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Abstract

Direct preference optimization (DPO) is an effective method for aligning generative
models with human preferences and has been successfully applied to fine-tune
text-to-image diffusion models. Its practical adoption, however, is hindered by
a labor-intensive pipeline that first produces a large set of candidate images and
then requires humans to rank them pairwise. We address this bottleneck with
self-supervised direct preference optimization, a new paradigm that removes the
need for any pre-generated images or manual ranking. During training, we create
preference pairs on the fly through self-supervised image transformations, allowing
the model to learn from fresh and diverse comparisons at every iteration. This
online strategy eliminates costly data collection and annotation while remaining
plug-and-play for any text-to-image diffusion method. Surprisingly, the on-the-fly
pairs produced by the proposed method not only match but exceed the effectiveness
of conventional DPO, which we attribute to the greater diversity of preferences
sampled during training. Extensive experiments with Stable Diffusion 1.5 and
Stable Diffusion XL confirm that our method delivers substantial gains.

1 Introduction

Text-to-image diffusion models [1, 2, 3, 4, 5, 6, 7, 8] have emerged as a dominant paradigm for
high-quality image generation conditioned on natural language prompts. They have demonstrated
the ability to synthesize diverse and visually appealing images across a wide range of prompts and
styles. However, while these models are typically pretrained on large-scale datasets, they can fail to
align with human preferences, especially in applications requiring text-image alignment or subjective
aesthetic quality. To bridge this gap, recent works have explored preference-based post-training
strategies that adjust the model’s outputs based on human feedback.

One prominent method in this direction is Direct Preference Optimization (DPO) [9, 10], which trains
generative models using pairwise human preference data. DPO has shown strong results in aligning
text-to-image models with user intent. Nevertheless, its practical adoption is hindered by a costly
and rigid training pipeline: it first requires the offline generation of a large set of image candidates,
followed by extensive human annotation in the form of pairwise ranking. This process is not only
time-consuming and expensive but also inflexible—once the ranking data is collected, it cannot easily
adapt to new prompts or domains. Furthermore, the fixed nature of the dataset may limit the diversity
of learning signals, potentially affecting generalization.

In this work, we present Self-Supervised Direct Preference Optimization (Self-DPO), a novel frame-
work that eliminates the reliance on pre-generated images and manual rankings. Instead of requiring
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Figure 1: We propose Self-DPO, incorporating direct preference optimization in a self-supervised
manner. We provide the comparisons on SDXL base model with the same seed. Our method requires
less data, yet generate more visually appealing results. Best viewed in color with zoom in.

external preference data, our method constructs training pairs dynamically using self-supervised
image transformations. During each training iteration, the model first identifies a "winning image"
that satisfies human-aligned quality criteria. We then generate a corresponding "losing image" by in-
tentionally degrading the winner, either through visual-quality reductions or text–image misalignment.
The resulting win–lose pair supplies an immediate preference signal, allowing the model to perform
online direct preference optimization. By learning from this continuous stream of synthetically
generated preference pairs, Self-DPO achieves effective human alignment.

Data requirements SFT Self-DPO DPO

Text Caption ✓ ✓ ✓
Image ✓ ✓ ✓
Extra Preference Image – – ✓

Table 1: Post-training data requirements. Self-DPO
shares the same data requirements as SFT [11]. DPO
[10] requires extra preference images that are col-
lected and annotated by humans, which is highly time-
consuming and expensive.

This self-supervised, on-the-fly approach
brings several key advantages. It removes
the need for costly pre-generated images and
human ranking efforts, enables scalable and
dynamic training, and introduces greater di-
versity into the preference supervision signal.
We summarize the data requirements in Ta-
ble 1. Remarkably, we find that Self-DPO
not only matches but surpasses conventional
DPO in both qualitative and quantitative met-
rics (e.g., boosting ImageReward win rate
from 61 to 85). We provide some visualiza-
tion results in Figure 1. Experiments on Stable Diffusion 1.5 [1] and XL [2] demonstrate consistent
improvements in visual quality and text-image alignment. Our method is plug-and-play, generalizable
across architectures, and easily integrable into existing diffusion model training pipelines.

