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ABSTRACT

While transformers have demonstrated impressive capacities for in-context learn-
ing (ICL) in practice, theoretical understanding of the underlying mechanism en-
abling transformers to perform ICL is still in its infant stage. This work aims to
theoretically study the training dynamics of transformers for in-context classifica-
tion tasks. We demonstrate that, for in-context classification of Gaussian mixtures
under certain assumptions, a single-layer transformer trained via gradient descent
converges to a globally optimal model at a linear rate. We further quantify the
impact of the training and testing prompt lengths on the ICL inference error of
the trained transformer. We show that when the lengths of training and testing
prompts are sufficiently large, the prediction of the trained transformer approaches
the Bayes-optimal classifier. Experimental results corroborate the theoretical find-
ings.

1 INTRODUCTION

Large language models (LLMs) based on the transformer architecture (Vaswani et al., 2017)) have
demonstrated remarkable in-context learning (ICL) abilities (Brown et al.l 2020). When given a
prompt consisting of examples of a learning task, these models can learn to solve this task for new
test examples without any parameter updating. This behavior has been empirically demonstrated in
state-of-the-art models on real-world tasks (OpenAlL|2023}; [Touvron et al., 2023)).

This impressive capacity of transformer-based models has inspired many recent works aiming to
understand the ICL abilities of transformers. A more comprehensive literature review can be found
in Appendix |B| |Garg et al.|(2022) was the first to study the ICL abilities of transformers for various
function classes. They empirically showed that transformers can learn linear regression models in
context. Later on, a line of research was developed to theoretically explain how transformers perform
in-context linear regression. For example, Akyiirek et al.|(2022); Von Oswald et al.|(2023); Bai et al.
(2024); [Fu et al.|(2023); |Giannou et al.[(2024) showed by construction that, some specially-designed
transformers can perform linear regression in context. Moreover, some recent works like [Zhang
et al.| (2023a)); Huang et al.| (2023)); |Chen et al.| (2024) studied the training dynamics of a single-
layer transformer for in-context linear regression. They proved the convergence of their single-layer
transformers and showed their trained transformer are able to perform linear regression in context.

Building on the earlier works that largely focus on linear regression problems, several recent pa-
pers have started to investigate the ICL capabilities of transformers for non-linear problems such as
classification. For instance, |[Bai et al.| (2024) showed that, by construction, multi-layer transformers
can be approximately viewed as multiple steps of gradient descents for logistic regression. |Gian-
nou et al.| (2024) further showcased that the constructed transformers can approximately perform
Newton’s method for logistic regression. Recently, |Li et al.[ (2024) studied the training dynamics
of transformers for in-context binary classification. However, their analysis requires the data to be
pairwise orthogonal and the possible distribution of their data is highly limited. The learning dy-
namics of transformers for more general in-context classification problems is not well understood.
Moreover, to the best of our knowledge, existing literature (Bai et al.,| 2024} |Giannou et al., 2024} [Li
et al.,|2024)) studying the in-context classification of transformers focus only on binary classification.
How transformers perform in-context multi-class classification remains unexplored.
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In this work, we study the learning dynamics of a singly-layer transformer for both in-context binary
and multi-class classification of Gaussian mixtures, a fundamental problem in machine learning. Our
main contributions can be summarized as follows:

* To the best of our knowledge, we are the first to study the learning dynamics of transformers for
in-context classification of Gaussian mixtures, and we are the first to prove the training conver-
gence of transformers for in-context multi-class classification. We prove that with appropriately
distributed training data (Assumptions 3.1 @.T), a single-layer transformer trained via gradient de-
scent will converge to its global minimizer at a linear rate (Theorems for both in-context
binary or multi-class classification problems.

* Due to the high non-linearity of our loss function, we cannot directly find the closed-form expres-
sion of the global minimizer. Instead, we prove an important property that the global minimizer
consists of a constant plus an error term that is induced by the finite training prompt length (V).
We further show that the max norm of this error term is bounded, and converges to zero at a rate
of O(1/N).

* With properly distributed test prompts (Assumptions [3.2] .2)), we establish an upper bound of
the inference error (defined in Equation (3)) of the trained transformer and quantify the impact of
the training and testing prompt lengths on this error. We further prove that when the lengths of
training prompts (V) and testing promts (M ) approach infinity, this error converges to zero at
arate of O(1/N + 1/v/M) (Theorems , and the prediction of the trained transformer is
Bayes-optimal, i.e., the optimal classifier g1ven the data distribution.

2 PRELIMINARIES

Notations. We denote [n] = {1,2,...,n}. For amatrix A € R™*", we denote its Frobenius norm
as || Al|F, and its max norm as || Al[max = MaX;cim] jen) |Aij|- We use Ay p (or Agp) to represent
the element of matrix A at the a-th row and b-th column, and use A, to represent a vector of
dimension ¢ — a + 1 whose i-th element is A(,;_1) ;. We denote the I norm of a vector as || - [|.
We denote the all-zero vector of size n as 0,, and the all-zero matrix of size m X n as 0,,,x,. We use
o(z) := 1/(1 + exp(—x)) to denote the sigmoid function. We define softmax(-) : R* — (0, 1),

and its i-th element as softmax(-);, where softmax(x); = exp(acl)/(z:?:1 exp(z;)).

2.1 SINGLE-LAYER TRANSFORMER

Given an input embedding matrix £ € R% ¥4 a single head self-attention module Fs 4 (Vaswani
et al., 2017) with width d. will output

(M

WEERYTWRE
Foa(BsWY WK W) = E+ WVE - fum (H) ,

p

where WV WK W® € Rxde are the value, key, and query weight matrices, respectively, p > 0
is a normalization factor, and fu, is an activation function for attention. There are different choices
of fam; for example[Vaswani et al.| (2017 adopts softmax.

In this work, similar to [Zhang et al.| (2023a); [Wu et al,| (2023), we set fum(z) = « and define
WER = (WK )TWQ ¢ R%*Xde "We use F to denote this simplified model. Then, the output of F’
with an input embedding matrix E € R4*dn can be expressed as
ETWERE
FE;WY WK =E+WYE. —————. 2)
p

In the following theoretical study and the subsequent experiments (Section [5.2)), we show that this

simplified transformer model has sufficient capability to approach the Bayes-optimal classifier for
in-context classification of Gaussian mixtures.

2.2 IN-CONTEXT LEARNING FRAMEWORK

We adopt a framework for in-context learning similar to that used in [Bai et al.| (2024)). Under this
framework, the model receives a prompt P = (D, zquery) comprising a set of demonstrations D =
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{(@s,y:) biein " Panda query Zquery ~ Pz, Where P is the joint distribution of (z,y) and P, is
the marginal distribution of z. Here, z; € R? is an in-context example, and y; is the corresponding
label for z;. For instance, in regression tasks, y; € R is a scalar. In this paper, we focus on
classification tasks. Thus, the range of y; can be any set containing c different elements, such as
{1,..., ¢}, for classification problems involving c¢ classes. The objective is to generate an output

Uquery that approximates the target yquery ~ Py Tquery*

Since Yquery is a discrete random variable, we use the total variation distance to measure the differ-
ence between Yquery and Yquery:

A(yquerya @\query) = sup “P (yquery = Z) —-P (:/U\query = Z) |1 (3)
ZER(yquery)

where R(Yquery) is the range of Yquery- When A(Yquery; Yquery) = 0, Yquery has the same distribution
as Yquery> Which means the output of the model perfectly approximates yquery-

Unlike standard supervised learning, in ICL, each prompt P, can be sampled from a different dis-
tribution P,. We say that a model has the ICL capability if it can approximate ¥, query for a broad
range of P,’s with fixed parameters.

3 IN-CONTEXT BINARY CLASSIFICATION

In this section, we study the learning dynamics of a single-layer transformer for in-context binary
classification. It is a special case of the general multi-class classification. As a result, the analysis is
more concise. The general in-context multi-class classification problem is studied in Section ]

We first introduce the prompt and the transformer structure we will use for in-context
binary classification. The prompt for in-context binary classification is denoted as
P=(z1,%1,. .., TN, YN, Tquery), Where z; € R< and y; € {—1,1}. We can convert this prompt P
into its corresponding embedding matrix E(P) in the following form:

E— E(P) _ (1’1 Ty - TN xquery) e R(d—&-l)x(N—i—l)' (4)
vioy2 - yn 0

Similar to|Huang et al.|(2023));|Wu et al.|(2023);|/Ahn et al.|(2024)), we set some of the parameters in

our model to 0 or 1 to simplify the optimization problem, and consider the parameters of our model

(WY, WER) in the following sparse form:

\A Oaxa Oq KQ _ W 04

where W € R%*?, We set the normalization factor p equal to the length of the prompt N. Let
F(E(P); W) be the output matrix of the transformer. We then read out the bottom-right entry of
the output matrix through a sigmoid function, and denote this output as 7o,¢. The output 7o, of the
transformer with prompt P and parameters 11 can be expressed as

Tout = 0 ([F(E(P); W)](a41),(n+1))

N N
=0 (O; 1) % 2= x,-xiTN—k %xq“erquTuery % Zi?vl TilYi (VZ Od) (xquerY>
% Dim1 w;yi % D1 y? 0g 0 0

N
1
=0 ((N E yﬂj) quuery> .
i=1

We denote the prediction of our model for Zqyery as Yquery, Which is a random variable depending on
Yout- Consider generating a random variable v uniformly on [0, 1]. If & < Jout, We output Yguery = 1;
if u > Your, We output Yguery = —1. Then, we have P (Yquery = 1) = Yout, P (Yquery = —1) =
1- Z//\out‘
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3.1 TRAINING PROCEDURE
We study the binary classification of two Gaussian mixtures and use the following definition.

Definition 3.1 We say a data pair (x,y) ~ P°(uo, 1, ) if y follows a Bernoulli distribution with
Ply=-1)=Py=1) =1/2and f(z|ly = —1) = N(uo,A), f(zly = 1) = N(u1,A), where
o, i1 € R% and A € R ? is a positive definite matrix.

We consider the case of B training tasks indexed by 7 € [B]. Each training task 7 is associated with
a prompt Pr = (Z71,Y71,---,Zr.N,Yr, N, Trquery) and a corresponding label y- query. We make
the following assumption in this section.

Assumption 3.1 For each learning task T € [B), we assume

ii.d.

(1) {x‘r.,ivyr,i}ilila{xr,queryayﬂ—,query}’ ~ Pb(MT7O7MT,17A)'
(2) pro is randomly sampled from N(0,1;), and pr1 = Urapiro where U.p =

AV2UA=Y2, and U, is uniformly distributed over the closed set of real unitary matrices
such that UTUTT =1y

We denote the distribution of (1, o, ftr.1) as Pb(A). Note that U, 5 = AY2U.A~Y/2 can be viewed
as a linear transformation that preserves the inner product of vectors in A~!-weighted norm, and we
have ,U/;F,OA_lu‘r,O - ,u;l——,lA_lﬂ‘r.,l =0.

Let ¥rout = 0([F(E(Pr); W)](a41),(n+1)) be the output of our transformer for task 7. We define
the empirical risk over B independent tasks as
B
~ 1 N R
L(W) = °B Z *(1 + yﬂr,query) IOg(yT,out) - (1 - quuery) log(l - y‘r,out)' (6)
T=1

Taking the limit of infinite training tasks B — oo, the expected training loss can be defined as

. ~ 1 ~ ~
L(W) = lim L(W) = _§E [(1 + yr,query> log(yr,out) + (1 - yr,query> log(l - ynout)] , (N

B—oo
. iid.
where the expectation is taken over (-0, ftr1) ~ PE(A), {z+,, yTy,;}iI\Ll, {Zr querys Yr,query } mRS
Pb(MT,(% Hr,1, A)

Applying gradient descent over the expected training loss (7)), we have the following theorem.

Theorem 3.1 Under Assumption[3.1} the following statements hold.

(1) Optimizing the training loss L(W) in with training prompt length N via gradient de-
scent Wit = Wt — gV L(W?), we have that for any t > 1

W =W < exp(—t/r)|W° — W*||3, ®)

where W0 is the initial parameter and W* is the global minimizer of L(W), and k = [ /.
Here o, are constants satisfying

0 < a < Amin(VZLW)) < Amax(VEL(W)) <1, forall W € Ry, ©)

where Ry = {W € R4 ||W — W*||p < [|[W° — W*||r}
(2) Denote W* = 2(A"1+G), ¢ = Ty querys b = flr1—[br,0, U = 2(lr 1+ [r0), @ = u'A g
for simplicity. Then we have

1, 1 _
G lmax <7157 (E[o”(a)(4gq " + Jun™ A~ gq")

1
+o"(@) (g A 9)’ng" + 20" A gpg ")) max + o(1/N), - (10)

where S = 4V2L(2A~1), L(2A™1) = limy oo L(2A™Y), o/(-) and " (-) are the first-
and second-order derivatives of o (-), respectively, and the expectation is taken over (fi- o,
fir1) ~ sz(A)’ L7, query ™ 775(/1770, fir,1s A).



Under review as a conference paper at ICLR 2025

The detailed proof of Theorem [3.1|can be found in Appendix [E] In the following, we provide a brief
proof sketch to highlight the key ideas.

