
Cache Me If You Must: Adaptive Key-Value Quantization
for Large Language Models

Alina Shutova * 1 Vladimir Malinovskii * 2 1 Vage Egiazarian * 3 Denis Kuznedelev 2 Denis Mazur 4 5

Nikita Surkov 6 Ivan Ermakov 5 Dan Alistarh 3

Abstract
Efficient real-world deployments of large lan-
guage models (LLMs) rely on Key-Value (KV)
caching for processing and generating long out-
puts, reducing the need for repetitive computation.
For large contexts, Key-Value caches can take
up tens of gigabytes of device memory, as they
store vector representations for each token and
layer. Recent work has shown that the cached
vectors can be compressed through quantization,
pruning or merging, but these techniques often
compromise quality towards higher compression
rates. In this work, we aim to improve Key &
Value compression by exploiting two observa-
tions: 1) the inherent dependencies between keys
and values across different layers, and 2) the ex-
istence of high-compression methods for internal
network states (e.g. attention Keys & Values).
We propose AQUA-KV, an adaptive quantiza-
tion for Key-Value caches that relies on compact
adapters to exploit existing dependencies between
Keys and Values, and aims to “optimally” com-
press the information that cannot be predicted.
AQUA-KV significantly improves compression
rates, while maintaining high accuracy on state-
of-the-art LLM families. On Llama 3.2 LLMs, we
achieve near-lossless inference at 2-2.5 bits per
value with under 1% relative error in perplexity
and LongBench scores. AQUA-KV is one-shot,
simple, and efficient: it can be calibrated on a sin-
gle GPU within 1-6 hours, even for 70B models.

1. Introduction
Large Language Models (LLMs) are revolutionizing natural
language processing, but come with major computational
costs, in particular due to the input-quadratic complexity of

*Equal contribution 1HSE University 2Yandex 3ISTA
4SberDevices 5MIPT 6T-Bank. Correspondence to: Dan Alistarh
<dan.alistarh@ist.ac.at>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

3 8 70
Parameters (B)

0

10

20

30

40

50

60

Av
er

ag
e

Lo
ng

B
en

ch
 S

co
re

20.6

37.2

46.144.3
47.8

52.8

44.6
48.1

52.9
KVQuant (2.33 bit) AQUA-KV (ours, 2.09 bit) Baseline (BF16)

Figure 1. Comparison of AQUA-KV to alternative Key-Value
Cache compression methods for Llama 3.x models in terms of
average LongBench score on 14 english tasks (see Section 4).

attention-based Transformer models (Vaswani, 2017). To
achieve faster inference and avoid wasteful recomputation
of attention scores during autoregressive generation, KV
caching is typically employed, where keys and values are
saved for later use. Unfortunately, KV-caching comes with
its own pitfalls: KV caches are large, especially when han-
dling long sequences (Bai et al., 2023; Xiao et al., 2023).
Thus, the memory footprint of a full-length Key-Value cache
can reach tens of gigabytes of device memory, sometimes
more than the model itself1. This massive memory consump-
tion increases the cost of deployment, and also slows down
inference, as the whole process can become memory-bound
for large caches (Hooper et al., 2024).

Previous work has proposed methods to compress KV
caches using various methods such as quantization and prun-
ing (Li et al., 2024a), that can significantly reduce the mem-
ory footprint of KV caches. Yet, as we increase the degree
of compression, e.g. 2 bits per value, existing compression
techniques begin to lose significant information, resulting
in poor accuracy (Li et al., 2024c).

In this work, we aim to improve KV cache compression by
taking advantage of the inherent structure and dependencies
in the cache tensors. Specifically, we analyze the Key-Value
cache behavior for state-of-the-art LLMs and find several

1For the popular Llama 3.2 3B model (Dubey et al., 2024)
with a maximum context length of 217 tokens (≈131K), the 16-bit
cache takes up 15GB per sequence. For Llama 3.1 70B and Qwen
2.5 72B, it is 42.9GB per sequence.

1

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

strong inter-dependencies 1) between cached vectors from
adjacent layers, but also 2) between the keys and values
within one layer.

Starting from these observations, we formulate a practi-
cal compression algorithm that explicitly leverages these
inter-dependencies, by training compact linear predictors
that capture mutual information between cache components.
Further, to offset prediction errors, we use data-free vector
quantization to achieve a superior compression-accuracy
trade-off for the same bit-width. Our method requires only
minimal calibration, is compatible with arbitrary quantiza-
tion schemes and can be further combined with orthogonal
compression techniques such as pruning.

In summary, our contributions are as follows:

1. We analyze the structure of key-value caches in modern
LLMs and highlight several sources of mutual informa-
tion that can be leveraged for compression.

2. We propose AQUA-KV — a novel compression frame-
work that exploits inter- and intra-layer dependencies to
improve quantization accuracy. AQUA-KV works in one
shot, based on a lightweight calibration procedure, and
shows competitive size-accuracy trade-offs. Additionally,
it is compatible with arbitrary quantization techniques,
and can be combined with additional compression, such
as pruning.

3. We validate the effectiveness of AQUA-KV on modern
LLM families in terms of both perplexity and zero-shot
accuracy on long-range benchmarks, where AQUA-KV
significantly improves accuracy across model types and
bitwdiths, particularly for 2-bit compression.

4. We test AQUA-KV compatibility with various quantiza-
tion and pruning schemes, from simple uniform quantiza-
tion, to modern data-free vector quantizers (Malinovskii
et al., 2024b) and hybrid quantization & pruning regimes.

5. We develop a reference implementation for AQUA-KV
calibration and inference, which is available online2.

2. Background and Related Work
2.1. KV-Cache Compression

So far, the main focus of work on LLM compression has
been on the weight quantization, e.g. (Frantar et al., 2022;
Lin et al., 2023; Tseng et al., 2024a; Egiazarian et al., 2024).
Recently, there has been a growing demand for KV-cache
compression, especially in tasks requiring long contexts.
The dynamic nature of KV-caching poses unique challenges:
while for weights it is acceptable to use “slow but accu-
rate” compression such as codebook-based methods (Tseng
et al., 2024a; Egiazarian et al., 2024)—given that weights
are only decoded at inference time—for the KV-cache, both

2https://github.com/goodevening13/aquakv

compression and decompression speeds matter, since we
are dynamically adding new entries to the cache as well as
decoding them at inference time. Another issue is posed by
the inherent structure in caches, in particular, the existence
of attention sinks (Xiao et al., 2023) and large outlier val-
ues (Liu et al., 2024c; Hooper et al., 2024; Liu et al., 2024a),
which may not be present in the weights. Next, we detail
the main approaches for KV-cache quantization.

KV-Cache quantization approaches can be roughly catego-
rized based on quantization granularity and error handling.

Quantization Granularity. Several approaches have been
developed with varying quantization granularities. For in-
stance, ZipCache (He et al., 2024) and WKVQuant (Yue
et al., 2024) implement channel-separable token-wise
quantization, while KVQuant (Hooper et al., 2024) and
KIVI (Liu et al., 2024c) employ a hybrid approach, using
per-channel quantization for key tensors while applying per-
token quantization for value tensors. QJL (Zandieh et al.,
2024) introduces a specialized JL transform for key ten-
sors combined with per-token quantization for value tensors.
Methods like MiKV (Yang et al., 2024b), QAQ (Dong et al.,
2024), and SKVQ (Duanmu et al., 2024) employ variable
bit widths to balance accuracy and memory reduction.

Error Handling. Among the strategies used to address
quantization errors, GEAR (Kang et al., 2024) compensates
for errors using a low-rank matrix; to handle outliers, which
can significantly impact model performance, IntactKV (Liu
et al., 2024b) maintains full precision for outlier values.
QuaRot (Ashkboos et al., 2024) transforms weight matrices
using Hadamard orthogonal matrices to “smoothen” quanti-
zation outliers without affecting model output. Palu (Chang
et al., 2024) compresses KV cache through low-rank projec-
tion, while ZDC (Zhang & Shen, 2024) aims to eliminate
compression overhead through a novel zero-delay compres-
sion scheme. Most methods maintain a window of recent
historical KV cache in full precision to preserve accuracy.

Cross-Layer Merging. An alternative compression ap-
proach, which has been relatively less investigated, has been
to define layer groups, and keep a single KV-Cache per
layer group, reusing the one cache across all layers in the
group. KVSharer (Yang et al., 2024c) observes that, sur-
prisingly, sharing the caches that are most dissimilar, by
the Euclidean distance, performs better than sharing similar
ones. (This is identified using a calibration dataset.) Fur-
ther, MiniCache (Liu et al., 2024a) merges pairs of layers,
and stores a common interpolated directional vector and
token-wise scalar scales. Additionally, outlier tokens are
retained to increase accuracy. During inference, keys and
values of the two layers are restored from the shared vector
representation using saved scales.

KV Cache Pruning. Pruning methods aim to determine
unnecessary parts of KV Caches and either evict them en-

2

https://github.com/goodevening13/aquakv

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

tirely, or offload to cheaper memory (e.g. CPU). Current
research focuses on token-level pruning, e.g. determining
which tokens should be discarded or offloaded. They can be
split into static methods and dynamic methods.

Static methods use predefined position heuristics to deter-
mine important tokens. An example is Fastgen (Ge et al.,
2023), which employs knowledge of attention structure in
attention heads, acquired during prefill, to identify one of the
tailored attention structures for each head. This knowledge
is then used during inference to efficiently evict unnecessary
tokens. StreamingLLM (Xiao et al., 2023) notices that ini-
tial tokens (attention sinks) and recent tokens consistently
exhibit high importance. The method retains several tokens
in the beginning and a number of recent tokens, thus main-
taining constant-size KV cache, facilitating deployment in
memory-constrained scenario.

Dynamic methods calculate importances dynamically, typ-
ically using runtime information about attention distribu-
tion. H2O (Zhang et al., 2023) calculates token importances
dynamically during inference using accumulated attention
scores. It selects the least important tokens during each
forward pass (if the cache is larger than desired) and thus
maintains constant cache size. SnapKV (Li et al., 2024b)
calculates token importances using attention features; un-
like H2O, SnapKV thresholds token importances, allowing
prompt compression during prefill.

For our work we choose to conduct experiments using H2O
pruning as it is a well-established plug-and-play method.
However, we emphasize that our method is orthogonal to
pruning and AQUA-KV can be combined with any cache
eviction strategy. AQUA-KV integrates both Quantization
and Cross-Layer Merging strategies. It can be regarded as
more advanced Layer Merging approach via training a small
supplementary model, referred to as predictor, capturing
inter-layer dependencies of KV caches.

Vector Quantization recently emerged as a popular option
for LLM quantization (Egiazarian et al., 2024; Tseng et al.,
2024b; van Baalen et al., 2024) since it allows to jointly
quantize multiple individual model dimensions and can lead
to state-of-the-art accuracy-vs-compression (Tseng et al.,
2024c; Malinovskii et al., 2024a). However, the extremely
large computational cost of encoding makes such methods
impractical in the context of KV-cache compression.

We resolve this issue, and leverage the power of VQ in an
efficient way, by adapting the HIGGS weight quantization
technique (Malinovskii et al., 2024b) to KV-Cache compres-
sion. HIGGS combines group-wise vector quantization with
a Randomized Hadamard Transformation (RHT): the RHT
projects the original values onto a “rotated” space, where
they will be normally-distributed. In the quantization step,
the rotated values are grouped and rounded to the nearest

points on a lattice, which is specifically optimized for ac-
curate quantization of normally-distributed vectors. This
allows HIGGS to achieve fast data-free weight quantiza-
tion. The technique requires several modifications to be
applied to Key-Value caches, which we detail in Section 4.2.
Finally, our approach is conceptually related to Residual
Vector Quantization (RVQ) (Gray & Neuhoff, 1998), but
using learned predictors instead of standard quantization.

Linearity between adjacent layers. Prior work (Razzhi-
gaev et al., 2024) has shown that there is a almost linear
relationship between activations in sequential layers in trans-
former language models due to the presence of skip connec-
tions. We leverage this property for the design of KV-cache
predictors.

3. Method
The core idea of AQUA-KV is to leverage inter-
dependencies between consecutive KV-caches to improve
compression. For this, we train compact predictors that
“guess” the value of a Key & Value pair using other
cache entries, then quantize the residual information
that could not be predicted. This way, we only store the
information that cannot be recovered from other sources.

In Section 3.1, we analyze the dependencies between var-
ious KV cache components to determine the type of pre-
dictors that achieves the best size-accuracy trade-off. In
Section 3.2, we formulate a practical one-shot algorithm
that fits these predictors for use in KV cache compression.
Finally, in Section 3.3 we describe a number of important
implementation details for using AQUA-KV in practice.