2 Related Work

2.1 Text-to-Image Diffusion Models

Text-to-image diffusion models have recently attracted significant attention in generative modeling due
to their ability to produce high-quality and diverse images from textual descriptions. The introduction
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of Denoising Diffusion Probabilistic Models (DDPMs) [12, 13] marked a major breakthrough in this
field, establishing diffusion models as a powerful generative approach. Diffusion models [12, 14, 15]
operate by reversing a gradual diffusion process, where noise is incrementally added to the clean
latent and then learned to be removed, ultimately synthesizing a coherent and realistic image/video.
Building upon this foundation, diffusion models have become a representative paradigm in text-
to-image generation, leading to models like GLIDE [16] for text-guided image editing, Imagen
[17] with cascaded diffusion for high-resolution synthesis, and Stable Diffusion [1] using latent
diffusion for efficient generation. To enhance image generation quality, researchers typically focus
on two main directions. One approach involves architectural improvements, with the Diffusion
Transformer (DiT) [3] gaining attention for its improved image fidelity, performance, and diversity.
Notable advancements include PixArt-α [18], Hunyuan-DiT [19], and SD3 [4]. Another approach
leverages supervised fine-tuning to refine text-to-image diffusion models. These methods curate
datasets by integrating various strategies, such as preference models [2], pre-trained image models
[20, 21, 22, 23, 24] (e.g., image captioning models), and expert-assisted data filtering [11].

2.2 Preference-Based Optimization Methods

In recent years, preference-based optimization has gained traction, refining models through user
feedback or ranked preference pairs. In Large Language Models, Reinforcement Learning from
Human Feedback (RLHF) leverages human comparisons to train a reward model that guides policy
learning [25, 26]. Alternatively, direct preference optimization (DPO) fine-tunes models directly
on preference data, bypassing the need for an explicit reward model while achieving comparable
performance [9]. Subsequently, preference-based optimization has been applied to image generation.
Some methods enhance image quality by increasing rewards for preferred outputs [27, 28, 29],
while others use reinforcement learning [29, 30]. However, training reliable reward models remains
challenging and computationally expensive, with over-optimization potentially leading to mode
collapse, reducing diversity [31, 28]. Similarly, Direct Preference Optimization has been introduced
in text-to-image generation, with Diffusion-DPO [10] demonstrating the effectiveness of optimizing
on human comparison data to enhance both visual appeal and text alignment. Additionally, direct
score preference optimization [32] refines diffusion models through score matching, providing
a novel approach to preference learning. Several recent studies have further explored adapting
preference learning techniques from large language models to fine-tune diffusion models [33, 34?
, 35], highlighting the growing interest in aligning generative models with human preferences.

2.3 Self-Supervised Learning

Self-supervised learning has emerged as a pivotal paradigm in machine learning. Among its most
widely used approaches are contrastive self-supervised learning and generative self-supervised learn-
ing. Contrastive self-supervised learning distinguishes representations by pulling similar instances
closer while pushing dissimilar ones apart. MoCo [36] enhances training efficiency through a mo-
mentum encoder, while SimCLR [37] simplifies the process with strong data augmentations. CLIP
[38] extends contrastive learning to vision-language tasks, aligning images and text in a shared
latent space, enabling zero-shot transfer. Generative approaches inherently follow unsupervised or
self-supervised learning principles, training without labeled data to model the underlying distributions
of the input. GANs [39] utilize adversarial training to generate realistic data, while VAEs [40] encode
data into a structured latent space for controlled synthesis. VQ-VAE [41] introduces discrete latent
representations for high-quality generation. MAE [42] leverages masked image modeling to learn rich
visual features. More recently, denoising diffusion models [13] have demonstrated impressive results
by iteratively adding and removing noise, learning robust representations in a self-supervised manner.
Self-supervised learning enables training without manually labeled data, laying the foundation for
future advancements in representation learning, generative modeling, and multimodal understanding.