Proof sketch for Theorem 3.1} As a first step, we prove in Lemma [E.2] that the expected loss
function L(W) in (7)) is strictly convex with respect to (w.r.t.) W and is strongly convex in any
compact set of R9*¢, Moreover, we prove L(/) has one unique global minimizer W*. Since
the loss function L(W) we consider is highly non-linear, we cannot directly find the closed-form
expression of W*, as is often done in the prior literature. We address this technical challenge via
the following method. First, in Lemma by analyzing the Taylor expansion of L(TV'), we prove
that as N — oo, our loss function L(TV) converges to L(V) pointwisely (defined in (23)), and the
global minimizer W* converges to 2A 1. Thus, we denote W* = 2(A~! + (), and prove ||G/|max
is bounded and scales as ||G/|lmax = O(N~'/2). Next, in Lemma by further analyzing the
Taylor expansion of the equation VL(W*) = 0 at the point 2A~!, we establish a tighter bound
|Gllmax = O(N~1). In Lemma [E.5} we prove that our loss function is /-smooth and provide an
upper bound for [. Thus, in a compact set Ry, our loss function is a-strongly convex and [-smooth.
Finally, leveraging the standard results from the convex optimization, we prove Theorem [3.1]

According to Theorem [3.1) we have Wt = W* + H? where ||H!||max < exp(—t/(2k))|[|W° —

W*||p. If we set T > 2k log(N - |[W° — W*| ), we have | HT |[max < 1/N. Denoting W = W7,
wehave W = 2(A"'+ G+ HT/2) =2(A~'+G), where G = G+ HT /2, |G ||max < |Gllmax +
|HT ||max = O(1/N). Thus, we have the following corollary.

Corollary 3.1 If we optimize the expected loss L(W) in via gradient descent with training
prompt length N, initial parameters W°, and learning rate 1 = 1/1, then, under Assumption

after T > 2k log(N||W° — W*|| ) steps, the updated model W satisfies
W=2A""+G), (1
where HCA?HmaX = O(1/N), k =l/a, and a1 are constants defined in (9).

Theorem [3.1] and Corollary [3.1] show that training a single-layer transformer with properly dis-
tributed data (Assumption r binary classification via gradient descent can linearly converge to
its global minimum W* = 2(A~! + ). Furthermore, when the prompt length N grows, this global
minimum W* will converge to 2A~! at a rate of O(1/N).

3.2 IN-CONTEXT INFERENCE

Next, we analyze the performance of the trained transformer (TT)) for in-context binary classification
tasks. We make the following assumption.

Assumption 3.2 For an in-context test prompt Prest = (T1,Y1,- -+ Tar, Y s xquery), we assume

ii.d.
(1) {xia Yi i\il ~ Pb(MOvﬂlaA)r Tquery € R<,
(2) pg A o = puf A py.

With this assumption, for yquery ~ 795 (10, 41, A), according to the Bayes’ theorem, we have

[Zquery

f(xquerylyquery = I)P (yquery = 1)
ey S (Tauery [Yquery = 2)P (Yquery = 2

IF)(Za’qmﬁ-ry = 1|xquery) :Z ) =0o((u1 — #O)TAilxquery)

If we test the trained transformer with parameters W in @I) and Piest, by a simple calculation, we
have

M
~ 2 _ N
Yout = O ((M ;yz$:> (A ! + G)xQUery> . (12)

Intuitively, when the training prompt length N — oo, we have G — 0, and when the test
prompt length M — oo, we have 2 M ya] — (u1 — o). Thus, when N, M — oo,
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P (Jquery = 1) = Your — 0((1 — p0) " A" Zquery) = P (Yquery = 1|Zquery), and the prediction of
the trained transformer Jqery perfectly matches with the distribution of the ground truth label yqyery -

By analyzing the Taylor expansion of g, at point o ((p; — MO)TA_lxque,y), we formally present
the aforementioned intuition in the following theorem, which establishes an upper bound of the total
variation distance between yquery and Yquery-

Theorem 3.2 Consider a test prompt Pies satisfying Assumption @ and let Yauery ™~

Py\xque,y('uo’ p1, A). Let Yquery be the prediction of the trained transformer with parameters W in
(TI). Then, for the inference error defined in (3), we have

E[A (yquerya {U\query)}

_ A 1 -
7 AT |G 3 il + 2 | hTA e+ 22 Y g,

i,j€[d] i,j€[d]
n (1 il )
0 T T 9
N VM
ii.d

where n = 1 — po, u = 2(f1 + o), ¢ = Tquery, and the expectation is taken over {x;, yi M,
Pb(:an M1, A)

The proof of Theorem [3.2| can be found in Appendix || Since ||G|lmax = O(1/N), Theorem
suggests that if we ignore the constants regarding o, tt1, A, Tquery, the expected total variation dis-
tance between Yquery and Yquery is at most O(1/N + 1/ VM ). On the other hand, for data pair
(x, P gruo,ul, A), the Bayes-optimal classifier is P(y = 1|z) = f(z|y)P(y = 1)/f(z) =

((ul x), which corresponds to the logistic regression model o(w ' x + b) with param-
eters w = A 1(u1 — up) and b = 0. Therefore, when N, M — oo, the prediction of the trained
transformer is Bayes-optimal, and is equivalent to the optimal logistic regressor for binary classi-
fication problems with distribution P° (110, 111, A). Note that different from Assumption which
states that fi, 0, fir,1, 7 query are sampled according to some specific distributions during training,
Assumption [3.2]does not impose strong distributional constraints on (i, 11 and Zquery, Which shows
the strong generalization ability of the trained transformer. We also discuss the consequences when
Assumption does not hold in Remark which highlights the necessity of Assumption
Moreover, even if M — oo, the distribution variation between yquery and Yquery does not disappear
unless N — oo. Thus, the ICL ability of trained transformers for binary classification is limited
by the finite length of training prompts. Similar behaviors have also been observed in|Zhang et al.
(2023a) for in-context linear regression.

4 IN-CONTEXT MULTI-CLASS CLASSIFICATION

We now extend the study of the learning dynamics of a single-layer transformer to in-context multi-
class classification, generalizing the results of the previous section. We will present the detailed
formulation and then focus on the main differences to binary classification.

We first introduce the prompt and the transformer structure that will be used for in-context multi-
class classification. The prompt for in-context multi-class classification involving ¢ > 2 classes can
be expressed as P = (21, Y1, ..., TN, YN, Tquery), Where z; € RY, 5; € {e1,es,...,e.}, and e; is
the ¢-th standard unit vector of R€. Its embedding matrix can be formulated as

jo E(P) _[(r1 T2 0 TN Tquey c R(d+c)><(N+1) (13)
yl y2 oo Z/N Oc .

Similar to the binary case, we set some of the parameters in our model as 0 and 1 to simplify
the optimization problem and consider the parameters of our model (WV, W @) in the following

sparse form:
Od d 0d><c K w 0d><c
WY = (% WH? = 14
(chd Ic ) ’ <Oc><d chc) ’ ( )
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where W € R%*?, We set the normalization factor p equal to the length of the prompt N. We read
out the bottom-right c-dimensional column vector from the output matrix with a softmax function
as the output, denoted as Jout. With parameters W and a prompt P = (21, %1,..., TN, YN, Tquery )
the output can be expressed as

N

~ 1

Yout = softmax ([F(E(P); W)](a+1):(d+c),(N+1)) = softmax ((N E yﬂj) Wﬂfquery) .
i=1

We denote the prediction of the model for Zqyery as Qquery, which is a random variable depending
on Qout. Randomly sample a random variable w that is uniformly distributed on [0,1]. fu €
[Z;;ll (Yout) Z;Zl@out)j), where (Yout); is the j-th element of Your, We let Yquery = €;. Thus,
]P)(/y\query = ei) = (:'/J\out)i-

4.1 TRAINING PROCEDURE

We focus on the multi-class classification of Gaussian mixtures and use the following definition.

Definition 4.1 We say a data pair (z,y) ~ P (u,A) if P(y=e;) = 1/cand f(z|ly = ¢;) =
N (s, A) fori € [c], where = (pi1, .. ., pre) € R%¢ and A € R4 is a positive definite matrix.

We consider the case of B training tasks indexed by 7 € [B]. Each training task 7 is associated with
a prompt Pr = (Zr1,Y71,-.-,Tr,N:Yr,N, L1 query) and a corresponding label y, query. We make
the following assumption in this section.

Assumption 4.1 For each learning task T € [B], we assume

ii.d.

(1) {x‘r,i7 yr,i}zsz {xr,querya y‘r,query} Y ,Pm(ﬂ‘r = (,ur,la cee 7//47',0)’ A)

(2) prn is sampled from N(0, I4), and pr = Ur g apira, kb = 2,3,...,¢, where Uy p =
A1/2UT,;€A71/2, and U}, are uniformly distributed over the closed set of real unitary
matrices such that U j, U;':k =1,

We denote the distribution of p, as PZ(A). Note that U,pa = AY2U, , A7'/? can
be viewed as linear transformations that preserve the inner product of vectors in the A~!
weighted norm, and we have uIiAfluT,i = quAfluTﬂj, for i,j € [¢]. Let Yroww =

softmax ([F(E(P:); W)](a+1):(d+¢),(N+1)) be the output of the transformer for task 7. We define
the empirical risk over B independent tasks as

N 1 B c ~
L(W) = E Z Z _(y‘nquery)k 1Og((yr,out)k>- (15)

T=1k=1
Taking the limit of infinite training tasks B — oo, the expected training loss can be defined as

c

L(W) = lim E(W) =-E Z(yT,query)kIOg((ly\T,out)k) ) (16)

B—oo
k=1
. iid.
where the expectation is taken over p, ~ PE(A), {Zriyrit g, {Tr query, Yrquery ]~

P (pr, A).
Applying gradient descent over the expected training loss (16)), we have the following theorem.

Theorem 4.1 (Informal) Under Assumption[d.1} the following statements hold.

(1) Optimizing training loss L(W) in (16) with training prompt length N via gradient descent
WL = Wt — nVL(W?), for any t > 1, we have

W =W < exp(—t/r)|W° — W*|[3, (17)

where W0 is the initial parameter and W* is the global minimizer of L(W), k = [/c.
Here, o, are constants such that

0 < & < Amin(VZLW)) < Amax(VEL(W)) < 1, forall W € Ry, (18)
where Ry = {W € R4 |W — W*||p < |[WO — W*||g}.
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(2) Denoting W* = c¢(A~1 + G), we have ||G|max = O(c/N).
(3) After T > 2klog(N - |W° — W*|| ) steps, denoting the updated model W satisfies

W=cA'+@), (19)
where ||@HrmX = O(c/N).

The formal statement and proof of Theorem[4.1]can be found in Appendix |G| Technically, the proof
of Theorem [.1| builds on that of Theorem [3.1] but the more complicated cross terms in the Taylor
expansions of the softmax functions, which are due to the nature of multi-class classification, bring
new challenges to the analysis. To address these issues, we derived new bounds on the expected
errors of the cross terms in Lemma [G.1] [G.2] which may be of independent interest to other similar
problems.

Theorem [4.1] shows that training a single-layer transformer with properly distributed data (Assump-
tion {.T) for in-context multi-class classification via gradient descent can linearly converge to its
global minimum W* = ¢(A~! + G). When the prompt length N grows, this global minimum W*
will converge to cA~1! at a rate of O(c/N). Compared to the binary case, the new results establish
the scaling behavior w.r.t. the number of classes c.

4.2 IN-CONTEXT INFERENCE
Assumption 4.2 For an in-context test prompt Prest = (T1,91, - - - s T, YM, Tquery ), We assume

iid. ym c
(1) {zi,yi i]\i1 <P (s A), o= (pas - - o, pre) € REXC Zquery € R
(2) i Ay = ] A g, for i, j € [c].

With this assumption, for yquery ~ ;qu (u, A), according to the Bayes’ theorem, we have
uery

f(xquery|yquery = ek)]P) (yquery = ek)

; = softmax (i A" Zquery )i+
;:1 f($query|yquery = ej)P (yquery = ej) query

]P)(yquery = ek‘xquery) = Z

If we test the trained transformer with parameters W in (T9) and prompt Prest, by a simple calcula-
tion, we have

M
~ c A
Yout = softmax ((M ;71 yﬂ:) (A ! + G)xquery> : (20)

Note that, when the training prompt length N — oo, we have G — 0, and when the test prompt
length M — oo, we have 7 Zf\il yix] — p'. Thus, when N, M — oo, P (Yquery = €1) =

i
(Your)r — softmax(u’ A Zquery ) = P (Yquery = €k|Tquery), i.€., the prediction of the trained
transformer fJquery, matches the ground truth label yquery-

By analyzing the Taylor expansion of o, at point softmax(u " A~ 2query ), e crystallize the afore-
mentioned intuition in the following theorem, which establishes an upper bound of the total variation
distance between Yquery and Yquery-

Theorem 4.2 (Informal) Let Pies; satisfy Assumptionand Yquery ~ P (p, A). Denote Yquery

ylmquery
as the prediction of the trained transformer with parameter W in (19). Then, for the inference error
defined in (3)), we have

E[A(yqueryv @\query)] = O(CQJV_1 —+ CB/QM_l/Q),
where the expectation is taken over {x;, yl}f\il iid. P (i, A).

The formal statement and proof of Theorem can be found in Appendix [Hl We can see that
the convergence rate of the inference error in multi-class classification w.r.t. N and M is sim-
ilar to that in the binary classification, except for the constant coefficient c. This suggests that
classification tasks with more classes may have higher errors than those with fewer classes. On
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the other hand, for data pair (z,y) ~ P™(u,A), the Bayes-optimal classifier is P(y = ey|z) =
f(z|y)P(y = ex)/f(x) = softmax(u” A~1x),, which corresponds to a softmax regression model
softmax(Wx + b) with parameters W = p' A=! and b = 0. When N, M — oo, the prediction
of the trained transformer is Bayes-optimal, and is equivalent to the optimal softmax regressor for
multi-class classification problems with distribution P™ (i, A). Note that different from Assump-
tion @ which states that (i, T query are sampled according to some specific distributions during
training, Assumption @ impose strong distributional constraints on j or Zquery, Which shows the
strong generalization ability of the trained transformer. We also discuss the consequences when
Assumption 2] does not hold in Remark [H.I} which highlights the necessity of Assumption 4.2}
Moreover, even if M — oo, the distribution variation between yquery and Jquery does not disappear
unless N — oo. Thus, the ICL ability of the trained transformers for multi-class classification is
limited by the finite length of training prompts. Similar behaviors have also been observed inZhang
et al.| (2023a) for in-context linear regression and in Section @ for in-context binary classification.

