥∥E

 c∑
k,l,n,m=1

Rklnm(a, b)blbnbmpkq
⊤/3!

∥∥∥∥∥
max

≤O(1) max
l,m∈[d]

E[
∑

k1,k2,k3,k4∈[c]

|bk1
bk2

bk3
(pk4

)lqm|]

≤O(1)E
∑

k1,k2,k3,k4∈[c]

[∑
ϕ1∈{µk1

,chk1
µk1

,gk1
},ϕ2∈{µk2

,chk2
µk2

,gk2
},ϕ3∈{µk3

,chk3
µk3

,gk3
}

ϕ⊤
1 Gqϕ⊤

2 Gqϕ⊤
3 Gq(pk4)lqm︸ ︷︷ ︸

(∗)

+
∑

ϕ1∈{µk1
,chk1

µk1
,gk1

},ϕ2∈{µk2
,chk2

µk2
,gk2

},ϕ3∈{chk3
µk3

,gk3
}

ϕ⊤
1 Gqϕ⊤

2 Gqϕ⊤
3 Λ

−1q(pk4
)lqm

︸ ︷︷ ︸
(∗)

+
∑

ϕ1∈{µk1
,chk1

µk1
,gk1

},ϕ2∈{chk2
µk2

,gk2
},ϕ3∈{chk3

µk3
,gk3

}

ϕ⊤
1 Gqϕ⊤

2 Λ
−1qϕ⊤

3 Λ
−1q(pk4)lqm︸ ︷︷ ︸

(∗∗)

+
∑

ϕ1∈{chk1
µk1

,gk1
},ϕ2∈{chk2

µk2
,gk2

},ϕ3∈{chk3
µk3

,gk3
}

ϕ⊤
1 Λ

−1qϕ⊤
2 Λ

−1qϕ⊤
3 Λ

−1q(pk4
)lqm

︸ ︷︷ ︸
(∗∗∗)

]
.

For terms in (∗) having two or three G, these terms’ expected absolute values are at most smaller
than O(∥G∥2max). For terms in (∗∗) having one G, these terms must contain n1j number of hj and
n2ji number of (ḡj)i, we have

∑
j∈[c],i∈[d] n1j +n2ji = nt, nt = 2, 3, 4. According to Lemma G.2,

for nt = 2, 3, 4, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(N−nt/2) = O(N−1)

Thus, these term’s expected absolute values are at most smaller than O(∥G∥maxN
−1). For terms in

(∗ ∗ ∗) without G, these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have∑
j∈[c],i∈[d] n1j + n2ji = nt, nt = 3, 4. According to Lemma G.2, for nt = 3, 4, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(N−nt/2) = O(N−3/2)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Thus, these term’s expected absolute values are at most smaller than O(N−3/2). Therefore, we have∥∥∥∥∥E
 c∑
k,l,n,m=1

Rklnm(a, b)blbnbmpkq
⊤/3!

∥∥∥∥∥
max

≤O(1) max
l,m∈[d]

E[
∑

k1,k2,k3,k4∈[c]

|bk1bk2bk3(pk4)lqm|]

≤O(∥G∥2max) +O(∥G∥maxN
−1) +O(N−3/2)

≤o(∥G∥max) + o(1/N). (53)

Moreover, we have{
E

 c∑
k,l=1

∂ζk(a)

∂al
µkµ

⊤
l Gqq⊤

}
ij

=

{
E

 c∑
k=1

ζk(a)(1− ζk(a))µkµ
⊤
k Gqq⊤ −

c∑
k,l=1,k ̸=l

ζk(a)ζl(a)µkµ
⊤
l Gqq⊤

}
ij

=

{
E

 c∑
k,l=1,k ̸=l

ζk(a)ζl(a)µk(µk − µl)
⊤Gqq⊤

}
ij

=

{
E

[
c∑

k=2

k−1∑
l=1

ζk(a)ζl(a)(µk − µl)(µk − µl)
⊤Gqq⊤

]}
ij

=

d∑
n,m=1

sijnmGnm, (54)

where sijnm = E
[∑c

k=2

∑k−1
l=1 ζk(a)ζl(a)(µk − µl)i(µk − µl)nqmqj

]
. We vectorize G as

Vec(G)i = Gt1(i),t2(i). Define S ∈ Rd2×d2

, where Sij = st1(i),t2(i),t1(j),t2(j) =

E
[∑c

k=2

∑k−1
l=1 ζk(a)ζl(a)(µk − µl)t1(i)qt2(i)(µk − µl)t1(j)qt2(j)