3.1. Analysis of Inter-Layer Dependencies

The efficacy of our approach depends on choosing which
types of inter-dependencies to exploit. To make this choice,
we analyze the dependencies between cached vectors at
different layers or tokens, and between (key & value) vectors
within the same layer. Note that we do not expect the values
in these vectors to be equal or even numerically close—
indeed, a simple examination shows that this is not the case.
Instead, we look for consistent dependencies between these
components that can be extracted with simple models.

To measure dependencies between vectors at nearby layers,
we adopt an approach similar to probing (Alain & Bengio,
2016): we train linear “probe” models whose goal is to
predict the contents of a particular cache component, e.g. i-
th layer keys or values, based on inputs from various sources.
As potential sources, we consider the previous layer keys
and values, adjacent tokens, and different vector types (i.e.
using the keys to predict values and vice versa).

We can then measure the relative prediction error for such
probes, based on small amounts of calibration data. More

3

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

L-3 L-2 L-1 all T-3 T-2 T-1 all KL 1 VL 1KVL 1 VL
0.00

0.25

0.50

0.75
Predict Keys

L-3 L-2 L-1 all T-3 T-2 T-1 all KL 1 VL 1KVL 1 KL
0.00

0.25

0.50

0.75
Predict Values

Figure 2. Mean Explained Variance Ratios by linear probes from
previous blocks (L), tokens (T) and role on Llama-3.2-3B.

Figure 3. An intuitive scheme of the AQUA-KV inference.
Only the quantized residuals are saved for each block.

specifically, we measure the explained variance ratio to
account for unequal scales of keys and values between lay-
ers. Intuitively, if a predictor captures 90% of the variance,
it means that the subsequent quantization only needs to
capture the remaining 10% of variance. For compression
methods that are scale-independent 3(Horváth et al., 2023)
this would mean that the resulting quantization will also
have roughly 10 times smaller error.

Note that not all predictors will be practical for Key-Value
compression. For instance, if a predictor uses a subsequent
block or future token KV vectors as inputs for the current
ones, it would be difficult to inference the model with such
KV cache as it goes against the order in which the blocks
execute. Hence, we consider the following:

• Previous blocks: same token vectors for -1, -2, -3 blocks;
• Previous tokens: same layer, -1, -2, -3 previous tokens;
• Different role: using keys to predict values and vice versa.

We report these errors in Figure 2. For comparison, 1-bit
and 2-bit quantizers usually explain 0.75 and 0.89 variance,
respectively. In other words, they have 0.25 and 0.11 rela-
tive quantization errors. Intuitively, if a probe can predict
keys/values with the same relative error as the 1- or 2-bit
quantizer, it means that we can use 1 less bit for quantization
(e.g. 3-bit instead of 4-bit) after the residual with, on aver-
age, the same accuracy. While this is not a strict guarantee,
we found that it holds well for real-world LLMs, as can be
seen in Sections 4.1 and 4.2.

We train linear probes for Llama-3.2-3B Key-Value cache
on a sample of RedPajama (Weber et al., 2024) sequences,
then evaluate relative error on hold-out sequences from
the same source. For readability, the detailed experiment
configuration is deferred for Appendix A.

The findings in Figure 2 demonstrate strong dependencies

3Formally, a scale-independent quantizer Q(·) satisfies
∀X, ∀α>0, ||Q−1(Q(αX))−αX||2 = α||Q−1(Q(X))−X||2.
Modern quantizers satisfy this due to the use of scales.

between several cache components. For attention keys, us-
ing just one previous layer already achieves errors similar to
2-bit quantization. For values, the dependency on previous
layer is also strong: though less accurate than for keys, the
previous layer values consistently explains more than half
of the variance for the same token. We attribute this strong
dependency to the fact that transformer architecture is resid-
ual, and therefore, adjacent hidden states are only off by a
single transformer layer. Since Key-Value representations
are constructed as linear projections of adjacent residual
hidden states, they are also interdependent.

More distant layers are also predictive of the current layer,
but the dependency quickly deteriorates with the distance.
More importantly, there is almost no difference between
using multiple past layers and just the previous layer, which
allows us to simplify the algorithm. See Appendices B & D
for additional exploration and downstream results.

We also observe strong dependencies between keys and
values within the same layer. This is also not unexpected,
as these vectors are linear down-projections from the same
input vector within the attention layer. The reason why there
is no additional information between matching keys/values
is that in modern LLMs the key/value dimensions are both
significantly smaller than the input vector dimension due to
Grouped Query Attention (GQA, Ainslie et al. 2023).

In contrast, we found relatively little predictive power from
past tokens. While there is mutual information between
adjacent tokens, using a single previous token is not enough
to capture this dependency, and using many multiple tokens
or a more expressive probe would make the resulting KV
cache compression inefficient.

Some of our observations above correlate with the results
from Liu et al. (2024a), who were able to “share” some of
the cache entries. However, such direct merging is a drastic
approach, that can lead to significant accuracy loss. From
the perspective of Figure 2, this is because the information
recovered by a probe is not enough by itself, never exceeding

4

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

the equivalent of a 2-bit quantizer. In contrast, we employ a
more fine-grained approach that combines predictors with
residual quantization to achieve more accurate compression.

Algorithm 1 AQUA-KV Calibration

Require: model, data, quantization method Q
1: X← model.input embeddings(data)
2: Kold,Vold ← ∅
3: predictors← {}
4: for i = 1, . . . ,model.num layers do
5: block← model.transformer layers[i]
6: (K,V)← block.get attention kv(X)
7: X← block(X)

8: if Kold = ∅ and Vold = ∅ then
9: Kold,Vold ← K,V

10: continue
11: end if
12: # Predict keys from past keys
13: fkey ← argminf ∥f(Kold)−K∥22
14: Kresidue ← Q−1(Q(K− fkey(Kold)))
15: Krec ← fkey(Kold) +Kresidue

16: # Predict values from past values and current keys
17: fvalue ← argminf ∥f([Vold;Krec])−V∥22
18: Vresidue ← Q−1(Q(V − fvalue([Vold;Krec])))
19: Vrec ← fvalue([Vold;Krec]) +Vresidue

20: predictors[i] = (fkey, fvalue)
21: Kold,Vold ← Krec,Vrec
22: end for
23: return predictors

3.2. The AQUA-KV Algorithm
Based on the findings from the previous section we design
a cache compression algorithm that leverages the structure
of Key-Value cache to improve compression.

We choose the following predictor configuration: (1) we
use the previous layer keys to predict the subsequent keys;
and (2) we use both previous layer values and current layer
keys to predict values. Note that we do not use the depen-
dency between same layer K and V vectors in the VL→KL

direction: this is because we cannot predict in both direc-
tions simultaneously during inference, and we found that
the values are overall harder to predict (see Figure 2), so
we opted to improve value predictor. We also purposefully
leave out other possible input sources, such as more distant
past layers. While using these layers can slightly improve
reduce error, it would also make the predictors themselves
larger and more compute-intensive.

The way AQUA-KV trains those predictors is also different
from Section 3.1. This is because, in practical KV cache
compression, the predictors do not have access to ground-
truth past KVs during inference. Instead, they can only use
reconstructed (de-quantized) past key and value vectors. To

account for this discrepancy, AQUA-KV trains predictors se-
quentially, one transformer layer at a time. Each subsequent
set of predictors is trained using reconstructed cache entries
as inputs, reflecting the way these predictors are used during
inference. The first layer key-value cache is compressed
as is, and each subsequent layer trains using previous layer
key-value reconstructions as inputs. The full calibration
procedure is described in Algorithm 1.

Here, Q(·) and Q−1(·) denote quantization and de-
quantization operators. Our algorithm is agnostic to the
choice of Q(·): simple uniform min-max quantization or
any advanced method can be used (Frantar et al., 2022; Mali-
novskii et al., 2024b). The notation argminf ||f(X)−Y ||22
fits a linear regressor to a given problem. By default, we
use simple linear regression for all predictors, which allows
for a closed-form training and is easy to use during infer-
ence. However, our algorithm can accommodate any other
regressor type. In 4.1 we consider alternative algorithms:
reduced-rank regression (Reinsel & Velu, 1998) and MLPs.

Computational and memory overhead. In addition to the
cache entries, AQUA-KV also needs to store the trained pre-
dictors during inference. This requires additional computa-
tion, and slightly increases the memory footprint. However,
this overhead is small in practice: this is largely because
modern LLMs use GQA (Ainslie et al., 2023)—a popular at-
tention variant that uses fewer key-value heads than queries.
For AQUA-KV, this means that the predictors contain sig-
nificantly less parameters and require orders of magnitude
less computation. For instance, For Llama 3.x 70B and
Qwen 2.5 72B, inferencing AQUA-KV predictors for a to-
ken requires at least 500× less floating point operations than
running the base model for the same token (see Section 4.2).

Efficiency and limitations. Algorithm 1 is designed to
work as a single-pass calibration procedure. It trains pre-
dictors separately, one at a time. This allows our algorithm
to run efficiently even on low-end hardware. For instance,
calibrating the full set of AQUA-KV predictors for a Llama-
3.1-70B model takes up 4 hours on a single GPU and takes
up at most 16GB VRAM. AQUA-KV is designed as a sim-
ple and lightweight algorithm that can be easily extended.
As such, we deliberately forego more complex techniques
such as global predictor fine-tuning or dynamic bitwidth.
We discuss these possible extensions in Section 5.

3.3. Implementation Details

Finally, we describe several practical details necessary for
efficient implementation of our approach, whose experimen-
tal validation is given in Section 4.1.

Backbone quantization. To validate the generality, we cou-
ple AQUA-KV with three different quantization schemes:
Quanto (HuggingFace, 2024) (round-to-nearest with absmax
normalization) and the more advanced vector quantization

5

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

schemes QuaRot (Ashkboos et al., 2024) and HIGGS (Mali-
novskii et al., 2024b).

Relation between AQUA-KV and Attention Sinks. It
is well-known that modern LLMs tend to form attention
“sinks” — tokens that have extremely high attention scores
while being semantically unimportant (Xiao et al., 2023).
Several prior works in KV compression propose special
treatment for such attention sinks, such as keeping them
in higher precision (Hooper et al., 2024) or introducing
synthetic sinks (Xiao et al., 2023; Chen et al., 2025).

When evaluating AQUA-KV, we found that attention sinks
are indeed important. Compressing attention sinks poorly
can affect the behavior of attention heads on other to-
kens and, hence, change the input/output distribution for
the learned predictors. The AQUA-KV calibration algo-
rithm computes input keys and values without accounting
for quantization error (Alg. 1 L5-7), as doing otherwise
would significantly increase calibration time. Hence, we
found that AQUA-KV benefits from keeping the first few
tokens uncompressed, similarly to how they are treated in
KVQuant (Hooper et al., 2024). For fair comparison, we
keep the first 4 tokens uncompressed for both AQUA-KV
and baselines without predictors, and explore this in more
detail in Table 9 in suplementary materials.

Positional embeddings. Most LLMs apply Rotary Po-
sitional Embeddings (RoPE, Su et al. 2021) to attention
keys (but not values). This raises a natural dilemma about
whether to apply predictors and quantizers before or after
quantization. In our analysis, we found that linear predictors
are beneficial in either case, but they offer better accuracy in
pre-RoPE compression. We attribute this to the fact that the
optimal predictor for post-RoPE compression needs to be
rotation-equivariant, and the simple linear models we use
are not. As for the backbone quantization, we found that the
uniform quantizer (Quanto) works slightly better post-RoPE,
while HIGGS works equally well in both cases due to its
use of the Hadamard transform. We provide experimental
validation for these claims in Appendix D.

Per-token and per-channel compression. We use
per-token quantization for both schemes. While some
prior works suggest that keys are better quantized per-
channel (Liu et al., 2024c; Hooper et al., 2024) due to dif-
ferent outlier structure, we found that this is not necessary
when quantizing predictor residuals. We use per-token com-
pression as it is easier to implement, and we ablate this
choice in Appendix D. For baselines, we always follow the
quantization axes suggested in their respective papers.

Inference Algorithm. Finally, we explain how these design
choices combine to the full AQUA-KV inference procedure.
Both AQUA-KV and all our baselines maintain a small
recent token buffer (up to r=128 tokens for all setups) that

are originally stored without compression. This buffer has
two positive effects: it improves accuracy on recent tokens
and allows for efficient parallel processing. When the buffer
is filled, its contents are quantized incrementally from the
first layer to the last, in the same order as during calibration.

We define this procedure formally in Alg. 4. Due to the se-
quential nature of our approach, we only need to materialize
(de-quantize) a single layer at a time, which can be further
improved with chunking. Note that the proposed scheme is
seamlessly compatible with model parallelism, offloading,
speculative decoding, merging multiple sequences and other
popular LLM inference techniques. Furthermore, as we
show in Section 4.4, our approach can be used in tandem
with pruning techniques, such as H2O (Zhang et al., 2023).