5 EXPERIMENTS

In this section, we report the experiment results on multi-layer, nonlinear transformers to investigate
their similarities and differences to the single-layer, linear transformer we theoretically analyzed in
the pervious sections. Detailed experimental settings and additional results can be found in Ap-

pendix
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3-layer, c=2
—e— 1-layer, c=4
—— 3-layer, c=4
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0.5 —e— 1l-layer, N=20 0.6
—4— 3-layer, N=20
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o
IS

Inference error
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Test prompt length (M) Test prompt length (M)
(@ c=10 (b) N =80

Figure 1: ’1-layer’: single-layer transformer defined in Section ’3-layer’: 3-layer transformers with softmax
attention. IN: training prompt length. ¢: number of Gaussian mixtures.

We train single-layer and multi-layer transformers for in-context classification of Gaussian mixtures
with different numbers of Gaussian mixtures c, different lengths of training prompts N, and test
them with different test prompt lengths M. The results are reported in Figure[I] We can see that for
both single-layer and multi-layer transformers, the inference errors decrease as N and M increase,
and they increase as c increases, which not only verify our theoretical claims but also show that,
the simplified model we have studied indeed exhibits behavioral similarities to the more complex
multi-layer, nonlinear transformers, and some of our observations for this simplified model also hold
for more complex transformers.

5.1 VARYING COVARIANCES AND NORMS

Note that in Assumption [3.1} 1] 3.2} A.2] we assume that the covariance A during pre-training and
during inference are the same, and the means of all Gaussian components {1, ;,7 € [c]} have the
same A~! weighted norm. In Remark we also discuss the situation when Assumption
2] does not hold and show the necessities of Assumption [3.2] 2] In this subsection, we consider
training transformers with data of varying covariances A and with Gaussian component means of
unequal A~! weighted norms, and examine how these factors affect the ICL abilities of transformers.
Results are shown in Figure 2] From Figure [2] (a), we can see that both models perform better
when their pi- ; have the same AL weighted norm (’same norm’), however, in the ’different norms’
setting, the performance of *1-layer’ deteriorates more significantly, while transformers with a more
complex structure (’3-layer’) show better robustness under this distribution shift. Similar situations
also happen in Figure 2] (b), where *3-layer” also shows better tolerance to the covariance shifts than
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"1-layer’. Experimental results in Figure[2]show the necessities of Assumption [3.1] @1} [3:2] [.2] for
the single-layer transformers we considered in this paper, also demonstrates the better robustness of
multi-layer, nonlinear transformers. Developing a better understanding of the robustness of more
complex transformers is an intriguing direction for future research.

030 —e— 1-layer, same norm 025 —o— Llayer, same covariance
3-layer, same norm

Test prompt length (M) Test prompt length (M)

(a) Norm (b) Covariance

Figure 2: All models are trained with prompt length N = 100, tested with prompts satisfying Assumption
B2 with A. ¢ = 3. (a): (same norm): pre-training data are sampled according to Assumption with A.
“different norms’: For each 7, with probability P (k = j) = 1/10,ur; ~ N(k,14),5 = 0,1,...,9. (b):
(same covariance): pre-training data are sampled according to Assumption [i.1] for the fixed A. (different
covariances): Sample additional A1, A2, As. Then, generate pre-training data according to Assumption @
with A, A1, Ag, As.

5.2 COMPARISON OF TRANSFORMERS WITH OTHER MACHINE LEARNING ALGORITHMS

—e— 1liayer, sparse
Llayer, full
—e— 3-layer
—e— softmax
i —e— SVM,linear
—e— SVM, gaussian
1NN

—e— 3NN

@
g
2 01s Y —]

40 60 80 100 120 140
Test prompt length (M)

Figure 3: ’1-layer, sparse’: single-layer transformer defined in Section ’1-layer, full’: single-layer trans-
former with full parameters (39), *3-layer’: a 3-layer transformer with softmax attention, ’softmax’: softmax
regression, 'SVM, linear’: SVM with linear kernel, ’SVM, gaussian’: SVM with Gaussian kernel, *1-NN’: 1-
nearest neighbor, *3-NN’: 3-nearest neighbor. All three transformers are trained with prompt length N = 100.

Additionally, we conduct experiments comparing the ICL performances of the transformers with
other machine learning algorithms for the classification of three Gaussian mixtures. Form Figure 3]
we can see that all three transformer models significantly outperform the classical methods (softmax
regression, SVM, K -nearest neighbor), demonstrating the strong ICL capacities of transformers.

6 CONCLUSION

We studied the learning dynamics of transformers for in-context classification of Gaussian mixtures,
and showed that with properly distributed data, a single-layer transformer trained via gradient de-
scent converges to its global minimum. Moreover, we established the upper bounds of the inference
errors of the trained transformers and discussed how the training and test prompt lengths influence
the performance of the model. Experimental results also corroborated the theoretical claims. There
are some directions worth further exploring. One potential avenue is to investigate whether the
assumptions regrading the training and test prompts can be relaxed. Additionally, we have only ex-
amined single-layer transformers with linear attention and sparse parameters. The learning dynam-
ics of multi-layer transformers with nonlinear attention (e.g., softmax) for in-context classification
problems remain an interesting area for future investigation.

10
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A APPENDIX

The Appendix is organized as follows. In Section [B| we provide a literature review of the related
works that studied the ICL abilities of transformers. In Section [C} we introduce the additional
notations for the proofs in the Appendix. In Section[D} we introduce some useful Lemmas we adopt

from previous literature. In Sections[E] [F] [G] [Hl we present the proofs of Theorem [3.1] [3.2] B.1| 4.2]
respectively. In Section [} we provide additional results and details of our experiments.

B RELATED WORK

It has been observed that transformer-based models have impressive ICL abilities in natural language
processing (Brown et al.,2020; |Nye et al.L|2021; [Wei et al., 2022} Dasgupta et al., 2022} |Zhang et al.}
2022)). \Garg et al.|(2022)) first initiated the study of the ICL abilities of transformers in a mathemati-
cal framework and they empirically showed that transformers can in-context learn linear regression,
two-layer ReLLU networks, and decision trees. Subsequently, numerous works have been developed
to explain the ICL capacities of transformers in solving in-context mathematical problems. These
works mainly use two approaches: constructing specific transformers capable of performing certain
in-context learning tasks, and studying the training dynamics of transformers for such tasks.

Constructions of transformers. Akyiirek et al.| (2022)); Von Oswald et al.| (2023) showed by con-
struction that multi-layer transformers can be viewed as multiple steps of gradient descent for lin-
ear regression. |Akyiirek et al.| (2022)) also showed that constructed transformers can implement
closed-form ridge regression. |Guo et al.| (2023) showed that constructed transformers can perform
in-context learning with representations. [Bai et al.| (2024) proved that constructed transformers
can perform various statistical machine learning algorithms through in-context gradient descent and
showed that constructed transformers can perform in-context model selection. [Lin et al.| (2023)
demonstrated that constructed transformers can approximate several in-context reinforcement learn-
ing algorithms. [Fu et al.| (2023)); (Giannou et al.| (2024) further proved that constructed transform-
ers can perform higher-order optimization algorithms like Newton’s method. |Pathak et al.| (2023)
showed that transformers can learn mixtures of linear regressions. |Giannou et al.| (2023) proved that
looped transformers that can emulate various in-context learning algorithms. |Cheng et al.| (2023))
showed that transformers can perform functional gradient descent for learning non-linear functions
in context. Zhang et al.| (2024) showed that a linear attention layer followed by a linear layer can
learn and encode a mean signal vector for in-context linear regression.

Training dynamics of transformers. Mahankali et al.| (2023); |Ahn et al.| (2024) proved that the
global minimizer of the in-context learning loss of linear transformer can be equivalently viewed
as one-step preconditioned gradient descent for linear regression. [Zhang et al.| (2023a) proved the
convergence of gradient flow on a single-layer linear transformer and discussed how training and
test prompt length will influence the prediction error of transformers for linear regression. [Huang
et al.| (2023) proved the convergence of gradient descent on a single-layer transformer with softmax
attention with certain orthogonality assumptions on the data features. |Li et al.[(2023b) showed that
trained transformers can learn topic structure. Wu et al.|(2023)) analyzed the task complexity bound
for pretraining single-layer linear transformers on in-context linear regression tasks. [Tarzanagh
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et al.| (2023)) built the connections between single-layer transformers and support vector machines
(SVMs). [Nichani et al.|(2024) showed that transformers trained via gradient descent can learn causal
structure. |[Chen et al.| (2024) proved the convergence of gradient flow on a multi-head softmax
attention model for in-context multi-task linear regression. [Kim & Suzukil (2024));|Yang et al.|(2024)
proved that trained transformers can learn nonlinear features in context.

Recently, |Li et al.| (2024) studied the training dynamics of a single layer transformer for in-context
classification problems. However, they only studied the binary classification tasks with finite pat-
My

terns. They generated their data as © = p; + kv, where {p;} j—1 are in-domain-relevant patterns

and {uk}kMil are in-domain-irrelevant patterns, M; > M, and these patterns are all pairwise or-
thogonal. Thus, the possible distribution of their data is finite and highly limited. In contrast, our
work explores the ICL capabilities of transformers for both binary and multi-class classification of
Gaussian mixtures. Specifically, our data is drawn according to P°(ug, 11, A) or P™(u, A), and
the range and possible distributions of our data are infinite. Furthermore, the transformer architec-
tures analyzed in their work also differ from those in our study, thereby highlighting the distinct
contributions and independent interests of our work.

Some works also studied the ICL from other perspectives. To name a few, Xie et al.|(2021) explained
the ICL as implicit Bayesian inference; |Wang et al.| (2023) explained the LLMs as latent variable
models; Zhang et al.|(2023b)) explained the ICL abilities of transformers as implicitly implementing
a Bayesian model averaging algorithm; and |Li et al.| (2023a) studied the generalization and stabil-
ity of the ICL abilities of transformers. |Hahn & Goyal| (2023) showed that ICL can arise through
recombination of compositional structure found in linguistic data. They derived an information-
theoretic bound showing how ICL abilities arise from generic next-token prediction and provided
a theoretical justification for the benefits of chain-of-thought. They also observed that as prompt
length increases, their information-theoretic bound converge to zero. However, they considered the
ICL with data generated by Compositional Attribute Grammar (CAG) and for an idealized predic-
tor, which is not a predictor of actual transformers or LLMs, while we prove the convergence of
transformers for ICL of classification of Gaussian mixtures and derived the ICL error respect to the
trained transformer. Thus, our paper has its own independent contributions and intellectual merits.

C ADDITIONAL NOTATIONS

We denote X ~ Bin(n,p) if a random variable X follows the binomial distribution with param-
eters n € N and p € [0,1], which means P(X = k) = Wﬁk(l — p)"~ k. We denote
X ~ Multin(n, p) if random variables X = (X1, X, ..., X}) follow the Multinomial distribution
with parameters n € Nand p; = py = --- = py, = 1/k, which means P (X = (21, z9,...,2)) =
ﬁkﬂl We denote (;(x) = softmax(x); = exp(xi)/(zll;zl exp(z;)) for simplicity. We

define 0is = 1, 0;5 = 0,0 # j. Forx € N, we define t1(z) = [(z — 1)/d] + 1,t2(z) =
((x —1) mod d) + 1.

D USEFUL LEMMAS

Lemma D.1 ((Karimi et al., 2016)) If f : RY — R is p-strongly convex, then
J(@) = min f(2) = 5"~ al]
where ©* = argmin,, f(x).
Lemma D.2 ((Bubeck, 2015)) Suppose f : R® — R is a-strongly convex and [3-smooth for some

0 < a < B. Then, the gradient descent iterating w'™ = w! —nV f(w?) with learning rate n = 1/3
and initialization w° € RY satisfies that for any t > 1,

lw' = w*[|3 < exp(t/r)|[w® —w*|3

where k. = [/ is the condition number of f, and w* = argmin,,cga f(w) is the minimizer of f.
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E TRAINING PROCEDURE FOR IN-CONTEXT BINARY CLASSIFICATION

In this section, we present the proof of Theorem [3.1]

E.1 PROOF SKETCH

First, we prove in LemmaE.2]that the expected loss function L(W) in (7) is strictly convex w.r.t. W
and is strongly convex in a compact set of R?*?, Moreover, we prove L(WV) has one unique global
minimizer W*. Then, in Lemma by analyzing the Taylor expansion of L(W), we prove that as
N — o0, our loss function L(WW) point wisely converges to L(W) (defined in (23)), and the global
minimizer W* converge to 2A~". We denote W* = 2(A~' 4+ G), and prove ||G||max = O(N~1/?).
Next, in Lemma by further analyzing the Taylor expansion of the equation VL(WW*) = 0 at the
point 2A ™1, we establish a tighter bound ||G|[max = O(N~1). In LemmalE.5| we prove that our
loss function is /-smooth and provide an upper bound for [. Thus, in a compact set Ry, our loss
function is a-strongly convex and /-smooth. Finally, leveraging the standard results from convex
optimization, we prove Theorem [3.1]in subsection [E.4}

In this section, we use the following notations.

