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Abstract

Direct Preference Optimization (DPO) has001
been demonstrated to be highly effective in002
mitigating hallucinations in Large Vision Lan-003
guage Models (LVLMs) by aligning their out-004
puts more closely with human preferences. De-005
spite the recent progress, existing methods006
suffer from two drawbacks: 1) Lack of scal-007
able token-level rewards; and 2) Neglect of008
visual-anchored tokens. To this end, we pro-009
pose a novel Token Preference Optimization010
model with self-calibrated rewards (dubbed011
as TPO), which adaptively attends to visual-012
correlated tokens without fine-grained annota-013
tions. Specifically, we introduce a token-level014
visual-anchored reward as the difference of the015
logistic distributions of generated tokens con-016
ditioned on the raw image and the corrupted017
one. In addition, to highlight the informative018
visual-anchored tokens, a visual-aware training019
objective is proposed to enhance more accurate020
token-level optimization. Extensive experimen-021
tal results have manifested the state-of-the-art022
performance of the proposed TPO. For exam-023
ple, by building on top of LLaVA and Qwen,024
our TPO boosts the performance absolute im-025
provement for hallucination benchmarks.026

1 Introduction027

Recently, Large Vision Language Models (LVLMs)028

have showcased their remarkable capabilities in029

handling multimodal information, excelling in030

tasks such as image captioning, visual question-031

answering, and complex visual reasoning (Team032

et al., 2023; Bai et al., 2023; Hurst et al., 2024;033

Yang et al., 2023). Specifically, by integrating034

pre-trained language models with meticulously de-035

signed visual encoders, LVLMs are capable of ef-036

fectively capturing the semantic correlations be-037

tween visual and textual data. This integration038

supports more accurate and contextually relevant039

tasks of visual understanding and generation.040

Which color are the glasses that 
the man in the image is wearing?

Visual-anchored rewards of ground truth answer

Visual-anchored rewards of generated responses

.The man is not we aring glass

.The man is not we aring glass es

+TPO

esThe man in the image is we aring black glass .

+TPO

The man in the image is we aringnot glass .es

Figure 1: An example of visual Q&A. The upper box
contains the ground truth answer, while the lower box
shows the LVLM responses before and after training
with our method. In each box, we visualize the rewards
for each token which can reflect the degree of visual an-
choring, with the top representing scores before training
and the bottom after. Scoring is detailed in Equation 4,
and we’ve applied sigmoid normalization in this score.

Despite the advancements, the issue of “hallu- 041

cination”, where the generated responses are not 042

grounded in the input visual contexts, greatly im- 043

pedes the reliability and practical deployment of 044

LVLMs (Liu et al., 2024a; Bai et al., 2024). To 045

alleviate this, various methods have been proposed 046

from the perspectives of data quality (Liu et al., 047

2023; Zhai et al., 2023) and inference-time strate- 048

gies (Yin et al., 2023; Zhou et al., 2023; Huang 049

et al., 2024). Recently, direct preference optimiza- 050

tion (DPO) (Rafailov et al., 2024) is introduced to 051

align outputs with human preferences, therefore 052

reducing the risk of generating hallucinatory or 053

nonsensical responses. 054

Existing DPO-like methods, however, still suffer 055

from two drawbacks: 1) Lack of scalable token- 056

level rewards. The fine-grained token-level rewards 057

enable precise adjustments to individual parts of 058

generated responses. Existing methods, however, 059

either provide global sentence rewards or rely on 060
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manual efforts for fine-grained segment-level anno-061

