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MIMIC: MASK-INJECTED MANIPULATION VIDEO
GENERATION WITH INTERACTION CONTROL
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Figure 1: We propose MIMIC, a novel approach for video generation in manipulation scenarios.
Given a reference video, MIMIC conditions on it to generate a new video that preserves the same
operational semantic information.

ABSTRACT

Embodied intelligence faces a fundamental bottleneck from limited large-scale
interaction data. Video generation offers a scalable alternative, but generating
manipulation videos remain particularly challenging, as they require capturing
subtle, contact-rich dynamics. Despite recent advances, video diffusion models
still struggle to balance semantic understanding with fine-grained visual details,
restricting their effectiveness in manipulation scenarios. Our key insight is that
reference videos provide rich semantic and motion cues that can effectively drive
manipulation video generation. Building on this, we propose MIMIC, a two-stage
image-to-video diffusion framework: (1) we first introduce an Interaction-Motion-
Aware (IMA) module to fuse visual features from the reference video, producing
coherent semantic masks that correspond to the target image, (2) then utilize these
masks as control signals to guide the video generation process. Considering the
ambiguity of the motion attribution, we further introduce a Pair Prompt Control
mechanism to disentangle object and camera motion by adding the reference video
as an additional input. Extensive experiments demonstrate that MIMIC signifi-
cantly outperforms existing methods, effectively preserving manipulation intent
and motion details, even when handling diverse and deformable objects. Our find-
ings underscore the effectiveness of reference-driven semantics for controllable
and realistic manipulation video generation.

1 INTRODUCTION

Embodied intelligence has made notable progress Black et al.; Bjorck et al. (2025); Agarwal et al.
(2025), but its development is still hindered by the scarcity of large-scale, high-quality interaction
data . A promising alternative is to learn from manipulation videos, which naturally encode rich
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interaction cues and can provide valuable guidance for embodied agents Lum et al. (2025). Building
on this idea, video generation He et al. (2022); Wan et al. (2025) offers a scalable solution by not
only leveraging existing videos but also simulating realistic new ones, thereby augmenting training
data and promoting more generalizable robot learning. Generative models in this setting can capture
intrinsic video patterns and synthesize target scenes from language descriptions, e.g. “a person fold-
ing clothes at home”. Yet, language alone is insufficient for manipulation scenarios, where subtle
motions and contact dynamics must be faithfully represented.

Generating realistic manipulation videos is particularly challenging because they involve complex,
contact-rich interactions between hands (or grippers) and objects. Although recent video diffusion
models Xing et al. (2024); Guo et al. (2023); Yang et al. (2024) have advanced rapidly, they still
struggle to balance abstract semantic understanding with fine-grained visual detail Tan et al. (2025),
making it difficult to capture the nuances of manipulation behaviors. Demonstrations, in contrast,
naturally convey both high-level semantics (e.g. folding clothes) and fine-grained interaction cues.
This observation inspires our key idea: Show a Reference Example to the Model—that is, guiding
diffusion models with a reference video alongside textual descriptions to generate manipulation
sequences.

Existing general-purpose methods incorporate additional control signals, such as drag points Yin
et al. (2023), object depth Xu et al. (2024b), or hand meshes Fan et al. (2025), to explicitly constrain
motions. While effective for certain tasks, such strong constraints often reduce flexibility and may
even produce physically implausible results. FlexiAct Zhang et al. (2025) adopts a reference video
strategy similar to ours and extracts global motion representations from the reference video for gen-
eral video generation. However, when applied to manipulation generation, these methods struggle
to effectively handle manipulation scenarios due to complex motions between multiple objects. In
addition, the generated videos demonstrate scale inaccuracies and incorrect modeling of interac-
tions as (1) the reference and target scenes commonly exhibit large misalignments in manipulated
objects, initial poses, and background contexts; and (2) the model often produces physically implau-
sible motions, since it strictly follows the imposed control signals while neglecting the underlying
causal dependencies of real-world interactions. These limitations highlight the intrinsic difficulty of
manipulation generation, as success demands both structural alignment across scenes and explicit
reasoning about the physical dynamics of interactions.

To address the above challenges, we propose a novel manipulation generation framework MIMIC
by opening the black box of single-stage generation and explicitly inject the capability of
manipulation-centric understanding, improving interpretability and controllability. Specifically,
given a reference video, the first frame of the target scene, and a textual description, we decompose
generation into two stages. The first stage is trained to jointly identify the object to be manipulated
in the target initial frame and synthesize a temporally-coherent, physically-plausible interaction mo-
tion trajectory, which is represented as a sequence of masks. A novel Interaction-Motion-Aware
(IMA) layer is proposed to embed interaction semantics to guide subsequent video synthesis by
learning IMA embeddings from visual and mask embeddings from reference videos and injecting
the embeddings into the generation process via IMA attention.

Given the generated mask sequence and the target initial image, the second stage renders the final
realistic video. We observe that using a single mask as the control signal couples object motion with
camera motion due to the lack of background information, which makes it challenging to capture
interactive motions within the video. To accommodate scenarios with possible camera motion,
we introduce a Pair Prompt Control mechanism that conditions the rendering stage on both the
predicted interaction mask and the original reference video. This approach resolves the inherent
ambiguity in mask-based control, allowing the model to disentangle object motion from camera
motion and generate temporally coherent videos that respect the global scene dynamics.

We construct a dedicated benchmark for video generation of manipulation scenarios that includes
human hands and grippers to evaluate the performance of MIMIC. Experiments demonstrate that
our method effectively transfers manipulation information from the reference video to the generated
video, demonstrating both plausible motion patterns and the fine visual details of video. As shown
in Fig. 1, MIMIC exhibits strong capabilities across diverse manipulation scenarios and maintains
high-quality generation even when handling deformable objects.

Our key contributions are summarized as follows:
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• We propose MIMIC, a novel image-to-video diffusion framework tailored for manipulation sce-
narios, which leverages semantic extraction from reference videos combined with explicit inter-
action masks to generate physically plausible and semantically accurate manipulation videos.

• We design an Interaction-Motion-Aware attention mechanism that effectively embed latent ma-
nipulation semantics into the video generation process, addressing the challenges of complex mo-
tion representation without relying on predefined control signals.

• We propose a Pair Prompt Control mechanism that integrates reference videos with predicted
interaction masks, enabling the model to effectively incorporate semantic information and reduce
ambiguities inherent in mask-based control, thereby enhancing the coherence and realism of gen-
erated manipulation videos.