E.2 NOTATIONS

Recall the expected loss function (7)) is

1 ~ ~
L(W) = _§E [(1 + y‘r,query) IOg(yT,out) + (1 - y‘r,query) 10g<1 - y-r,out)] 5 (21)

N

~ 2 W

Yrout = 0 <<N z;yr,ix;r,i> 2x7,query>
1=

is the output of the transformer, and the label of the data follows the distribution

where

P (yr.query = s query) = 0 (1,1 = pr0) " A7 21 query)-
In this section, we introduce the following notations to analyze (7). We denote 1 = pir, i1 = fir 1,

Ho = fir0 and ¢ = T; query. Then with probability P (y, query = 1) = 1/2 we have ¢ = p1 + v,
and with probability P (y- query = 0) = 1/2 we have ¢ = o + v, where v ~ N(0, A). We define

p = % Zfil YriTr;. Since with probability P (y,; = 1) = 1/2 we have z,; = p; + v;, and
with probability P (y,;, = 0) = 1/2 we have x,; = po + v;, where v; ~ N(0,A), we known

p = 2N1p1 /N — 2Nopg/N + g, where g = %Zf\; vi, g ~ N(0,4A/N), Ny ~ Bin(N,1/2).
Defining h = N1 /N — 1/2,u = 2(u1 + po), we have No/N = 1/2 — h and

p=p+hu+g. (22)
Then, the expected loss function (/) can be expressed as
L(W) =E[-o(u" A" q)log(a(p" Wq/2)) — (1 = a(u" A" q)) log(1 — a(p" Wq/2))]. (23)

The gradient of the loss function (7)) can be expressed as

VL(W) = SEl(0(p Wa/2) ~ o(u" A g)pa "] @)

Moreover, we define a function L(W) as
L(W) =E[-0o(u" A q)log(o(n" Wq/2)) — (1 — o(u"A™"q)) log(1 — o(n"Wq/2))]. (25)

In Lemma we show that as N — oo, L(W) will point wisely converge to L(W).
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E.3 LEMMAS

Lemma E.1 Suppose Ny ~ Bin(N,1/2). Defining h = N1 /N — 1/2, we have

E[h] =0

E[r?] = ﬁ

E[h%] =0

E[r"] = O(N~?), forn >4
EJA] < 57

E[|n*]] = O(N~*2).

Proof Since N; ~ Bin(N,1/2), the moment-generating function of Nj is

My, (t) = (; + ;exp(t))N .

We can compute the moment-generating function of h as follows:

_ N N
_ _E i _ expﬁJrexpﬁ _ i
My (t) —exp( 2) N <N) = ( 5 = | cosh 5N
N
2 oo 12
- (1 Tave T ; (2@')!(2N)2i> ‘

Thus, we know the coefficients of ¢, ¢2, t> are 0,1/(8N), 0 respectively, and the coefficients of
t",n > 4 are O(1/N?). We have

E[h] = 0
B = o
E[h*] =0

E[h"] = O(1/N?), forn > 4.
Moreover, according to the Jensen’s inequality, we have

2 1
T 9N1/2
o3y,

E(|n]) < (E[R?])

E(|n°]) < (E[R)
u

Lemma E.2 For the loss function L(W) (7), we have V2L(W) = 0. For any compact set Ry, of
R4 ywhen W € Ry, we have VEL(W) = ~vI; for some v > 0. Additionally, L(W) has one
unique global minimizer on R?*,

For L(W) defined in (23), we also have V2L(W) = 0. For any compact set Ry of R™, when

W € Ry, we have VQE(W) = ~I4 for some v > 0. Additionally, L(W) has one unique global
minimizer on R4,

Proof We vectorize W as Vec(W) € R, where Vec(W); = Wi (i) o> tr(2) = [(x —1)/d] +
1,t2(x) = ((x — 1) mod d) + 1. Then, we have

1 _
*(U(pTWQ/Q) _U(NTA 1Q))Pt1(i)Qt2(i) . (26)

(VL(W)); = Ep.q 9

16
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The Hessian matrix of the loss function (7) is

1
(VAL(W))ij = Ep,q Lff(pTWcz/ 2)(1—o(p'Wa/ 2))1%1(1-)%(i)Pm)qtgu)} :
Considering z € R? such that z # 0, we have

2" V2L(W)z =E,,

1
za(pTWQ/Q)(l —a(p"Wq/2)) Z Zasztl(a)qtz(a)ptl(b)qtz(b)]
ab
2

:/%U(pTqu(l_”(pTqu) > Zabii@)a(a) | Foa(pr@)dpdy,

a€d?]

where fp,,(p,q) are the probability density function (PDF) function of p,q. Since for any p,q,
a(p"Wq/2)(1 —o(p"Wq/2)) > 0, we have 2" V2L(W)z > 0. Thus, VZL(W) = 0 and L(W)
is convex.

Moreover, for any z # 0, we denote z;; = z((i—1)d+j), % J € [d].
we consider a set of constants {cipi, Copi }, {C1qis C2qi }, 4,7 € [d], Where cipq = d,cops = d + 1,
Cigb = d, Coqb = d—+ 1, and Clpi = 1/16,02:01‘ = 1/8,i 7’5 a, Ciqj = 1/16,02qj = 1/87j 75 b. Then,
for any cp; € [Clpi, C2pi], Cqj € [Clqj, Cqu]. We have

> zijepices| > [d* —2(d+1)(d — 1)/8 = (d — 1)?/64] max |z55] > d® max |=;;]/2.
1) (%]
i,j€[d]

Then, we define region Q(a,b) = {p = Zi Cpi€i, ¢ = Ej Cqj€5,Cpi € [Clpi762pi]7cq]‘ e
[C1qj, C245]}. We have

gnin | 3 zepnotio | 2 dmax|z/a = 215/

Defining

C Q = 1 d d
( ) ae[rdI]l,llfle[d] /Q(a,b) qu(p, C]) pdq,

1
QW)= mi in < ~a(p' Wq/2)(1 —a(p' Wq/2
s0.%) = _pin | min {3067 Wa/20 - o6TWe2) ).

we have S(Q2, W) > 0. Slnce with probability P (y- query = 1) = 1/2, ¢ = p1 + v, with probability
]P’(y”|uery 0) = 1/2, ¢ = po + v, where v ~ N(0,A) and p = p + hu + g, where g ~

N(0,4A/N),v ~ N(O, ) o ~ N(0, 1), the covariance matrices of p, ¢ are positive definite and
we have fpq(p,q) >0 for all p, ¢ € R%. Moreover, (a, b) are non-zero measures on R?*¢, Thus,
we have C'(2) > 0. Then, for any z # 0, we have

1
vazL(W)z 2/ o(p TVVq/Z)(l—U TWq/Q E D¢, (1) Gt (1) qu(p, q)dpdgq
Q(a,b) 4

>C(Q)S(Q,W)]|=]3/4
>0.

Thus, we have V2L(W) = 0. L(W) is strictly convex.

Moreover, for any compact set Ry of R4%?, for any W € Ry, we have

1
Q) = ~o(p"Wq/2)(1—a(p" Wq/2 :
50) = uin i iy ol Wa/2)(1 - 0T Wa/2) ) >0

17



Under review as a conference paper at ICLR 2025

Then, for any W € Ryy, for any z # 0, we have

2
1
zTV?L(W)z>/Q( )1 o(p' Waq/2)(1—o(p' Wq/2)) (sztl(z Qtz(l> fra(p, @)dpdg

1
> LO@)S@) 3.
Thus, when W € Ry, where Ry is a compact set, we have VZL(W) = C(Q)S(2)1;/4 and the
loss function L(TV) is y—strongly convex, where v = C(2)S(2)/4.

Because our loss function is strictly convex in R?*, it has at most one global minimizer in R%*<,
Next, we prove all level sets of our loss function are compact, i.e. V,, = {W € R | L(W) < a}
is compact for all a. We prove it by contradiction. Suppose V,, is not compact for some «.. Since
our loss function is continuous and convex, V, is an unbounded convex set. Since the dimension of
V,, is d?, consider a point W< € V,, there must exists a W* # 044 such that {IW + tWk |t =
[0,00)} € V,,. For this W* # 044, there must exist a set of constants 0 < e3pi < Capiy 0 < €345 <
C4qj such that for any Cpi € [Cgpi, C4pi}7 Cqj € [ngj, C4qj}, we have

| E Cpicquim # 0.
i
Thus, we have

t—o0

lim | ZCpiCq]‘(W{; + tWZ;)| =00
j

We define Qo = {p = 3, cpi€i, ¢ = 20, Cqj€), Cpi € [CapisCapils i € [Cag5s Cags]s 13 <
> i Cipi + €ig;)}- Then, defining

C(Q) = [ fog(p,q)dpdg,
Qo

S(Q0) = min {min{o(n"A"g), (1 = o(u" A7 9))}},
we have S(2g) > 0. Since ) are non-zero measures for p, g, we have C(€y) > 0. Then, we have
lim L(W® 4 tW*)
t—o0
= lim E[-o(u" A7 q) log(o(p" (W +tW¥)q/2)) — (1 — o(u" A7) log(1 — o (p " (W + tW¥)q/2))]

2 Jim [ (oA g) log(o Z (W + W5 /2))] fpa (p. 0)dpdg
+ Jim | [=(1=o(u" AT ) log(1 = o (Y epicq; (Wi + tW5)/2)) fpa(p, 0)dpdg
o'} Qo

ij

=2C($20)S(20) - min § lim [—log(c Z cpiCqi (Wi + th]_{y)/Q))]

Qo t—)OO

+C(Q0)5(0) - Iglon tlggo[— log(1 — U(Z Cpicqj(Wij + tW”)/Q))]
ij

=00.

This contradicts the assumption L(W® + tW*) < «. Thus, all level sets of the loss function L(W)

are compact, which means there exists a global minimizer for L(W). Together with the fact that

L(W) is strictly convex, L(W) has one unique global minimizer on R%*9,

Similarly, we can prove the same conclusions for E(W) ]

18
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Lemma E.3 Denoting the global minimizer of the loss function (T) as W*, we have W* = 2(A~! +
G), where ||G||max = O(N~/2).

Proof Leta = pu'A"'q, s = u"Wq/2,r = (hu + g) T Wq/2. Performing the Taylor expansion

on (7), we have
L(W) =E[-o(a)log(o(s + 7)) = (1 — a(a))log(1 — o (s +1))]
[ o(a)log(a(s)) — (1 — a(a))log(1 — o(s))]
E[(o(a)(1 = 0o(s)) = (1 = a(a))a(s))) 7]
E [o(&(s, 7)) (1 = o (&(s,m))r?/2]
( ) —E[(o(a)(1 —0o(s)) = (1 —a(a))a(s)))r]
+E [o(&(s,m) (1 = o (&(s,m))r? /2],
where (s, r) are real numbers between s and s + r. According to Lemma we have E [r] =
E [(hu+ g) "Wq/2] = 0. Thus, we have

E[(e(a)(1 = a(s)) = (1 = 0(a))o(5))) 7] = Epuq [(0(a)(1 = a(s)) = (1 = o(a))o(s))) Eg,n [r]]

Moreover, we have
E [o(&(s,m)(1 = a(E(s,))r? /2]
<E [7‘2]
=E[h*u Wqu Wq+ g " Wqg" W]

R TWeuT Wq/(AN) + 4(AWq) T Wq/N]

<Cil[W [[7uax /N
where (a) is due to Lemma 9 Wag™Waq = ¥, ieq9iWitigWua =

>ijiela) 9i9WiaWija; = (g9 Wq)"Wq and E[gg"] = 4A/N. Cj is a constant indepen-
dent of NV and W. Thus, we have

[LOW) = LOW)| < CIW|200/N.
This shows that L(W) point wisely converges to L(W).

According to Lemma E(W) has one unique global minimizer. Consider the equation:
VL(W) =Elo(u' Wq/2) — o(u' A"q)] = 0.
We can easily find that VL(2A~) = 0 and W = 2A~" is the global minimizer of L(W).

Considering a compact set Ry = {W | ||W — 2A7 Y|z < pw}, we have |W||max < Cw for
W € Rw . Here py, Cyy are some positive finite constants. Then, we have

L(W) — L(W)| < Cj/N, W € Ry,

where C] = C;C3, is a constant independent of N and W. This shows that, for W € Ryy, our loss
function L(TW) uniformly converge to L(W).

Denote W* as the global minimizer of the loss function L(TW) with prompt length N. Then, we
show that, when NV is sufficiently large, W* € Ry . We first denote 0Rw = {W | [|W —2A~ Y=

pw}and A = minweor,, L(W) — L(2A~1) > 0. Then, for N > 4C}/A, and for any W € Ry,
we have

L(W) = LW)| < A/4,

This means
min L(W)— min L(W)
WEHRw WERw
> in L 2A
wiih,, LOV) = LEAT
> min L(W)—L(2A™ ") —A/2
> in L(W) (2A77) -4/
>A/2>0

19

=0.



Under review as a conference paper at ICLR 2025

Since L(W) is strictly convex, we have W* = arg miny, L(W) € Ryy.
Then, we have
LOW*) = LOW™)| < CY/N
|L(2A~Y) — L(2A~Y)| < C) /N

LW*) < L(W*)+ C]/N < L(2A~1) 4+ Cj /N < L(2A~") + 2C)/N.

According to Lemma for W € Ry, we have VQE(W) > ~v1q4, where vy is a positive constant
independent of N. Thus, L(W) is y-strongly convex in Ry, . According to Lemma m we have

2 ~ ~ 4C

x _opA-12 < £ * _ -1y < 29

W =28 < Z(LW7) = LEAT)) < %
Thus, when N — oo, we have W* — 2A~!. Denoting W* = 2(A~! + G), we have ||G||max =
O(1/V'N). ]

Lemma E.4 The global minimizer of the loss function (1) is W* = 2(A~1 + G), where
1
|G| max SN”S_I(E[U/(@)(ZLQQT + UUTA_quT/4)
+0"(a) (" A )’ g " /8 +2¢" A" g ")) [lmax + o(1/N),
a=pTA g 8 =4V2L(2A1).