3 Methods

3.1 Preliminary

Diffusion Models. Denoising Diffusion Probabilistic Models [13] represent the image generation
process as a Markovian process. Let x0 ∈ Rd be the data point and q(xt|xt−1) denote the forward
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process, where noise is added to the data at each timestep t. The forward process is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt is a schedule that controls the variance of noise added at each timestep, and N (·) denotes
the normal distribution. The forward process gradually adds noise, with xT being pure noise after
T timesteps. The reverse process aims to learn the distribution pθ(xt−1|xt), which represents the
process of denoising and generating data from pure noise. The reverse process can be parameterized
as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)
where µθ(xt, t) and Σθ(xt, t) are the mean and covariance learned by the model at each timestep t.
The model is trained by minimizing the following objective:

Ldiffusion = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (3)

where ϵ is the noise added at each timestep, and ϵθ(xt, t) is the model’s predicted noise. The model
is trained to predict this noise accurately at each step, enabling it to reverse the diffusion process and
generate high-quality data.
Reinforcement Learning from Human Feedback. For diffusion models, human preferences at
each diffusion step are modeled using a Bradley-Terry formulation [43], where the probability of
preferring a "winning" sample xw

t over a "losing" sample xl
t for a given prompt c is defined as:

pBT(x
w
t ≻ xl

t|c) = σ
(
r(c,xw

t )− r(c,xl
t)
)
, (4)

with σ, r, c representing the sigmoid function, reward model, and prompt, respectively. Subsequently,
by conceptualizing the diffusion denoising process as a multi-step Markov Decision Process, the gen-
erative model is fine-tuned via reinforcement learning. The training objective [10, 44] is formulated
as:

Lrlhf = Ec∼DEpθ(x0:T |c)
∑T−1

t=0
r(c,xt)− λDKL

(
pθ(x0:T |c) ∥ pref(x0:T |c)

)
, (5)

where pref(x0:T |c) is the distribution from the pretrained diffusion model and λ controls the influence
of the KL divergence regularization term.
Direct Preference Optimization (DPO). DPO streamlines RLHF by using the learning policy’s
log likelihood to imp licitly encode the reward. In text-to-image diffusion models, this leads to a
step-wise reward defined as:

r(c,xt) = λ log
pθ(xt | xt+1, c)

pref(xt | xt+1, c)
. (6)

Recent works [10, 32] follow this line and adapt it to diffusion models. They optimize the model pθ
based on the Bradley-Terry model [43], leading to an objective function:

LDiffusion-DPO = −E
[
log σ

(
λ log

pθ(x
w
t | xw

t+1, c)

pref(xw
t | xw

t+1, c)
− λ log

pθ(x
l
t | xl

t+1, c)

pref(xl
t | xl

t+1, c)

)]
, (7)

where the winning and losing samples (xw
t ,x

l
t) and the prompt c are drawn from the dataset, and

timestep t is uniformly sampled from the diffusion process. This formulation effectively aligns the
learning policy with human preference signals embedded in the reference model.

3.2 Self-DPO for Text-to-image Diffusion Models

Inspired by DPO’s effective alignment with human preferences at the image level [10], our work aims
to extend this formulation into the standard post-training process for diffusion models (e.g., SFT).
Unfortunately, a direct application of DPO is not feasible because it requires collecting image pairs
(typically generated by different models with the same prompt or by using different seeds with the
same model—along with their associated manual rankings). This approach does not align with the
conventional fine-tuning pipeline and incurs significant additional costs. To overcome this limitation,
we propose Self-DPO, which generates preference image pairs in a self-supervised manner.