2 RELATED WORK

2.1 IMAGE-TO-VIDEO DIFFUSION MODELS

Leveraging the advantages of diffusion models Ho et al. (2020); Song et al. (2020), the field of im-
age generation has witnessed remarkable advancements in content creation Rombach et al. (2022);
Nichol et al. (2021); Betker et al. (2023). Following this success, video diffusion He et al. (2022)
rapidly evolves by integrating high-fidelity image priors with temporal modeling to synthesize co-
herent short videos. Early Image-to-Video (I2V) diffusion work begins with AnimateDiff Guo et al.
(2023), which introduces a lightweight Motion Adapter and MotionLoRA to animate Stable Dif-
fusion Rombach et al. (2022), followed by SVD Blattmann et al. (2023), which augments image-
conditioned diffusion with temporal convolutions and inter-frame attention. Building on these UNet-
based methods, DynamiCrafter Xing et al. (2024) employs a dual-stream injection of visual detail
and CLIP-aligned context to animate open-domain images into videos. More recently, DiT-based
architectures Peebles & Xie (2023) such as CogVideoX Yang et al. (2024) combine a 3D VAE with
an Expert Transformer to generate high-fidelity video, and Wan2.1 Wan et al. (2025) fuses a causal
3D VAE with a Diffusion Transformer and shared MLP temporal embeddings to scale generation to
arbitrary lengths. We inherit the I2V diffusion backbone and its strong video priors, but apply it to
manipulation by explicitly modeling hand–object interactions.

2.2 VIDEO MOTION CUSTOMIZATION

Motion customization seeks to generate videos that replicate specific motion patterns from refer-
ence videos while aligning with textual semantics. Early works such as Tune-A-Video Wu et al.
(2023) enable one-shot video generation by fine-tuning Stable Diffusion Rombach et al. (2022).
ControlVideo Zhao et al. (2025b) and Text2Video-Zero Khachatryan et al. (2023) extend Control-
Net Zhang et al. (2023) with cross-frame interactions for zero-shot controllable video synthesis,
while Control-A-Video Chen et al. (2023) incorporates trainable motion layers to model temporal
dynamics conditioned on diverse cues. To better decouple appearance and motion, methods like
VMC Jeong et al. (2024), MotionDirector Zhao et al. (2024), and MotionInversion Wang et al.
(2024) train motion-specific modules that generalize across scenes and prompts. FlexiAct Zhang
et al. (2025) enables one-shot complex action transfer by combining spatial adapters and a trainable
frequency-aware embedding. Training-free strategies, including DMT Yatim et al. (2024) and Mo-
tionClone Ling et al. (2024), extract motion priors from latents for inference-time customization.
Unlike the above approaches, we employ an in-context video generation paradigm that leverages
motion information from a reference video to produce the corresponding manipulation videos.

2.3 INTERACTION VIDEO GENERATION

Generating interactive manipulation videos faces significant challenges, including ensuring physical
plausibility and handling occlusions among multiple objects. To address these issues, some meth-
ods Xu et al. (2024b); Pang et al. (2025); Fan et al. (2025) incorporate fine-grained control signals
to specify detailed manipulation processes. For instance, AnchorCrafter Xu et al. (2024b) uses hand
meshes and object depth maps as inputs, while Re-Hold Fan et al. (2025) describes interactions
through hand-object bounding boxes. Other approaches aim for the model to implicitly learn phys-
ical motion patterns. CosHand Sudhakar et al. (2024) and InterDyn Akkerman et al. (2025) utilize
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explicit hand masks as control signals to guide the learning of object motions influenced by hand
movements, and Taste-Rob Zhao et al. (2025a) similarly controls via hand keypoints. Beyond direct
video generation, recent work has also explored inpainting-based editing hand–object interaction
content. AffordanceDiffusion Ye et al. (2023) edits object-only images by inserting plausible hand
configurations to create HOI scenes, while HOI-Swap Xue et al. (2024) and Re-Hold Fan et al.
(2025) edits HOI videos by replacing the interacted object while keeping the hand motion intact.
These methods focus on modifying existing content rather than generating novel interaction videos
from scratch. Furthermore, recognizing the difficulty of directly generating manipulation videos
with diffusion models, several methods adopt a coarse-to-fine learning strategy by first predicting
a coarse control signal, then generating videos conditioned on it. For example, Img2Flow2Act Xu
et al. (2024a) generates object motion trajectories via diffusion models, and FLIP Gao et al. (2024)
performs uniform pixel-space sampling and predicts trajectories for each point. Existing methods
rely on a single control signal to constrain the limited motions of generated videos. In contrast, our
approach decouples multiple motion features from reference videos as control signals, thus avoiding
complicated inputs while accurately capturing the manipulation process.

3 PRELIMINARY

Our method is built upon the image-to-Video model DynamiCrafter Xing et al. (2024), which mainly
comprises a diffusion UNet Ronneberger et al. (2015) ϵθ with spatial and temporal layers, and a vari-
ational autoencoder(VAE) Kingma & Welling (2013) composed of an encoder E (·) and a decoder
D (·). During training, a video with F frames V → x1:F ∈ RF×3×H×W is encoded into latent
space as z1:F0 = E(x1:F ) ∈ RF×d×h×w.

The forward diffusion process corrupts the video via

z1:Ft =
√
ᾱt z

1:F
t−1 +

√
1− ᾱt ϵt, ϵt ∼ N (0, I), (1)

where t ∈ {1, . . . , T} indexes time steps and ᾱt controls the noise scale. The reverse process is
modeled by the diffusion UNet ϵθ, which estimates the noise given a noisy latent, conditioning on
the initial image of the target scene Itar and the textual description c. Diffusion model is trained
using the following loss:

Ldiff = Ez1:F
0 ,c,ϵt,t

∥∥ϵt − ϵθ(z
1:F
t , c, Itar, t)

∥∥2
2
. (2)

During inference, starting from a Gaussian noise ϵ, the model iteratively denoises with T timesteps
to obtain an estimated clean latent ẑ1:F0 , which is then decoded to the realistic video by D (·).