Proof According to LemmalE.2} the loss function L(W) has a unique global minimizer W*. We

have

VLW*) =E[(o(p"W*q/2) —o(u" A q))pq " ] = 0. 27)
Let W* =2(A"' +Q),a=p"A"tq, b= (u+ hu+g)"Gq + (hu+ g) "TA~1q. We have

P W*q/2

=(u+hu+g) (A" +G)q
=(u+hu+g)"Gg+ (hu+g)"A g+ p A g=a+b.
The Taylor expansion of (a + b) at point a with an Lagrange form of remainder is

o (a o (&(a,b
o(a+bpg" = o(a)pg” +o'(a)bpg" + #b%(f + %bg’pqi

where &(a, b) are real numbers between a and a + b. Thus, our equation (27) become
o"(a) 0" (§(a,b))

— T bpg' | = 0. (28)

Epu,9,hq J/(a)bpq—r + b?pg" +

Note that E[o’(a)bpq "] = Eyu.q [0'(a)Egn [bpg"]]. For Eg[bpg '], according to Lemma
and g ~ N(0,4A/N), we have
Eqg,nlbpg "]
=E[n'Gqug" + 9 A q9q" + 9" Gagq" + h*u Gqug" + h*u" A" quq ]
=pp' Gaq'" +4qq" /N +4AGqq" /N +uu' Gqq" /(4N) +uu' A" qq" /(AN).  (29)
Then, we have
1B gl (@)(4AGaq™ /N + ue” Gag™ /(AN lmax < e1|G /N,

where ¢; = max;; |E [, 40'(a) (Ainqiq;) + D5, 0 (a) (usurqig;/4)]| is a constant independent
of N. According to Lemma |G lmax = O(1/v/N) = o(1), we have

s u.qlo” (a)(4AGaq" /N +wu” Gaq " /(AN))]llmax = o(1/N), (30)
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Similarly for E[o" (a)b?pq " /2], we have

Eq,nb%pg "]
=E[u" Gau" Gaug" + h*u" Gqu' Gauq" + 9" Gag' Gauq" + 2h*u’ Gau' Gquq" + 29" Gau' Gagq']

(@)
+E2h%u" Gqu A qpg" + 29" Gag" A qug " + 2071 GauT A qug " + 20" Gag T A qgq "]
(i)
+E[RPu" A qu A qug " + 9T A g T AT qug ]
(444)

For each term in (4), it contains two (. Thus, their max norms are at most smaller than O(||G||2,....)-

max
For each term in (i i, it contains one G and h? or contains one G and two g. According to E[h?] =

1/(4N) in Lemma|E.1} the max norm of terms with one G and h? are smaller than O(||G /| max/IN)-
Defining § = N'/2A=1/24/2, we have § ~ N(0, I;) and g = 2N ~/2A'/25. Thus, converting two
g to g, we have a coefficient of N ~!. Therefore, the max norms of terms with one G and two g are
also smaller than O(||G||max/N ). Therefore, for terms (7), (i), we have

IE[o” (a)(0)/2]llmax < O(|G1Fax) = 0(lIGllmax), G1)
[E[0" (@) (i) /2] max < O(|G|lmax/N) = o(1/N). (32)
For term (ii4), according to Lemma|E.1|and g ~ N(0,4A/N), we have
[ (@) (i) /2] | max
=|E [0”(a)(P*u" A" qu A qug " + g A qg T AT qpa ") /2] [|max (33)

1
=~ B [o" (@) (" A7)’ g™ /8 + 2" A7 g )] [lmas- (34)
For E[o"" (&(a, b))b%pq T /3!], we have
||E[U”/(§(a, b))bquT/?’!]llmax

< max 0" (2)|/3! - max E [|b*pig;|]

<0(1) - IQ?X}E{ > |61 Gags Gaog Gapig;|
¢1,02,93€{p,hu,g}

*)
+ > |61 Gaoy Gaps A apiq;|
¢1,02€{p,hu,g},¢p3€{hu,g}
*)
+ > |61 Gagdg A~ a3 A qpig;]
¢1€{p,hu,g},¢2,63€{hu,g}
(+%)
+ > |y A gy A gdg A apig;] |-
¢1,02,¢3€{hu,g}

(k%)

For terms in () containing two or three G, these terms’ expected absolute values are at most smaller
than O(||G||3,.x). For terms in (sx) containing one G, these terms must contain n; number of h

max

and ny number of elements of g, where n; + ny = 2,3,4,n1,n2 € N. According to Lemma
we know that for n; = 1,2,3,4, E[h™| < O(N~™/2), Defining g = NY/2A"1/2g/2,
we have g ~ N(0,I;) and g = 2N~1/2A1/2G. Converting g to g, we have a coefficient of
N—"2/2, Thus, for terms in (xx), these terms’ expected absolute values are at most smaller than
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O(||G|lmax N ~("1#72)/2) < O(||G||max N ~1). For terms in (* * %) without G, these terms must
contain n; number of & and no number of elements of g, we have ny +no = 3,4, n1,ns € N. Simi-
larly, these term’s expected absolute values are at most smaller than O(N ~("1+72)/2) < O(N—3/2).
Therefore, we have
IE[o" (¢(a, 0)6°pg " /31| max
<maxE [|b°p;q;|] - max 0" (2)[/3!
7 z

=0(||Gl}ax) + O(Gllmax/N) + O(1/N~3/2)
:O(HGHmax) JrO(l/J\f). (35)

Moreover, we have

{Eu,wq[‘fl(a)MMTquT]} = Z 561Gt (36)
Kl

1j

where s;j, = Eo’(a)piprqiq;. We vectorize G as Vec(G); = Gy, (i) ,t,(1)- Define S € RE*xd?
where Sij = St (3),2 (i) 11 (), t2(j) = B0 (@) ot (4Gt (i) ot ()22 () - Then can be expressed as

(Bl @ 61| = s6. G7)

Note that S = 4V2L(2A~1). According to Lemma [E.2} S is positive definite. Thus, combining

23), 29, @0, @1), 32), 34, @3, @7, we have
|Gl max

S%HS’l (E[o’(a)(4qq" +uu" A" qq" /4) + 0" (a)((u" A7 q)?ng" /8 +2¢" A" quug ")]) [Imax
+ o(1/N).
m

Lemma E.5 The loss function (1)) is l-smooth, where | < % Zie[dz] E[(pt, (1)@t (1)) ?]-

Proof The Hessian matrix of the loss function is
1
(VEL(W))i; = ZE[U(pTWQ/Q)(l — o (p"Wq/2))Dt, (1)t () Per () Gt () -

Considering z € R? such that z # 0, we have

1
2" V?L(W)z =E ZU(PTWQ/Q)(l —o(p'Wq/2)) ZZasztl(a)th(a)ptl(b)qm(b)
L ab

2

1
=E ZU(ZJTWQ/Q)O*U(PTWQ/Q)) Z ZaPty (a)Qt2(a)
a€ld?]

2
1
<E 1 Z ZaDty (a) Dt (a)
a€ld?]

(@)1
SZH'ZH% Z ]E[(ptl(i)th(i))2]
1€[d?]

where (a) is due to the Cauchy—Schwarz inequality. Thus, V2L(W) < [1; and L(W) is [-smooth,
where [ is a constant smaller than % Zie[dﬂ E[(ptl(i)th(i))2]. [ ]
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E.4 PROOF OF THEOREM[3. 1]

Proof According to Lemma the global minimizer of L(W) is W* = 2(A~! + G), where

1, 1 o+
G Imax <7157 (E[o” (a)(4gq " + Juu" A qq")

1
+ 0"(@)(§(UTA’1q)2un +2¢" A qug ")) lmax + o(1/N). (38)

Define Ry = {W € R4 | ||W —-W*||p < |[W°—W?*| p}. Rw is acompact set. Then, according
to Lemma for W € Ry, we have VzL(W) > aly. Here o > 0 is a positive constant number.
Thus, L(W) is a-strongly convex in Ry . Moreover, according to Lemma[E.5| L(W) is [-smooth.
Then according to Lemma applying gradient descent with n = 1/, for any ¢t > 1, we have

W = W*|[% < exp(~t/k) - [W* = W*|,
where k = [/cv. [ |

F IN-CONTEXT INFERENCE OF BINARY CLASSIFICATION

F.1 NOTATIONS

In this section, we use the following notations. We denote 1t = 1 — o, ¥ = 2(1 + [40), ¢ = Tquery-
Define p = % Z£1 y; ;. Since with probability P (y; = 1) = 1/2, z; = p1 + v;, with probability
P(y; =0) =1/2, x; = po + v;, where v; ~ N(0, A), we have p = 2M; 11 /M — 2Mopo/M + g,
where g = 2 5" v, g ~ N(0,4A/M), My ~ Bin(M,1/2). Defining h = M;/N — 1/2,
u = 2(u1 + po), we have My/N =1/2 — h and

p=p+hu+g. (39)
F.2 PROOF OF THEOREM[3.2]

Proof The output of the trained transformer is

M

~ 2 _ ~ B ~

Jour = 0 ((M ; v ) (A7 + G)xquery> =o(p (A +G)a). (40)
The probability of yquery = 1 given Zqyery is

P (Yquery = Zquery) = o((p1 — l‘O)TAilzquery) = U(HTA71Q)-

Defininga = p T A~Yq, b= (u+ hu + g)TGq+ (hu + g)TA~1q, we have
p (AT +G)g
(n+hu+g) (A" + G
(1 + hu + g)Téq +(hu4+9)"A g+ u A g=a+D,

and
E[o(pT (A" + G)o)| = Elo(a+b)] = Elo(a) + o' (a)b + 0" (¢(a, 1)1 /2],
where £ are real numbers between a and a + b. Thus, we have

Eflo(a +b) = o(a)]]
<E[|o’(a)b+ 0" (&(a, b))b*/2]]
<o'(a)E[b]] + E[0?]

23



Under review as a conference paper at ICLR 2025

We first consider the term o’ (a)E[|b|]. Defining g = A~1/2M"/2g/2, we have
o’ (a)E[|b]]

<o'(a) ||n" G| + E[[hu" Gql] + Ellg" Gal] + E[[hu A" q|] + E[IQTA’ICJI]}
@ , [ 1A 2 . 1
T TA T Al/2 TA-L grA—Y/2
20'(a) | Gl + gt Gal + g Ellg AV an+2M1/2|u Alql+ o Ellg A
o G TAT! A2 Lyt
<0'(@) | Gl Ze%d]mlqﬁMl/Q ST+ 22 %' voy+ 7).
] ]

where (a) is due to E[|h|] < 1/(2M'/?) in Lemma (b) is because that g; ~ N(0,1) and
E[lg:|] = v2/v/7, fori € [d).
For E[b?], we have

E[p?] <E {[(u + hu + g)T@qP] + E[[(hu + g)TA_lq]Q} +2E {(,u +hu+g) T Gglhu+g)TA Yq|.

Notice that terms in E {[(u + hu + g)Téq]Z] contain two G. Thus, they are at most smaller than

O(|G|2,.s) = O(1/N?). Terms in E[[(hu + g)TAfqu} /2 contain two h, or two g, or one h

and one g. According to Lemma D.1, we have E[|h|] = O(1/vV M), E[h?] = 1/(4M). Moreover,
g = 2M~Y/2A'/25. Converting one g to g, we have a coefficient of M ~'/2. Thus, terms in

E

Thus, they are at most smaller than O(||G|lmax/VM) = O(1/(Nv/MM)). Therefore, we have
Ep?(]/2 = O(1/N? +1/M + 1/(NVM)) = o(1/N + 1/v/M).

Finally, we have
E[A (Yquery: Yquery)] = E[|Tout — P (Yquery = 1|Zquery) |] = EHU(a +0) —o(a)]] < a’(a)EHbH + E[bZ]

! O L TA—1 —1/2 1 1
SO’(G) ”GHmaX Z ‘Nin|+W | A~ |—|— \f Z ‘A . +o0 N—’_iM )

i,5€[d] i,5€[d]

E[ (hu + g)TA’lq]Z]/Q contain two h, or two g, or one h and one g are O(1/M). Terms in
[(u + hu + g)Taq(hu + g)TAflq] contain at least one G and one h or one G and one g.

Remark F.1 We note that Theorem [3.2] requires Assumption [3.2] to hold. For example, we need
the covariance A in training and testing to be the same. A similar consistency requirement of the
covariance A in training and testing had also been observed for in-context linear regression in
Zhang et al.|(2023a).

Here, we discuss the consequences when Assumption [3.2] does not hold. For example, suppose
the labels of our data in test prompts are not balanced where P (y = 1) = p1,P(y = —1) = po.
Besides, jig, pu1 do not have the same A~ weighted norm, and the covariance matrix of test data is
T # A. Then, as N, M — oo, we have

2
Vi Z yir; = 2(p1p — popo) T,
i=1
and
P (:'/J\query = 1) — 0(2(271/11 - pOUO)TA_quuery)-
On the other hand, the distribution of the ground truth label is

P (Yauery = 1) = o((t11 — p10) "I Tquery + (111 A 1 — pig A" 10) /2 + log(p1/po)).-

Define z = (1 — o) 'T ™ Tquery + (g A 1 — g A~ pao) /2 + log(pr /po) and 2 £ 2(p1p —
potio) ' A" Zquery. Then, we can notice that unless 2 = z or |0(2) — o(z)| is sufficiently small, the
transformer cannot correctly perform the in-context binary classification.
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G TRAINING PROCEDURE FOR IN-CONTEXT MULTI-CLASS CLASSIFICATION
In this section, we present the proof of Theorem 1]

G.1 PROOF SKETCH

First, we prove in Lemma that the expected loss function L(W) is strictly convex w.r.t.
W and is strongly convex in a compact set of R?*¢, Moreover, we prove L(1¥) has one unique
global minimizer W*. Then, in Lemma|G.4] by analyzing the Taylor expansion of L(W), we prove
that as N — oo, our loss function L(W) point wisely converges to L(WW) (defined in ({#4)), and
the global minimizer W* converge to 2A~!. Thus, we denote W* = 2(A~! + G), and prove
|Gllmax = O(N~/4). Next, in Lemma by further analyzing the Taylor expansion of the
equation VL(W*) = 0 at the point 2A~!, we establish a tighter bound ||G||max = O(cN~1). In
Lemma we prove that our loss function is /-smooth and provide an upper bound for [. Thus,
in a compact set Ry, our loss function is a--strongly convex and [-smooth. Finally, leveraging the
standard results from the convex optimization, we prove Theorem [4.1]in subsection

In this section, we use the following notations.