]
, (54) can be expressed as

E

 c∑
k,l=1

∂ζk(a)

∂al
µkµ

⊤
l Gqq⊤

 = SG. (55)

Note that S = c2∇2L̃(cΛ−1). According to Lemma G.3, S is positive definite. Thus, combining
(47), (48), (49), (50), (51), (52), (53), (55), we have

∥G∥max

≤ 1

N

∥∥∥∥∥S−1E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

⊤
l Λ

−1qq⊤ +

c∑
k=1

∂ζk(a)

∂ak
cqq⊤

+

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ⊤

l Λ
−1qµ⊤

nΛ
−1qµkq

⊤/2 +

c∑
k,l=1

∂2ζk(a)

∂a2l
cq⊤Λ−1qµkq

⊤/2

]∥∥∥∥∥
max

+ o(1/N).

Ignoring constants other than c,N , we have ∥G∥max ≤ O(c/N). ■

Lemma G.6 The loss function (7) is l-smooth, where l ≤ 1
c2

∑c
k=2

∑k−1
l=1

∑
i∈[d2] E[((pk −

pl)t1(i)qt2(i))
2].

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Proof The Hessian matrix of the loss function is

(∇2L(W))ij = E

[
c∑

k=2

k−1∑
l=1

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l(pk − pl)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2

]
.

Considering z ∈ Rd2

such that z ̸= 0, we have

z⊤∇2L(W)z

=E

 1

c2

c∑
k=2

k−1∑
l=1

softmax(P⊤Wq/c)ksoftmax(P⊤Wq/c)l

 ∑
a∈[d2]

za(pk − pl)t1(a)qt2(a)

2


(a)

≤ 1

c2
∥z∥22

c∑
k=2

k−1∑
l=1

∑
i∈[d2]

E[((pk − pl)t1(i)qt2(i))
2]

where (a) is due to the Cauchy–Schwarz inequality. Thus, ∇2L(W) ⪯ lId and L(W) is l-smooth,
where l is a constant smaller than 1

c2

∑c
k=2

∑k−1
l=1

∑
i∈[d2] E[((pk − pl)t1(i)qt2(i))

2]. ■

Theorem G.1 (Formal statement of Theorem 4.1) The following statements hold.

(1) Optimizing training loss L(W) (16) with training prompt length N via gradient descent W t+1 =
W t − η∇L(W t), we have for any t

∥W t −W ∗∥2F ≤ exp(−t/κ)∥W 0 −W ∗∥2F ,

where W 0 is the initial parameter and W ∗ is the global minimizer of L(W), κ = l/α. α, l are
constants such that

0 < α ≤ λmin(∇2L(W)) ≤ λmax(∇2L(W)) ≤ l, for all W ∈ RW , (56)

where RW = {W ∈ Rd×d | ∥W −W ∗∥F ≤ ∥W 0 −W ∗∥F }.

(2) Denoting W ∗ = c(Λ−1 +G), we have

∥G∥max ≤ 1

N

∥∥∥∥∥S−1E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

⊤
l Λ

−1qq⊤ +
c∑

k=1

∂ζk(a)

∂ak
cqq⊤

+
1

2

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ⊤

l Λ
−1qµ⊤

nΛ
−1qµkq

⊤ +
1

2

c∑
k,l=1

∂2ζk(a)

∂a2l
cq⊤Λ−1qµkq

⊤

]∥∥∥∥∥
max

+ o(1/N)

= O(c/N)

where S = c2∇2L̃(2Λ−1), L̃(2Λ−1) = limN→∞ L(2Λ−1). The expectation is taken over µτ ∼
Pm
Ω (Λ), xτ,query ∼ Pm

x (µτ ,Λ).