4. Experiments
To test the real-world effectiveness of AQUA-KV, we apply
it to modern LLMs in three setups: 1) in Section 4.1, we
analyze the impact of individual components of our method
and verify the design choices 2) Section 4.2 evaluates on a
broader range of models and compression rates; 3) finally,
Section 4.4 explores how our approach combines with other
popular KV cache compression strategies.

Across all three sections, we use the same calibration and
evaluation protocol. We use a sample from RedPajama (We-
ber et al., 2024) dataset for calibration: namely, 256 se-
quences of 8192 tokens sampled at random. We use 32 of
those sequences as holdout for hyperparameter selection and
the remaining 224 are used to train the predictors themselves.
We use two popular evaluation metrics: WikiText-2 (Merity
et al., 2016) perplexity and LongBench (Bai et al., 2023).

When evaluating perplexity, we adopt the same approach as
in prior quantization works (Frantar et al., 2022; Lin et al.,
2023; Egiazarian et al., 2024), with one exception: instead
of processing sequences (of length 8192) in parallel, we en-
code them auto-regressively and maintain the (compressed)
Key-Value cache during inference. This results in the same
perplexity for non-compressed KV cache, but allows us to
properly account for the effect of recent token buffers and
attention sinks during KV quantization, as described in Sec-
tion 3.3. Here, we use base (non-instruct) models since they
have better perplexity.

In turn, LongBench v1 (Bai et al., 2023) contains long-
context length evaluation benchmarks including QA tasks,
summarization, and few-shot learning. We evaluated all
the 14 English-language tasks without restricting the input
length to 8192 tokens. This allows us to better explore the
effectiveness of AQUA-KV on longer sequences. Since
14 individual tasks are often difficult to analyze, we report
the average score across all tasks and provide detailed per-
task results in Appendices D, E & G. We use the official

6

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

benchmark code and evaluate on Instruct models since many
LongBench tasks were designed for such models (see Ap-
pendix C for non-Instruct models and discussion).

4.1. Detailed Evaluation & Ablation Analysis

First, we evaluate the effectiveness of the individual com-
ponents of AQUA-KV in different combinations. To keep
the number of experiments manageable, we have chosen the
Llama 3.2 3B model and focused on 2-bit quantization. We
explore additional models and compression targets in future
sections. We report the evaluation results in Table 1 and
describe each sub-section below. Additional experiments
and detailed LongBench scores are in Appendix D.

Alternative quantizers. As discussed, AQUA-KV is com-
patible with any “backbone” quantization scheme. We focus
on three schemes described in Section 3.3: Quanto, QuaRot
and HIGGS. For HIGGS, we use the quantization group
size 1024 and use three grid configurations that have fast
GPU support, at 2-, 3- and 4-bit precision (we use d=2,
n ∈ {16, 64, 256} respectively) and one grid without fast
GPU support (2-bit precision, d=4, n=256). For QuaRot
we also use group size 1024, and for Quanto we use the
default group size 64 and per-token compression (0-th axis).
All methods use Round-To-Nearest (RTN) quantization. We
evaluate each scheme with and without learned AQUA-KV
predictors, and compare against two popular algorithms
for KV cache compression: KIVI (Liu et al., 2024c) and
KVQuant (Hooper et al., 2024). We also report additional
Quanto configurations in Appendix D.

Table 1 shows that KVQuant, KIVI, QuaRot and Quanto
have relatively poor results for 2-bit quantization. Adding
AQUA-KV to both Quanto and QuaRot provides a signif-
icant improvement in both PPL and LongBench scores.
While being a calibration-free method, HIGGS outperforms
all the above-mentioned methods in terms of PPL; HIGGS
with AQUA-KV achieves the best results on both metrics.

Layer Sharing. As we discussed in Section 2, layer sharing
is conceptually similar to AQUA-KV. To compare these
two strategies, we evaluate against KVSharer (Yang et al.,
2024c). We follow the original algorithm to share 1 and 4
layer pairs chosen by the KVSharer procedure. The results
can be seen in a separate section of Table 1: while the
technique can reduce model size, sharing multiple layer
pairs causes major accuracy drops.

Predictor Architecture. Next, we compare several types
of learned predictors: linear regression (our main proposal),
Reduced-Rank Regression (Reinsel & Velu, 1998) with rank
256, a multilayer perceptron (MLP) with two layers, dou-
bled hidden dimension and layer normalization. Further, we
evaluate the quality loss from quantizing predictor weights
to 4 bits with GPTQ (Frantar et al., 2022). Overall, MLP
predictors are only marginally better than linear, not justi-

fying their increase in size and inference time. In the other
direction, using RRR for compression results in marginally
worse perplexity. GPTQ offers a favorable trade-off for use
cases that need to further minimize size.

First Layer Keys & Values. Since the first layer is not
compressed by AQUA-KV predictors, we consider several
strategies for it: keeping it as is, or quantizing it to 2-4
bits. Table 1 shows that quantizing to 3 or 4 bits is nearly
lossless, while 2-bit quantization leads to drops. As such,
we use 4-bit quantization of the first layer as our default
configuration for Llama models.

Table 1. Evaluation of Llama 3.2 3B with various Key-Value cache
compression strategies. We report WikiText-2 perplexity for the
base (non-Instruct) model and the average LongBench results for
the Instruct model. Additional results in Appendix D.

Config Quant. Wiki2 PPL↓ LongBench Avg.↑
Bits (base model) (instruct model)

Uncompressed 16 6.98 44.47
Quanto-2b-gs64 2.50 21.56 33.59

KIVI-2b-gs128-r128 2.25 9.33 39.63
KVQuant-2b-s1% 2.33 9.43 20.56
QuaRot-2b-gs1024 2.03 44.68 32.80
HIGGS-2b-gs1024 2.02 7.47 43.25

KVSharer (1 pair) 15.43 7.45 36.81
KVSharer (4 pairs) 13.71 9.60 29.82

AQUA-KV (Quanto) 2.64 10.33 43.64
AQUA-KV (QuaRot) 2.17 8.44 44.54
AQUA-KV (HIGGS) 2.16 7.03 44.26

AQUA-KV Predictor Architecture

Linear (162 MiB) 2.16 7.03 44.26
MLP (540 MiB) 2.16 7.03 44.61
RRR (68 MiB) 2.16 7.22 44.30

GPTQ (41 MiB) 2.05 7.03 44.19

AQUA-KV 1st Layer Keys & Values

Keep in BF16 2.59 7.03 44.26
HIGGS 4 bit 2.16 7.03 44.26
HIGGS 3 bit 2.13 7.03 44.28
HIGGS 2 bit 2.09 7.05 44.41

HIGGS slow-grid 2 bit 2.09 7.01 44.43

Ablation Analysis

AQUA-KV (default) 2.16 7.03 44.26
w/o 16-bit Attn. Sink 2.16 7.15 44.13

w/o V predictor 2.09 7.06 43.91
w/o K predictor 2.09 7.50 42.92
w/o pre-RoPE 2.16 7.05 44.13

Quantizer-agnostic training 2.16 7.13 44.26

Ablation Analysis. Finally, we validate some of the AQUA-
KV design choices described in Section 3.3. Namely, we
examine the strategy of keeping 16-bit attention “sinks” by
measuring the effect of quantizing them. We also measure
the effect of AQUA-KV with only key or only value predic-
tor, and validate the effectiveness of pre-RoPE predictors
by comparing against post-RoPE. We evaluate a simplified
version of AQUA-KV calibration procedure that trains pre-
dictors with non-quantized inputs: this way, the predictors
could be trained once and can then used for arbitrary quanti-
zation bitwidth. The results in Table 1 demonstrate that each
of the tested components is important for the effectiveness
of our method, particularly the key predictors.

7

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 2. Evaluation of AQUA-KV (with HIGGS backbone) and baselines across five LLMs for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) models with sequence length 8192. The LongBench results are an average over 14 tasks
evaluated with Instruct model with sequence length 217 (131K) tokens. The cache size corresponds to the total memory footprint for
Llama 3.1 70B model with sequence length 217 (131K) tokens and batch size 1, including predictors. Additional details in Appendix E.

Method Quant. Cache size WikiText-2 PPL↓ (base model) LongBench Average↑ (instruct)

bits GiB, 70B Llama 3.x Qwen 2.5 Llama 3.x Qwen 2.5
3B 8B 70B 3B 7B 3B 8B 70B 3B 7B

Uncompressed 16 40 6.98 5.61 2.54 7.14 6.13 44.61 48.13 52.92 38.80 46.82

AQUA-KV 2.09 5.7 7.03 5.72 2.62 7.20 6.17 44.30 47.77 52.79 38.31 46.43
HIGGS 2.02 5.1 7.47 5.89 2.77 7.93 8.08 42.80 47.37 52.18 30.92 25.97
KIVI 2.25 5.6 9.34 7.37 3.06 9.05 7.02 39.64 46.28 52.45 28.66 32.78

KVQuant 2.33 5.6 9.43 6.64 3.28 — — 20.56 37.17 46.14 — —

AQUA-KV 3.06 8.1 6.98 5.64 2.55 7.15 6.14 44.37 48.10 52.81 38.77 46.81
HIGGS 3.02 7.6 7.05 5.66 2.57 7.26 7.20 44.41 47.86 52.56 31.85 14.61
KIVI 3.05 7.7 7.87 6.04 2.87 7.63 6.37 41.40 46.98 52.87 30.37 32.63

KVQuant 3.33 8.3 7.26 5.84 2.75 — — 41.40 46.42 50.74 — —

AQUA-KV 4.02 10.9 6.98 5.61 2.54 7.15 6.14 44.48 48.10 52.95 38.92 46.77
HIGGS 4.02 10.6 7.01 5.62 2.55 7.16 6.88 44.41 48.07 52.97 32.11 11.54
KIVI 4.25 10.6 7.03 5.64 2.61 7.17 6.14 43.11 47.57 52.88 31.50 33.40

KVQuant 4.33 10.8 7.04 5.65 2.58 — — 43.62 47.77 52.89 — —

Table 3. GSM8K-CoT (8-shot) accuracy (%) for Instruct models.

Method Quant. Llama 3.x Qwen 2.5
Bits 3B 8B 70B 3B 7B

Uncompressed 16 76.5 85.1 94.7 61.2 76.6

AQUA-KV 2.09 77.7 84.3 94.2 59.9 72.2

HIGGS 2.02 70.3 79.2 94.2 35.8 59.7

Table 4. IFEval accuracy (%) for Instruct models.

Method Quant. Llama 3.x Qwen 2.5
Bits 3B 8B 70B 3B 7B

Uncompressed 16 77.0 78.9 88.0 66.5 76.9

AQUA-KV 2.09 75.1 79.9 88.1 66.2 66.9

HIGGS 2.02 72.4 75.7 87.0 59.3 68.6

4.2. Large-Scale Evaluaton
Next, we evaluate how AQUA-KV scales across different
LLM sizes and compression bitwidths. We run our exper-
iments using the popular Llama 3.x (Touvron et al., 2023;
Dubey et al., 2024) and Qwen 2.5 (Yang et al., 2024a; Team,
2024) LLM families. For Llama 3.x models, we take the lat-
est versions that have both Instruct and non-Instruct model
variants: v3.1 for 8B and 70B and v3.2 for 3B. We need
both variants for different evaluations (see Appendix C). We
evaluate for 2, 3 & 4 bit KV quantization in WikiText-2 PPL
& LongBench scores, and report the resulting KV-Cache
footprint for a single full-length sequence.

The results in Table 2 summarize our findings: as before,
AQUA-KV predictors can substantially improve over both
the HIGGS quantizer and prior works on KV-Cache quanti-
zation. The advantage from using AQUA-KV is particularly
noticeable for extreme 2-bit compression, where AQUA-
KV over 2-bit HIGGS quantizer is roughly equivalent to the
3-bit baseline quantizer, and sometimes outperforms it.

In Table 5, we report evaluations with even lower bitwidths
(<2 bits per value) for Llama 3.2 3B model. In these set-
tings, AQUA-KV shows an even greater advantage over
quantization without predictors. However, both methods
have considerable loss in perplexity and LongBench score.
While the absolute improvements are impressive, most prac-
tical use cases would benefit from using a higher bitwidth
with a smaller model or pruning the cache to fit into the
memory budget. We report additional results in Appendix E.

Table 5. Sub-2-bit evaluation of Llama 3.2 3B on WikiText-2 (PPL,
base models) and LongBench (average score, Instruct models) with
the same setup and parameters as Table 2.