tations (Yu et al., 2024b). Therefore, designing a062

scalable token-level reward generation strategy has063

become a clearly defined necessity (c.f . Table 1);064

2) Neglect of visual-anchored tokens: By “visual-065

anchored tokens”, we refer to response tokens that066

are essential and highly correlated with the input067

visual embeddings. RLHF-V assigns all the hallu-068

cinated segments with a fixed reward value. Recent069

studies (Guan et al., 2024) attribute the hallucina-070

tion issue to an inherent imbalance between the071

visual and textual modalities. Specifically, due to072

the large-scale pre-trained textual corpus, LVLMs073

tend to prioritize language-based information even074

at the costs of overriding the provided visual con-075

tent. Therefore, we argue that not all the tokens076

are equal, i.e., visual-anchored tokens (e.g., glass077

in Figure 1) are more prone to hallucination and078

deserve great emphasis. As shown in Table 1, the079

concurrent pre-print V-DPO (Xie et al., 2024) also080

focuses on visual-anchored tokens; however, it re-081

quires the additional construction of a synthetic082

dataset, whereas our method eliminates the need083

for any extra annotations.084

To alleviate these aforementioned problems, we085

propose a novel Token Preference Optimization086

with self-calibrated rewards (dubbed as TPO),087

which rectifies the fine-grained token-level halluci-088

nations and attends to visual-anchored tokens with-089

out the need of fine-grained annotations. Specifi-090

cally, to mine the visual-anchored tokens, we com-091

pute the differences between the logits distributions092

of generated tokens conditioned on the raw image093

and the corrupted one. We regard this distribution094

difference as token-wise rewards. In Figure 1, we095

apply this visual-anchored score mining strategy096

on both golden truth and the generated responses.097

As shown, this strategy effectively helps highlight098

visual-anchored tokens. Then, we propose a to-099

ken preference optimization loss by integrating the100

self-calibrated rewards into the vanilla DPO. In101

particular, we multiply the like-hood distribution102

with token-wise rewards to generate our desired103

visual-correlated ones.104

Overall, the main contributions of this work are:105

• We propose TPO for hallucination mitigation in106

LVLMs, which implements token-level distri-107

bution rectification without the reliance of fine-108

grained manual annotations.109

• We mine visual-anchored tokens by comparing110

the response distributions conditioned on the111

Methods Visual-
Anchored

Token-
level

Non Fine-grained
Annotations

DPO ✗ ✗ ✓
POVID ✗ ✗ ✓
CSR ✓ ✗ ✓
MDPO ✓ ✗ ✓
V-DPO ✓ ✓ ✗
RLHF-V ✗ ✓ ✗
TPO (Ours) ✓ ✓ ✓

Table 1: Comparisons with hallucination mitigation
methods from the perspective of whether attending to
vision-anchored tokens, whether generating token-level
rewards and whether requiring fine-grained annotations.
The compared methods include DPO (Rafailov et al.,
2024), POVID (Zhou et al., 2024a), CSR (Zhou et al.,
2024b), MDPO (Wang et al., 2024a), V-DPO (Xie et al.,
2024), RLHF-V (Yu et al., 2024b).

raw image and the corrupted one. 112

• Extensive experiments on the popular halluci- 113

nation benchmarks demonstrate the state-of-the- 114

art performance of the proposed TPO. 115

2 Related Works 116

2.1 LVLMs’ Hallucination 117

Leveraging the rich knowledge in large language 118

models and the vision understanding capabilities of 119

vision encoders, LVLMs have shown exceptional 120

performance in image understanding and genera- 121

tion tasks (Li et al., 2023b; Zhu et al., 2023). How- 122

ever, imbalances in parameters and data scale dur- 123

ing pre-training can lead to LVLMs being overly in- 124

fluenced by biases in the language model, resulting 125

in inadequate attention to visual information and 126

potential hallucination issues (Zhou et al., 2023; 127

Zhang et al., 2024). Consequently, addressing the 128

issue of hallucinations in LVLMs has become one 129

of the key research focuses in this field. 130

Previous studies have mitigated hallucinations 131

by enhancing training data quality, refining decod- 132

ing strategies, and post-processing generated re- 133

sponses (Huang et al., 2024; Leng et al., 2024; Yu 134

et al., 2024a; Han et al., 2024; Chen et al., 2024; 135

Zhou et al., 2023; Yin et al., 2023; Lee et al., 2023; 136

Shao et al., 2024a; Jiang et al., 2024; Yue et al., 137

2024; Xiao et al., 2025; Sarkar et al., 2024; Zhao 138

et al., 2023). While these methods can lead to more 139

accurate responses, they do not fundamentally re- 140

solve the issue of inadequate visual information 141

association in LVLMs. 142
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Figure 2: Outline of our TPO pipline. The process is divided into three parts for each data at every training
step. First, 1) add noise to the image, then, 2) calculate Self-Calibrated Visual-Anchored Rewards, and finally 3)
perform Token Preference Optimization. At the end of each training step, we calibrate the model and calculate new
Visual-Anchored Rewards for the next step.