(3) After T ≥ 2κ log(N · ∥W 0 −W ∗∥F) gradient steps, denoting Ŵ as the final model, we have

Ŵ = c(Λ−1 + Ĝ), (57)

where ∥Ĝ∥max = O(c/N).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

G.3 PROOF OF THEOREM 4.1

Proof According to Lemma G.5, the global minimizer of L(W) is W ∗ = c(Λ−1 +G), where

∥G∥max

≤ 1

N

∥∥∥∥∥S−1E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

⊤
l Λ

−1qq⊤ +

c∑
k=1

∂ζk(a)

∂ak
cqq⊤

+

c∑
k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ⊤

l Λ
−1qµ⊤

nΛ
−1qµkq

⊤/2 +

c∑
k,l=1

∂2ζk(a)

∂a2l
cq⊤Λ−1qµkq

⊤/2

]∥∥∥∥∥
max

+ o(1/N).

Ignoring constants other than c,N , we have ∥G∥max ≤ O(c/N).

Define RW = {W ∈ Rd×d | ∥W − W ∗∥F ≤ ∥W 0 − W ∗∥F }, and RW is a compact set. Then,
according to Lemma G.3, for W ∈ RW , we have ∇2L(W) ⪰ αId. Here α > 0 is a positive
constant number. Thus, L(W) is α-strongly convex in RW . Moreover, according to Lemma G.6,
L(W) is l-smooth. Then according to Lemma D.2, applying gradient descent with η = 1/l, for any
t ≥ 1, we have

∥W t −W ∗∥2F ≤ exp(−t/κ) · ∥W 0 −W ∗∥2F ,

where κ = l/α.

After T ≥ 2κ log(N · ∥W 0−W ∗∥F) gradient steps, we have Ŵ = WT = c(Λ−1+G+HT /c) =

2(Λ−1 + Ĝ), where Ĝ = G + HT /c, ∥HT ∥max ≤ exp(−T/κ) · ∥W 0 − W ∗∥2F ≤ 1/N . Thus,
∥Ĝ∥max ≤ ∥G∥max + ∥HT ∥max = O(c/N). ■

H IN-CONTEXT INFERENCE OF MULTI-CLASS CLASSIFICATION

H.1 NOTATIONS

In this section, we use the following notations. We denote µ = (µ1, µ2, . . . , µc), q = xquery. Define
pk = c

M

∑M
i=1(yi)kxi, and define P = (p1, p2, . . . , pc) ∈ Rd×c. We have P⊤ = c

M

∑M
i=1 yix

⊤
τ,i ∈

Rc×d. Since with probability P (yτ,i = ek) = 1/c, xτ,i = µk + vi, where vi ∼ N(0,Λ),
we have pk = c

M

∑M
i=1(yτ,i)kxτ,i = cMkµk/M + gk, where gk = c

M

∑
i∈{i|yτ,i=ek} vi,

gk ∼ N(0, c2MkΛ/M
2) and (M1,M2, . . . ,Mc) ∼ Multin(M, 1/c). Defining hk = Mk/M − 1/c,

we have Mk/M = 1/c+ hk and pk = µk + chkµk + gk.

Theorem H.1 (Formal statement of Theorem 4.2) Let ŷquery be the prediction of the trained
transformer with parameters Ŵ in (19) and Ptest satisfying Assumption 4.2, and let yquery ∼
Pm
y|xquery

(µ,Λ). Then, for the inference error defined in (3), we have

E[∆(yquery, ŷquery)]

≤max
k∈[c]


c∑

l=1

∂ζk(a)

∂al

∥Ĝ∥max

∑
i,j∈[d]

|(µl)iqj |+
1

M1/2

√c(1− 1/c)|µ⊤
l Λ

−1q|+
√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |


+ o

(
1

N
+

1√
M

)
,

where a = µ⊤Λ−1q, ak = µ⊤
k Λ

−1q. The expectation is taken over {xi, yi}Mi=1
i.i.d.∼ Pm(µ,Λ).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

H.2 PROOF OF THEOREM 4.2

Proof The output of the trained transformer is

ŷout = softmax

((
c

M

M∑
i=1

yix
⊤
i

)
(Λ−1 + Ĝ)xquery

)
= softmax(P⊤(Λ−1 + Ĝ)q) (58)

The probability of yquery = ek given xquery is

P (yquery = ek|xquery) = softmax(µ⊤Λ−1xquery)k = softmax(µ⊤Λ−1q)k

Defining a = µ⊤Λ−1q, b = (µ + µh + g)⊤Ĝq + (µh + g)⊤Λ−1q, ak = µ⊤
k Λ

−1q, bk = (µk +

chkµk + gk)
⊤Ĝq + (chkµk + gk)