Method Quant. Wiki2 LongBench
Bits PPL↓ Avg.↑

Uncompressed 16 6.98 44.61

AQUA-KV (d=8, n=256) 1.11 7.57 40.38
HIGGS (d=8, n=256) 1.02 16.34 20.99

AQUA-KV (d=4, n=64) 1.60 7.17 43.48
HIGGS (d=4, n=64) 1.52 8.57 38.92

4.3. Additional Benchmarks

To better quantify the effectiveness of AQUA-KV cache
quantization on different tasks, we evaluate it on several
additional benchmarks on a subset of Instruct models.
More specifically, we evaluate on three additional tasks:
GSM8K (Cobbe et al., 2021) with 8-shot chain-of-thought
(CoT) setup, MMLU-Pro (Wang et al., 2024) 5-shot chain-
of-thought and IFEval (Zhou et al., 2023) zero-shot. We use
the default evaluation configurations from LM Evaluation
Harness (Gao et al., 2021) (see Appendix F) with the same
AQUA-KV and HIGGS parameters as in Section 4.2.

Table 6. MMLU-Pro (5-shot) CoT accuracy (%), Instruct models.

Method Quant. Llama 3.x Qwen
Bits 3.2 3B 3.1 8B 3.1 70B 2.5 3B

Uncompressed 16 34.47 44.34 63.29 43.7

AQUA-KV 2.09 32.79 43.25 62.21 42.11

HIGGS 2.02 29.25 38.40 60.43 23.97

8

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

We report the accuracy on each benchmark in Tables 3, 4,
and 6, respectively. Overall, our results follow a similar
trend: AQUA-KV cache compression achieves significantly
higher accuracy across all three benchmarks at the cost of
a slight increase in memory footprint (to store predictor
weights). In Appendix F, we also report accuracy scores on
subsets of MMLU-Pro (e.g. physics, biology, economics).

4.4. Compatibility with Pruning

As we discussed earlier, AQUA-KV is compatible with other
KV cache compression techniques such as pruning. To test
this in practice, we evaluate AQUA-KV with HIGGS quanti-
zation in tandem with the popular H2O (Zhang et al., 2023)
token pruning method.We train our predictors normally as
described in Section 3.2, without pruning. During inference,
we first use the H2O heavy hitter oracle to select which to-
kens are to be preserved, and apply AQUA-KV compression
those tokens. For this experiment, we always keep 20% of
all tokens with the same protocol as in the original paper.
We evaluate these mixed strategies in our main setup on a
subset of Llama 3.x models.

Table 7. Evaluation of AQUA-KV quantization in combination
with H2O token pruning, Instruct models. This config follows the
same setup as Table 2, but every entry uses H2O procedure to keep
only 20% tokens, using hyperparameters from Zhang et al. 2023.

Method Quant. Memory LongBench Avg.↑
Bits Saved 3B 8B

H2O only 16 5.0× 38.82 41.42

H2O + HIGGS 2.02 39.6× 37.02 40.72
H2O + AQUA-KV 2.09 38.3× 38.43 41.11

H2O + HIGGS 3.02 26.5× 38.27 41.37
H2O + AQUA-KV 3.06 26.1× 38.76 41.31

H2O + HIGGS 4.02 19.9× 38.74 41.32
H2O + AQUA-KV 4.02 19.9× 38.85 41.47

The results, shown in full in Table 7 suggest that AQUA does
not degrade pruning performance: our method combined
with H2O shows little to no accuracy drop compared to using
H2O in isolation. Furthermore, in this setup AQUA-KV with
HIGGS quantization still outperforms HIGGS quantization
without predictors, by a similar margin. In Appendix G we
evaluate AQUA-KV with H2O for 50% token pruning. We
also report individual task scores for LongBench.

Inference time. The practical inference speed of AQUA-
KV depends heavily on the backbone quantizer (e.g.
HIGGS, Quanto, or others). Since AQUA-KV adds an
extra prediction step, it can not be faster than the bfloat16
baseline, but can be more memory-efficient. We benchmark
Llama 3.2 3B and 3.1 70B models in BFloat16 precision us-
ing Transformers (Wolf et al., 2019) library for the LLM and
custom CUDA kernels for HIGGS. We run the 3B model on
a single A100 GPU and the 70B on 2×A100 in sequential
mode. We measure token latency when generating a single

sequence of up to 32768 tokens with 2-bit HIGGS. In this
setup, our AQUA-KV implementation has ≈18% overhead
over bfloat16 inference for sequences over 16384 tokens.
This overhead includes the time to predict and dequantize
thousands of past cache tokens on every step.

We also measure throughput by performing batched infer-
ence with the maximum batch size that fits in GPU memory.
In this setting, AQUA-KV allows for substantially higher
throughput for short sequences since the quantized cache
can fit a larger batch size (up to 5×). Note, however, that
AQUA-KV was primarily designed to reduce memory foot-
print for longer sequences, and there are other quantiza-
tion methods that target faster inference (Liu et al., 2024c;
Hooper et al., 2024). We discuss inference in more detail
and report speed benchmarks in Appendix H.

5. Discussion
We introduced a KV-Cache compression technique based
on the idea of leveraging both inter- and intra-layer corre-
lations in an efficient fashion. Empirical results suggest
that AQUA-KV sets new state-of-the-art compression-vs-
accuracy trade-offs, while being compatible with different
quantization and pruning techniques. Our approach bears
several extensions: 1) predictors could be optimized (e.g.
fine-tuned) to minimize a model-level objectives, similar
to weight quantization techniques (Tseng et al., 2024b); 2)
the bit-widths of different cache components could be ad-
justed based on what fraction of them can be predicted; 3) it
would be interesting to integrate AQUA-KV with efficient
LLM inference engines such as vLLM. In general, it is in-
teresting to consider the problem of efficient LLM inference
with AQUA-KV, which may require merging predictors with
some of the base model computations to reduce overhead.

Last but not least, it is curious why do LLMs learn pre-
dictable key-value representations in the first place. If adja-
cent keys and values can predict each other, it may hint at
some redundancy within LLM attention heads. A promising
direction for future work is to study the reasons why mod-
ern LLMs learn inter-dependent representations, in hope of
better understanding how LLMs use attention. If we can
learn the root cause of this apparent redundancy in attention
projections, it could lead us to a more efficient way of using
LLMs in general, instead of relying on ad-hoc predictors.

Acknowledgements
Authors would like to thank Andrei Bocharnikov for imple-
menting optimized CUDA kernels for AQUA-KV inference
code and benchmarking inference speed (after the ICML
submission deadline). Additionally, we would like to thank
Vyacheslav Zhdanovskiy for helpful discussions and sug-
gestions on inference code optimization.

9

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Since we study a general problem of
memory-efficient LLM inference, our work can contribute
to a broad range of consequences stemming from LLM
use and misuse. This also means that AQUA-KV does
not introduce any principally new kinds of societal benefit
or harm, only making the existing LLM use cases more
cost-efficient. The general societal impact of LLMs is an
important area of research that cannot be easily summarized
in a broader impact statement. As such, we do not highlight
any specific impacts here and defer the reader to dedicated
research on the broader impact of LLMs (Weidinger et al.
2021; 2022; Bender et al. 2021; Zhuo et al. 2023; Cui et al.
2024; Sheng et al. 2021; Durmus et al. 2023, among others).

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023. URL
https://arxiv.org/abs/2305.13245.

Alain, G. and Bengio, Y. Understanding intermediate
layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi,
M., Alistarh, D., Hoefler, T., and Hensman, J. Quarot:
Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots:
Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, FAccT ’21, pp. 610–623,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383097. doi: 10.1145/
3442188.3445922. URL https://doi.org/10.
1145/3442188.3445922.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F.,
Wang, P.-S., Huang, N.-C., Ceze, L., and Wu, K.-C. Palu:
Compressing kv-cache with low-rank projection. arXiv
preprint arXiv:2407.21118, 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,

M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
2021.

Chen, M., Liu, Y., Wang, J., Bin, Y., Shao, W., and Luo, P.
Prefixquant: Eliminating outliers by prefixed tokens for
large language models quantization, 2025. URL https:
//arxiv.org/abs/2410.05265.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Cui, T., Wang, Y., Fu, C., Xiao, Y., Li, S., Deng, X.,
Liu, Y., Zhang, Q., Qiu, Z., Li, P., Tan, Z., Xiong,
J., Kong, X., Wen, Z., Xu, K., and Li, Q. Risk
taxonomy, mitigation, and assessment benchmarks of
large language model systems. ArXiv, abs/2401.05778,
2024. URL https://api.semanticscholar.
org/CorpusID:266933337.

Dao-AILab. Fast hadamard transform.
https://github.com/Dao-AILab/
fast-hadamard-transform/, 2023. Accessed:
2025.02.17.

Dong, S., Cheng, W., Qin, J., and Wang, W. Qaq: Quality-
adaptive quantization for llm kv cache. arXiv preprint
arXiv:2403.04643, 2024.

Duanmu, H., Yuan, Z., Li, X., Duan, J., Zhang, X., and
Lin, D. Skvq: Sliding-window key and value cache
quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Durmus, E., Nyugen, K., Liao, T., Schiefer, N.,
Askell, A., Bakhtin, A., Chen, C., Hatfield-Dodds,
Z., Hernandez, D., Joseph, N., Lovitt, L., McCan-
dlish, S., Sikder, O., Tamkin, A., Thamkul, J., Ka-
plan, J., Clark, J., and Ganguli, D. Towards mea-
suring the representation of subjective global opin-
ions in language models. ArXiv, abs/2306.16388,

10

https://arxiv.org/abs/2305.13245
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2410.05265
https://arxiv.org/abs/2410.05265
https://api.semanticscholar.org/CorpusID:266933337
https://api.semanticscholar.org/CorpusID:266933337
https://github.com/Dao-AILab/fast-hadamard-transform/
https://github.com/Dao-AILab/fast-hadamard-transform/

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

2023. URL https://api.semanticscholar.
org/CorpusID:259275051.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Gray, R. M. and Neuhoff, D. L. Vector quantization. IEEE
Transactions on Information Theory, 44(6):2325–2383,
1998.

Guo, H., Brandon, W., Cholakov, R., Ragan-Kelley, J., Xing,
E., and Kim, Y. Fast matrix multiplications for lookup
table-quantized llms. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 12419–
12433, 2024.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. Zipcache: Accurate and efficient kv cache quanti-
zation with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Horváth, S., Kovalev, D., Mishchenko, K., Richtárik, P.,
and Stich, S. Stochastic distributed learning with gradient
quantization and double-variance reduction. Optimization
Methods and Software, 38(1):91–106, 2023.

HuggingFace. Optimum-quanto: A pytorch quantiza-
tion backend for optimum. https://github.com/
huggingface/optimum-quanto, 2024. Accessed:
2025-01-28.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression

recipe for near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Li, H., Li, Y., Tian, A., Tang, T., Xu, Z., Chen, X., Hu, N.,
Dong, W., Li, Q., and Chen, L. A survey on large lan-
guage model acceleration based on kv cache management.
arXiv preprint arXiv:2412.19442, 2024a.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024b.

Li, Y., Jiang, H., Wu, Q., Luo, X., Ahn, S., Zhang, C., Abdi,
A. H., Li, D., Gao, J., Yang, Y., et al. Scbench: A kv
cache-centric analysis of long-context methods. arXiv
preprint arXiv:2412.10319, 2024c.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, A., Liu, J., Pan, Z., He, Y., Haffari, G., and Zhuang, B.
Minicache: Kv cache compression in depth dimension for
large language models. arXiv preprint arXiv:2405.14366,
2024a.

Liu, R., Bai, H., Lin, H., Li, Y., Gao, H., Xu, Z., Hou, L.,
Yao, J., and Yuan, C. Intactkv: Improving large language
model quantization by keeping pivot tokens intact. arXiv
preprint arXiv:2403.01241, 2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Malinovskii, V., Mazur, D., Ilin, I., Kuznedelev, D.,
Burlachenko, K., Yi, K., Alistarh, D., and Richtarik, P.
Pv-tuning: Beyond straight-through estimation for ex-
treme llm compression. arXiv preprint arXiv:2405.14852,
2024a.

Malinovskii, V., Panferov, A., Ilin, I., Guo, H., Richtárik,
P., and Alistarh, D. Pushing the limits of large lan-
guage model quantization via the linearity theorem. arXiv
preprint arXiv:2411.17525, 2024b.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

11

https://api.semanticscholar.org/CorpusID:259275051
https://api.semanticscholar.org/CorpusID:259275051
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://github.com/huggingface/optimum-quanto
https://github.com/huggingface/optimum-quanto

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS). Neu-
ral Information Processing Systems Foundation, 2019.

Razzhigaev, A., Mikhalchuk, M., Goncharova, E., Gerasi-
menko, N., Oseledets, I., Dimitrov, D., and Kuznetsov,
A. Your transformer is secretly linear. arXiv preprint
arXiv:2405.12250, 2024.

Reinsel, G. C. and Velu, R. D. Multivariate Reduced-
Rank Regression. Springer, New York, 1998. ISBN
978-1-4757-2853-8. doi: 10.1007/978-1-4757-2853-8.
URL https://link.springer.com/book/10.
1007/978-1-4757-2853-8.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N.
Societal biases in language generation: Progress and
challenges. ArXiv, abs/2105.04054, 2021. URL https:
//api.semanticscholar.org/CorpusID:
234337004.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864, 2021.