2.2 Preference Learning Methods143

More recently, reinforcement learning from human144

feedback (RLHF) (Sun et al., 2023) is gradually145

becoming a prevalent approach to mitigate the hal-146

lucination. As a more direct and effective method,147

DPO (Rafailov et al., 2024) and its variants are148

more widely utilized for preference alignment.149

Several studies based on DPO focus on develop-150

ing more robustly constructed preference data. For151

example, the POVID (Zhou et al., 2024a) method152

constructs negative samples for preferred data by153

adding noise to the image and providing halluci-154

nated patterns to guide the model to generate hal-155

lucinated responses. The MDPO incorporate op-156

timization for image preference, training with the157

images before and after alteration as positive and158

negative samples. Apart from these works, RLAIF159

(Yu et al., 2024c) and CSR (Zhou et al., 2024b)160

methods, which are built upon on-policy DPO strat-161

egy, construct preference pairs by iteratively per-162

forming self-rewarding to select preference pairs.163

R1-Onevision (Yang et al., 2025) enhances the vi-164

sual reasoning capabilities by employing Group165

Relative Policy Optimization (GRPO). However,166

assigning response-level rewards for each gener-167

ated sequence is insufficient for effectively aligning168

with genuinely hallucination-prone contents.169

Other studies, RLHF-V (Yu et al., 2024b) and170

V-DPO (Xie et al., 2024), investigated this issue171

and achieved more fine-grained alignment of pref-172

erence data. Nevertheless, this approach depends173

on resource-intensive annotations or data construc-174

tions and applies a fixed reward to all hallucinated175

segments, thus failing to account for the differing176

levels of relevance these segments may have to vi- 177

sual information. It is worth mentioning that CSR 178

also considered this problem and introduced CLIP 179

(Radford et al., 2021) to calculate the relevance 180

score between generated text and vision informa- 181

tion as an additional reward, and TLDR (Fu et al., 182

2024) score each token by training a scoring model. 183

However, these methods requires the introduction 184

of an additional model, which reduces the training 185

efficiency. 186

In this paper, we propose a token-level pref- 187

erence optimization method with self-calibrated 188

visual-anchored rewards (TPO), aimed at address- 189

ing the aforementioned challenges. TPO facilitates 190

finer-grained alignment in LVLMs, enhancing accu- 191

racy in visual information correlation and reducing 192

hallucinations during response generation. 193

3 Methodology 194

The schematic illustration of the proposed TPO is 195

demonstrated in Figure 2. In Sec. 3.1, we present 196

the preliminaries including the definition and off- 197

policy optimization of DPO. Then we detail the 198

visual-anchored rewards and token preference opti- 199

mization loss in Sec. 3.2 and Sec. 3.3, respectively. 200

3.1 Preliminaries 201

DPO (Rafailov et al., 2024) is designed to directly 202

maximize the reward margin between positive and 203

negative responses to align human preferences. 204

Given a textual input x, a visual input v, a neg- 205

ative response yl, and a preferred positive response 206

yw, the reward function r(x, v, yl/yw) is defined 207
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as follows.208

r(x, v, y) = β log
πθ(y|x, v)
πref(y|x, v)

, (1)209

where πref(y|x, v) and πθ(y|x, v) respectively rep-210

resent the reference model and current policy211

model. On this basis, the formulation of a max-212

imum likelihood objective is defined as:213

LDPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ(

β log
πθ(yw|x, v)
πref(yw|x, v)

− β log
πθ(yl|x, v)
πref(yl|x, v)

)]
,

(2)214

where σ(·) denotes the sigmoid function.215

3.2 Visual-Anchored Rewards216

Different to the equal confidence for each token in217

DPO, we propose a visual-anchored by measuring218

the token-wise visual reliance. Specifically, we219

firstly add noise into the embedding of the input220

image v in a total k steps to obtain the corrupted221

image vc:222

vc(k) =

√
ξ̄k · v +

√
1− ξ̄k · ϵ, (3)223

where ξ is a predefined noise parameter derived224

from a list with 1,000 equally spaced elements1. ξ̄k225

is a cumulant, i.e., ξ̄k =
∏k

i=0 ξi.226

Subsequently, the difference of generated token227

distribution is computed as follow:228

syi = plog(yi|x, v, y<i)− plog(yi|x, vc, y<i), (4)229

where syi denotes the distribution difference of the230

token yi of the response y. plog refers to the raw log-231

its output of the model, before applying softmax232

normalization. One example case is demonstrated233

in Figure 1, which demonstrates that s reflects the234

visual relevance of each token yi.235

Then, a self-calibration process is proposed to236

generate the final visual-anchored rewards cyi .237

cyi =

{
a+ σ(syi) if yi ∈ yw

a+ 1− σ(syi) if yi ∈ yl
(5)238

where a is a margin value. We set a = 0.5 in Equa-239

tion (5), so that when s = 0, c = 1, the rewards240

will not take effect. This process aims to ensure241

that positive samples receive higher rewards than242

negative samples while optimizing the visual rele-243

vance of visual-anchored tokens in all responses.244

1More details can be found in Appendix A, and experimen-
tal analysis can be found in Appendix E

3.3 Token Preference Optimization 245

After obtaining the reward cyi to yi, the output 246

cumulative distribution can be calculated: 247

πv(y|x, v) =
∏
yi∈Y

cyi (6) 248

Especially, when cyi = 1, the probability of yi will 249

not be accumulated. By multiplying the probability 250

distribution with the visual-anchored rewards, we 251

obtain a novel KL-constrained reward maximiza- 252

tion objective: 253

max
π

E(x,v,y)

[
r′(x, v, y)− βDKL

(
πθ(y|x, v)

· πv
θ (y|x, v), πref(y|x, v) · πv

ref(y|x, v)
)]

,

(7) 254

where DKL(·, ·) denotes the KL divergency com- 255

putation. πv
θ (y|x, v) and πv

ref(y|x, v) are calculated 256

using the policy model and the reference model, 257

respectively. Thus, the optimal solution formula for 258

the maximization objective of the KL-constrained 259

reward is as follows: 260

πθ(y|x, v) · πv
θ (y|x, v) =

1

Z(x, v)
πref(y|x, v)·

πv
ref(y|x, v) exp

( 1
β
r′(x, v, y)

)
.

(8) 261

The partition function of Eq (8) is as follows. 262

Z(x, v) =
∑
y

πref(y|v, x) · πv
ref(y|x, v)

· exp
( 1
β
r′(x, v, y)

) (9) 263

Rearranging Eq (8), we obtain the reward function: 264

r′(x, v, y)

= β log
πθ(y|x, v) · πv

θ (y|x, v)
πref(y|x, v) · πv

ref(y|x, v)
+ βZ(x, v)

= β
∑
yi∈y

[
log

(
pθ(yi|x, v, y<i) · cθyi

)
− log

(
pref(yi|x, v, y<i) · cref

yi

)]
+ βZ(x, v)

= β
∑
yi∈y

[
log pθ(yi|x, v, y<i)− log pref(yi|x, v, y<i)

+ log
cθyi
cref
yi

]
+ βZ(x, v),

(10) 265

where cθyi and cref
yi represent the token reward cal- 266

culated using the policy model and the reference 267

model, respectively. 268
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Compared to the original reward function in269