4 METHODOLOGY

4.1 OVERVIEW OF MIMIC

As shown in Fig. 2, we suggest an in-context video-generation paradigm: conditioned on a refer-
ence manipulation video Vref , an initial image Itar of the target scene, and a textual description
c, the model is required to produce a corresponding manipulation video Vtar in the target environ-
ment. The generation process is explicitly divided into two stages to promote the understanding of
interactive dynamics and enhance the controllability of the manipulated object state. The first stage
aims at jointly identifying the manipulated object in the target initial frame Itar and synthesizing
a temporally-coherent, physically-plausible motion trajectory. The trajectory is represented by a
sequence of soft binary masks Mtar to achieve pixel-level control of the state of the object while
accommodating possible non-rigid deformations. Given the predicted mask sequence Mtar and the
target initial image Itar, the second stage renders the final realistic video, where we propose a Pair
Prompt Control mechanism to accommodate scenarios with potential camera motion.

4.2 STAGE I: JOINT PERCEPTION AND INTERACTION MOTION GENERATION

Given a reference manipulation video Vref , reference manipulation masks Mref
1, and a textual de-

scription c, Stage I is explicitly trained to jointly recognize the manipulated object in the target initial
1For data without annotated masks, we utilize Grounding-SAM2 Ren et al. with language inputs to generate

corresponding masks.
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Figure 2: Pipeline of MIMIC. (1) Stage I illustrates interaction motion mask generation. We
construct a Motion Extractor to capture the interaction motion information from the reference video.
And then we utilize a transformer layer after the spatial layer to inject this motion information into
the UNet by Interaction-Motion-Aware (IMA) attention. (2) Stage II illustrates video generation
with interaction masks. We integrate a set of example pairs, each consisting of a reference video and
its corresponding interaction mask, with the predicted interaction mask of the target video through
the Pair Prompt Control module. This integration is injected into the UNet to facilitate video
generation.

frame Itar and synthesize a temporally-coherent, physically-plausible motion trajectory represented
by binary masks Mtar.

To fully leverage the interactive semantic information and motion information contained in the ref-
erence video Vref , we introduce reference video embeddings fV

ref and interaction mask embeddings
fM
ref , which are respectively extracted from the reference video Vref and the corresponding inter-

action mask Mref by a frozen CLIP Radford et al. (2021) visual encoder Φ. Complementary to
these semantic embeddings, a lightweight Motion Extractor is further employed to inject reference
motion cues into the denoising U-Net. To further enhance the alignment of interactive semantics
and motion information, we fuse a learnable query embedding q ∈ RF×n×d with interaction mask
embedding fM

ref via element-wise addition, yielding an accumulated query qm = q + fM
ref as the

input to the extractor. The accumulated query interacts with the frozen video embeddings through
a cross-attention layer (CA), followed by a feedforward network (FFN), obtaining the Interaction-
Motion-Aware(IMA) embedding f IMA

ref .

f IMA
ref = FFN(CA(qm, f

V
ref , f

V
ref)). (3)

This IMA embedding f IMA
ref then interacts with the diffusion model via another cross-attention layer,

so that the diffusion process is guided by the understanding of manipulation semantics. To maintain
the stability of training, the output projection layer inside this attention layer is zero-initialized and
equipped with a residual connection.

For the training strategy, we train the Stage I model in a two-step manner. Firstly, we construct static
videos with repeated first frames, allowing the model to focus exclusively on learning to recognize
the hand-object interactions occurring in the first frame of the target scene. Subsequently, we restore
temporal dynamics and train the model to generate manipulation motions. Both phases optimize the
objective in Eq. 2.

4.3 STAGE II: VIDEO GENERATION WITH INTERACTION MASKS

The objective of Stage II is to generate a temporally coherent and detail-rich video from the interac-
tion masks Mtar predicted in Stage I. Mask-only conditioning is inherently ambiguous: it specifies
where an interaction occurs but cannot disambiguate object versus camera motion or capture how
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Figure 3: Qualitative comparison of video motion transfer results. Each row shows frames gen-
erated by a different method conditioned on the same reference video in two challenging scenarios.
The yellow box marks the object state in the reference video; the red box marks the object state in
the comparison video; and the green box marks the object state in our video.

the manipulation unfolds. In manipulation-centric scenarios, this limitation often results in weak
consistency along the interaction trajectory and unrealistic rendering of hands or grippers.

To address these issues, we propose Pair Prompt Control, which conditions generation on both the
target mask sequence Mtar and a reference pair Mref , Vref . While the target mask provides spa-
tial alignment, the reference pair contributes semantic and motion priors, thereby reducing mask
ambiguity and enabling manipulation-aware synthesis. Architecturally, we adopt a ControlNet-
style Zhang et al. (2023) control branch, where lightweight convolutional Query Encoder and
Pair Encoder modules are used to process the target mask sequence Mtar and the example pair
Mref , Vref , respectively. The encoded features are fused within a control module, which then in-
jects multi-scale guidance into the UNet backbone, ensuring reference-driven conditioning through-
out the generation process.

To enhance fidelity and consistency within interaction regions, we use the Stage I predicted mask
sequence Mtar together with the target image Itar to form a masked image Imasked = I1tar ⊙m1

tar
that preserves only the interaction areas. This masked image is concatenated with the original target
image as input to the diffusion model, providing explicit appearance guidance. Additionally, we
reweight the diffusion loss Ldiff with an adaptive region loss that emphasizes mask-aligned areas
across time by combining the current interaction mask mf

tar, f = 1, ..., F and the first-frame mask
m1

tar:

Lregion =
( S

SMtar

Mtar +
S

SM1
tar

M1
tar

)
⊙ Ldiff ,

M1
tar = Repeat(m1

tar, F ),

(4)

where Repeat(x, n) repeats x along the temporal dimension, and SMtar , SM1
tar

denote the corre-
sponding mask areas. The final training objective is defined as:

Lfinal = (1−Mtar −M1
tar)⊙ Ldiff + λLregion. (5)

By combining masked-image conditioning with adaptive region loss, the model focuses learning
on the relevant regions, reducing ghosting artifacts and improving both visual fidelity and temporal
consistency of generated videos.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. We curate subsets from three public benchmarks Something–Something-v2 (SSv2) Goyal
et al. (2017), BridgeV2 Walke et al. (2023), and Fractal Brohan et al. (2022) to ensure sufficient
temporal coverage. We annotate a total of 20,000 human hand interaction videos and 40,000 gripper
interaction videos for training. We organize all samples into structured manipulation templates
and randomly sample two videos from the same template, one as the reference and the other as the
target. We collect 240 samples for evaluation, Both reference videos and corresponding target videos
of evaluation pairs are unseen during training. Considering that some comparative methods Zhang
et al. (2025); Zhao et al. (2024) require additional training for different reference videos, we further
split the evaluation samples into 48 groups, where each group contains one reference video and
five target images to ensure uniform coverage across different manipulation classes. Detailed data
curation is provided in the Appendix A.