Team, Q. Qwen2.5: A party of foundation models, Septem-
ber 2024. URL https://qwenlm.github.io/
blog/qwen2.5/.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa,
C. Quip#: Even better llm quantization with hadamard
incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024a.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and Sa, C. D.
Quip#: Even better llm quantization with hadamard inco-
herence and lattice codebooks, 2024b.

Tseng, A., Sun, Q., Hou, D., and Sa, C. D. QTIP:
Quantization with trellises and incoherence processing.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024c. URL https:
//openreview.net/forum?id=7sdkLVuYCU.

van Baalen, M., Kuzmin, A., Nagel, M., Couperus, P., Bas-
toul, C., Mahurin, E., Blankevoort, T., and Whatmough,
P. Gptvq: The blessing of dimensionality for llm quanti-
zation. arXiv preprint arXiv:2402.15319, 2024.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo,
S., Ren, W., Arulraj, A., He, X., Jiang, Z., Li, T., Ku,
M., Wang, K., Zhuang, A., Fan, R., Yue, X., and Chen,
W. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark, 2024. URL
https://arxiv.org/abs/2406.01574.

Weber, M., Fu, D. Y., Anthony, Q., Oren, Y., Adams, S.,
Alexandrov, A., Lyu, X., Nguyen, H., Yao, X., Adams,
V., Athiwaratkun, B., Chalamala, R., Chen, K., Ryabinin,
M., Dao, T., Liang, P., Ré, C., Rish, I., and Zhang, C.
Redpajama: an open dataset for training large language
models. NeurIPS Datasets and Benchmarks Track, 2024.

Weidinger, L., Mellor, J. F. J., Rauh, M., Griffin, C., Ue-
sato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B.,
Kasirzadeh, A., Kenton, Z., Brown, S. M., Hawkins,
W. T., Stepleton, T., Biles, C., Birhane, A., Haas, J.,
Rimell, L., Hendricks, L. A., Isaac, W. S., Legassick, S.,
Irving, G., and Gabriel, I. Ethical and social risks of
harm from language models. ArXiv, abs/2112.04359,
2021. URL https://api.semanticscholar.
org/CorpusID:244954639.

Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang,
P.-S., Mellor, J. F. J., Glaese, A., Cheng, M., Balle, B.,
Kasirzadeh, A., Biles, C., Brown, S. M., Kenton, Z.,
Hawkins, W. T., Stepleton, T., Birhane, A., Hendricks,
L. A., Rimell, L., Isaac, W. S., Haas, J., Legassick, S.,
Irving, G., and Gabriel, I. Taxonomy of risks posed by
language models. Proceedings of the 2022 ACM Con-
ference on Fairness, Accountability, and Transparency,
2022. URL https://api.semanticscholar.
org/CorpusID:249872629.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang, K., Lu, K.,
Chen, K., Yang, K., Li, M., Xue, M., Ni, N., Zhang, P.,
Wang, P., Peng, R., Men, R., Gao, R., Lin, R., Wang, S.,
Bai, S., Tan, S., Zhu, T., Li, T., Liu, T., Ge, W., Deng,
X., Zhou, X., Ren, X., Zhang, X., Wei, X., Ren, X., Fan,
Y., Yao, Y., Zhang, Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z.,

12

https://link.springer.com/book/10.1007/978-1-4757-2853-8
https://link.springer.com/book/10.1007/978-1-4757-2853-8
https://api.semanticscholar.org/CorpusID:234337004
https://api.semanticscholar.org/CorpusID:234337004
https://api.semanticscholar.org/CorpusID:234337004
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=7sdkLVuYCU
https://openreview.net/forum?id=7sdkLVuYCU
https://arxiv.org/abs/2406.01574
https://api.semanticscholar.org/CorpusID:244954639
https://api.semanticscholar.org/CorpusID:244954639
https://api.semanticscholar.org/CorpusID:249872629
https://api.semanticscholar.org/CorpusID:249872629

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Zhang, Z., and Fan, Z. Qwen2 technical report. arXiv
preprint arXiv:2407.10671, 2024a.

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. No token left behind: Reliable kv
cache compression via importance-aware mixed precision
quantization. arXiv preprint arXiv:2402.18096, 2024b.

Yang, Y., Cao, Z., Chen, Q., Qin, L., Yang, D., Zhao,
H., and Chen, Z. Kvsharer: Efficient inference via
layer-wise dissimilar kv cache sharing. arXiv preprint
arXiv:2410.18517, 2024c.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie,
L. Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zandieh, A., Daliri, M., and Han, I. Qjl: 1-bit quantized jl
transform for kv cache quantization with zero overhead.
arXiv preprint arXiv:2406.03482, 2024.

Zhang, Z. and Shen, H. Zero-delay qkv compression for mit-
igating kv cache and network bottlenecks in llm inference.
arXiv preprint arXiv:2408.04107, 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S., Luan,
Y., Zhou, D., and Hou, L. Instruction-following evalu-
ation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Zhuo, T. Y., Huang, Y., Chen, C., and Xing, Z. Red team-
ing chatgpt via jailbreaking: Bias, robustness, reliabil-
ity and toxicity, 2023. URL https://arxiv.org/
abs/2301.12867.

13

https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2301.12867
https://arxiv.org/abs/2301.12867

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

A. Additional Details for Section 3
Experiment configuration in Section 3.1. To measure the dependency between different layers, we first compute the
Key-Value cache of a Llama-3.2-3B (non-instruct) model on a collection of 256 random sequenes of 8192 tokens sampled
from RedPajama. We split these cache entries into 224 calibration sequences and 32 holdout sequences, and train linear
probes (regressors) that learn to predict keys or values from one of the analyzed input sources: previous layers, past tokens,
and different role vectors. The metric we report, explained variance ratio, is computed using per-channel variance, to account
for biases in attention keys & values. We fit linear probes via close form solution with regularizer rate 10−3.

Full inference algorithm from Section 3.3. To better formalize our approach, we also provide a detailed description of
infereece with AQUA-KV compressed cache in Algorithms 2, 3 & 4 below.

Algorithm 2 encode

Require: layer index, K, V, reconstructed keys and values of the previous layer K̂prev, V̂prev, predictors
1: if layer index = 0 then
2: return K,V
3: end if
4: fkey, fvalue ← predictors[layer index]

5: Kpred ← fkey(K̂prev)
6: Kq ← Q(K−Kpred)

7: K̂← Q−1(Kq) +Kpred

8: Vpred ← fvalue([V̂prev; K̂]) {Concatenate V̂prev and K̂}
9: Vq ← Q(V −Vpred)

10: return Kq,Vq

Algorithm 3 decode

Require: layer index, Kq , Vq , reconstructed keys and values of the previous layer K̂prev, V̂prev, predictors
1: if layer index = 0 then
2: return Kq,Vq

3: end if
4: fkey, fvalue ← predictors[layer index]

5: K̂← Q−1(Kq) + fkey(K̂prev)

6: # Value predictor expects both previous reconstructed V̂prev and current reconstructed K̂.
7: V̂← Q−1(Vq) + fvalue([V̂prev; K̂])

8: return K̂, V̂

B. Extended Inter-Dependence Measurements
In addition to the abbreviated charts in Section 3.1, we also report extended inter-dependence probing results. Figure 4
explores additonal probe inputs and Figure 5 contains individual explained variance rations for each transformer block.

C. On LongBench Evaluation on non-Instruct models
As we discuss in Section 4, we only evaluate Instruct model variants on LongBench tasks.

Non-Instruct models treats the prompts with a question as a plain text that should be continued narratively. Namely, we
observe that, when a non-Instruct model is evaluated on most LongBench tasks, it tends to behave as follows:

1. The model encodes the task and produces an answer to that problem, whether correct or not;

2. Having produced the answer, the model “continues” the prompt by imagining a new task;

3. The model produces the answer to the newly imagined problem;

Depending on the model and the allowed sequence length, steps 2-3 can repeat multiple times. Although generated text by
the model may contain the correct answer, this can reduce the score drastically as LongBench scorer, on the most tasks,
calculate the score between the whole generated sequence and ground truth answer.

14

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Algorithm 4 Inference with AQUA-KV Predictors

Require: model, input, key cache, value cache, predictors
1: K̂past, V̂past, K̂inp prev, V̂inp prev ← ∅
2: X← model.input embeddings(input)
3: for i = 0, . . . ,model.num layers− 1 do
4: # Recover previously saved key-values
5: (K̂past, V̂past)← decode(i,key cache[i],value cache[i], K̂past, V̂past,predictors)
6: # Run forward pass
7: block← model.transformer layers[i]
8: (Kinp,Vinp)← block.get attention kv(X)

9: X← block(X,K = [K̂past; K̂inp], V = [V̂past, V̂inp]) {Concatenate past and input keys/values}
10: # Compress new key-value entries
11: (Kq

inp,V
q
inp)← encode(i, K̂inp, V̂inp, K̂inp prev, V̂inp prev,predictors)

12: key cache[i]← [key cache[i];Kq
inp] {Concatenate key cache with new keys}

13: value cache[i]← [value cache[i];Vq
inp] {Concatenate value cache with new values}

14: (K̂inp prev, V̂inp prev)← decode(i,Kq
inp,V

q
inp, K̂inp prev, V̂inp prev,predictors)

15: end for
16: return model.compute logits(X)

KL 3 KL 2 KL 1 Kall VL 3 VL 2 VL 1 Vall KT 3 KT 2 KT 1 Kall VT 3 VT 2 VT 1 Vall KL 1 VL 1 KVL 1 VL [KVL 1; VL]
0.00

0.25

0.50

0.75
Predict Keys

KL 3 KL 2 KL 1 Kall VL 3 VL 2 VL 1 Vall KT 3 KT 2 KT 1 Kall VT 3 VT 2 VT 1 Vall KL 1 VL 1 KVL 1 KL [KVL 1; KL]
0.00

0.25

0.50

0.75
Predict Values

Prev. block keys Prev. block values Prev. token keys Prev. token values Mixed roles

Figure 4. Additional Mean Explained Variance Ratios by linear probes from previous blocks (L), tokens (T) and role on Llama-3.2-3B.

Here is an example of such generation for the original Llama 3.2 3B model:

• Task name: NarrativeQA

• PromptID: 58b8a46c20c05540367b90490846c4f9808db630026b28d4

• Generation:

American
\n\nQuestion: What is the name of the man who
is the subject of the story?
\n\nAnswer: Frank Saltram
\n\nQuestion: What is the name of the man
who is the subject of the story’s story?
\n\nAnswer: George Gravener
\n\nQuestion: What is the name of the man who
is the subject of the story’s story’s story?
\n\nAnswer: Kent Mulville

15

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

0 5 10 15 20 25
Transformer block index (Llama-3.2-3B)

0.00

0.25

0.50

0.75

KL 1 -> KL

VL 1 -> VL

KL -> VL

Explained Variance Ratio from Chosen Dependencies Across Transformer Blocks.

Figure 5. Explained Variance Ratios per Transformer Block for chosen sets of linear probes on Llama-3.2-3B.

Table 8. Evaluation of Llama 3.2 3B non-Instruct model on the same 14 LongBench tasks as in Section 4. The model was evaluated as is,
without an additional “chat template”, using the official LongBench evaluation code (Bai et al., 2023).

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (base model)

Uncompressed 16 6.98 26.46 42.41 11.25 69.50 9.17 22.64 88.41 23.79 0.00 35.03 7.28 12.25 7.03 11.45 30.16

HIGGS 2-bit 2.02 7.47 24.93 40.49 11.75 68.00 9.89 15.22 88.45 22.22 0.00 29.83 6.80 12.42 6.77 13.90 23.22
AQUA-KV (HIGGS) 2.09 7.03 26.15 42.73 11.88 69.00 9.13 18.73 88.46 23.11 0.00 35.35 7.45 12.21 7.33 12.01 28.68

Quanto 2-bit gs64 2.50 21.56 21.14 27.03 12.83 64.00 13.05 10.57 81.21 15.54 0.12 22.30 6.01 11.63 5.51 10.84 15.30
AQUA-KV (Quanto gs64) 2.64 10.33 26.24 41.59 11.36 69.00 10.60 21.85 88.33 22.91 0.00 32.67 6.93 12.97 6.65 12.75 29.69

\n\nQuestion: What is the name of the man
who is the subject of the story’s story’s story’s story?
\n\nAnswer: Sir Gregory Coxon
\n\nQuestion: What is the name of the man who
is the subject of the story’s story’s story

• Ground truth answer: She is an American.