DPO (Eq (1)), we multiply each p(yi|x, v, y<i) by270

the generated visual-anchored rewards cyi at the to-271

ken level. cθyi is continuously updated at each step272

during training as the model changes. To calculate273

each token in the entire reward function, we add a274

term log
cθyi
cref
yi

∈ (−log3, log3) (as we set a = 0.5 in275

Equation (5)), which has a reasonable upper and276

lower bound. For positive samples, this term is ex-277

pected to increase, while for negative samples, it is278

expected to decrease. Due to the different methods279

of calculating cyi that we set in Eq (5), this will280

encourage the increase of syi during the training281

process, making the token generation focus more282

on visual information.283

Thus, following the Bradley-Terry model, when284

given the positive and negative samples D =285

{x(k), v(k), y(k)w , y
(k)
l }Nk=1, we obtain our maxi-286

mum likelihood objective:287

LTPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ(

β log
πθ(yw

∣∣x, v) · πv
θ (yw

∣∣x, v)
πref(yw

∣∣x, v) · πv
ref(yw

∣∣x, v)−
β log

πθ(yl
∣∣x, v) · πv

θ (yl
∣∣x, v)

πref(yl
∣∣x, v) · πv

ref(yl
∣∣x, v))]

= LDPO(πθ;πref) + E(x,v,yw,yl)∼D

[
log σ(

β log
πv
θ (yw

∣∣x, v)
πv

ref(yw
∣∣x, v) − β log

πv
θ (yl

∣∣x, v)
πv

ref(yl
∣∣x, v))]

(11)288

According to Eq (10), we can deduce as follows.289

LTPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ(

β
∑

ywi∈yw

[
log

(
pθ(ywi |x, v, yw<i)

)
− log pref(ywi |x, v, yw<i) + log

cθywi

cref
ywi

]
+

∑
yli∈yl

[
log

(
pθ(yli |x, v, yl<i

)
)

− log pref(yli |x, v, yl<i
) + log

cθyli
cref
yli

])]

(12)290

where cθywi
and cref

ywi
represent the token reward291

calculated for yw using the policy model and the292

reference model, respectively. The same applies to293

cθywi
, cref

ywi
and yl.294

4 Experiment 295

4.1 Setup 296

Aligning with previous DPO-based approaches on 297

hallucination mitigation, we mainly adopt the pop- 298

ular LVLM, LLaVA-1.5 (Liu et al., 2024b), as the 299

backbone model to validate the effectiveness of our 300

TPO. Furthermore, to evaluate the effectiveness 301

of TPO on more advanced and powerful model, 302

we implement TPO training based on Qwen2-VL 303

(Wang et al., 2024b), and compare it with the DPO 304

method. For the dataset, we directly utilize the 305

preference pairs provided by RLHF-V (5K) with- 306

out their fine-grained human annotations. 307

Benchmarks We primarily conduct the experi- 308

ments on three hallucination benchmarks: AMBER 309

(Wang et al., 2023), MMHal-Bench (Sun et al., 310

2023), and HallusionBench (Guan et al., 2024). In 311

this section, we mainly focus on AMBER’s discrim- 312

inative task and report the accuracy and F1 metrics 313

referencing (Yu et al., 2024c). In addition, we pro- 314

vide the results of its Chair metric in Appendix 315

D. Moreover, we also evaluate the performance of 316

TPO on four general benchmarks: SEED Bench (Li 317

et al., 2023a), MMBench (Liu et al., 2025), LLaVA 318

Bench (Liu et al., 2024c) and MM-Vet (Yu et al., 319

2023). These benchmarks are used to evaluate the 320

performance of the models on general tasks after 321

hallucination alignment. 322

Baselines We mainly compare TPO with the R1- 323

Onevision (Yang et al., 2025), LLaVA-1.5-7B SFT 324

model, as well as with the DPO and V-DPO (Xie 325

et al., 2024) methods trained using RLHF-V (Yu 326

et al., 2024b) data, along with two improved meth- 327

ods, CSR (Zhou et al., 2024b) and POVID (Zhou 328

et al., 2024a). Moreover, to evaluate the effec- 329

tiveness and robustness of TPO as the model size 330

increases, we further evaluate the performance of 331

TPO on the LLaVA-1.5-13B model and compared 332

it with DPO. Additionally, to demonstrate the ad- 333

vantages of TPO, we reproduced the strong base- 334

line method, RLHF-V, on LLaVA-1.5-13B and con- 335

ducted a comparison. Furthermore, we additionally 336

employ Qwen2-VL-7B (Wang et al., 2024b) as the 337

baseline mode and compare our TPO with DPO. 338

4.2 Main Results 339

In Table 2, we present the main results of our TPO 340

and baselines. In hallucination benchmarks, our 341

method shows significant improvements over all 342
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Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MMVet
R1-Onevision 80.2 85.7 3.85 36.46 63.74 50.47 62.80 35.2 – 83.7 67.8
LLaVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
+ DPO 77.5 82.1 2.14 58.33 37.36 37.21 43.84 66.4 73.3 69.1 31.6
+ CSR 73.2 76.1 2.05 60.42 43.08 41.16 47.48 65.9 73.0 68.9 31.0
+ POVID 71.9 74.7 2.26 55.21 42.86 41.63 47.56 66.1 73.2 68.2 31.7
+ RLHF-V 74.8 78.5 2.02 60.42 42.20 43.72 48.27 66.1 73.1 68.0 32.3
+ MDPO – – 2.39 54.00 – – – – – – –
+ V-DPO – 81.6 2.16 56.00 – – 51.63 – – – –
+ TPO (Ours) 79.3 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0
LLaVA-1.5-13B 71.3 73.1 2.38 53.13 44.40 36.51 46.94 68.2 76.7 73.1 36.1
+ DPO 83.2 86.9 2.47 51.04 45.49 43.49 50.22 68.6 76.6 72.8 37.5
+ RLHF-V 79.2 82.3 2.50 52.08 43.96 40.00 48.27 68.2 76.7 76.7 38.5
+ TPO (Ours) 83.9 88.0 2.72 45.83 44.40 46.05 50.93 68.7 76.8 72.8 36.2
Qwen2-VL-7B 86.5 90.0 3.5 29.0 67.0 48.8 64.0 45.0 79.0 82.4 61.4
+ DPO 86.5 90.0 3.7 28.1 67.3 49.3 64.5 45.0 79.0 81.9 60.2
+ TPO (Ours) 86.4 89.9 4.2 18.8 67.9 50.0 65.2 45.0 79.0 82.9 61.4