In each training iteration, we denote the text-image pair as (c,x), where the image component is
regarded as the wining image xw. Traditional DPO methods [10, 9] require generating image pairs
corresponding to the same prompt, followed by manual selection of the preferred (wining) and less
preferred (losing) images, denoted as xw and xl, respectively. Our method removes such cumbersome
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Figure 2: Different post-training processes. We generate the "losing" images self-supervisedly,
enabling direct preference optimization without extra collecting and ranking steps. This lightweight
procedure eliminates the substantial overhead of conventional DPO while retaining the same data
requirements as standard SFT. Best viewed in color with zoom in.

steps. Because every image in the curated high-quality dataset already satisfies human preference,
each can be regarded as a winner xw. We obtain a corresponding self-supervised losing sample by
deliberately degrading the winner: xsl = Downgrade(xw). Inspired by [10], the self-supervised
direct preference loss is:

LSelf-DPO = − log σ
(
C
( (

∥ϵθ(xw
t , t)− ϵw∥22 − ∥ϵθ(xsl

t , t)− ϵsl∥22
)

−
(
∥ϵref(x

w
t , t)− ϵw∥22 − ∥ϵref(x

sl
t , t)− ϵsl∥22

)))
,

where xsl = Downgrade(xw) (8)

where C and ϵsl refer to a scale factor and the noise corresponding to losing images, and ϵref
is the reference model. In our experiments, the Downgrade operation can be simply performed
by randomly selecting images from the training dataset. For each self-generated image pair, the
winning sample closely aligns with the prompt, whereas the losing sample fails to correspond to the
description. Surprisingly, this simple manner brings significant improvements to the model. We also
compare different degradation strategies in the experiments. The training process overview is shown
in Figure 2. The final loss is as follows:

L = λ1LMSE + λ2LSelf-DPO (9)

We empirically set λ1 and λ2 to 0.5, 0.5, respectively.

4 Experiments

4.1 Setup

Figure 5: Implicit accuracy during the train-
ing stage.

Implement Details: Following Diffusion-DPO [10],
for the SD1.5 [1] experiments, AdamW [47] is uti-
lized, while SDXL [2] training is conducted with
Adafactor [48] to conserve memory. Following the
official implementation in Diffusion-DPO [10], C in
Equation 8 is set to −2500. For SD 1.5, a batch size
of 2048 pairs (resolution: 512 ∗ 512) is maintained
by training across 4 NVIDIA A100 GPU. Each GPU
handles 8 pairs locally with gradient accumulation
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Figure 3: Qualitative comparisons with the SD1.5 base model. All results are generated with the
same random seed. Comparing with SFT and DPO [10], the model trained by Self-DPO demonstrates
superior text prompt alignment. It also shows more appealing visual quality, especially in layout,
colors, and details. Best viewed in color.

over 64 steps. For SDXL, considering the resource limitation, we use the total batch size of 96 pairs
(resolution: 1024 ∗ 1024). Training is performed at fixed square resolutions. We use a learning rate
of 1e-6 coupled with a 25% linear warmup.

Training Dataset: Our training data is sourced from the Pick-a-Pic V2 dataset[45], which keeps the
same to Diffusion-DPO [10]. It contains pairwise preference annotations for images generated by
Dreamlike (a fine-tuned variant of SD1.5), SD2.1, and SDXL. These prompts and preferences were
collected from users of the Pick-a-Pic web application. Please note that Self-DPO only uses the
preference image and associated text in the dataset, instead of using the whole manually annotated
image pairs.

Evaluation: We conduct evaluation on three datasets: Pick-a-Pic V2 [45] validation set (contains
500 prompts), PartiPrompts [46] (contains 1632 prompts, including diverse categories and challenge
aspects), and HPDv2 [24] (contains 3200 prompts, including anime, concept art, paintings and photo).
We compare Self-DPO with three different type baselines, i.e., base models (Stable Diffusion 1.5
(SD1.5) and Stable Diffusion XL (SDXL)), SFT models, DPO models, where DPO models are the
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Figure 4: Qualitative comparisons with the SDXL base model. All results are generated using the
same random seed. Please note that the training dataset (Pick-a-Pic V2 [45]) used for fine-tuning is
obtained from a SD1.5 variant, SD2.1, and SDXL models. Consequently, directly fine-tuning (SFT)
on this dataset does not lead to improvements—and may even result in degraded performance (e.g.,
as shown in the second row). In contrast, DPO [10] optimizes the model by leveraging preference
relationships with pre-ranked pairs, thereby avoiding this issue. Self-DPO uses the same data
requirements as SFT but yields significant improvements in both text prompt alignment and visual
quality, demonstraing its effectiveness. Best viewed in color.