To the best of out knowledge, the original LongBench study (Bai et al., 2023) evaluated on chat assistants, not base language
models. However, several prior works on Key-Value quantization chose to evaluate non-Instruct models on LongBench. For
instance, KIVI (Liu et al., 2024c) evaluates both Llama-2 Chat and non-Chat models on LongBench tasks in Table 4. While
non-chat models show inferior performance, we recognize that it may be interesting to see their LongBench evaluations for
some niche cases. As such, we run several LongBench evaluations for AQUA-KV an baselines, using the same setup as in
Section 4.1, but for the non-Instruct model. The results of this evaluation are reported in Table 8

D. Detailed Evaluations for Section 4.1
We provide scores on each of the LongBench tasks in Table 9, as well as some additional experiments. The table is
supplemented with results on QuaRot quantization method (Ashkboos et al., 2024) that combines Randomized Hadamard
Transform (RHT) with standard non-vector quantization. We also report Quanto with larger group size (1024); ablation
with post-RoPE quantization and additonal KVSharer setup with 2 shared pairs. The table also contains an ablation on the
predictor architecture, including MLP predictors without Layer Nomalization, reduced rank regression (RRR with rank
256), quantized predictors and a corner case with bias-only predictor. We also perform ablation analysis of keeping a longer
sequence of unquantized tokens at the beginning of the sentence (4 and 64 tokens). Finally, we evaluate AQUA-KV with
different predictor input configurations: removing one of the predictor components or using more distant past layers. Note
that we also evaluated other AQUA-KV entries in Sections 4.1, 4.2 and 4.3 without quantizing the first layer and found no
significant differences in perplexity and LongBench score, similarly to what we observe Table 9.

16

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 9. Evaluation of Llama 3.2 3B with various Key-Value cache compression strategies. The left panel contains WikiText-2 perplexity
for the base (non-Instruct) model and the average LongBench results for the Instruct model. The right panel reports detailed per-task
LongBench scores for the Instruct model.

Config Quant. Wiki2 PPL↓ LongBench Avg.↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 6.98 44.47 42.57 40.65 71.5 53.07 26.17 88.78 24.50 3.53 50.36 26.27 40.17 96.0 25.16 33.89

Quantizers

KIVI-2b-gs128-r128 2.25 9.34 39.64 41.05 37.27 70.0 47.54 26.24 88.73 23.37 7.00 47.69 21.26 35.26 59.50 21.16 28.86
KVQuant-2b-s1% 2.33 9.43 20.56 26.75 17.38 50.50 23.58 21.64 56.96 18.28 2.11 22.93 8.25 12.92 4.50 4.41 17.66
Quanto-2b-gs64 2.50 21.56 33.59 32.80 32.03 67.50 47.31 25.80 81.93 22.58 3.06 44.17 20.46 25.81 21.0 19.47 26.40

Quanto-2b-gs1024 2.03 5559.23 8.37 8.81 3.76 33.0 4.91 12.32 14.41 10.40 2.57 6.85 1.97 4.05 1.0 2.54 10.52
QuaRot-2b-gs1024 2.03 44.68 32.80 29.4 34.72 63.00 47.43 24.64 75.57 20.59 4.50 37.90 19.14 29.77 32.50 16.86 23.22
HIGGS-2b-gs1024 2.02 7.47 43.25 39.58 40.81 71.50 53.41 24.87 88.42 23.93 4.12 50.92 26.87 37.76 88.0 25.76 29.56

AQUA-KV (Quanto gs64) 2.64 10.33 43.64 41.29 39.99 71.50 53.72 26.15 88.68 23.86 3.53 50.61 24.96 40.38 88.50 24.26 33.54
AQUA-KV (Quanto gs1024) 2.17 53.35 43.66 42.11 39.53 71.00 51.26 25.84 88.67 24.18 4.06 49.36 26.86 39.52 89.50 25.36 33.96
AQUA-KV (QuaRot gs1024) 2.17 8.44 44.54 42.31 39.28 72.00 53.21 25.77 88.48 24.03 4.50 52.26 27.23 40.89 94.00 25.72 33.94

AQUA-KV (HIGGS 2b) 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.0 24.73 32.02
AQUA-KV (per-channel) 2.16 7.06 43.96 42.47 40.14 71.5 52.92 25.54 88.92 24.13 4.50 50.74 25.35 39.96 94.50 24.73 30.07

KVSharer

1 shared pair 15.43 7.45 36.81 41.23 13.53 71.0 16.02 25.42 88.41 23.07 2.50 49.24 8.84 31.52 87.0 25.12 32.48
2 shared pairs 14.86 8.04 40.89 40.64 28.74 71.50 36.05 25.70 87.59 23.71 4.14 48.60 18.03 39.48 83.67 31.03 33.64
4 shared pairs 13.71 9.60 29.82 35.06 24.64 59.0 37.23 23.12 78.16 20.96 3.06 37.5 14.28 31.96 12.58 16.59 23.3

Predictor Architecture (total predictor size)

MLP w/o LN (540 MiB) 2.16 7.03 44.33 42.42 40.02 71.50 53.47 25.50 88.67 24.02 5.00 51.57 26.01 39.34 95.0 25.46 32.65
MLP (540 MiB) 2.16 7.03 44.61 42.60 39.60 71.0 53.77 25.29 88.41 24.17 4.50 50.12 26.45 40.96 96.0 30.31 31.29

AQUA-KV (162 MiB) 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.0 24.73 32.02
RRR (68 MiB) 2.16 7.22 44.30 42.52 41.07 71.00 52.90 25.65 88.78 24.73 4.50 49.70 26.75 40.39 96.0 24.69 31.54

GPTQ (41 MiB) 2.16 7.03 44.19 41.97 41.06 72.00 53.62 25.57 88.87 24.43 4.50 50.46 26.0 38.50 95.0 24.59 32.11
Only bias 2.02 7.24 42.83 38.96 39.66 69.50 51.8 24.14 88.23 24.07 3.50 50.20 25.96 38.36 91.5 26.25 27.48

First Layer Quantization

First layer 16b 2.59 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.0 24.73 32.02
First layer 4b 2.16 7.03 44.26 41.63 40.30 71.50 53.17 25.71 88.32 24.07 4.50 50.67 26.24 40.75 95.50 25.10 32.21
First layer 3b 2.13 7.03 44.28 41.81 40.30 71.00 53.32 25.83 88.93 24.78 4.50 51.61 25.93 38.81 96.00 24.92 32.24
First layer 2b 2.09 7.05 44.41 42.74 41.03 72.00 53.45 25.57 88.70 24.47 4.50 49.70 26.67 39.47 96.00 25.11 32.38

Attention Sink Quantization

All tokens quantized 2.16 7.15 44.13 42.30 40.14 71.50 52.15 25.46 89.23 24.08 4.53 51.13 26.58 39.49 95.0 24.66 31.54
Skip 4 tokens 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.0 24.73 32.02

Skip 64 tokens 2.17 7.01 44.26 42.01 40.30 72.00 52.39 25.83 88.67 24.73 4.50 50.76 26.67 39.64 95.00 24.78 32.30

Predictor Inputs

Krec → K, {Krec, Vold} → V 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.0 24.73 32.02
w/o V predictor 2.09 7.06 43.91 41.73 39.80 71.50 53.12 25.53 88.80 23.56 4.00 50.65 26.44 38.38 94.00 26.30 30.93
w/o K predictor 2.09 7.50 42.92 39.51 40.33 71.50 53.36 25.24 87.51 23.87 4.06 49.02 26.15 37.85 88.0 24.35 30.14
w/o Krec → V 2.16 7.04 44.23 42.42 40.26 71.50 52.89 25.78 88.97 24.64 4.00 50.52 26.63 40.46 94.50 25.30 31.38
w/o Vold → V 2.16 7.04 44.28 42.79 39.71 71.50 52.75 25.86 88.68 24.42 4.00 50.94 26.92 39.73 95.0 26.07 31.54

Inputs from layers L − 1 ⊕ L 2.16 7.02 44.42 42.43 39.80 71.50 53.42 25.98 88.61 24.46 5.50 50.41 26.80 39.69 95.50 24.99 32.76
Inputs only from layer L − 1 2.16 7.04 44.01 42.25 39.66 71.0 53.12 25.38 88.77 24.47 5.50 50.51 26.15 38.82 93.50 24.99 31.97

Predictor Order

Before RoPE HIGGS 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.00 24.73 32.02
After RoPE HIGGS 2.16 7.05 44.13 41.27 40.06 71.50 53.05 25.72 88.77 24.64 4.50 50.14 25.58 39.81 95.50 25.48 31.73

Before RoPE Quanto gs64 2.64 10.90 44.54 42.57 41.31 71.50 53.10 26.02 88.16 24.01 3.53 50.59 26.91 41.50 95.50 25.10 33.69
After RoPE Quanto gs64 2.64 10.33 43.64 41.29 39.99 71.50 53.72 26.15 88.68 23.86 3.53 50.61 24.96 40.38 88.50 24.26 33.54

Quantizer Errors Handling

Quantizer-specific 2.16 7.03 44.26 42.42 39.98 71.5 52.36 25.65 88.67 24.31 4.50 52.22 26.42 39.82 95.00 24.73 32.02
Quantizer-agnostic 2.16 7.13 44.26 42.95 41.11 71.5 53.46 25.99 88.32 24.03 4.50 50.60 25.80 39.05 95.50 24.41 32.43

E. Detailed Evaluation of AQUA-KV and Baselines for Section 4.2
This appendix presents the evaluation results for AQUA-KV with the HIGGS backbone and baseline models across multiple
architectures, including Llama 3.2 (3B, 8B, 70B) and Qwen2.5 (3B, 7B). The models are assessed under 2-bit, 3-bit, and
4-bit KV-cache compression settings.

We evaluate two key aspects of model performance:

17

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 10. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Llama 3.2 3B for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) version of the model with sequence length 8192. The LongBench results are an average
over 14 tasks evaluated with Instruct model with sequence length 217 (131K) tokens. In addition to the overall average score across all
tasks, the table also includes individual scores for each of the 14 tasks. The specific tasks in the original LongBench benchmark and the
corresponding evaluation metrics can be found in the text.

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 6.98 44.61 42.50 40.32 70.50 52.77 25.79 88.78 24.38 5.00 51.13 26.21 40.74 97.00 24.93 34.54

AQUA-KV 2.09 7.03 44.30 41.76 40.66 72.50 52.72 25.46 88.78 24.43 4.50 49.07 26.21 39.36 97.00 25.58 32.13
HIGGS 2.02 7.47 42.80 39.56 39.97 72.5 52.54 24.52 87.76 24.10 3.00 49.61 26.91 36.84 88.50 25.35 28.00
KIVI 2.25 9.34 39.64 41.05 37.27 70.00 47.54 26.24 88.73 23.37 7.00 47.69 21.26 35.26 59.50 21.16 28.86

KVQuant-2b-s1% 2.33 9.43 18.28 26.75 17.38 50.50 23.58 21.64 56.96 18.28 2.11 22.93 8.25 12.92 4.50 4.41 17.66

AQUA-KV 3.06 6.98 44.37 43.16 40.67 72.5 52.19 25.77 88.39 24.71 4.00 49.25 26.55 39.47 96.50 24.43 33.52
HIGGS 3.02 7.05 44.41 42.74 40.67 73.00 52.54 25.58 88.80 24.70 4.50 48.96 26.21 40.11 96.50 24.61 32.87
KIVI 3.05 7.87 41.40 41.86 38.47 71.00 48.63 26.59 89.13 23.60 3.50 48.10 20.48 36.78 73.00 24.84 33.57

KVQuant-3b-s1% 3.33 7.26 23.85 42.17 35.40 72.00 46.75 25.51 89.05 23.85 4.53 50.79 22.54 41.43 70.50 24.03 31.03

AQUA-KV 4.02 6.98 44.48 42.86 40.59 72.5 52.18 25.69 88.78 24.36 4.50 49.28 26.06 40.30 96.50 25.20 33.89
HIGGS 4.02 7.01 44.41 42.06 40.91 72.50 52.40 25.63 88.22 24.55 4.00 49.77 26.89 40.31 96.00 24.70 33.74
KIVI 4.25 7.03 43.11 42.82 38.41 71.00 48.91 26.64 89.28 23.61 6.50 50.53 21.51 40.62 86.00 24.08 33.65

KVQuant-4b-s1% 4.33 7.04 24.20 42.44 37.14 72.50 50.84 25.84 88.44 24.20 2.00 53.12 23.06 38.99 94.50 24.52 33.05

Table 11. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Llama 3.1 8B for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) version of the model with sequence length 8192. The LongBench results are an average
over 14 tasks evaluated with Instruct model with sequence length 217 (131K) tokens. In addition to the overall average score across all
tasks, the table also includes individual scores for each of the 14 tasks. The specific tasks in the original LongBench benchmark and the
corresponding evaluation metrics can be found in the text.