G.2 NOTATIONS

Recall the expected loss function (1)) is

L(W)=-E

Z(yT,query)k IOg((gT,out)k)] ) (41)

k=1
where

N
=R 1( ¢
(Yr,out)r; = softmax (c (N Zyrzx;rz> fo,query>
k

i=1
is the output of the transformer, and the label of the data follows the distribution

P (yr,query = €k|Tr,query) = SOftmaX(NIAAxr,query))k'

In this section, we introduce the following notations to analyze (I6). We denote pi, = pir ., p =
(p1s 2, -y ) € R and ¢ = 27 query- Then with probability P (Y, query =€) = 1/c, ¢ =
i + v, where v ~ N(0, A). We define p, = & Zil(ym)wﬂ € R%and P = (p1,p2,...,Pc) €
R?%¢. We have PT = &SV gzl € R*% Since with probability P (y.; = e) = 1/c we
have x.; = ux + v;, where v; ~ N(0, A), we known pp = Zil(ym)k:ﬁm = ¢Nipr/N + g,
where gi = 5 > ic iy, imept Vis 9k ~ N(O, 2N A/N?) and (N1, Na, ..., N.) ~ Multin(n, 1/c).
Defining hy = N /N — 1/c, we have N, /N = 1/c + hy and px, = pg + chipi + gi. Defining
gr = A'2g,, we have g, ~ N(0, 2Ny I3/N?). Defining s, = (hiji1, hopo, . . ., hipig) € RI*€
and g = (g1,92,...,9x) € R¥°¢, we have P = p + cup, + g.

Then, the expected loss function can be expressed as

L(W)=E Z —softmax(u' A"1q)x log(softmax(PTWq/c)k)l . (42)
k=1
The gradient of the loss function (T6) can be expressed as
VL(W)=E lz [(softmax(PTWq/c)k - softmax(uTAlq)k)pqu/c]] . 43)
k=1

Moreover, we define a function L(W) as

L(W)= E[Z —softmax(u " A q) log(softmax(u' Wq/c)i)]. (44)
k=1

In Lemma we show that as N — oo, L(W) will point wisely converge to L(W).

25



Under review as a conference paper at ICLR 2025

Lemma G.1 Suppose (N1, Na, ..., N.) ~ Multin(N, 1/c). Defining hy, = N /N — 1/c, we have

Elhi] = 0

il (1)

E%mﬂz—i%J#j

E[f[ hE =0 (N7?),> ny >3
k=1 P

Eflh]) < N7Y2e72(1 = 1/c)
Eflhihsl] = O(N ™)
Ellhihshil] = O (N73/2)
Eflhihshihi] = O (N72),

where i, j,k,l € [c].

Proof  Since (Ni,N3,...,N.) ~ Multin(N,1/c), the moment-generating function of

(Nl,NQ, ce 7NC) is
1 o N

We can compute the moment-generating function of h = (hq, ha, ..., h.) as follows:

N
My, (¢) —exp< Zt/c)MN (t/N) = Zexp % ti—th/c
j=1

2

[}

1 c (& 1 (&
=1+ Y ti—ed tj/c + 5 ti— Y tj/c
i=1 j=1 i

i=1 j=1
e\ 7N
oo 1 C C
X | 2o |t Dt/
k=3 i=1 j=1
k
C 1 2 2 1 C C
- 1+Zﬁ(1/0—1/0)ti—'z 2N2”+kak > tife
i=1 i£j€E][c] i=1 j=1
Observing the coefficients of h, we have
E[h] =0
1 /1 1
Er]==(=-=
-5 (:-2)
Elh;hj] = Nzﬂ#]
BT A= 0 (N2, Y m =3
k=1 k

where 7, 7, k € [c].
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Iteratively applying the Holder’s inequality, we have
Eth” < (E[h?])l/2 _ N—1/2C—1/2(1 _ 1/6)1/2
Eflhihyl) < (E[n2h%])"” = OV )
E[|h|*] < B[R] *)*/* = (N72/?)
Ellhshshil] < Ellhs T/ Ellhy B[]/ = 0 (N2)
El|hshjhihal] < Bl TV El by |1V 4B he [T B[l [*]* = O (N72)
where i, j, k, l € [c]. ]

Lemma G.2 Suppose g, ~ N(0,c>NiA/N?) and (Ny, Na,...,N.) ~ Multin(N,1/c), define
gr = A"Y2g; and N}, /N = 1/c + hk, we have

E[(gx)i] =

(9r)i(91); ]— Sridijc/N

(Tr1)i: (Gha )iz (Ghs )is] = O

(gr)i] = E[3¢*/N?(1 + chy)?*] = O(N )
Ehm (31)i(91);] = E[c*0k6ijhimhi/N) = O(N~?)
E[hmhi(gr)i] =0

where i, j, i1, 12,13 € [d], k,l, m, k1, ka, k3 € [c].

&=

[
[
E[
E[
[
[

For any nyy, noy; satisfying Zke[c] nik + Zke[clvie[d] noki = 1,2, 3, we have

E[ J[ m(@)i=0(N"")

k€lc],i€ld]

Moreover, we have
E[|(gr)s]] < E[(gr)?]"/? = N~V/2c1/2
E[|(G): ] < E[(@)4P/4 = O(N—3/2)
where i € [d], k € [c].

For any nyy, naw; satisfying Zke[c] nik + Zke[c],ie[d] Nnoki =N, n = 1,2,3,4, we have
Bl TT 1w (@r() = o(N—"72)
ke[cl,i€ld]

Proof Since g, ~ N(0,c2NA/N?) and g ~ N(0,c>NyI4/N?) = N(0, (¢/N + c?hy/N)1;), we
have

E[(gx):] = 0

E[(gx)i(g1);] = ridije/N

E[(Gky )i (ks )iz (Gks )is] = 0

E[(gk);] = E3¢*/N?(1 4 chy)?] = O(N~?)
E[hm (g1)i(91);] = Ele®0k8i5hmhi /N] = O(N~?)
E[hynhi(gr)i] = 0

where i, j, i1, 2,43 € [d], k,1,m, k1, ks, ks € [c]. Thus, with the results from Lemma|G.1] for any
N1k, Nak; satisfying Zke[c] nig + Zke[c],ie[d] nok; = 1, 2,3, we have

E[ I] mp(@)i]=0(N"")

k€[c],i€[d]
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Moreover, according to the Jensen’s inequality, we have
E[|(gx):]) < E[(gw)]]'/? = N7V/2cH?
E[|(gx):°] < E[(Gr) {4 = O(N~3/2)

where i € [d],k € [c]. Thus, with the results from Lemma for any n, nog; satisfying
Zke[c] nig + Zke[c]7ie[d} Nog; = n,n = 1,2, 3,4, we have

BLIT mt@orn< T1 BIRm/"El@er /" = O(N="/%).
ke[c],i€[d] ke[cl,i€ld]

Lemma G.3 For the loss function L(W) (16), we have V2L(W) = 0. For any compact set Ry,
when W € Ry, we have V2L(W) = vl for some v > 0. Additionally, L(W) has one unique
global minimizer on R**,

For L(W) defined in , we also have V2L(W) = 0. For any compact set Ry;, when W € Ry,

we have VQZ(W) = 14 for some v > 0. Additionally, L(W) has one unique global minimizer on
RdXd.

Proof We vectorize W as Vec(W) € R, where Vec(W); = Wi i) ta()» t1(2) = (2 = 1)/d] +
1,t2(x) = ((z — 1) mod d) + 1. Then, we have

c

(VL(W));, =E Z [(softmaX(PTWq/c)k — softmax(uTA_lq)k)(pk)tl(i)qtz(i)/c] (45)
k=1

Note that
softmax(P"Wq/c)r = o(ax)
Vsoftmax(P'Wq/c)x = o(ar)(1 — o(ax))Vag,
where ap = —log(3_,_; ;4. exp ((pr — px)Wq/c)). For Vay, we have

e eazn @D (o0 = pr) TWa/c) (b —p1)q" /e

Vay ===kt
Dot ek P (20— pr) TWa/c)

.....

.....

Then we have

Vsoftmax(P ' Wgq/c);, =softmax(P' Wq/c), ===

.....

= Z softmax(P T Wq/c)softmax(PTWq/c)i(px —p1)q' /¢

1=1,....c,lk
and
(Vsoftmax(P'Wq/c)x); = Z softmax (P ' Wgq/c)psoftmax (P Waq/c)i(pr — P, () Qs ()/ -
I=1,....c.l#k

We can express the Hessian matrix of the loss function with the following form:

(VZLW))y; =E | > Y softmax(P"Wq/c)psoftmax(PTWq/c)i(pr )t i) Gea () Pk — POty () Ut ) /€
k=11=1,...c,l#k
c k—1

=K Z Z softmax (P " Wq/c)psoftmax(P " Wq/c)(p — D)ty () Gta (i) (PR — pl)tl(j)th(j)/cg .
k=2 =1
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Considering z € R such that z # 0, we have

B c k—1
1
2 V2L(W)z =E 2 D> softmax(P T Wa/c)gsoftmax(PTWq/c)1 Y 22Dk = P1)ts (a)8ta (@) Pk — DLty (5) Gta(5)
L” k=21=1 ab
[ 1 c k-1
=E = Z Z softmax(P "W q/c)gsoftmax(P ' Wq/c) Z:Q Za(Pk = PU)t, () Qb2 (a)
k=2 1=1 a€[d?]

Since for any P, q, k, I, softmax(P T Wq/c)gsoftmax(PTWq/c); > 0, we have 2T V2L(W)z > 0.
Thus, VZL(W) = 0 and L(W) is convex.

Defining p = p; — p2, we have

2TV2L(W)z
2
>E Cl?softmax(PTWq/c)lsoftmax(PTWq/c)z Z 2a(P1 = P2)t1 () Qt2(a)
a€ld?
(d?] 2
:/Cl?softmax(PTWq/c)lsoftmax(PTWq/c)g Z ZaDty (a)ta(a) | [Pq(P,q)dPdgq
a€ld?]

where fp,(P,q) are the PDF function of P,q. For any z # 0, we denote z;; = 2((;—1)d+j)-
suppose a,b € argmax; ; |2;;|, we consider a set of constants {cipi, Cap; }, {C1gi, C2qi}, 0, J € [d],
where Clpa = d, Copa = d+1, Cigh = d, Cogb = d+ 1, and Clpi = 1/16,Cgpi = 1/8,i # a,
C1qj = 1/16,c0q; = 1/8, 4§ # b. Then, for any c¢p; € [cipi, Capil, Cqj € [C1qj, C2q;], We have

" zijepice| > [d® = 2(d+1)(d —1)/8 — (d — 1)?/64] max |z;;| > d° max |z /2.
ij ©j
i,j€[d]

Then, we define region Q(a,b) = {p = > ,cpi€is ¢ = > ;¢q5€j.Cpi € [Cipis Copils Cqj €
[C1g5, C24; | PlIE < (3, 651 + €345) }- We have

2

Ql?jré) > abnwane | = d H{;@XIZijlz/ﬁl > ||215/4-
’ l€[d?)

Defining

cQ) = i P, q)dPdg,
() ae[IcIl]l,llPE[d]/Q(a,b)fPQ( ? !

1
S(Q,W) = ae[fir]l)ibne[d] Qr?ané) {62softmax(PTWq/c)1softmax(PTWq/c)2} ,

we have S(Q2, W) > 0. Since we have fpy(P,q) > 0 for all P, q and §(a, b) are non-zero measures
for P, q. Thus, we have C'(2) > 0. Then, for any z # 0, we have

2T V2L(W)z
2

1 -
2/ : C—QsoftmaX(PTWq/c)lsoftmaX(PTWq/c)g E 2P, (1)) | fre( P, q)dPdg
Q(a,b le[d?]

>C(Q)S(Q,W)|2][3/4 > 0
Thus, we have VZL(W) = 0. L(W) is strictly convex.

29
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Moreover, for any compact set Ry of R4*?, for any W € Ry, we have
1
S(Q) = mi i — softmax(P W ftmax(P W > 0.
Q) R ae[{ir}l}bne[ }QIELH;) { softmax( q/c)1softmax( q/c)2 }
Then, for any W € Ryy, for any z # 0, we have
2TV2L(W)z
2

1 -
> / —2softmax(PTVVq/c)1softmax(P—r Waq/c)s Z 2P, (1)) | fPe(P,q)dPdgq
Q(ab) © le[d?]
>C(Q)S(Q)]|=]3/4-
Thus, when W € Ry, Ry is acompact set, we have VZL(W) = C(9)S(2)14/4, our loss function
is y—strongly convex, where v = C'(Q2).S(Q2) /4.

Because our loss function is strictly convex in R?*, it has at most one global minimizer in R%*,
Next, we prove all level sets of our loss function are compact, i.e. V,, = {W € R4 | L(W) < o}
is compact for all . We prove it by contradiction. Suppose V,, is not compact for some «.. Since our
loss function is continuous and convex, V, is an unbounded convex set. Since the dimension of V, is
d?, consider a point W € V,,, there must exists a W* # 04x4 that {IW+tW* |t = [0,00)} € V.
For this /¥ # 0g4x 4, there must exist a set of constants 0 < ¢3p; < Capi, 0 < €345 < Caq; such that
for any c¢p; € [capi, Capil; Cqj € [C3q5, Caqj], We have

| Z CpiCqj Wz’§| # 0.
©j

Thus, we have
lim | Z cpicqj (Wi + th)|

t—o0

We define Qo = {p = X5, cpi€i, ¢ = 20, cqj€)s cpi € [Capiy Capils oy € [e3q5y Cagsls |1PlF <
(305 i + Clgg)s lull% < (3, cfyi + ¢iy;)}- Then, defining

C(@) = [ fra(Pa)dPda,
Q0
S(Q) = n&in {min{softmax(u' Wgq/c)1,softmax(p' Wq/c)o}}

we have S(£2) > 0. Since {2y are non-zero measures for P, ¢, we have C'(£29) > 0. Then, we have
lim L(W® + tW")
t—o0
= lim JE[Z —softmax(u ' A~ 1q); log(softmax(P T (W< + tW¥)q/c),)]

t—o0
=1

> lim [—softmax (" A~1q)1 log(softmax(PT (W + tW")q/c)1)| fpe(P, q)dPdq

t—o0 Qo

+ lim [—softmax(p " A~ q) log(softmax(P T (W + tW¥)q/c)2)] fre( P, q)dPdgq

t—o0 o

> lim [—softmax(u' A7 q)1 log(a(p" (W + tW")q/c))] fpe(P,q)dPdg

t—o0 Qo

+ lim [—softmax(p " A7 q)2 log(a(—p " (W + tW")q/c))]fpe(P,q)dPdgq

t—o0 o

>C(€20)5(Q0) Jgin lim [~ log(o Zcmcqj W+ tWh) /)]

+C(20)S(Q0) - min § Jim [ log(o Zcmcqj (Wa +tWE) /o))
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This contradicts the assumption L(W* + tW*) < a. Thus, all level sets of the loss function L(V)
are compact, which means there exists a a global minimizer for L(V). Together with the fact that
L(W) is strictly convex, L(W) has one unique a global minimizer on R%*<,

Similarly, we can prove the same conclusions for Z(W) |

Lemma G.4 Denoting the global minimizer of our loss function (I6) as W*, we have W* =
(A~ + Q), where |G|l max = O(N~/4).