Table 2: Performence of LLaVA-1.5 on hallucination and general benchmarks. Score and Hall refer to the overall
GPT-4 (Achiam et al., 2023) score and hallucination rate, respectively. Easy represents the accuracy of with original
images, hard represents the accuracy with manually edited challenging images, and aAcc is the average accuracy for
each question. The results for POVID (Zhou et al., 2024a) and CSR (Zhou et al., 2024b) are based on our testing of
their open-source model weights, while the results for V-DPO (Xie et al., 2024), MDPO (Wang et al., 2024a) are
taken from previous work

.

previous methods for both the 7B and 13B mod-343

els, surpassing even the GRPO-based (Shao et al.,344

2024b) R1-Onevision model. Specifically, com-345

pared to the original LLaVA model, we achieve346

improvements of 20.4 % on AMBER F1, 22.8% on347

the MMHAL score, and 8.5% on HallusionBench348

aAcc at most. This validates the effectiveness of349

our method in helping the model mitigate hallucina-350

tion issues and improve the performance of visual351

question answering.352

Notably, on the HallusionBench evaluation met-353

rics, "Easy" represents the accuracy of original354

image-based questions, which tend to rely on prior355

knowledge, while "Hard" represents the accuracy356

of questions based on manually edited images,357

which tend to rely on visual information. Our358

method leads to the most significant improvement359

for the original model on hard questions. This indi-360

cates that our approach enables the model to focus361

more on visual information rather than textual prior362

knowledge to provide accurate answers.363

In general benchmarks, our approach remains364

stable against the backbone models and achieves365

improvement on most benchmarks. We attribute366

it to our method helping the model associate with367

more visual information when answering questions.368

This shows that our approach can improve halluci-369

nation issues while maintaining good performance 370

in general evaluation tasks. 371

4.3 Results on Qwen2-VL-7B 372

As Table 2 shown, we report the results on the key 373

metrics of three hallucination benchmarks. The 374

results indicate that our TPO outperforms DPO 375

on most benchmarks. On Qwen2-VL-7B, which 376

has strong inherent capabilities, using 5K RLHF-V 377

data for DPO alignment barely improves the per- 378

formance. However, introducing TPO leads to a 379

significant further enhancement. This demonstrates 380

that TPO can capture and learn more subtle prefer- 381

ences from the data and brings higher data utiliza- 382

tion efficiency. In addition, the results on the chair 383

metric in Figure 6 further demonstrate that TPO 384

can also significantly solve the object hallucination 385

problem of Qwen2-VL-7B. 386

4.4 Ablation Studies 387

Visual-Anchored Rewards Table 3 demon- 388

strates that TPO can enhance model performance 389

when rewards are assigned separately to positive 390

and negative samples, achieving results compara- 391

ble to those obtained by rewarding both simultane- 392

ously. However, by providing opposite rewards to 393

positive and negative samples, where rewards are 394

negatively correlated with the visual relevance of 395

6



Figure 3: Comparison of attention weights for LLaVA before and after TPO training. Each horizontal line represents
the mean of that data. The blue section response incorrectly, with many ’visual-anchored tokens’ tokens having high
attention weights but resulting in hallucinated responses (e.g. USB). The red section on the right answered correctly.

Figure 4: The curve of changes in self-calibrated re-
wards for positive and negative samples over training
steps, with a sample point taken every 10 steps.

positive samples and positively correlated with that396

of negative samples, TPO’s performance signifi-397

cantly deteriorates. In some metrics, this approach398

yields even poorer results than the original LLaVA-399

1.5 model. This further underscores the validity of400

the designation of visual-anchored rewards.401

Hyperparameters To optimize the hyperparam-402

eters in TPO, we perform comparative experiments403

on the noise steps (Section 3.2) and parameter a in404

Equation 5. As the Figure 5 shown, the model per-405

forms best with 500 noise steps. Testing a across406

the range a = [0, 0.5, 1], we find that a=0.5 pro-407

duces the best outcome. This supports our hypothe-408

sis that setting s = 0 and c = 1, without adding ex-409

tra reward signals, leads to superior performance2.410

2The more detail results and discussions are provided in
Appendix.