Comparison Methods We compare our method with representative image-to-video motion trans-
fer approaches: (1) DynamiCrafter Xing et al. (2024) and CogVideoX Yang et al. (2024), further
adapted via one-shot fine-tuning on the reference video; (2) MotionClone Ling et al. (2024), a
training-free motion cloning framework; (3) MotionDirector Zhao et al. (2024), a dual-path LoRA-
based model that decouples appearance and motion learning; and (4) FlexiAct Zhang et al. (2025),
a learnable global motion transfer method. Except for MotionClone, all baselines require extra fine-
tuning with the reference video. Training details and hyperparameters are provided in Appendix B.

Implementation Details. Our training dataset consists of 16-frame videos with a resolution of
320 × 512 pixels. Both stages are initialized from pretrained DynamiCrafter Xing et al. (2024)
weights and optimized with AdamW on two NVIDIA H100 (80GB) GPUs. The batch size is set to
4 and the learning rate to 1 × 10−5 throughout training. In Stage I, we freeze the temporal layers
and finetune only the spatial and IMA layers of the UNet backbone. We first train for 5,000 steps
on repeated first frames to preserve spatial fidelity, and then train for 50,000 steps on full video
sequences to learn motion. In Stage II, we finetune the video generation model for 25,000 steps.
The trainable components consist of the query encoder, the pair encoder, and the control module
initialized from UNet weights. To stabilize training, we introduce the adaptive region loss after
5,000 steps and apply a sigmoid-based nonlinear warm-up over 2,000 steps to mitigate abrupt loss
changes. At inference time, we adopt 50 DDIM sampling steps and set the CFG scale to 7.5.

5.2 EVALUATION

Evaluation Metrics. Our metrics consist of four aspects. Firstly, we employ CLIP-based Radford
et al. (2021) text alignment and appearance consistency to reflect Perceptual Similarity. Sec-
ondly, Temporal Quality is evaluated using subject consistency and background stability from
VBench Huang et al. (2024). Thirdly, we utilize the multimodal large language model (MLLM) Bai
et al. (2023); Lin et al. (2023) in evaluation, as it possesses superior semantic understanding capabil-
ities. Finally, we conduct extensive Human Preference evaluations via user studies. More details
can be found in Appendix. C and C.3.

Table 1: Quantitative comparison of manipulation video generation. We report several automatic
evaluation metrics alongside human preference rates. Participants are asked to select the top2
videos, making the subjective metric more robust and reliable.

Method Extra
Finetune

Perceptual Similarity Temporal Quality MLLM Evaluation
Human

PreferenceText
Alignment ↑

Appearance
Consistency ↑ Subject

Consistency ↑ Background
Stability ↑ Interaction

Rationality ↑ Semantic
Similarity ↑

DynamiCrafter ✓ 0.2684 0.8784 0.9185 0.9331 3.0543 2.4348 8.86%
CogVideoX ✓ 0.2667 0.8537 0.8128 0.9200 3.1318 2.3736 18.78%
MotionClone ✗ 0.2947 0.7400 0.6833 0.8569 3.0957 2.1277 0.90%
MotionDirector ✓ 0.2658 0.8336 0.8542 0.9160 3.1489 2.4149 0.96%
FlexiAct ✓ 0.2694 0.8999 0.8921 0.9220 3.5529 2.5238 27.8%

One-Stage ✗ 0.2688 0.8709 0.8591 0.9130 3.6170 2.4468 –
w/o IMA Attention ✗ 0.2548 0.8537 0.8418 0.9029 3.6216 2.4134 –
w/o Pair Prompt Control ✗ 0.2677 0.8862 0.9172 0.9213 3.8789 2.7526 –

MIMIC ✗ 0.2721 0.9084 0.9291 0.9385 4.1381 2.9127 42.88%
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Quantitative and Qualitative Analysis. Our quantitative evaluation results are summarized in
Tab. 1 and Fig. 3. Our method achieves the best performance in terms of temporal quality and
appearance consistency, demonstrating its superior capability in preserving visual fidelity. It also
performs strongly in text alignment, ranking second only to MotionClone. However, MotionClone
underperforms on other metrics and exhibits weaker preservation of input image fidelity. Traditional
quantitative metrics tend to emphasize low-level pixel alignment, but they are limited in their ability
to assess aspects that require higher-level semantic understanding. For example, such metrics cannot
reliably determine whether an object with a specific pose has been lifted correctly, or whether the
model interacts precisely with the intended object in multi-object scenes. To address this limita-
tion, we additionally incorporate evaluations using a multimodal large language model(MLLM) Lin
et al. (2023), which possesses strong high-level semantic reasoning capabilities. Due to space con-
straints in Tab. 1, we report two dimensions that are most relevant to manipulation tasks, Interaction
Rationality and Semantic Similarity, while additional dimensions are provided in Fig. 4. In the
MLLM-based evaluation, our method demonstrates superior performance in terms of operational
completeness, accuracy, and semantic consistency with the reference video. Finally, we conduct
a human preference study. To mitigate extreme biases, participants are asked to select their top2
preferred results out of 6 candidates. Our method consistently receives a clear majority of prefer-
ences, further validating its effectiveness in generating manipulation videos that align with human
judgment. Details on the MLLM evaluation can be found in the Appendix. C.2.

Figure 4: Qualitative results of Human Preference and MLLM Evaluation. Right: human
preference selection ratios, where participants are asked to choose the top2 videos from all options
from various perspectives. Left: MLLM scores for the generated videos across different evaluation
dimensions.

5.3 ABLATION STUDY

Two-Stage vs. One-Stage We first validate the rationale behind the proposed two-stage generation
strategy, which progresses from motion patterns to visual details, by conducting an ablation study
on single-stage direct video generation. In this experiment, all training settings remain consistent
with those used in our Stage I model training, the ground truth video frames are used as supervision
signals instead of masks. As shown in Fig. 5, videos generated by the diffusion model in a single
stage suffer from severe visual quality issues. However, we observe that the interaction motion
information conveyed roughly matches the reference videos and our results. This further confirms
the rationality of using Stage I to learn interaction motion patterns by generating masks.

Figure 5: The results of one-stage and two-stage(ours) generation strategies.