Proof Leta = pu'A~tq, s =pu"Wq/e,r = (pun + 9) "Wq/c, ar, = ul A=tq, s, = ul Wq/e,
7k = (chiux + gr) T Wq/c. Performing the Taylor expansion on , we have

Z —Ck(a)log(Cr(s + 1))

=K Z*Ck( log(Ck (s Z a)Ryi(s,r)ry
k=1

ZCk YRy (s,r)r

e l=1
where | Ry (s, )| < sup, |alog§§’;(y)) | sup, ‘Ck%y) B%Zfly)\ = sup,, [0k — Gi(y)| < 1. Thus, we have
|Zow) — L)

< Eln]

SZCE \hup) Wal] +E [|g) Wql]

SOM)[IW [[maxE[[Pu] + OW)[W || maxE[| (70)i]
SCIHW||maxN_1/2

where the last inequality is due to Lemmal[G.1}[G.2} C; is a constant independent of N and W. This
shows that L(TV) point wisely converge to L(W).

According to Lemma E(W) has one unique global minimizer. Considering the equation:
VL(W) = E[Z —softmax(u ' A" q) log(softmax(u' Wq/c)i)] = 0
k=1

We can easily find that VL(cA~!) = 0 and W = cA~" is the global minimizer of L(W).

Considering a compact set Ry = {W | [|[W — 2A7Y|r < pw }, we have ||W||max < Cw for any
W € Rw . Here py, Cyy are some positive finite constants. Then, we have

LW) = L(W)| <C/N~'?, W € Ry

where C’l’ = (yCy is a constant independent of N and W. This shows that, for any W € Ry,
L(W) uniformly converge to L(W).

Denote W* as the global minimizer of L(W) with prompt length N. Then, we show that, when
N is sufficiently large, W* € Ry . We first denote ORw = {W [[|[W — cA~™ e = pw},

A = minweory LW) — L(¢cA~1) > 0. Then, for N > (4C)/A)2, and for any W € Ry, we
have

L(W) - L(W)| < A/4
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min L(W)— min L(W)> min L(W)—L(cA™')>A/2>0
WeEIRw WeRw WeEORw

Since L(W) is strictly convex, we have W* = arg miny, L(W) € Ry .

Then, we have
|L(W*) — L(W™)| < C]/N
|L(cA™") — L(cA™")| < C]/N
LW*) < L(W*)+Cj/N < L(cA™") + C} /N < L(cA™") + 2C;N~1/?

According to Lemma for W € Ry, we have VQL(W) > ~1Iq, where 7y is a positive constant
independent of N. Thus, L(WV) is y-strongly convex in Ry, . According to Lemma we have

I < 2 @) - Ded ™) < i

W™ — eA?
Thus, when N — oo, we have W* — c¢A~!. Denoting W* = ¢(A™! + G), we have ||G||max =
O(N~V4, [ |

Lemma G.5 The global minimizer of the loss function (1) is W* = ¢(A~1 + G). We have

1

_ 0 0
Gl <2 |57E] 3 2D 5 1)l 210 +Z L) T

6ak

c 2
+ > OG(@) (5, — 1y A gl A qung ™ /2 + Z 8§)ch/\ qh qT/2]

k,ln=1 k=1

max

where a = ' A" 1q, ay, = Ly, TATlg, S = CQVQZ(CA_l). Ignoring constants other than c, N, we
have ||G||max < O(c/N).

Proof According to Lemma the loss function L(TW') has a unique global minimizer W*. We
have

C

VLW*) =E | > [(G(PTW*q/c) — Gl A~ q))prq " /c] | =0. (46)
k=1

Let W* = c(A™' +G),a=p"A g ap = pf A7, b = (u+cpn+9) " Ga+ (cun +9) A g,
be = (pp + chrpr + gr) " Gq + (chppr + gr) T A~ 1q. The Taylor expansion of (i (a -+ b) at point
ais

0 L 0? -
C (CL + b + Z Ck aaél.ka(aa) blbn/2' + Z Rklnm(a7 b)blbnbm/Blv
lin=1 n

l,n,m=1

where | Ryinm(a,b)| < sup, |5 On(m) | Thus, our equation become

20T, 0T m

8 ¢ a c
E Z %k T+ Z C blb T/2!+ Z Rklnm(a,b)blbnbmpqu/Bl —0

k,l=1 k,l,n= 1 k,l,n,m=1
47)
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For the first term Z; =1 a%"al biprq ', according to Lemma we have

E Z 9k (a) biprq "

Oa
k=1 t

- 8@@ a — —
=E | ) aT(l) (1 Gapng ™ + hihy| Gapng ™ + hihy A qpwng™ + 9" A agra " + 9] Gagra "
kl=1

L0
El > ila) (et Gag" + (e — Vppy) Gaa" /N + (e — Dppy) A Nag " /N)

aal
k=1
- 9Ck(a) T T
+; Dar (cqq /N + cAGqq /N) ) (48)

According to Lemma|G.4] O(||G||max) = O(N~1/4) = o(1), we have

- I (a) T T I (a) T
E O — G N cAG N
kzlz:l Sar (@O = Vpen Gag'/ +Z o CAGad"/
O([|Gllmax/N) = o(1/N) (49)
For the second term ZZJ,n:l gaf@an bibnprq' /2!, we have
C 62
E (@) g™ /2!
8alc’9an
k,l,n=1
~ PGla T T T
Gqop, G
> e 5 T Gas] Gama
¢1E{Ml75hll$hgl}7¢2€{un7Chnunygn}
)
+ > 20] Gady A aprg "
¢’1G{Nl,Chl/‘«l791}7¢2€{Chnun79n}
(44)
+ > ¢1TA_1q¢§rA_1qqu>] :
(z)lG{Chll‘l791}7¢2€{Chnl"n»gn}

(ii1)

For terms (i) having two G, their max norms are at most smaller than O(||G||2,,.). For terms (i)

having one G, define g, = A~ 1/2 g1, these terms must contain n; number of h; and ng;; number of
(Gj)is We have 32\ sera ™15 + M2 = g,y = 1,2, 3. According to Lemma we know that
forn; =1,2,3,

LI #r @ =on

]E[c] i€[d]

Thus, the max norm of expectations of terms in (ii) are at most smaller than O(||G||maxN 1)
Therefore, for terms (4), (i7), we have

IE(D)]lmax < OUIGFax) = oG lmax) (50)
IE[(@)][lmax < O([|Gl[max/N) = o(1/N) 51
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For terms (#73) without G, we have

[IE[(#2)] | max

9*C(a 2 T
Buho ) A" Yqul A1 2
L;ﬂ 1 aala thap A quy A queg T /2 +

9°Ck(a)
da?

9 A g A quig T /2

k=1

PCla) - ~ 9%¢i(a) - -
h A 1 TA 1 T 3h hnh TA 1 TA 1 T 2
T 2 Gada, A agi A agra + > G, © hnhin A aun A queg '/
k=1 k,lin=1 max
1 ~ 9G(a) Ck(a)
< JA gAY TA Yqureq”
<5N > Da.0a, (€0t — Dy A quy A qurg " + Z “oaz apkq
k,l,n=1 k,l=1 max
+ O(1/N?) (52)

where the last inequity is due to Lemma|G.T}
For the third term Y7 ;. | Riinm(a, b)bibnbmprq " /3!, we have

E Z Rklnm(aa b)blbnbmpkq—r/gl
k,l,n,m=1

max

SO(I)lmg)fd]E[ Z |6k, Ok bieg (Dres )10 ]
o k1,k2,k3,ka€[c]

<O(1)E o1 Gady Gads Ga(pr,)igm

k1,k2,k3,ka€[c] [ A1E€{ 1k sChiy bky  Giey 1 P2E€{Hks CREg ko sGho }1P3E{ kg sCPEg fikg ,Tks }
()
+ > &1 Gagy Gads A~ q(pk,)idm

G1€{ 1k Pk Bky Iy }sP2E€E{ kg sCREs Bkg \Gko }1P3E{ChEg kg, 9k4 }
(%)
+ > &1 Gaps A qdg A q(pry)igm

b1E€{ 1Ry ,ChEq kq Iy }P2E{ChEo kg Gky } B3 E{ChRg ikg Ihs }

(%)

+ > &1 A" gy A g3 A Pk, )igm |-

d1€{chiy lEy Ghq }1P2E{ChRy ko ks }rP3E{ChEy kg Ghg }

(k%)

For terms in (*) having two or three G, these terms’ expected absolute values are at most smaller
than O(||G/|2,,)- For terms in (*x) having one G, these terms must contain n;; number of h; and
ng;; number of (g;);, we have ) n1; +n2j; = Ny, e = 2,3, 4. According to Lemma

for n, = 2, 3,4, we have

I | IR

j€lcli€ld]

j€lc],i€ld]

J=0(N"™/2) =0(N)

Thus, these term’s expected absolute values are at most smaller than O(||G || max N ~1). For terms in
(* * %) without G, these terms must contain n;; number of h; and ns;; number of (g;);, we have
D icldicd My + n2ji = e,y = 3, 4. According to Lemma for n; = 3,4, we have

LI ) AN

Jj€lcl i€ld]

] _ O(N77Lt/2) _ O(N73/2)
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Thus, these term’s expected absolute values are at most smaller than O (N =3/ 2). Therefore, we have

E| D Riunm(a,0)bibnbmprq’ /3!
k,l,n,m=1

<O(1) max K[ Do 1bkibrsbig (D))
L gy e sl
<O(|Gl7naz) + OUIG lmax N 1) + O(N~*/2)
<0(/|Gllmax) + o(1/N). (53)

Moreover, we have

“~ 9Cx(a)
{JE > D Pt [ Gaq" _‘
=t ij

E ZCk (1= C(a))pwpfl Gag " — Z Ce(a)G(a)pp Gag" }
j

k,l=1,k#l

kl=1,k#l
[ ¢ k-1

E > > Ga)ula)(uk — ) (s — m) " Gag”

Lk=2 =1

{]E Z Ce(a)G(a) (e — ) " Gagq ™ }

,

d
= Z Sijannma (54)
n,m=1
where s = B [S5 S Gua)(@) (i — )i~ p)adna;]. We vectorize G as
Veo(G)i = Gu (- Define § € RTXT where Sij = s4,(0).02(,0)20)
E {ZZ:Q S Gel@)C@) (ke — pa) s iy Gea i) (i — Mz)tl(j)qtz(j)], l) can be expressed as
- Iy (a) T T
E G = SG. 55
> Jar 1t Gaq (55)

k=1

Note that § = V2L —1). According to Lemma S is positive definite. Thus, combining

L(cA
@), @), @, G0, G1), G2, G3), G3). we have
1G] max

STIE

<L
- N 8ak

g 8Ck(a) aCk T
E -1 A~ E
P Da, (cOpr — Dpwpd A g™ +

9 .
+ > 5 ) (o5, 1) A gl A qung /2 + Z rle) oy 1ququ/2]

2
kln=1 laa" s O max
+o(1/N).
Ignoring constants other than ¢, N, we have ||G||max < O(¢/N). ]

Lemma G.6 The loss function (1) is l-smooth, where | < C% PO Z;:ll Zie[dQ]E[((pk —
pl)tl(i)Qtz(i))Q]'
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Proof The Hessian matrix of the loss function is

c k—1

(VEL(W))i; =E | Y softmax(P"Wq/c)rsoftmax(PTWq/e)i(pr — P1)es 1)@ (i) Pk — Pty () Gt (5)/ €
k=2 1=1

Considering z € R? such that z # 0, we have

2TV2L(W)z
2
1 c k-1
— Zsoftmax PTWq/c)psoftmax(PTWq/c), Z Za(Pk — PU)t1 () Qt2(a)
k=2 I=1 a€ld?]
( )1 c k-1
2||Z||§ > Ellpr — ey ta)’]
k=2 1=1 i€[d?]

where (a) is due to the Cauchy—Schwarz inequality. Thus, VZL(W) < 11, and L(W) is [-smooth,
where [ is a constant smaller than % >/ _, Z;:ll >iclaz) El((px — Pt (1) Q1)) - [ ]
Theorem G.1 (Formal statement of Theorem[d.1) The following statements hold.