4.5 Analysis 411

Visual-Anchored Rewards As Figure 1 shown, 412

the proposed visual-anchored rewards can reflect 413

the degree to which a token depends on visual in- 414

formation. To further prove this statement, we 415

construct the analysis experiment on the MMhal 416

dataset as shown in Table 4. Intuitively, nouns 417

and adjectives in responses are thought to most 418

associate the content of an image. Therefore, we 419

first perform part-of-speech (POS) tagging on the 420

model responses and count the average number of 421

noun/adjective tokens and other types of tokens. 422

Specifically, in the ground-truth responses, 39.6% 423

of the tokens are nouns or adjectives. In the re- 424

sponses from LLAVA-1.5-7B, the proportion of 425

noun and adjective tokens remains nearly constant 426

at 39.2%, both before and after TPO. 427

Afterwards, we count the average score from 428

Equation 4 of noun/adjective tokens and other types 429

of tokens. The results show that noun and adjec- 430

tive tokens have significantly higher scores than 431

other types, indicating higher relevance to images. 432

After applying TPO, these scores of all the tokens 433

increased notably. The results supports our con- 434

clusions: 1) The visual-anchored rewards reflects 435

token-image relevance. 2) TPO enhances the align- 436

ment of generated tokens with image content. 437

Attentions To further validate TPO’s effective- 438

ness in enhancing visual alignment, we measure 439

the relevance using the sum of attention weights 440
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Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLaVA-1.5-7B 71.70 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
Only Win 79.10 84.5 2.24 56.25 44.62 46.05 50.40 66.6 73.6 69.8 31.7
Only Loss 79.20 84.8 2.33 53.13 42.20 47.91 49.87 66.6 73.5 70.7 32.0
Opposite 75.30 80.7 1.91 64.58 42.42 45.58 48.63 65.6 73.1 68.9 32.1
TPO (Ours) 79.30 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 3: Ablation Studies. Performence of LLaVA-1.5 on hallucination and general benchmarks.

Figure 5: Performance curves with the change of the
noise steps-(a) and the change of parameter a-(b), We
separately present the F1 of AMBER, the hallucination
rate of MMHAL, the aACC of HallusionBench, and the
average value of the general benchmarks. More detailed
metrics can be found in the Appendix B.

between responses and images. On the MMHal441

dataset, the overall image attention weights for442

LLaVA-1.5-7B increased from 0.14 before TPO443

training to 0.17 afterward. Additionally, Figure 3444

visualizes the cases, showing a significant increase445

in image attention weights for response tokens, es-446

pecially for visual-anchored tokens (e.g., table,447

cord). This highlights our method’s success in448

improving the model’s integration of visual infor-449

mation, thus reducing hallucinations.450

Self-Calibration To illustrate that our method451

enables the model to progressively enhance its fo-452

cus on visual information through continuous self-453

Average score Noun/Adj Others
Ground Truth 1.83 0.90
Ground Truth (TPO) 5.72 4.87
Response of LLaVA 1.48 0.83
Response of LLaVA+TPO (TPO) 5.67 4.59

Table 4: Average score from Equation 4 of Noun/Adj to-
kens and other tokens. Here, Ground Truth and Ground
Truth (TPO) represent the scores calculated for the
ground truth answer using LLaVA-1.5-7B and LLaVA-
1.5-7B+TPO. Response of LLaVA and LLaVA+TPO
(TPO) correspond to the outputs before and after TPO
training and the scores calculated by LLaVA-1.5-7B and
LLaVA-1.5-7B+TPO, corresponding to Fiure 1.

calibration during training, we present the evolu- 454

tion of scores for positive and negative samples, as 455

calculated by Equation (5), across various training 456

steps. With a = 0.5, it follows that cyi ∈ (0.5, 1.5). 457

As shown in Figure 4, the scores for positive sam- 458

ples gradually approach their maximum values, 459

while those for negative samples approach their 460

minimum values, indicating convergence. This 461

trend illustrates the self-calibrating effect of our 462

method, which ultimately enhances the model’s 463

ability to focus on visual information. 464

5 Conclusion 465

In this study, we propose a novel pereference align- 466

ment method, TPO, to mitigation hallucinations in 467

LVLMs. TPO incorporates a self-calibrated visual- 468

anchored reward mechanism that automatically 469

identifies "vision-anchored tokens" and adaptively 470

assigns appropriate rewards to them. By adding 471

noise to the visual input and capturing changes in 472

the generation probability of each token, TPO com- 473

putes a score indicating each token’s relevance to 474

visual information. Based on the self-calibrated 475

visual-anchored reward, TPO can perform more ef- 476

ficient token-level preference alignment optimiza- 477

tion for LVLMs. Experimental results have proved 478

that TPO not only alleviates the hallucination prob- 479

lem but also strengthens the model’s attention to 480

visual input when generating responses. 481
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6 Limitation482

Although our method has achieved outstanding483

performance in addressing the hallucination prob-484

lem, the self-calibrated visual-anchored rewards485

approach we used in this paper can be extended to486

even broader areas. By altering the way noise is487

added to images, we can shift from adding noise488

to the entire image to adding noise to specific key489

objects. It can enable the model to specifically490

improve its focus on image information in certain491

domains, thus having extensive industrial applica-492

tions. Besides, we believe that the core part of the493

TPO method, the visual-anchored reward scoring494

method, possesses strong extensibility. For exam-495

ple, these token-level rewards can also be used to496

weight the probability distributions in the calcu-497

lations for other RLHF methods, enhancing the498

visual attention of multimodal models.499

We will continue to expand in this direction, and500

we believe that the technology we have proposed in501

this paper has a vast space for further development502

and application.503

7 Ethic Statement504

The main purpose of this article is to alleviate505

the hallucination problem in LVLM using rein-506

forcement learning method. By employing a self-507

calibrated visual-anchored reward approach, we508

propose the TPO method, which significantly ad-509

dresses the hallucination issue and helps the model510

connect with more visual information. All the mod-511

els and datasets we used are open source, so we512

believe that the work in this paper does not pose513

any potential threats.514
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A Implement Details 754