Effect of IMA and Pair Prompt Control To verify the effectiveness of our approach in generat-
ing semantically consistent videos from reference videos, we conduct ablation studies on the IMA
Attention module in Stage I and the Pair Prompt Control module in Stage II. Quantitative results
are presented in Tab. 1. It can be observed that removing the IMA Attention module (w/o IMA)
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Figure 6: Qualitative results of ablation study. We show the interaction mask from Stage I and
the generated video from Stage II. On the left, IMA attention enables semantic motion alignment
with the reference video, while without it the video fails to match the language prompt. Right: Pair
Prompt Control improves mask understanding; without it, the background moves with the mask, re-
sembling camera motion rather than interaction. With Pair Prompt Control, the background remains
stable, and changes arise only from true motion.
leads to a clear drop in Semantic Similarity (2.41 vs. 2.91) and degrades other metrics due to the
lower-quality masks predicted in Stage I. As shown in the top of Fig. 6, the model misinterprets
the prompt and manipulates the wrong object, illustrating the semantic inconsistency caused by the
absence of IMA. Without Pair Prompt Control, the explicit mask struggles to capture complete ma-
nipulation information due to the coupling of object motion and camera movement, which leads to
a slight performance decline across various metrics. As shown in the example (Fig. 6, bottom), the
background drifts with the mask, indicating that the model generates camera motion instead of the
hand–object interaction. Overall, IMA preserves high-quality semantic mask prediction, whereas
Pair Prompt Control disentangles camera motion and injects fine-grained appearance information.
Additionally, we provide further ablation studies on the region loss used in Stage II, detailed in the
Appendix. D.

6 CONCLUSION

In this paper, we present MIMIC, a two-stage image-to-video generation framework designed for
manipulation scenarios, which effectively leverages semantic information extraction and explicit in-
teraction masks to produce physically plausible and semantically consistent videos. Our approach
overcomes key challenges of existing methods by disentangling camera and object motions through
a Pair Prompt Control mechanism, and enhancing temporal stability with an adaptive region loss.
Limitations and future work: Limited by the capacity of the base model Xing et al. (2024), videos
generated by our method are currently restricted to a maximum of 16 frames, which precludes the
generation of long-horizon videos depicting complex operations. Adopting more powerful foun-
dational models can facilitate our approach to synthesizing longer temporally coherent videos with
more complex action compositions.
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Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. corr, abs/2410.24164, 2024. doi: 10.48550. arXiv preprint
ARXIV.2410.24164.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
Lin. Control-a-video: Controllable text-to-video diffusion models with motion prior and reward
feedback learning. arXiv preprint arXiv:2305.13840, 2023.

Yingying Fan, Quanwei Yang, Kaisiyuan Wang, Hang Zhou, Yingying Li, Haocheng Feng, Errui
Ding, Yu Wu, and Jingdong Wang. Re-hold: Video hand object interaction reenactment via
adaptive layout-instructed diffusion model. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 17550–17560, 2025.

Chongkai Gao, Haozhuo Zhang, Zhixuan Xu, Zhehao Cai, and Lin Shao. Flip: Flow-centric gener-
ative planning as general-purpose manipulation world model. arXiv preprint arXiv:2412.08261,
2024.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
The” something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE international conference on computer vision, pp. 5842–5850, 2017.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
models for high-fidelity long video generation. arXiv preprint arXiv:2211.13221, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Hyeonho Jeong, Geon Yeong Park, and Jong Chul Ye. Vmc: Video motion customization using
temporal attention adaption for text-to-video diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9212–9221, 2024.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In European Conference on Computer Vision,
pp. 18–35. Springer, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954–15964, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection. arXiv preprint arXiv:2311.10122,
2023.

Pengyang Ling, Jiazi Bu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Tong Wu, Huaian Chen, Jiaqi
Wang, and Yi Jin. Motionclone: Training-free motion cloning for controllable video generation.
arXiv preprint arXiv:2406.05338, 2024.

Tyler Ga Wei Lum, Olivia Y Lee, C Karen Liu, and Jeannette Bohg. Crossing the human-
robot embodiment gap with sim-to-real rl using one human demonstration. arXiv preprint
arXiv:2504.12609, 2025.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Muyao Niu, Xiaodong Cun, Xintao Wang, Yong Zhang, Ying Shan, and Yinqiang Zheng. Mofa-
video: Controllable image animation via generative motion field adaptions in frozen image-to-
video diffusion model. In European Conference on Computer Vision, pp. 111–128. Springer,
2024.
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A DATA CURATION

A.1 DATA PROCESS

Due to limitations of the pre-trained model, we only use videos with a length of 16 frames for
training, which generally requires temporal sampling of the original data. However, this often leads
to issues such as excessively large frame-to-frame variations and difficulty in capturing the full extent
of the language prompt within the video, both of which significantly impact our training process.
Additionally, motion-blurred frames frequently occur in video data, especially in the Something-
Something-v2 (SSv2) Goyal et al. (2017) dataset. Such blurring poses challenges for our training
process, as it can affect the consistency and accuracy of learned motion representations. We have
processed the data as follows:

(1) Redundant Frame Elimination: We utilize OpenCV to detect the magnitude of motion both of
the initial frames and the final frames of each video segment to determine whether the scene remains
static. Frames exhibiting negligible motion at either end are identified as stationary and subsequently
removed to eliminate redundant static frames.

(2) Blurred Frame Elimination: We utilize OpenCV to implement a method that calculates the
variance of the Laplacian of each frame, providing an indicator of its blur level. When this indicator
falls below a preset threshold, the frame is identified as blurry and consequently discarded.

(3) Temporal Sampling: After removing redundant and blurry frames, we perform uniform sampling
over the entire video and set a maximum allowable sampling interval. When the interval between
sampled frames exceeds this threshold, indicating excessive variation between frames, the corre-
sponding segment is discarded.

A.2 DATA ANNOTATION

Given a raw video V paired with a language prompt c, we generate the annotations following the
stream below:

(1) Objects Segmentation: We employ Grounded SAM2 Ren et al. to achieve open-set segmen-
tation of interactive objects, categorizing target objects into two types: active manipulators (e.g.,
hands, grippers) and passive manipulated objects. For segmenting active manipulators, we prede-
fine comprehensive language prompts according to the data set used. For example, ‘human hand’ in
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SSv2 Goyal et al. (2017) and ‘white robotic gripper’ in Fractal Brohan et al. (2022). For passive ob-
ject segmentation, ‘placeholder’ language labels have been provided in SSv2. For the Fractal Brohan
et al. (2022) and BridgeV2 Walke et al. (2023) datasets, we extract the first noun from the prompt c
as input to Grounded SAM2.