publicly released from Diffusion-DPO [10]. For evaluation metrics, we employ the popular PickScore
[45] , Aesthetics [49], CLIP [38], HPS V2 [24] , and ImageAward [50] scores. For convenience
of comparison, we scale the scores to fit a similar range (×100 for PickScore, CLIP, HPS, and
ImageAward, ×10 for Aesthetics). PickScore is a caption-sensitive scoring model, originally trained
on Pick-a-Pic (v1), that estimates the perceived image quality by humans. Aesthetics assesses the
visual appeal of an image, considering factors such as lighting, color harmony, composition, and
overall artistic quality. CLIP measures the semantic alignment between an image and a corresponding
text prompt. By computing the cosine similarity between the image and text embeddings, this score
evaluates how well the image content matches the provided textual description. Human Preference
Score (HPS V2) is a metric designed to align with human judgments of image quality, particularly
in the context of text-to-image synthesis. ImageAward quantifies the quality, aesthetic appeal, or
alignment of a generated image with respect to desired attributes. It is typically derived from a reward
model trained on human preference data.

7



Datasets Methods SD1.5 SDXL

P.S. Aes. CLIP HPS I.R. P.S. Aes. CLIP HPS I.R.

Pick-a-Pic
V2

Base
Avg
score

20.57 53.15 32.58 26.17 -14.81 22.10 60.01 35.86 26.83 50.62
SFT 21.10 56.35 33.75 27.03 45.03 21.48 57.84 35.67 26.67 30.89
DPO 20.91 54.07 33.19 26.46 4.13 22.57 59.93 37.30 27.30 81.14

Self-DPO 21.23 56.35 34.79 27.33 71.00 22.34 59.97 37.53 27.89 103.96
SFT Win

rate

75.00 77.20 60.40 90.20 80.00 19.40 31.80 47.00 44.60 42.4
DPO 73.80 60.00 60.00 71.80 61.00 72.60 47.20 63.00 79.80 69.8

Self-DPO 78.60 77.80 68.40 94.20 85.20 60.80 50.80 62.40 93.80 79.2

PartiPrompts

Base
Avg
score

21.39 53.13 33.21 26.79 1.48 22.63 57.69 35.77 27.33 69.78
SFT 21.75 55.31 33.93 27.57 50.75 22.02 56.41 35.31 27.13 47.29
DPO 21.61 53.58 33.88 26.98 21.43 22.90 57.85 36.95 27.73 103.36

Self-DPO 21.84 55.09 35.11 27.84 75.66 22.79 58.69 37.00 28.30 117.50
SFT Win

rate

67.28 70.89 53.43 85.42 73.35 21.38 38.11 45.10 43.75 40.93
DPO 67.10 57.17 56.74 61.83 63.05 63.42 53.62 62.32 73.10 68.44

Self-DPO 69.85 68.50 63.24 89.40 81.00 56.19 60.48 60.17 92.16 76.84

HPD V2

Base
Avg
score

20.84 54.32 33.96 26.84 -11.79 22.78 61.34 37.68 27.68 78.27
SFT 21.57 57.41 35.26 27.89 57.74 22.24 60.08 37.39 27.76 66.62
DPO 21.30 55.80 34.68 27.22 13.24 23.18 61.35 38.45 28.14 102.74

Self-DPO 21.58 57.10 36.30 28.11 76.13 22.98 61.30 38.35 28.77 110.67
SFT Win

rate

79.53 75.31 59.34 90.10 81.16 23.47 37.28 46.63 58.22 45.81
DPO 75.72 66.28 57.56 72.43 64.69 72.66 50.28 58.69 80.56 69.78