A.1 Setup 755

In our experiments, we trained the LLaVA-v1.5 756

model. For our TPO method and the vanilla DPO 757

method, we set the maximum learning rate to 5e-8 758

on the 7B version and trained for 4 epochs. We 759

set the maximum learning rate to 2e-7 on the 13B 760

version and trained for 4 epochs. The RLHF-V 761

training was set according to the paper (Yu et al., 762

2024b). All parts requiring GPT-4 evaluation use 763

the GPT-4-0613 8K version, and the MM-Vet test- 764

ing is conducted on the official evaluation website. 765

During the training process, we froze the vision 766

encoder and only trained the LLM. 767

We also trained the Qwen2-VL model. For our 768

TPO method and the vanilla DPO method, we set 769

the maximum learning rate to 5e-9 for 7B model, 770

1e-9 for 2B model and trained for 4 epochs. 771

For a fair comparison, we set the seed to 42 dur- 772

ing training and greedy decoding was used during 773

inference. 774

Our experiments were all conducted on a server 775

equipped with 8 Nivdia A100 GPUs; in specific 776

cases (such as the 13B model), we utilized 32 Niv- 777

dia A100 GPUs. For the hyperparameter settings, 778

all hyperparameters are consistent with those of 779

our main experiment. Moreover, the level of diffu- 780

sion noise in our model is represented by a formula 781

ξ = Sigmoid(lt)× (0.5× 10−2 − 10−5) + 10−5, 782

where lt is a list of 1,000 numbers taken at equal 783

intervals over the interval [−6, 6], and ϵ ∈ N(0, 1). 784

The cases in Figure 1 and Figure 3 come from 785

benchmarks (Sun et al., 2023), while the cases in 786

Figure 2 come from the RLHF-V training set (Yu 787

et al., 2024b). 788

A.2 Benchmarks 789

The three hallucination benchmarks: (1) AMBER : 790

a multi-dimensional hallucination benchmark with 791

more than 15K samples, including discriminative 792

and description tasks. (2) MMHal-Bench : it mea- 793

sures the hallucination rate and informativeness of 794

responses. (3) HallusionBench : it evaluates visual 795

illusions and knowledge hallucinations through sys- 796

tematically structured discriminative tasks. 797
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Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLAVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
0 setp 77.6 82.6 2.10 58.33 44.40 45.35 49.42 66.2 73.2 69.9 32.1
250 steps 79.0 84.5 2.33 53.13 43.52 46.05 49.51 66.6 73.4 68.5 31.3
750 steps 79.30 85.0 2.40 52.08 41.76 48.14 50.04 66.7 73.5 69.2 32.8
999 steps 79.20 85.0 2.41 52.08 41.76 47.67 49.69 66.7 73.5 69.2 33.3
500 steps (Ours) 79.30 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 5: Detail of Figure 5 (a).

Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLAVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
a = 0 79.2 83.0 2.24 56.25 42.20 43.72 48.27 66.6 73.5 68.4 32.8
a = 1 79.2 84.9 2.44 48.96 41.54 47.44 49.60 66.7 73.6 70.8 33.1
a = 0.5 (Ours) 79.3 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 6: Detail of Figure 5 (b).