(2) Manipulation Template: We adopt a classification approach consistent with SSv2 Goyal et al.
(2017), which categorizes videos using templates such as “move [something] down.” Specifically,
we implement a natural language processing pipeline with spaCy to extract structured action-object
pairs from textual descriptions. The pipeline first normalizes the input text and then identifies the
main verb in each sentence, including phrasal verbs like “place [something] upright” and “pick up
[something]”, enabling precise action extraction aligned with established dataset standards. The
structured language is used solely for this categorization step; at inference time, the model only
requires a natural-language description and a reference video, without relying on structured prompts.

A.3 DISSUSION ABOUT MOTION REPRESENTATION

We adopt a mask-based motion representation to model human–object interactions. This choice
is motivated by the need for reliable supervision: high-quality global optical flow Teed & Deng
(2020), point trajectories Karaev et al. (2024), or part-level optical flow obtained by combining
Co-TrackerKaraev et al. (2024) with CMP Zhan et al. (2019) as used in MOFA-Video Niu et al.
(2024) are difficult to obtain for large-scale videos, particularly when objects undergo non-rigid or
highly deformable motion. As shown in Fig. 7, these representations all degrade significantly in
cloth-folding scenarios, where global flow, sparse tracking points, and part-level flow fail to capture
coherent motion cues. In contrast, segmentation masks either manually annotated or automatically
extracted via SAM2 Ravi et al. (2024) remain stable and consistent even under such challenging
conditions.

Moreover, masks inherently encode the semantic separation between the manipulated object and
the hand or gripper, a property essential for role-conditioned motion generation in our pipeline.
Alternative motion representations lack this role-aware structure and are more susceptible to failures
under large motions or complex deformations. While mask-based signals may limit the modeling of
fine-grained shape dynamics, they provide interpretable and robust motion cues well suited to our
task.

B DETAILS ON BASELINES

DynamiCrafter Xing et al. (2024). We fine-tune the spatial layers of DynamiCrafter for 5,000 steps
on ground truth videos and captions from the specific dataset to mitigate the existing domain gap.
And we further fine-tune on the reference video for an additional 300 steps. During inference, we
use 50 DDIM sampling steps and set the guidance rescale to 0.0.

CogVideoX Yang et al. (2024). Unlike our method, which uses 16-frame videos for training, to
preserve the prior knowledge of the pre-trained model, we fine-tune CogVideoX using 49-frame
videos. Similar to DynamiCrafter, we employ LoRA to fine-tune CogVideoX on the reference video
for 5,000 steps to bridge the domain gap, and we further train on the reference video for an additional
300 steps for one-shot scenarios. During inference, we set the LoRA rank to 128 and use 50 DDIM
sampling steps.

MotionClone Ling et al. (2024). MotionClone is a training-free method, which extracts motion
priors from the temporal attention matrix of a reference video and constructs an energy function to
guide the sampling process. During inference, we set the number of inference steps to 100 and the
number of guidance steps to 40.

MotionDirector Zhao et al. (2024). We follow the setup of MotionDirector by first training the
spatial LoRA on the target image for 300 steps, followed by training the temporal LoRA on the
16-frame reference video for 150 steps. During inference, we set the noise prior to 0 and use DDIM
with 50 sampling steps.

FlexiAct Zhang et al. (2025). We follow the FlexiAct recommendation by training the frequency-
aware embedding(FAE) on the 49-frame reference video for 3,000 steps. During inference, we set
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Figure 7: Motion representation comparison in a cloth-folding scenario. Global optical flow
(Row 2) deteriorates rapidly under large non-rigid deformation, leading to unstable or missing es-
timates in critical regions. Tracking points (Row 3) fail to maintain consistent correspondences on
the deforming cloth, resulting in drifting or jittery trajectories that do not capture coherent motion.
Part-level flow (Row 4) suffers from even greater instability, as part assignments fluctuate across
frames and produce noisy, visually inconsistent flow fields. In contrast, segmentation masks (Row
5) remain temporally stable and accurately preserve the global structure of the cloth throughout the
folding sequence.

the transition timestep for the FAE to 0.8, the additional attention weight in the FAE to 1.0, and the
guidance scale to 6.0.

C EVALUATION

C.1 AUTOMATIC METRICS

We provide a detailed explanation of the principles and meanings behind the automatic evaluation
metrics used in our experiments:

(1) Perceptual Similarity: The metric includes Text Alignment as the average cosine similarity
between the text prompt embedding and frame embeddings encoded by CLIP Radford et al. (2021),
and Appearance Consistency as the average visual similarity between the first frame and subsequent
frames to capture intra-video coherence.

(2) Temporal Quality Huang et al. (2024): A human-aligned spatiotemporal benchmark assessing
Subject Consistency and Background Stability. For Subject Consistency, it measures whether the
appearance of a subject remains consistent throughout the video by calculating DINO Oquab et al.
(2023) feature similarity across frames. For Background Stability, it evaluates the temporal con-
sistency of background scenes by calculating CLIP Radford et al. (2021) feature similarity across
frames.

C.2 DETAILS OF MLLM EVALUATION

Semantic Similarity To establish a reliable metric for evaluating the semantic consistency be-
tween the reference video and the generated output, we utilize the prior knowledge embedded in
large-scale pretrained models. Specifically, we temporally concatenate the reference and generated
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Figure 8: Detailed pipeline for computing semantic similarity based on large-scale pretrained mod-
els.

videos, inserting a buffer of two blank frames between the two segments to construct a combined
video Vconcat. Leveraging the video understanding capability of LLaVA-Video-7B Lin et al. (2023),
we generate two captions that respectively describe the content of each video segment within Vconcat.

Next, to assess the similarity between these captions at a fine-grained semantic level, we employ
Qwen2.5-7B-Instruction Bai et al. (2023), a large language model with advanced language com-
prehension. This model evaluates the action similarity based solely on the explicitly stated ac-
tions—ignoring differences in subjects, context, or wording—assigning a score on a 1 to 5 scale,
where 1 denotes completely different actions and 5 indicates identical actions.

The scoring process starts by presenting the model with pairs of captions and instructing it to rate the
similarity based exclusively on the described actions. The model is asked to first provide a numeric
score, followed by a concise explanation. Fig. 8 illustrates the detailed pipeline of this semantic
similarity computation, including some of the example prompts used to guide the models and the
standardized scoring templates designed for Qwen.

Other MLLM Metrics For the other four aspects, we only use LLaVA-Video-7B Lin et al. (2023),
which has video understanding capabilities. To improve the reasoning behind the MLLM scoring,
we guide it with multiple related questions before requesting a score and provide clear criteria cor-
responding to each score. We show the prompt input for Interaction Rationality as an example in
Fig. 9.