⊤Λ−1q, we have

E
[
softmax(P⊤(Λ−1 + Ĝ)q)k

]
= E [ζk(a+ b)] = E[ζk(a) +

c∑
l=1

∂ζk(a)

∂al
bl +

c∑
l,n=1

Rkln(a, b)blbn/2]

where |Rkln(a, b)| ≤ supx |
∂2ζk(x)
∂xl∂xn

|. Thus, we have

E[|ζk(a+ b)− ζk(a)|] ≤ E

[
c∑

l=1

∣∣∣∣∂ζk(a)∂al
bl

∣∣∣∣
]
+ E

∣∣∣∣∣∣
c∑

l,n=1

Rkln(a, b)blbn/2

∣∣∣∣∣∣
 .

We first consider the term E
[∑c

l=1

∣∣∣∂ζk(a)∂al
bl

∣∣∣]. Defining ḡl = Λ−1/2gl, we have

E

[
c∑

l=1

∣∣∣∣∂ζk(a)∂al
bl

∣∣∣∣
]

≤
c∑

l=1

∂ζk(a)

∂al

(
|µ⊤

l Ĝq|+ E[|chlµ
⊤
l Ĝq|] + E[|g⊤l Ĝq|] + E[|chlµ

⊤
l Λ

−1q|] + E[|g⊤l Λ−1q|]
)

(a)

≤
c∑

l=1

∂ζk(a)

∂al

(
|µ⊤

l Ĝq|+
√
c(1− 1/c)

M1/2
|µ⊤

l Ĝq|+ E[|ḡ⊤l Λ1/2Ĝq|] +
√
c(1− 1/c)

M1/2
|µ⊤

l Λ
−1q|+ E[|ḡ⊤l Λ−1/2q|]

)
(b)

≤
c∑

l=1

∂ζk(a)

∂al

∥Ĝ∥max

∑
i,j∈[d]

|(µl)iqj |+
1

M1/2

√c(1− 1/c)|µ⊤
l Λ

−1q|+
√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |


+ o

(
1

N
+

1√
M

)
,

where (a) is due to Lemma G.1 that E[|h|] ≤ M−1/2c−1/2(1 − 1/c)1/2. (b) is because that ḡl ∼
N(0, c2MlId/M

2), E[|(ḡl)i|] ≤ E[(ḡl)2i]1/2 = (c/M)1/2, for l ∈ [c], i ∈ [d].

For E
[∣∣∣∑c

l,n=1 Rkln(a, b)blbn/2
∣∣∣], we have

E

∣∣∣∣∣∣
c∑

l,n=1

Rkln(a, b)blbn/2

∣∣∣∣∣∣
 = O(1)E

[
c∑

l,n=1

(∑
ϕ1∈{µl,chlµl,gl},ϕ2∈{µn,chnµn,gn}

∣∣∣ϕ⊤
1 Ĝqϕ⊤

2 Ĝq
∣∣∣

︸ ︷︷ ︸
(i)

+
∑

ϕ1∈{µl,chlµl,gl},ϕ2∈{chnµn,gn}

∣∣∣2ϕ⊤
1 Ĝqϕ⊤

2 Λ
−1q
∣∣∣

︸ ︷︷ ︸
(ii)

+
∑

ϕ1∈{chlµl,gl},ϕ2∈{chnµn,gn}

∣∣ϕ⊤
1 Λ

−1qϕ⊤
2 Λ

−1q
∣∣

︸ ︷︷ ︸
(iii)

)]
.

For terms (i) having two Ĝ, they are at most smaller than O(∥Ĝ∥2max) = O(1/N2). For terms
(ii) having one G, these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have∑

j∈[c],i∈[d] n1j + n2ji = nt, nt = 1, 2. According to Lemma G.2, we know that for nt = 1, 2,

E[
∏

j∈[c],i∈[d]

∣∣hn1j

j (ḡj)
n2ji

i

∣∣] = O(M−1/2).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Thus, terms in (ii) are at most smaller than O(∥G∥maxM
−1/2) = O(1/(N

√
M)). For terms

(iii) without G, these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have∑
j∈[c],i∈[d] n1j + n2ji = nt, nt = 2. According to Lemma G.2, for nt = 2, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(M−nt/2) = O(M−1).