Self-DPO 79.53 74.03 68.47 92.49 85.19 58.78 48.06 55.65 94.97 72.50

Table 2: Quantitative comparisons. We compare different fine-tuning methods (SFT, DPO [10], and
Self-DPO) on SD 1.5 and SDXL base models over three datasets (Pick-a-Pic V2 [45], PartiPrompts
[46], and HPDv2 [24]). "P.S." refers to PickScore, "Aes." is Aesthetics, and "I.R." denotes Im-
ageAward. For the SD1.5 base model, our method achieves the best performance across most metrics.
In contrast, for the SDXL base model, we observe that SFT clearly degrades performance. This is
likely due to the fact that the training dataset (Pick-a-pic V2 [45]) used for fine-tuning is derived from
SD1.5 variant, SD2.1, and SDXL models. Interestingly, our method still achieves competitive results
compared to DPO, which utilizes the full dataset and optimizes the model by leveraging preference
relationships with pre-ranked pairs. These results underscore the effectiveness and robustness of our
approach.

4.2 Quantitative Results

We provide quantitative comparisons in Table 2. We compare our method with SFT and DPO
[10]. For the SD1.5 base model, our method significantly outperforms the alternatives. For
example, Self-DPO achieves a CLIP score of 34.79 on the Pick-a-Pic V2 dataset—an improve-
ment of +2.21 over the base model—whereas SFT and DPO yield improvements of +1.17
and +0.61, respectively. In terms of overall human preference metrics, Self-DPO delivers
substantially higher gains, improving the base model from –14.81 to 71.00 on the ImageRe-
ward metric, which far exceeds the improvements observed with SFT (45.03) and DPO (4.13).

Methods P.S. Aes. CLIP HPS I.R.

Base model 20.57 53.15 32.58 26.17 -14.81
DPO 20.91 54.07 33.19 26.46 4.13

w/ Blur 20.80 55.16 33.22 26.57 4.26
w/ Random grid 20.85 55.86 32.71 26.64 24.21
w/ Random image 21.23 56.35 34.79 27.33 71.00

Table 3: Ablation on different downgrade manners. The "Ran-
dom image" row achieves most significant improvements, imply-
ing that degrading the image quality can be detrimental.

Notably, the win rate of Self-DPO
reaches 94.20 on the HPS met-
ric. Results on other datasets
(PartiPrompts and HPD v2) fur-
ther confirm these improvements.
In contrast, results on the SDXL
base model show a slightly dif-
ferent scenario, particularly with
SFT. We observe that SFT sub-
stantially degrades the perfor-
mance of the base model. This
degradation is likely due to the
fact that, while the training dataset (comprising generations from an SD1.5 variant, SD2.1, and
SDXL) is of much higher quality than that used for SD1.5, it does not exhibit clear superiority for
SDXL. Nevertheless, the model trained by Self-DPO still demonstrates significantly better perfor-
mance compared to both SFT and the base model. On the PickScore, Aesthetics, and CLIP metrics,
Self-DPO achieves results comparable to DPO, and it attains superior scores on the HPS and ImageRe-
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ward metrics. These findings validate our hypothesis that image-level learning benefits text-to-image
diffusion models and highlight the superiority of Self-DPO. We also employ UnifiedReward [51] as
the VLM evaluation metric, a state-of-the-art reward model designed for multimodal understanding
and generation tasks. Built upon strong VLM models [52, 53, 54, 55], it supports pointwise scoring
to align model outputs with human preferences. The results are shown in Table 4.4. We further
validate our method’s effectiveness by using a new real-world T2I evaluation setting. Specifically,
we conduct experiments on a subset of the LAION-COCO dataset containing 400k text-image
pairs. Unlike carefully curated datasets, we do not manually design the data distribution or employ
re-captioning techniques to refine prompts. The results are shown in Table 4.4. While naive SFT
degrades performance, our Self-DPO method achieves consistent improvements. Please note that we
cannot provide a DPO baseline as it requires additional paired images and annotations for the same
prompts, which are not available in regular text-image dataset.