Figure 9: Example of MLLM Evaluation. Taking Interaction Rationality as an example, we
present the specific content used when employing the MLLM to evaluate manipulation videos.
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•Notes to read before you start:
•Manipulation Generation Task Definition: Given a single input image and a reference manipulation video, generates a 
video whose manipulation semantic is consistent with the reference.

•For the given video used in the evaluation survey, you may see:
•Certain models generate videos with highly distorted sections; this is a model artifact, not a playback error. 
•You may also see unnatural hands or objects, and we appreciate your patience with such artifacts.
•Similarly, reference objects might appear unnatural with holes, irregular boundaries, or irregular motion due to segmentation artifacts.

• In this survey, please evaluate the videos comparatively to select the Two best options.

• Question for you to answer:

Q1:Which Two videos have the most rational and plausible motion?
□A    □B    □C    □D    □E    □F    

Q2:Which Two videos best match the action from the Reference Video?
□A    □B    □C    □D    □E    □F   

Q3:Which Two videos are the most temporally consistent?
□A    □B    □C    □D    □E    □F 

Q4:Which Two videos are the most physically believable?
□A    □B    □C    □D    □E    □F 

Q5:Which Two videos have the most logical object interactions?
□A    □B    □C    □D    □E    □F 

Reference Video A FEC DB

Figure 10: Human evaluation for video generation. We provide a reference video and an target
image, users are asked to evaluate and select their preference. videos based on various video editing
criteria.

C.3 DETAILS OF HUMAN EVALUATION

We design a user study by randomly selecting 25 groups from our generated video library. Each
group consists of a target image, a reference video, and videos generated by eight different meth-
ods, including ours. We invite 25 participants to perform a human evaluation. They are asked to
select their two preferred videos among the eight generated ones based on three criteria: Action
Smoothness, Interaction Rationality, Temporal Consistency, Physical Authenticity, and Semantic
Consistency with the reference video. As shown in the Fig. 10, we present the content of the user
study along with the specific question settings. The Tab. 2 presents the detailed results of the human
evaluation. Our method demonstrates a clear advantage in the human preference study, outperform-
ing competing approaches across all evaluated criteria.

Table 2: Quantitative comparison on human preference evaluation.

Method Action Smoothness Ineraction Rationality Physical Authenticity Temporal Consistency Semantic Similarity

DynamiCrafter 13.8% 6.9% 8.4% 7.7% 6.6%
CogVideoX 22.4% 22.1% 18.4% 11.8% 19.2%
MotionClone 0.4% 0.7% 0.5% 2.4% 0.5%
MotionDirector 0.5% 0.9% 1.2% 0.5% 1.7%
FlexiAct 24.9% 29.6% 23.4% 37.0% 24.1%
MIMIC 38.0% 39.8% 48.1% 40.6% 47.9%

Table 3: Quantitative comparison on MLLM evaluation.

Method Action Smoothness Ineraction Rationality Physical Authenticity Temporal Consistency Semantic Similarity

DynamiCrafter 3.2173 3.0543 3.5217 3.8804 2.4348
CogVideoX 3.6923 3.1318 3.6681 4.1468 2.3736
MotionClone 2.8404 3.0957 3.7021 4.0425 2.1277
MotionDirector 3.2978 3.1489 3.5957 4.0744 2.4149
FlexiAct 3.7761 3.5529 3.6441 4.1323 2.5238
MIMIC 3.9411 4.1381 4.0841 4.0913 2.9127
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D ADDITIONAL ABLATION STUDY

D.1 ADAPTIVE REGION LOSS

In Stage II, we design an Adaptive Region Loss to address consistency issues and introduce a hy-
perparameter λ as shown in Equation. 4. We conduct additional ablation experiments to validate
the effect of this loss. To reduce the influence of other factors, we use ground truth masks as inputs
and quantitatively analyze the impact of the region loss using metrics that evaluate visual qual-
ity, specifically Appearance Consistency, Subject Consistency, and Background Stability. Due to
computational resource limitations, the ablation experiments requiring retraining for the Adaptive
Region Loss are conducted on a subset of approximately 10,000 videos from the SSv2 Goyal et al.
(2017) dataset, rather than on our full-scale dataset. And we only evaluate on human hand interac-
tion data. We first validate the composition and specific effect of the Adaptive Region Loss, which,

Table 4: Ablation study on the different compositions and weights of Adaptive Region Loss.

λ Appearance Consistency ↑ Subject Consistency ↑ Background Stability ↑
ori. 0.8927 0.8894 0.9296

w/o FM 0.9042 0.9118 0.9360

0.25 0.9001 0.8975 0.9328
0.50 0.8872 0.8709 0.9225
0.75 0.9043 0.9039 0.9325
1.00 0.9054 0.9090 0.9323
1.25 0.9033 0.8937 0.9339
1.50 0.8972 0.9118 0.9326

as formulated, consists of two mask components: the overall motion mask and the temporally re-
peated first-frame mask. We design three experimental groups for evaluation: the original diffusion
loss(ori.), the Adaptive Region Loss without the first-frame mask(w/o FM), and the complete Adap-
tive Region Loss(full). Furthermore, we perform hyperparameter ablation for λ in the range of 0 to
1.5 with increments of 0.25. The detailed experimental results are presented in the accompanying
Tab. 4.

As illustrated in Fig. 11, we present visualization results under different compositions and weights
of the loss function. When the mask for the first frame is omitted, noticeable ghosting artifacts
appear. Conversely, as the weight increases, the visual details contained within the mask improve
significantly.

D.2 DIFFERENT INPUT TYPE

we conduct an ablation study comparing two types of conditioning inputs for the motion generation
model: (i) interaction masks only, and (ii) the full input image. The results are reported in Tab. 5. We
observe that using mask-only input leads to significantly worse performance than using the image.
This degradation stems from the fact that masks provide only coarse spatial localization and lack
essential appearance cues required for understanding the underlying scene context. Without access
to the image content, the model tends to overly rely on the temporal changes of the masks themselves
and fails to infer how the object should be manipulated in a physically plausible manner.

Table 5: Ablation study of different input type.

Input Type

Perceptual Similarity Temporal Quality MLLM Evaluation

Text
Alignment ↑

Appearance
Consistency ↑ Subject

Consistency ↑ Background
Stability ↑ Interaction

Rationality ↑ Semantic
Similarity ↑

Mask 0.2672 0.8804 0.8745 0.9168 3.5689 2.5862
Image 0.2721 0.9084 0.9291 0.9385 4.1381 2.9127
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Figure 11: The generation results under different compositions and weights of the loss function.