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 5.61 48.13 43.62 48.58 72.50 57.8 26.86 91.47 25.43 10.50 55.58 32.75 44.62 100.0 29.65 34.4

AQUA-KV 2.08 5.72 47.77 42.99 48.16 73.50 57.58 26.15 91.91 25.79 7.25 55.71 33.46 44.53 99.50 29.67 32.53
HIGGS 2.02 5.89 47.37 41.20 49.03 73.00 57.58 25.47 91.97 25.21 7.25 56.91 31.80 43.76 99.5 30.27 30.16
KIVI 2.25 7.37 46.28 43.41 43.33 71.50 55.12 26.79 91.14 24.57 5.67 52.56 30.9 41.02 99.50 29.10 33.3

KVQuant-2b-s1% 2.33 6.64 37.17 41.94 34.23 65.00 43.78 25.82 86.27 22.94 2.92 47.13 23.24 36.51 36.50 22.63 31.53

AQUA-KV 3.05 5.64 48.10 43.89 48.35 73.5 57.43 26.85 91.48 25.46 7.43 56.64 33.96 45.18 99.5 29.61 34.06
HIGGS 3.02 5.66 47.86 43.75 47.77 73.5 57.74 26.41 91.93 25.39 7.33 55.67 33.57 43.97 99.5 29.87 33.6
KIVI 3.05 6.04 46.98 43.46 43.86 72.50 54.46 26.93 91.76 25.21 6.78 54.40 30.92 43.73 99.00 29.54 35.15

KVQuant-3b-s1% 3.33 5.84 46.42 44.56 42.73 72.50 53.91 26.54 92.01 24.96 5.42 53.42 28.03 44.31 99.50 28.64 33.40

AQUA-KV 4.02 5.61 48.10 44.14 48.81 73.5 57.2 27.11 91.63 25.47 7.43 56.17 33.69 44.6 99.5 29.68 34.45
HIGGS 4.02 5.62 48.07 43.6 48.82 73.5 57.23 26.89 91.47 25.42 7.6 55.72 34.29 44.43 99.5 30.28 34.21
KIVI 4.25 5.64 47.57 44.07 45.54 72.50 55.72 26.86 92.42 25.58 8.34 54.89 31.41 44.42 99.50 29.46 35.22

KVQuant-4b-s1% 4.33 5.65 47.77 43.61 49.10 71.00 58.56 26.87 91.03 25.25 5.42 55.03 33.41 45.67 99.50 29.86 34.45

1. Language Modeling Quality – Measured using WikiText-2 Perplexity, tested on the base (non-instruct) versions of
the models with a sequence length of 8192.

2. Task-Specific Performance – Measured on LongBench, a benchmark covering 14 diverse NLP tasks, with evaluation
conducted on the Instruct-tuned versions of the models using a sequence length of 217 (131K tokens) in total.

The Tables 10-14 summarize the average LongBench performance across all 14 tasks for each model, followed by the
WikiText-2 perplexity scores. Additionally, detailed per-task results are provided for a deeper understanding of how different
models and quantization settings affect specific NLP capabilities.

To further analyze the impact of KV-cache compression on various NLP applications, we report the performance on each of
the 14 individual LongBench tasks in the following table 10. Each task has its own original name, evaluation metric and
average length, reflecting its unique requirements.

18

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 12. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Llama 3.1 70B for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) version of the model with sequence length 8192. The LongBench results are an average
over 14 tasks evaluated with Instruct model with sequence length 217 (131K) tokens. In addition to the overall average score across all
tasks, the table also includes individual scores for each of the 14 tasks. The specific tasks in the original LongBench benchmark and the
corresponding evaluation metrics can be found in the text.

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 2.54 52.92 47.04 68.63 76.50 65.71 26.72 94.21 23.93 18.00 54.79 45.96 49.73 98.50 36.31 34.85

AQUA-KV 2.04 2.62 52.79 46.65 69.71 76.00 64.94 26.64 94.04 24.40 18.00 55.31 46.17 49.72 97.50 35.92 34.06
HIGGS 2.02 2.77 52.18 46.43 68.04 76.00 63.41 26.49 93.94 24.25 20.00 54.08 44.56 48.68 97.50 35.04 32.11
KIVI 2.25 3.06 52.45 47.07 66.83 76.50 63.88 26.43 93.38 24.50 20.00 53.91 46.66 49.19 97.50 34.89 33.58

KVQuant-2b-s1% 2.33 3.28 31.39 44.87 39.64 65.50 51.52 26.09 89.42 23.44 11.50 51.64 38.50 43.59 97.50 30.92 31.85

AQUA-KV 3.03 2.55 52.81 46.74 68.63 76.50 65.11 26.50 94.21 24.16 18.00 54.60 45.89 49.73 98.50 36.17 34.59
HIGGS 3.02 2.57 52.56 46.26 68.33 75.50 64.76 26.38 94.04 24.80 18.50 54.74 45.17 49.24 97.50 36.42 34.24
KIVI 3.05 2.87 52.87 47.66 67.09 76.50 64.37 26.66 93.61 24.56 20.00 54.54 47.56 49.87 98.00 35.47 34.29

KVQuant-3b-s1% 3.33 2.75 35.02 45.83 59.45 76.00 58.21 26.32 89.42 23.90 17.50 53.86 43.93 48.46 97.50 35.86 34.18

AQUA-KV 4.02 2.54 52.95 47.05 68.63 76.50 65.79 26.75 94.04 24.01 18.50 54.66 46.18 49.49 98.50 36.58 34.63
HIGGS 4.02 2.55 52.97 47.77 69.01 76.50 66.33 26.83 94.04 24.50 16.50 54.37 46.56 49.27 99.00 36.31 34.65
KIVI 4.25 2.61 52.88 47.24 67.27 76.50 64.37 26.75 94.04 24.47 20.00 54.01 47.85 50.19 97.50 35.23 34.91

KVQuant-4b-s1% 4.33 2.58 35.42 47.68 68.79 75.50 66.70 26.87 93.73 24.20 18.00 54.27 46.03 48.83 99.00 36.13 34.70

Table 13. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Qwen2.5 3B for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) version of the model with sequence length 8192. The LongBench results are an average over
14 tasks evaluated with Instruct model with sequence length 217 (131K) tokens. In addition to the overall average score across all tasks,
the table also includes individual scores for each of the 14 tasks. The specific tasks in the LongBench benchmark and the corresponding
evaluation metrics can be found in the text. The increased AQUA-KV bitwidth is due to not quantizing the 1st block for this model.

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 7.14 38.80 44.45 38.64 68.00 46.60 22.60 87.60 22.94 3.00 49.29 20.53 37.07 49.00 21.88 31.64

AQUA-KV 2.44 7.20 38.31 43.43 37.43 68.50 46.35 22.69 88.17 23.23 3.00 48.93 18.11 36.98 47.50 21.71 30.34
HIGGS 2.06 7.92 30.92 38.73 34.81 48.00 44.54 18.11 84.40 20.26 2.50 38.24 16.17 32.51 15.00 19.34 20.26
KIVI 2.25 9.05 28.66 42.07 12.48 69.00 18.60 23.37 87.05 24.09 5.05 29.96 10.56 11.10 31.27 10.31 26.31

AQUA-KV 3.42 7.15 38.77 45.19 38.64 68.00 46.81 22.90 87.67 23.35 2.50 48.43 20.39 37.34 47.50 22.79 31.29
HIGGS 3.06 7.28 31.85 42.90 30.92 53.00 41.33 21.64 79.05 22.53 2.50 42.94 15.98 29.94 20.50 19.78 22.94
KIVI 3.05 7.63 30.37 44.08 13.71 69.00 18.31 23.97 86.66 23.44 4.75 36.62 9.84 14.10 38.75 12.05 29.92

AQUA-KV 4.4 7.14 38.92 44.77 37.98 68.00 46.80 22.57 87.93 23.09 3.00 49.07 21.20 37.34 50.00 21.75 31.42
HIGGS 4.06 7.15 32.11 41.37 29.80 55.00 37.84 23.01 70.86 22.79 2.00 42.52 15.46 34.17 33.42 20.29 20.95
KIVI 4.25 7.17 31.50 45.01 15.42 69.50 21.40 24.59 87.53 23.76 3.50 38.99 12.06 16.13 42.50 8.65 31.9

Table 14. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Qwen2.5 7B for 2, 3 & 4 bit compression. The WikiText-2
Perplexity is evaluated on base (non-instruct) version of the model with sequence length 8192. The LongBench results are an average over
14 tasks evaluated with Instruct model with sequence length 217 (131K) tokens. In addition to the overall average score across all tasks,
the table also includes individual scores for each of the 14 tasks. The specific tasks in the LongBench benchmark and the corresponding
evaluation metrics can be found in the text. The increased AQUA-KV bitwidth is due to not quantizing the 1st block for this model.

Config Quant. Wiki2 PPL↓ LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (base model) (instruct model)

Uncompressed 16 6.13 46.82 45.77 46.94 72.00 57.72 23.90 89.42 23.56 8.00 52.58 30.35 43.78 100.0029.49 31.93

AQUA-KV 2.48 6.17 46.43 45.99 45.71 72.00 56.88 23.84 89.18 23.44 8.50 52.15 29.63 42.77 99.50 29.21 31.15
HIGGS 2.03 8.08 25.97 26.98 17.98 52.50 31.67 12.04 55.46 13.14 7.25 27.19 14.55 22.22 55.79 14.72 12.05
KIVI 2.25 7.02 32.78 44.79 10.60 71.00 11.51 22.04 86.71 21.25 6.41 27.29 6.69 12.81 91.67 14.37 31.79

AQUA-KV 3.45 6.14 46.81 45.58 47.35 72.00 57.88 24.07 89.10 23.59 8.00 52.63 30.64 44.05 100.0028.40 32.03
HIGGS 3.03 7.2 14.61 14.02 13.38 45.00 15.27 6.07 29.29 10.00 5.54 18.29 4.65 14.81 15.90 6.10 6.19
KIVI 3.05 6.37 32.63 45.65 9.71 71.00 10.34 22.49 88.87 20.68 4.69 29.83 6.87 13.17 90.46 10.66 32.37

AQUA-KV 4.43 6.14 46.77 45.81 46.87 72.00 57.71 24.06 89.83 23.83 8.00 52.41 30.35 43.37 100.0028.65 31.86
HIGGS 4.03 6.88 11.54 11.80 7.62 37.75 10.13 4.39 22.54 10.52 7.20 10.50 4.83 5.85 16.26 7.11 5.02
KIVI 4.25 6.14 33.40 46.20 9.61 71.00 10.34 22.27 89.63 21.13 4.58 30.56 6.85 12.79 98.25 12.06 32.39

19

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 15. LongBench tasks mapping and evaluation metrics.

Our task name Orig. task name Eval metric Avg len

SamSum SAMSum Rouge-L 6,258

2WikiMQ 2WikiMultihopQA F1 4,887

TREC TREC Accuracy 5,177

HotpotQA HotpotQA F1 9,151

MultiNews MultiNews Rouge-L 2,113

TriviaQA TriviaQA F1 8,209

QMSum QMSum Rouge-L 10,614

PsgCount PassageCount Accuracy 11,141

MFQA en MutiFieldQA-en F1 4,559

Musique MUSiQue F1 11,214

Qasper Qasper F1 3,619

PsgRetr PassageRetrieval-en Accuracy 9,289

NarrativeQA NarrativeQA F1 18,409

GovReport GovReport Rouge-L 8,734

F. Additional Evaluations and Details for Section 4.3
In Section 4.3, we evaluate the following benchmark settings:

1. GSM8K (Cobbe et al., 2021) mathematical reasoning in 8-shot chain-of-thought setup.

2. MMLU-Pro (Wang et al., 2024) general reasoning in 5-shot chain-of-thought setup.

3. IFEval (Zhou et al., 2023) instruction following benchmark in zero-shot mode.

We use Language Model Evaluation Harness (Gao et al., 2021) version 0.4.7 with default parameters for each benchmark.
For MMLU-Pro, Table 6 in the main paper reports aggregated accuracy over 14 different subsets. For completeness, we also
report the individual per-task scores in Table 16.

Table 16. Evaluation of AQUA-KV (with HIGGS backbone) and baselines on Llama 3.2 3B Instruct and Llama 3.1 8B Instruct with 2 bit
compression. In addition to the overall average MMLU-Pro score, the table also includes individual scores for each of the 14 tasks

Config Quant. Overall score
Biol

og
y

Busin
ess

Chem
ist

ry

Com
pSci

Eco
nom

ics

Engin
eer

ing

Hea
lth

Hist
or

y

Law M
ath

Other
Philo

sop
hy

Physi
cs

Psyc
holo

gy

Bits (instruct model)

Llama 3.2 3B

Uncompressed 16 34.47 53.14 35.61 26.68 37.07 42.65 21.98 40.59 32.81 23.52 35.23 35.61 33.07 28.56 50.25
AQUA-KV 2.09 32.79 51.60 32.19 23.76 34.15 41.71 21.26 38.02 34.12 23.43 32.86 33.33 34.67 25.25 50.38

HIGGS 2.02 29.25 47.56 28.64 21.91 29.51 40.52 18.99 31.05 29.40 18.26 26.94 31.60 32.46 22.02 48.37

Llama 3.1 8B

Uncompressed 16 44.34 64.99 48.04 35.51 49.76 55.57 30.24 51.59 42.52 27.70 44.86 45.45 44.69 39.03 59.77
AQUA-KV 2.08 43.25 61.92 46.89 32.95 46.10 55.57 28.79 50.73 42.26 28.52 42.04 45.56 44.29 37.95 61.03

HIGGS 2.02 38.40 59.41 38.53 28.71 36.34 50.71 25.39 43.89 38.58 28.34 33.23 42.86 42.08 31.18 58.15

Additionally, we compare AQUA-KV and HIGGS compression on the HumanEval (Chen et al., 2021) programming
benchmark using the default LM Evaluaton Harness configuration. The results are summarized in Table 17.