4.3 Qualitative Results

We provide qualitative comparisons in Figure 3 and Figure 4 for SD1.5 and SDXL, respectively.
All quantitative and qualitative results are generated using the same random seed. We observe that
Self-DPO consistently improves over other models, particularly in terms of producing more vivid
colors and better adherence to text prompts. For example, in the third row of Figure 3, only Self-DPO
successfully reveals the concept "cyberpunk". In the fourth row of Figure 4, both DPO and Self-DPO
capture the intended meaning of the prompt, but Self-DPO exhibits a more appealing visual quality.
These quantitative and qualitative results confirm the effectiveness of our approach. We show the
implicit win rate to measure the optimization process in Figure 5. Specifically, the implicit win rate
during training refers to the probability that the model prefers the winning image over the losing
image. In other words, a higher implicit win rate indicates a stronger preference for the winning image.
As training progresses, it steadily increases and eventually reaches around 0.85. This demonstrates
that the model gradually learns to distinguish between the wsinning and losing images, and prefers to
generate the winning image.

4.4 Ablation

Methods P.S. Aes. CLIP HPS I.R.

Base model 20.57 53.15 32.58 26.17 -14.81
DPO 20.91 54.07 33.19 26.46 4.13

Self-DPO w/o MSE 21.26 56.22 35.00 27.31 67.78
Self-DPO 21.23 56.35 34.79 27.33 71.00

Table 4: Ablation on MSE loss. When removing MSE loss,
Self-DPO still shows comparable performance and demonstrates
the superiority to DPO.

We conduct ablation studies on
various downgrade approaches,
as shown in Table 3. In partic-
ular, we examine two additional
methods—namely, blur (which
involves downsampling and up-
sampling the image by a factor
of 4) and random grid (which di-
vides the image into an 8× 8 grid
and randomly swaps two grids).
We observe that these two down-
grade methods lead to worse performance, indicating that significantly degraded image quality can
be harmful. Additionally, we remove the MSE loss and report the results in Table 4. Interestingly, the
performance does not drop noticeably and consistently performs better than DPO, further confirming
the effectiveness of Self-DPO.

Methods P.S. Aes. CLIP HPS I.R.

Base 20.57 53.15 32.58 26.17 -14.81
SFT 20.49 52.63 31.83 26.13 -23.95
Self-DPO 20.68 52.87 34.31 26.52 17.11

Table 5: Results on a real-world image-text dataset.

Base model Base SFT DPO Self-DPO

SD1.5 2.44 2.62 2.53 2.72
SDXL 2.96 2.73 3.10 3.07

Table 6: Comparisons on UnifiedReward.

5 Limitation and Future Work

In the present implementation, we construct losing samples by randomly sampling images from
the training set. This manner can become unreliable when the dataset is small, as the resulting
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losers may fail to provide sufficiently informative preference signals. Future work therefore can
explore more sophisticated self-supervised strategies for synthesizing losing images, such as more
content-aware perturbations or adversarial degradations that better challenge the model. Furthermore,
our approach is built on direct preference optimization, which is an offline reinforcement-learning
paradigm. Extending the self-supervised pairing concept to online policy-gradient or actor-critic
frameworks represents another promising direction.

6 Conclusion

In this paper, we propose Self-Supervised Direct Preference Optimization (Self-DPO), a fully self-
supervised framework that aligns generative models with human preferences without requiring
pre-generated image pools or manual rankings. By synthesizing win–lose pairs on the fly, Self-DPO
not only removes costly data-collection steps but also exposes the model to a broader and more diverse
set of preference signals. At every training iteration, it constructs its own preference pairs through
controlled degradations of high-quality images and immediately updates the model via preference
learning. Extensive experiments across multiple datasets and base architectures demonstrate that
Self-DPO consistently delivers superior performance, validating its effectiveness and versatility.
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