The four general benchmarks: (1) SEED Bench :798

a benchmark for LVLMs on generative comprehen-799

sion. (2) MMBench: a comprehensive benchmark800

designed to evaluate the capabilities across vari-801

ous tasks and modalities. (3) LLaVA Bench: a802

benchmark for evaluating multi-modal conversa-803

tion, detailed description, and complex reasoning.804

(4) MM-Vet: a benchmark to assess integrated ca-805

pabilities.806

A.3 Training Efficiency807

In TPO, generating corrupted images at each808

step incurs almost no time cost, as it is done809

during the initial data preparation. The main810

time consumption comes from calculating logits811

plog(yi|x, vc, y<i) for the noisy images.812

We have also conducted a careful analysis of813

the time consumption for LLava-1.5-7B under the814

settings in Section A.1, the training durations for815

DPO and TPO were 1 hour 24 minutes and 1 hour816

57 minutes, respectively, indicating about a 40%817

increase in time. Nevertheless, all training methods818

aimed at eliminating hallucinations inevitably in-819

cur additional time costs, compared to other meth-820

ods requiring fine-grained annotations, our self-821

calibrated approach with 40% time increase proves822

to be sufficiently efficient.823

It has also shown superior outcomes on 5K train-824

ing data training to CSR training on 13K data and825

POVID training on 17K data. This highlights the826

efficacy of our method in guiding the model to pay827

more attention to image details and in reducing hal-828

lucinations. We promise we will further elaborate 829

on our efficiency in detail in the final version. 830

B Ablation Analysis 831

Noise Step We ablate on the noise steps in Fig- 832

ure 5 (a). As shown, the optimal performance is 833

achieved at the step of 500. This medium corrup- 834

tion enables the model to grasp the general outline 835

of the image while missing the detailed contents, 836

which is prone to generate hallucinations of the 837

visual-anchored tokens. 838

The Figure also shows when step=0, TPO still 839

effective and significantly better than DPO. This 840

confusion is a code-implementation issue. In im- 841

plementation as shown in Listing 1, we first convert 842

the image into a tensor, add noise, and then convert 843

it back into an image. This encode-decode process 844

introduces some losses. Our method of setting the 845

noise step to 0 serves as an ablation experiment to 846

test the impact of this loss on our method, and it 847

allows our experiment to more comprehensively 848

demonstrate the advantages of TPO. The following 849

portion of code may help you better understand 850

our encode-decode process for adding noise. We 851

will also open source all the code once the paper is 852

accepted. 853

Parameter a We conduct experiments by vary- 854

ing the parameter a introduced in Equation (5) 855

with the results shown in Figure 5 (b). By setting 856

a = [0, 0.5, 1], we observed consistently good per- 857

formance across all configurations. This suggests 858
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that effective performance is achieved as long as859

the reward mechanism successfully highlights to-860

ken differences and identifies visually anchored to-861

kens. Notably, the best overall results are obtained862

with a = 0.5, validating our proposed method and863

hypothesis. This indicates that when the visual-864

anchored score s = 0, setting c = 1, not intro-865

ducing additional reward signals can yield better866

outcomes.867
868

pil_to_tensor = transforms.ToTensor ()869
tensor_to_pil = transforms.ToPILImage ()870
image = Image.open(default_image_path).871

convert("RGB")872
image_tensor = pil_to_tensor(image)873
image_noisy = add_diffusion_noise(874

image_tensor , 500)875
image_noisy = tensor_to_pil(image_noisy)876877

Listing 1: Example Python Code for Noise Addition

C Comparison with Related Methods878

To more comprehensively highlight the advantages879

of the TPO method, we conducted comparisons880

with other related works (Jiang et al., 2024; Yue881

et al., 2024; Xiao et al., 2025; Sarkar et al., 2024;882

Zhao et al., 2023; Leng et al., 2024; Huang et al.,883

2024; Zhou et al., 2023) aimed at addressing the884

hallucination problem. The results show that TPO885

achieves more significant hallucination reduction.886

Preference alignment and decoding strategies887

are two important and parallel categories of meth-888

ods for hallucination mitigation. We believe that889

training with preference alignment offers several890

advantages: 1) Direct Optimization of Output891

Preferences: This approach directly optimizes the892

model’s output to align with desired preferences893

without requiring changes to the decoding strategy.894

2) Higher Inference Efficiency: Preference align-895

ment typically results in more efficient inference, as896

it does not introduce additional complexity during897

the decoding process.898

One key advantage of decoding methods is that899

they do not require retraining the model, making900

them highly efficient for deployment. However,901

this does not preclude the benefits of preference902

alignment. In fact, we believe combining these two903

approaches can yield even better results.904

D Results on Object Hallucination905

In the AMBER benchmark, there is a subset for906

evaluating object hallucinations in image descrip-907

tion tasks. Since this paper focuses on visual ques-908

tion answering, this part of the experiment is in-909

Method AMBER MMHal

Acc F1 Score Hal↓
LLaVA-1.5-7B 71.7 74.3 2.01 61.46
VCD 71.8 74.9 2.12 54.20
LURE 73.5 77.7 1.64 60.40
OPERA 75.2 78.3 2.15 54.20
HACL 2.13 50 - -
EOS 2.03 59 - -
HA-DPO 1.97 60 75.2 79.9
HALVA 2.25 54 - 83.4
DPO 77.5 82.1 2.14 58.33
TPO 79.3 85 2.47 51.04
LLAVA-1.5-13B 2.38 53 71.3 73.1
HSA-DPO 2.61 48 - -
HALVA 2.58 45 - 86.5
DPO 2.47 51 83.2 86.9
TPO 2.72 46 83.9 88

Table 7: Comparison of Results

Figure 6: Chair Performance Comparison.

cluded in this section. To assess the proportion of 910

object hallucinations in image descriptions, AM- 911

BER uses Chair as the metric. 912

The results are shown in Figure 6. Note that 913

’Chair’ represents the hallucination ratio, where a 914

smaller value indicates better model performance. 915

To more clearly illustrate the comparison between 916

methods in the figure, we use 10 − chair as the 917

indicator. The results show that TPO can not only 918

mitigate the hallucination in visual question an- 919

swering, but also eliminate the object hallucination 920

in image descriptions to a certain extent. 921

E Comparison of Different Noise Adding 922

Methods. 923

To evaluate the impact of different methods of 924

adding noise to images on our approach, we test 925

a scheme where noise images were replaced with 926

white images under the same experimental condi- 927

tions. The results, shown in Table 8, demonstrate 928

the superior performance of our method. We be- 929
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Method
AMBER MMHal HallusionBench

Acc F1 Score Hal↓ Easy Hard aAcc
LLaVA-
1.5-7B

71.7 74.3 2.01 61.5 42.6 41.2 47.2

+TPO
(white)

78.0 82.7 2.26 55.2 44.2 45.4 49.3

+TPO 79.3 85.0 2.5 51.0 41.8 48.4 50.2

Table 8: Comparison of different noise adding method.
“white" indicates that blank images are used in place of
noisy images.

lieve that the noise addition method used in our pa-930

per can control noise levels to create images that are931

more likely to induce hallucinations in the model,932

thereby achieving better results.933
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