While AQUA-KV similarly outperforms quantization without predictors, we caution the reader against drawing signif-
icant conclusions from these HumanEval results. The absolute scores, even without quantization, do not match the
publicly reported HumanEval scores for Llama 3.x. Upon further inspection, we found that this is a common issue and
other researchers also report problems4 when reproducing HumanEval. We are uncertain whether this is due to Instruct

4E.g. see https://github.com/meta-llama/llama3/issues/101

20

https://github.com/meta-llama/llama3/issues/101

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 17. HumanEval pass@1 results

Method Quant. Llama 3.2 Qwen 2.5
Bits 3B 3B

Uncompressed 16 24.28 17.38

AQUA-KV 2.09 24.25 17.31

HIGGS 2.02 22.26 17.18

model prompting, answer extraction or other issues. The problem may potentially be resolved in the recently introduced
humaneval instruct task in LM Evaluation Harness that was added after we ran our experiments, but we did not have
the compute budget to test it further.

G. Additional Evaluations of AQUA-KV with H2O
Here, we report more detailed evaluation results in a setup where AQUA-KV is combined with H2O Heavy Hitter Oracle. In
addition to per-task LongBench scores, we also report several additional configurations for AQUA-KV backbone quantizer.
The results for 3B and 8B models can be found in Table 20 and 19 respectively.

Table 18. Evaluation of Llama 3.2 3B Instruct with H2O pruning mixed with various Key-Value cache compression strategies. A 20% KV
cache budget for H2O was used for all evaluations. The left panel contains the average LongBench score for the model. The right panel
reports detailed per-task LongBench accuracies and F1 scores for the model.

Config Quant. LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (instruct model)

Uncompressed 16 44.61 42.5 40.32 70.5 52.77 25.79 88.78 24.38 5 51.13 26.21 40.74 97 24.93 34.54

H2O 16 38.82 42.92 39.87 68 43.91 22.64 88.88 22.14 7.5 48.52 16.38 31.78 65 18.39 27.54

H2O + AQUA-KV 2.09 38.43 42.99 39.67 68 44.02 22.19 88.6 21.74 7.5 46.51 16.54 30.03 65 18.65 26.52
H2O + HIGGS 2.02 37.02 40.04 37.93 67.5 44.11 22.15 87.45 21.19 6.5 46.5 16.05 29.07 56.5 18.07 25.24

H2O + AQUA-KV 3.06 38.76 43.2 39.73 68 43.99 22.34 89.04 21.93 7.5 48.02 16.51 31.5 64.5 18.88 27.45
H2O + HIGGS 3.02 38.27 42.96 37.81 67.5 43.3 22.15 89.38 22.11 8.5 46.56 16.35 30.17 62.5 19.34 27.14

H2O + AQUA-KV 4.02 38.85 43.16 39.96 68 43.9 22.86 89.04 22.17 7.5 48.44 16.38 31.88 64.5 18.48 27.61
H2O + HIGGS 4.02 38.74 42.66 38.19 68 43.91 22.31 88.78 22.03 7 48.59 17.06 32.01 65.5 18.92 27.34

Table 19. Evaluation of Llama 3.1 8B Instruct with H2O pruning mixed with various Key-Value cache compression strategies. A 20% KV
cache budget for H2O was used for all evaluations. The left panel contains the average LongBench score for the model. The right panel
reports detailed per-task LongBench accuracies and F1 scores for the model.

Config Quant. LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (instruct model)

Uncompressed 16 48.13 43.62 48.58 72.5 57.8 26.86 91.47 25.43 10.5 55.58 32.75 44.62 100 29.65 34.4

H2O 16 41.42 44.57 44.84 69.5 44.09 23.04 91.75 22.1 6.61 51.49 24.28 38.45 68 22.29 28.91

H2O + AQUA-KV 2.09 41.11 44.35 42.57 69 44.3 22.6 92.19 22.06 6.59 51.87 23.92 37.57 68.5 21.9 28.16
H2O + HIGGS 2.02 40.72 42.04 44 68.5 43.39 23.01 91.26 22.38 7.24 50.08 24.24 34.53 69 22.68 27.69

H2O + AQUA-KV 3.06 41.31 44.63 44.69 69.5 44.32 23.06 92.28 22.12 6.51 50.68 23.98 37.45 68 22.65 28.4
H2O + HIGGS 3.02 41.37 44.39 45.14 69.5 44.88 22.86 91.84 22.5 6.95 50.72 24.24 37.27 68 22.57 28.31

H2O + AQUA-KV 4.02 41.47 44.51 44.94 69.5 44.07 22.95 91.75 22.45 6.83 51.53 24.29 38.5 68 22.22 28.98
H2O + HIGGS 4.02 41.32 44.47 44.08 69.5 43.97 23.03 91.93 22.11 6.83 50.52 24.34 38.67 68 22.21 28.8

H. Detailed Inference Benchmarks

In this section, we report detailed inference speed benchmarks using our AQUA-KV implementation. Our implementation
consists of two CUDA kernels:

1. Quantization kernel: finds the nearest vector in a HIGGS lattice and returns its index. Since the original HIGGS (Mali-

21

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

Table 20. Evaluation of Llama 3.2 3B Instruct with H2O pruning mixed with various Key-Value cache compression strategies. A 50% KV
cache budget for H2O was used for all evaluations. The left panel contains the average LongBench score for the model. The right panel
reports detailed per-task LongBench accuracies and F1 scores for the model.

Config Quant. LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (instruct model)

Uncompressed 16 44.61 42.5 40.32 70.5 52.77 25.79 88.78 24.38 5 51.13 26.21 40.74 97 24.93 34.54

H2O 16 39.69 42.84 37.87 68.5 44.57 24.84 88.22 22.51 8.5 48.87 16.72 37.22 65 19.35 30.59

H2O + AQUA-KV 2.09 39.11 42.89 38.04 68.5 45.12 24.38 88.64 21.82 6 49.15 16.59 34.65 63.5 19.68 28.62
H2O + HIGGS 2.02 37.42 39.72 36.61 68.5 44.01 24.15 87.52 21.77 5 47.9 16.01 32.32 54.5 18.85 27.07

H2O + AQUA-KV 3.06 39.61 42.59 38.68 68.5 44.58 25.06 88.39 22.17 7.5 49.22 17.22 36.46 64.5 19.42 30.29
H2O + HIGGS 3.02 39.21 42.38 37.62 68 45.04 24.75 89.06 22.32 9 47.96 16.14 36.21 61 19.5 29.93

H2O + AQUA-KV 4.02 39.72 42.65 37.8 68.5 44.58 25.07 89.08 22.35 8.5 49.06 17.06 36.83 64 20.07 30.52
H2O + HIGGS 4.02 39.45 42.23 38.1 68.5 44.67 25 88.53 22.37 9 49.78 16.16 36.85 61 19.81 30.3

Table 21. Evaluation of Llama 3.1 8B Instruct with H2O pruning mixed with various Key-Value cache compression strategies. A 50% KV
cache budget for H2O was used for all evaluations. The left panel contains the average LongBench score for the model. The right panel
reports detailed per-task LongBench accuracies and F1 scores for the model.

Config Quant. LongBench Avg ↑
Sam

Sum

2W
ikiM

Q

TREC
Hotp

otQ
A

M
ultiN

ew
s

Triv
iaQ

A

QM
Sum

PsgC
ou

nt

M
FQA

en

M
usiq

ue

Qasp
er

PsgR
etr

Nar
ra

tiv
eQ

A

Gov
Rep

or
t

Bits (instruct model)

Uncompressed 16 48.13 43.62 48.58 72.5 57.8 26.86 91.47 25.43 10.5 55.58 32.75 44.62 100 29.65 34.4

H2O 16 42.35 44.36 44.46 69.5 43.68 25.53 91.83 23.15 6.49 52.93 24.8 43.63 68 22.78 31.79

H2O + AQUA-KV 2.09 42.08 43.87 43.32 69 44.27 25.31 92.38 23.45 6.14 53.2 24.86 41.8 68.5 22.7 30.31
H2O + HIGGS 2.02 41.61 41.69 44.87 69.5 43.55 25.33 91.52 22.47 6.55 52.43 24.08 41.11 68 22.24 29.13

H2O + AQUA-KV 3.05 42.37 44.1 44.65 69.5 44.12 25.38 92.62 23.47 6.5 53.57 24.73 43.3 68 22.13 31.14
H2O + HIGGS 3.02 42.23 43.84 45.28 69.5 43.94 25.34 91.85 23.07 6.49 53.16 24.85 42.01 68 22.41 31.45

H2O + AQUA-KV 4.02 42.37 44.3 44.34 69.5 43.73 25.78 91.72 23.33 6.71 53.08 24.7 43.56 68 22.82 31.64
H2O + HIGGS 4.02 42.17 44.38 43.65 69.5 43.54 25.81 91.93 22.84 6.76 53.25 24.54 42.53 68 22.13 31.58

novskii et al., 2024b) did not implement fast quantization, we developed this kernel specifically for our use case.

2. Dequantization kernel: selects the corresponding vector from the lattice, applies quantization scale and performs
Hadamard transformation. The dequantized values are added to the predictor outputs in the same kernel.

We compare three inference modes: standard (bfloat16) inference, quantized AQUA-KV inference with CUDA kernels, and
quantized inference with naive PyTorch (Paszke et al., 2019) implementation. The models we benchmark on are Llama 3.2
3B and Llama 3.1 70B to test our approach with different model sizes.

Inference latency. Our first set of experiments measures inference latency with batch size 1. We generate sequences of up to
length 32768 and report the full forward pass latency (time per token). The results in Figure 6 show that our implementation
introduces an average inference overhead of 60% for shorter sequences (fewer than 10k tokens), and an average overhead of
18% for longer sequences (10k to 32k tokens). This is expected since AQUA-KV performs all the computations required for
bfloat16 inference and additional quantization/dequantization operations.

Throughput. Next, we compare infernce throughput in a batched inference setting. For each method, we select the
maximum batch size that fits on GPU (A100 for 3B, 2× A100 for 70B) at maximum sequence length and measure the
number of tokens generated per second. In this setting, AQUA-KV compressed can achieve greater throughput for shorter
sequences as shown in Figure 7. Note, however, that this improvement stems from the fact that our method can fit a larger
batch size in the same GPU memory due to cache compression.

Overall, our CUDA implementation significantly outperforms the naive Python / PyTorch inference due to having significantly
less DRAM I/O operations (from fused dequantization). The latency overhead can be further reduced with additional
optimizations: for instance, we can quantize the predictors themselves to 4-bit with almost no loss in accuracy (see
Appendix D), which could allow us to speed up predictor computations. Additionally, it should be possible to fuse quantized
cache reconstruction with the attention computation for further speedups.

22

Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

0 5000 10000 15000 20000 25000 30000

LLaMa 3.2 3B, Forward passes

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(s

ec
on

ds
 p

er
 to

ke
n)

bfloat16
AQUA-KV PyTorch
AQUA-KV CUDA

0 5000 10000 15000 20000 25000 30000

LLaMa 3.1 70B, Forward passes

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(s

ec
on

ds
 p

er
 to

ke
n)

bfloat16
AQUA-KV PyTorch
AQUA-KV CUDA

Figure 6. Inference latency with batch size 1 for Llama 3.2 3B (left) and Llama 3.1 70B (right) on A100 GPUs.

0 1000 2000 3000 4000 5000 6000 7000 8000

LLaMa 3.2 3B, throughput

100

200

300

400

500

To
ke

ns
 p

er
 se

co
nd

bfloat16
AQUA-KV PyTorch
AQUA-KV CUDA

0 5000 10000 15000 20000

LLaMa 3.1 70B, throughput

5

10

15

20

25

30

35

To
ke

ns
 p

er
 se

co
nd

bfloat16
AQUA-KV PyTorch
AQUA-KV CUDA

Figure 7. Throughput of batched inference for Llama 3.2 3B (left) and Llama 3.1 70B (right) on A100 GPUs.

23