(1) Optimizing training loss L(W') (16) with training prompt length N via gradient descent W' =
Wt —nVL(W?), we have for any t

IW* = W% < exp(=t/k)|[W" = W*||%,

where W0 is the initial parameter and W* is the global minimizer of L(W), k = l/a. a1 are
constants such that

0 < < Amin(VELW)) < Amax(VEL(W)) < 1, forall W € Ry, (56)

where Ry = {W € R4 | |W — W*||p < [WO — W*||r}.
(2) Denoting W* = c¢(A~1 + G), we have

Ll o= ~ 9k (a) T I(a)
e < — 1 -
[Gllmax < (S EL%% Doy (€O~ Vil A~ qq +Z “Da, 14
1< ¢ (a) T Gla) 1,1 T
+35 g, (@ = Dl A gy A qpag " + 5 Z paz 1 A amna
k,l,n=1 kl 1 max
+0(1/N)
=0O(¢/N)

where S = *V2L(2A™1), L(2A™Y) = limn_,00 L(2A™Y). The expectation is taken over i, ~
PG (), @ query ~ Py (pir, A).

(3) After T > 2klog(N - |W° — W*||r) gradient steps, denoting W as the final model, we have

— ~

W=c(A' +G), (57)

where Hé”max = O(C/N)
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G.3 PROOF OF THEOREM [4.]]
Proof According to Lemma the global minimizer of L(W) is W* = ¢(A~! + G), where

|G max

1
<=—||S7'E
-N

- (k. (a) T Ik (a) T
g::l Da, (O = Dt Alqq +Z a9

- a Ck T T ( ) TA—1 T
n— A~ TAL 2 A X 2
+klEn_ aalaan (O — L)p) A quy A Pqurg '/ +k% 1 612 cq qurq /)

+o(1/N).

max

Ignoring constants other than ¢, N, we have ||G||max < O(¢/N).

Define Ry = {W € R4 ||W — W*||r < |[W° — W*||r}, and Ry is a compact set. Then,
according to Lemma for W € Ry, we have VQL(W) > aly. Here o > 0 is a positive
constant number. Thus, L(W) is a-strongly convex in Ry . Moreover, according to Lemma |G.6}
L(W) is l-smooth. Then according to Lemma applying gradient descent with = 1/1, for any
t > 1, we have

IW* = W[5 < exp(—t/k) - [W* = W%,

where kK = [/a.

After T > 2k log(N - ||W? — W*||) gradient steps, we have W=WT=cA'+G+HT/c)=
(A L4+ G), where @ = G + HT /e, || HT ||max < exp(—=T/k) - [|[WO — W*||% < 1/N. Thus,

1Glmax < [1Gllmax + | H” llmax = O(c/N). u

H IN-CONTEXT INFERENCE OF MULTI-CLASS CLASSIFICATION

H.1 NOTATIONS

In this section, we use the following notations. We denote (1 = (i1, tt2, - . ., fhe)s § = Zquery. Define
k=% vail(yl)kxl, and define P = (p1,p2, . ..,p:) € R™“. We have PT = & Zi‘il yixl; €
Re*4, Since with probability P (y,; =ex) = 1/c, ,; = pux + v;, where v; ~ N(0,A),
we have p, = ﬁzlﬂil(yﬂ)kx” = cMyur/M + g, where g, = ﬁzie{i\yT,,i:ek}Ui’
g ~ N(0, 2MpA/M2) and (My, My, ..., M.) ~ Multin(M, 1/c). Defining hy = M,/M — 1/c,
we have Mk/M = 1/0 + hy and pg, = pg + chipr + gk

Theorem H.1 (Formal statement of Theoremd.2) Let Yquery be the prediction of the trained

transformer with parameters W in (]E[) and Piest satisfying Assumption and let Yquery ~
Pm (u,A). Then, for the inference error defined in (3), we have

y‘-'l;query

]E[A (yquerya ?/J\query)]

~ 9Ck(a) ||~
< {30 S (Gl Y ias] + 57175 | VAT - Tl ANl +vE 3 145
=1

kel i-jeld) ingeld
(5 7w)
O AT T )
N M
where a = 1" A=1q, ay = p] A=1q. The expectation is taken over {x;,y; } i'iA'Jd' P™(u, A).
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H.2 PROOF OF THEOREM [4.2]

Proof The output of the trained transformer is

M
Yout = Softmax ((]\04 Z yﬂ:j) (A~ + @)xquery> = softmaux(PT(A_1 + a)q) (58)
i=1

The probability of Yquery = €1 given Zquery 18
P (Yquery = €k |Tquery) = softmax(uTA_la:query)k = softmax (' A7 q)x

Defining a = p1"A~q, b = (1 + i + 9)TGa+ (n + 9) AT g, ap = pT AT g, b = (e +

chipii + gr) T G+ (chipur + gi) T A~ q, we have

3Ck

b + Z Rkln a, b blbn/Q]

l,n=1

E |softmax(P " (A~ + G)Q)k} =E[C(a+b)] = E[Ck(a) + Z

where | Rin(a,b)| < sup, |62<"(”) |. Thus, we have

Ox;0x
i O (a)

E (@, b)biby /2
2 Da; + ZRM (@, b)biby,/

lin=1

EllGk(a + ) — Go(a)]] < E bl‘

We first consider the term E {21621 ‘ a%ka(,“) b H . Defining §; = A~'/2¢g;, we have

zc: aCk(a)b

E
= 8@1

1

<25<k ( [ G| +E[|chyp Gql) + El|g, Gql] + E[Jchy A ql] + E[|g] A ql])

8C ~ c(l1—-1/c c(1—-1/c
_Z Lo <u7Gq|+<Ml/2/)u Gl + Ellal A2l + YU VD At 4 Bl A Wq])

¢ Z 6<k 1Cllmae S [(u)ias] + Mlm Vel =10l A g +ve 3 (A5
i,j€[d] i,5€[d]
1 1
e (N )
where (a) is due to Lemma [G.1|that E[|h|] < M~1/2¢Y/2(1 — 1/¢)*/2. (b) is because that g ~
N(0, 2 M 14/M?), E[|(G1)i|] < E[(@)?]*? = (¢/M)'/2, for | € [c],i € [d].

For E [(anzl Ryin(a,b)

] , we have

i: ( > ‘aﬁf@qcﬁ;@q’

E zc: Rkln(a,b)blbnﬂ = O(].)E

l,n=1 l,n=1 d)le{.u‘l7Ch’llj'lvgl}v(er{,U‘nvChn,UAnvgn}
(4)
+ > ’2¢1TGq¢2TA’1q‘+ > |¢1TA1q¢2TA1q|>]-
b1 E{ML aCthl sg1 }7¢2€{Chnﬂn 7.‘]1»} ¢1 E{Chlﬂl »g1 }7¢2e{0hnun7gn}

(i) (iid)
For terms (i) having two G, they are at most smaller than O(||G||max) = O(1/N?). For terms

(#4) having one G, these terms must contain n;; number of h; and ny;; number of (g;);, we have
ni; + na2j; = ny,ny = 1,2. According to Lemma we know that for n, = 1, 2,

E[ H |hn“ ’ﬂzﬂ

j€lcli€ld]

j€lcli€ld]

| =O0(M/?).
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Thus, terms in (ii) are at most smaller than O(||G||maxM ~/?) = O(1/(NvVM)). For terms
(#43) without G, these terms must contain n1; number of h; and ngj; number of (g;);, we have

jeld,ie[d) Mg+ Neji = N, Ny = 2. According to Lemma for n, = 2, we have

Bl T Inp @) = o2 = oM,
Jj€lcl i€ld]
Thus, these term are O(M ~1). Therefore, we have E Hlen:I Ryin(a, b)blb,,L/QH = O(1/N? +
1/M + 1/(NVM)) = o(1/N + 1/v/M).
Finally, we have

E[A(Yquerys Yquery)] = m]?x{IEHsoftmax(a + b);, — softmax(a)x|]}

L 9Ck(a ~ 1 _ _
<max 4 S D NGl S i+ 7 (VAT AT A Ve Y 1A )
=1

i-jeld i.jeld]
; (1 L )
o\ — e .

N VM

Remark H.1 We note that Theorem requires Assumption to hold. For example, we need
the covariance A in training and testing to be the same. A similar consistency requirement of the
covariance N in training and testing had also been observed for in-context linear regression in
Zhang et al.|(2023d) and for in-context binary classification in the previous section|3.2)

Here, we discuss the consequences when Assumption does not hold. For example, suppose the
labels of our data in test prompts are not balanced P (y = ey) = py, 1 do not have the same
A~Y weighted norm ]l A=y £ Wy, and the covariance matrix of test data is T # A, then as
N, M — oo, we have
M

c

i >y = c(pipa,papia, - pepe)
i=1

b

and
P (Yquery = 1) — softmax(c(p1 p1, p2pi2, - - - ,pcuc)TAflxquery).
Denote ¥ = (Uq,..., \I/C)T, ® = (log(p1), . .. »10g(pc))T and » — #Trilxquery — /24 ®. Then
distribution of the ground truth label is
P (yquery = ek) = Softmax(z)k.

Define 2 = c(pip1,papia, - - - Deple) ' A Tquery.-  Then, unless 2 = z or ||softmax(Z) —
softmax(z)||2 is sufficiently small, the transformer cannot correctly perform the in-context multi-
class classification.

I ADDITIONAL EXPERIMENTS
In this section, we provide additional experimental results and the detailed experimental settings.

I.1 SINGLE-LAYER TRANSFORMERS

We train single-layer transformers for in-context classification of Gaussian mixtures with different
numbers of classes ¢, different lengths of training prompts N, and test them with different test
prompt lengths M. The results are reported in Figure [, We can see from Figure [] (a,b) that the
inference errors decrease as N and M increase, and they increase as c increases. In Figure E] (c,d),
we first fix the training prompt length (test prompt length) to a large number 2000, and then vary
the test prompt length (training prompt length) from 20 to 2000. The results show that, as M and
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Figure 4: Inference errors of single-layer transformers. (a): Models trained on different training prompt
lengths N on classification tasks involving ¢ = 10 classes. (b): Models trained on different classification tasks
involving c classes with a fixed training prompt length NV = 80. (c): Relationship between the inference error
and the test prompt length M in log-log axes. Training prompt length N = 2000 and number of classes ¢ = 6.
(d): Relationship between the inference error and the training prompt length /N in log-log axes. Test prompt
length M = 2000 and number of classes ¢ = 6.

N become sufficiently large, the inference error, which is an approximation of E[A(yquery; Yquery)]
(see Appendix [[2]for detailed definitions), decreases to near-zero. This indicates that the prediction
of the trained transformer approaches the Bayes-optimal classifier. All these experimental results
corroborate our theoretical claims.

1.2 EXPERIMENT DETAILS

For all tasks, we set d = 20 and we randomly generate a covariance matrix A = diag(Ay, ..., \q),
where \; = |);| and X, N N(3,1). For each training dataset with different training prompt
lengths N, and different class numbers ¢, we randomly generate B training samples. Training
prompts P-, 7 € [B] and their corresponding labels y- query are generated according to Assump-
tion Il Moreover, we also generate testing datasets. For example, for each testing dataset,
we first randomly generate 20 pairs of (1;, Z; query; Yjprob),J € [20], where (p;) N PE(A),
Zjquery ~ P (1, N). Yjprob = softmax(ujTA_lxj,query) are the corresponding probability
distributions of the ground truth label y; query. For each j, we generate 100 testing prompts

iid. .
Pit = (Tjk,1,Yjk,1s - - - Tjk, Mo Yik, M T, query)» Where (2jn i, Yjni) = P™ (i, A),j € [20],k €
100],7 € [M]. We denote a model’s output for testing prompts Py, as ¥,5. We calculate its infer-
p g prompts £ j

: 1
ence error with 555555 2 e 20], ke 100] TOX1e[(]
of the expected total variation distance we defined in (3).

|~

(Yjk)1 — (Yj,prob)1 ‘, which serves an approximation

For the ’3-layer’ model, we used the x-transformers library and defined it as an encoder-only trans-
former with 64 embedding sizes, 3 layers, 2 heads and without positional encoding.

For experiments in Figure [T} we set the size of the training dataset to B = 100,000 and set the
batch size to 50. We train the ’1-layer’ using Adam with learning rate 0.0005 for 10 epochs, and
train the ’3-layer’ using Adam with learning rate 0.0001 for 5 epochs. Each experiment is repeated
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3 times with different random seeds. For experiments in Figure 2] we also set the size of the train-
ing dataset to B = 100, 000 and set the batch size to 50. We train the ’1-layer’ using Adam with
learning rate 0.001 for 5 epochs, and train the ’3-layer’ using Adam with learning rate 0.0001 for 5
epochs. In ’same norm’ and ’same covariance’ settings, pre-training data are sampled according to

Assumptionuwith afixed A that A = diag(\1, ..., Ag), where \; = |\;| and \; RN N(3,1). In
"different norms’ setting, for each 7 € [B], with probability P (k = j) = 1/10, - ; ~ N(k, I4),5 =
0,1,...,9, then each Gaussian component is sampled according to N(g-;, A). In (different covari-
ances) setting, we randomly generate vy, vo, v3 € R? that half of their elements are 0.1 and the other
half elements are 100. Then, we define A; = diag(v;),7 = 1,2, 3 and generate pre-training data
according to Assumption[d.T|with A, A1, Ay, As. Each experiment is repeated 3 times with different
random seeds. For experiments in Figure [3| the structure of the transformer with full parameters
*1-layer, full’ is defined as

ETWERE
p

where WV, WHE® ¢ R(4+c)x(d+¢) are the parameters for optimization. For all three transformer
models, we set the size of the training dataset to B = 400,000 and set the batch size to 50. We
train the ’1-layer, sparse’ and ’1-layer, full’ using Adam with learning rate 0.001 for 5 epochs, and
train the GPT2 model using Adam with learning rate 0.0001 for 5 epochs. Each experiment is
repeated 3 times with different random seeds. For experiments in Figure [d] we train the single-layer
transformers with the sparse-form parameters and structures defined in Section {4} We set the size
of the training dataset to B = 10, 000 and set the batch size to 50. We train the transformers using
SGD with learning rate {0.1, 0.5, 1} for 10 epochs, and get the best model on each training dataset.
Then, we test these trained models on different testing datasets. Each experiment is repeated 10
times with different random seeds.

FE;WY WEQ) =E4+WVE. , (59)
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