Thus, these term are O(M−1). Therefore, we have E
[∣∣∣∑c

l,n=1 Rkln(a, b)blbn/2
∣∣∣] = O(1/N2 +

1/M + 1/(N
√
M)) = o(1/N + 1/

√
M).

Finally, we have

E[∆(yquery, ŷquery)] = max
k

{E[|softmax(a+ b)k − softmax(a)k|]}

≤max
k∈[c]


c∑

l=1

∂ζk(a)

∂al

∥Ĝ∥max

∑
i,j∈[d]

|(µl)iqj |+
1

M1/2

√c(1− 1/c)|µ⊤
l Λ

−1q|+
√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |


+ o

(
1

N
+

1√
M

)
.

■

Remark H.1 We note that Theorem 4.2 requires Assumption 4.2 to hold. For example, we need
the covariance Λ in training and testing to be the same. A similar consistency requirement of the
covariance Λ in training and testing had also been observed for in-context linear regression in
Zhang et al. (2023a) and for in-context binary classification in the previous section 3.2.

Here, we discuss the consequences when Assumption 4.2 does not hold. For example, suppose the
labels of our data in test prompts are not balanced P (y = ek) = pk, µ do not have the same
Λ−1 weighted norm µ⊤

k Λ
−1µk ≜ Ψk, and the covariance matrix of test data is Γ ̸= Λ, then as

N,M → ∞, we have
c

M

M∑
i=1

yix
⊤
i → c(p1µ1, p2µ2, . . . , pcµc)

⊤,

and
P (ŷquery = 1) → softmax(c(p1µ1, p2µ2, . . . , pcµc)

⊤Λ−1xquery).

Denote Ψ = (Ψ1, . . . ,Ψc)
⊤, Φ = (log(p1), . . . , log(pc))

⊤ and z = µ⊤Γ−1xquery−Ψ/2+Φ. Then
distribution of the ground truth label is

P (yquery = ek) = softmax(z)k.

Define ẑ = c(p1µ1, p2µ2, . . . , pcµc)
⊤Λ−1xquery. Then, unless ẑ = z or ∥softmax(ẑ) −

softmax(z)∥2 is sufficiently small, the transformer cannot correctly perform the in-context multi-
class classification.

I ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results and the detailed experimental settings.

I.1 SINGLE-LAYER TRANSFORMERS

We train single-layer transformers for in-context classification of Gaussian mixtures with different
numbers of classes c, different lengths of training prompts N , and test them with different test
prompt lengths M . The results are reported in Figure 4. We can see from Figure 4 (a,b) that the
inference errors decrease as N and M increase, and they increase as c increases. In Figure 4 (c,d),
we first fix the training prompt length (test prompt length) to a large number 2000, and then vary
the test prompt length (training prompt length) from 20 to 2000. The results show that, as M and

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

(a) c = 10 (b) N = 80

(c) log-log axes (d) log-log axes

Figure 4: Inference errors of single-layer transformers. (a): Models trained on different training prompt
lengths N on classification tasks involving c = 10 classes. (b): Models trained on different classification tasks
involving c classes with a fixed training prompt length N = 80. (c): Relationship between the inference error
and the test prompt length M in log-log axes. Training prompt length N = 2000 and number of classes c = 6.
(d): Relationship between the inference error and the training prompt length N in log-log axes. Test prompt
length M = 2000 and number of classes c = 6.

N become sufficiently large, the inference error, which is an approximation of E[∆(yquery, ŷquery)]
(see Appendix I.2 for detailed definitions), decreases to near-zero. This indicates that the prediction
of the trained transformer approaches the Bayes-optimal classifier. All these experimental results
corroborate our theoretical claims.

I.2 EXPERIMENT DETAILS

For all tasks, we set d = 20 and we randomly generate a covariance matrix Λ = diag(λ1, . . . , λd),
where λi = |λ̂i| and λ̂i

i.i.d.∼ N(3, 1). For each training dataset with different training prompt
lengths N , and different class numbers c, we randomly generate B training samples. Training
prompts Pτ , τ ∈ [B] and their corresponding labels yτ,query are generated according to Assump-
tion 4.1. Moreover, we also generate testing datasets. For example, for each testing dataset,
we first randomly generate 20 pairs of (µj , xj,query, yj,prob), j ∈ [20], where (µj)

i.i.d.∼ Pm
Ω (Λ),

xj,query ∼ Pm
x (µj ,Λ). yj,prob = softmax(µ⊤

j Λ
−1xj,query) are the corresponding probability

distributions of the ground truth label yj,query. For each j, we generate 100 testing prompts