As illustrated in Fig. 12, models conditioned solely on masks often attempt to replicate the mo-
tion pattern observed in the reference video (e.g., unfolding a piece of cloth) rather than generating
a contextually appropriate manipulation trajectory for the target image. This indicates that mask-
only conditioning encourages the model to focus on mask dynamics rather than action semantics or
scene geometry, leading to incorrect or unrealistic motion synthesis. In contrast, using the full im-
age provides rich appearance information, enabling the model to better understand object attributes,
hand–object configurations, and scene layout. This contextual grounding is essential for generating
a plausible motion trajectory rather than merely propagating mask deformations. These findings jus-
tify the necessity of Stage I: although models like Grounding-SAM2 Ren et al. can directly provide
interaction masks, conditioning on the full image allows the generative model to build its own un-
derstanding of the scene, leading to more accurate and contextually appropriate motion generation.

E NETWORK ARCHITECTURE

E.1 QUERY ENCODER AND PAIR ENCODER

In Stage II, we design two encoders, Etar and Eref , to separately capture the motion information
of the target video and the semantic information of the reference pair. Both Etar and Eref have a
similar lightweight network architecture, as illustrated in Fig. 13. The architecture mainly consists of
convolutional layers interleaved with SiLU activation layers. Through convolutional downsampling
operations, the input conditional information is aligned to the size of the latent code zt. Notably,
in the last convolutional layer, we employ the zero convolution layer from ControlNet Zhang et al.
(2023). This zero convolution layer is initialized with zero weights and biases, ensuring that the
initial output of the model remains identical to the output of the pretrained model.

F ADDITIONAL INTERACTION SCENARIOS
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Figure 12: Motion representation comparison in a cloth-folding scenario.

Figure 13: Network Architecture of Query Encoder and Pair Encoder.

To further examine the flexibility of the proposed framework beyond the settings covered in the
main experiments, we evaluate its behavior under a broader range of interaction scenarios involving
changes in embodiment, coordination structure, and temporal horizon.

Cross-Domain Transfer. We examine whether motion cues extracted from human-hand demon-
strations can be transferred to robotic end-effectors. As illustrated in Fig. 14, the model is able
to interpret high-level manipulation intent from human-hand videos and generate plausible inter-
action sequences for a parallel-jaw gripper. Despite the substantial differences in appearance and
morphology, the generated motions maintain consistent contact patterns and task-relevant dynamics,
indicating that the representation can accommodate changes in manipulator embodiment.
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Figure 14: Cross-domain generation from human-hand demonstrations to a robotic gripper. The
model preserves task-relevant contact patterns and motion intent across embodiments.

Two-Hand Coordination. We analyze the performance of our method in coordinated two-hand
interactions. As illustrated in Fig. 15, the model generates coherent predictions for scenarios involv-
ing two human hands jointly manipulating an object. The outputs preserve stable spatial relations
between the hands and exhibit coordinated motion trajectories, suggesting that the MIMIC remains
effective even when the interaction involves multiple effectors operating in a shared workspace.

Figure 15: Generation results for coordinated two-hand manipulation, showing stable spatial rela-
tions and synchronized motion between the two hands.

Long-Horizon Generation. We further examine whether longer videos can be produced by se-
quentially composing multiple generations. As shown in Fig. 16, we generate a long-horizon in-
teraction sequence by using the final frame of a generated segment as the initial frame for the next
generation. This process is repeated across three segments guided by different reference videos. The
resulting long video maintains smooth transitions between segments, preserves consistent object
and manipulator configurations, and exhibits coherent temporal evolution throughout the sequence.
These observations indicate that the proposed framework can be extended to produce temporally
longer interaction videos through iterative composition.
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Figure 16: Long-horizon video obtained by iteratively composing segments, using final frame of
each segment as initial frame of the next segment to ensure smooth transitions.

G MORE RESULTS

We present additional comparisons with other methods, including interaction videos between human
hands or mechanical grippers and objects, as shown in Fig. 18–21. We showcase additional gener-
ated videos of human hands and mechanical grippers interacting with objects in Fig. 22 and 23.
MIMIC not only produces videos that semantically match the reference video but also distinguishes
between similar operations, such as pulling and pushing. Moreover, our method is capable of han-
dling interactions with non-rigid objects, such as unfolding.

H FAILURE CASES

While our method achieves strong results across various interaction scenarios, it still struggles in
some challenging cases, as illustrated in Fig. 17. The upper portion of the figure shows a case
with significant occlusion, where large parts of the hand and object are not visible. This leads
to noticeable appearance instability and incorrect hand–object scale in the first predicted frame,
which then propagates through subsequent frames and degrades the overall generation quality. The
lower portion of the figure depicts an interaction involving fine-grained dexterous manipulation,
specifically twisting open a bottle cap. This task requires precise rotational control, stable contact
maintenance, and detailed reasoning about fingertip–object interactions. Our model is not yet able
to fully capture these subtle motion dynamics, resulting in imperfect motion synthesis.

I BROADER IMPACT

This project addresses the critical bottleneck of scarce and costly real interaction data in the field
of embodied intelligence by generating a large volume of plausible hand or gripper manipulation
videos. This effectively facilitates research and applications in robotic perception and manipulation,
accelerating technology dissemination and cost reduction. Meanwhile, the diversity of generated
data enhances the generalization capabilities of robotic systems and fosters interdisciplinary inno-
vation. By providing rich, low-cost data resources, the approach opens new technical pathways and
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Figure 17: Failure cases. Top: severe occlusion leads to incorrect hand–object scale and unstable
generation. Bottom: fine-grained dexterous manipulation such as twisting a bottle cap remain chal-
lenging, resulting in inaccurate motion synthesis.

practical possibilities for the development of embodied intelligence, yielding significant social and
industrial impacts.

Figure 18: More comparison results of human hand-object interaction video from the reference
video.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 19: More comparison results of human hand-object interaction video from the reference
video.

Figure 20: More comparison results of robotic gripper-object interaction video from the reference
video.
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Figure 21: More comparison results of robotic gripper-object interaction video from the reference
video.

Figure 22: Results of human hand-object interaction video from reference videos.
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Figure 23: Results of robotic gripper-object interaction video from reference videos.

Figure 24: Results of human hand video on same target image with different reference videos.
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