Pjk = (xjk,1, yjk,1, . . . , xjk,M , yjk,M , xj,query), where (xjk,i, yjk,i)
i.i.d.∼ Pm(µj ,Λ), j ∈ [20], k ∈

[100], i ∈ [M]. We denote a model’s output for testing prompts Pjk as ŷjk. We calculate its infer-

ence error with 1
20×100

∑
j∈[20],k∈[100] maxl∈[c]

∣∣∣̂(yjk)l − (yj,prob)l

∣∣∣, which serves an approximation
of the expected total variation distance we defined in (3).

For the ’3-layer’ model, we used the x-transformers library and defined it as an encoder-only trans-
former with 64 embedding sizes, 3 layers, 2 heads and without positional encoding.

For experiments in Figure 1, we set the size of the training dataset to B = 100, 000 and set the
batch size to 50. We train the ’1-layer’ using Adam with learning rate 0.0005 for 10 epochs, and
train the ’3-layer’ using Adam with learning rate 0.0001 for 5 epochs. Each experiment is repeated

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

3 times with different random seeds. For experiments in Figure 2, we also set the size of the train-
ing dataset to B = 100, 000 and set the batch size to 50. We train the ’1-layer’ using Adam with
learning rate 0.001 for 5 epochs, and train the ’3-layer’ using Adam with learning rate 0.0001 for 5
epochs. In ’same norm’ and ’same covariance’ settings, pre-training data are sampled according to
Assumption 4.1 with a fixed Λ that Λ = diag(λ1, . . . , λd), where λi = |λ̂i| and λ̂i

i.i.d.∼ N(3, 1). In
’different norms’ setting, for each τ ∈ [B], with probability P (k = j) = 1/10, µτ,i ∼ N(k, Id), j =
0, 1, ..., 9, then each Gaussian component is sampled according to N(µτ,i,Λ). In (different covari-
ances) setting, we randomly generate v1, v2, v3 ∈ Rd that half of their elements are 0.1 and the other
half elements are 100. Then, we define Λi = diag(vi), i = 1, 2, 3 and generate pre-training data
according to Assumption 4.1 with Λ,Λ1,Λ2,Λ3. Each experiment is repeated 3 times with different
random seeds. For experiments in Figure 3, the structure of the transformer with full parameters
’1-layer, full’ is defined as

F (E;WV ,WKQ) = E +WV E · E
⊤WKQE

ρ
, (59)

where WV ,WKQ ∈ R(d+c)×(d+c) are the parameters for optimization. For all three transformer
models, we set the size of the training dataset to B = 400, 000 and set the batch size to 50. We
train the ’1-layer, sparse’ and ’1-layer, full’ using Adam with learning rate 0.001 for 5 epochs, and
train the GPT2 model using Adam with learning rate 0.0001 for 5 epochs. Each experiment is
repeated 3 times with different random seeds. For experiments in Figure 4, we train the single-layer
transformers with the sparse-form parameters and structures defined in Section 4. We set the size
of the training dataset to B = 10, 000 and set the batch size to 50. We train the transformers using
SGD with learning rate {0.1, 0.5, 1} for 10 epochs, and get the best model on each training dataset.
Then, we test these trained models on different testing datasets. Each experiment is repeated 10
times with different random seeds.

41

	Introduction
	Preliminaries
	Single-layer transformer
	In-context learning framework

	In-context binary classification
	Training procedure
	In-context inference

	In-context multi-class classification
	Training procedure
	In-context inference

	Experiments
	Varying Covariances and Norms
	Comparison of transformers with other machine learning algorithms

	Conclusion
	Appendix
	Related work
	Additional notations
	Useful lemmas
	Training procedure for in-context binary classification
	Proof sketch
	Notations
	Lemmas
	Proof of Theorem 3.1

	In-context inference of binary classification
	Notations
	Proof of Theorem 3.2

	Training procedure for in-context multi-class classification
	Proof sketch
	Notations
	Proof of Theorem 4.1

	In-context inference of multi-class classification
	Notations
	Proof of Theorem 4.2

	Additional Experiments
	SINGLE-LAYER TRANSFORMERS
	Experiment Details

