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ABSTRACT

The development and deployment of federated learning (FL) have been bottle-
necked by heavy communication overheads of high-dimensional models between
the distributed device nodes and the central server. To achieve better error-
communication trade-offs, recent efforts have been made to either adaptively
reduce the communication frequency by skipping unimportant updates, e.g., lazy
aggregation, or adjust the quantization bits for each communication. In this pa-
per, we propose a unifying communication efficient framework for FL based on
adaptive quantization of lazily-aggregated gradients (AQUILA), which adaptively
balances two mutually-dependent factors, the communication frequency, and the
quantization level. Specifically, we start with a careful investigation of the classi-
cal lazy aggregation scheme and formulate AQUILA as an optimization problem
where the optimal quantization level is selected by minimizing the model deviation
caused by update skipping. Furthermore, we devise a new lazy aggregation strategy
to better fit the novel quantization criterion and retain the communication fre-
quency at an appropriate level. The effectiveness and convergence of the proposed
AQUILA framework are theoretically verified. The experimental results demon-
strate that AQUILA can reduce around 60% of overall transmitted bits compared
to existing methods while achieving identical model performance in a number of
non-homogeneous FL scenarios, including Non-IID data and heterogeneous model
architecture.

1 INTRODUCTION

With the deployment of ubiquitous sensing and computing devices, the Internet of things (IoT), as well
as many other distributed systems, have gradually grown from concept to reality, bringing dramatic
convenience to people’s daily life (Du et al., 2020; Liu et al., 2020; Hard et al., 2018). To fully utilize
such distributed computing resources, distributed learning provides a promising framework that can
achieve comparable performance with the traditional centralized learning scheme. However, the
privacy and security of sensitive data during the updating and transmission processes in distributed
learning have been a growing concern. In this context, federated learning (FL) (McMahan et al., 2017)
has been developed, allowing distributed devices to collaboratively learn a global model without
privacy leakage by keeping private data isolated and masking transmitted information with secure
approaches. On account of its privacy-preserving property and great potentiality in some distributed
but privacy-sensitive fields such as finance and health, FL has attracted tremendous attention from
both academia and industry in recent years.

Unfortunately, in many FL applications, such as image classification and objective recognition, the
trained model tends to be high-dimensional, resulting in significant communication costs. Hence,
communication efficiency has become one of the key bottlenecks of FL. To this end, Sun et al. (2020)
proposes the lazily-aggregated quantization (LAQ) method to skip unnecessary parameter uploads by
estimating the value of gradient innovation — the difference between the current unquantized gradient
and the previously quantized gradient. Moreover, Mao et al. (2021) devises an adaptive quantized
gradient (AQG) strategy based on LAQ to dynamically select the quantization level within some
artificially given numbers during the training process. Nevertheless, the AQG is still not sufficiently
adaptive because the pre-determined quantization levels are difficult to choose in complicated FL
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environments. In another separate line of work, Jhunjhunwala et al. (2021) introduces an adaptive
quantization rule for FL (AdaQuantFL), which searches in a given range for an optimal quantization
level and achieves a better error-communication trade-off.

Most previous research has investigated optimizing communication frequency or adjusting the
quantization level in a highly adaptive manner, but not both. Intuitively, we ask a question, can we
adaptively adjust the quantization level in the lazy aggregation fashion to simultaneously reduce
transmitted amounts and communication frequency? In the paper, we intend to select the optimal
quantization level for every participated device by optimizing the model deviation caused by skipping
quantized gradient updates (i.e., lazy aggregation), which gives us a novel quantization criterion
cooperated with a new proposed lazy aggregation strategy to reduce overall communication costs
further while still offering a convergence guarantee. The contributions of this paper are trifold.

• We propose an innovative FL procedure with adaptive quantization of lazily-aggregated
gradients termed AQUILA, which simultaneously adjusts the communication frequency and
quantization level in a synergistic fashion.

• Instead of naively combining LAQ and AdaQuantFL, AQUILA owns a completely different
device selection method and quantitative level calculation method. Specifically, we derive
an adaptive quantization strategy from a new perspective that minimizes the model deviation
introduced by lazy aggregation. Subsequently, we present a new lazy aggregation criterion
that is more precise and saves more device storage. Furthermore, we provide a convergence
analysis of AQUILA under the generally non-convex case and the Polyak-Łojasiewicz
condition.

• Except for normal FL settings, such as independent and identically distributed (IID) data
environment, we experimentally evaluate the performance of AQUILA in a number of
non-homogeneous FL settings, such as non-independent and non-identically distributed
(Non-IID) local dataset and various heterogeneous model aggregations. The evaluation
results reveal that AQUILA considerably mitigates the communication overhead compared
to a variety of state-of-art algorithms.

2 BACKGROUND AND RELATED WORK

Consider an FL system with one central parameter server and a device set M with M = |M|
distributed devices to collaboratively train a global model parameterized by θ ∈ Rd. Each device
m ∈ M has a private local dataset Dm = {(x(m)

1 ,y
(m)
1 ), · · · , (x(m)

nm ,y
(m)
nm )} of nm samples. The

federated training process is typically performed by solving the following optimization problem

min
θ∈Rd

f(θ) =
1

M

M∑
m=1

fm(θ) with fm(θ) = [l (hθ(x),y)](x,y)∼Dm
, (1)

where f : Rd → R denotes the empirical risk, fm : Rd → R denotes the local objective based on the
private data Dm of the device m, l denotes the local loss function, and hθ denotes the local model.
The FL training process is conducted by iteratively performing local updates and global aggregation
as proposed in (McMahan et al., 2017). First, at communication round k, each device m receives
the global model θk from the parameter server and trains it with its local data Dm. Subsequently, it
sends the local gradient ∇fm(θk) to the central server, and the server will update the global model
with learning rate α by

θk+1 := θk − α

M

∑
m∈M

∇fm(θk). (2)

Definition 2.1 (Quantized gradient innovation). For more efficiency, each device only uploads
the quantized deflection between the full gradient ∇fm(θk) and the last quantization value qk−1

m
utilizing a quantization operator Q : Rd → Rd, i.e.,

∆qkm = Q(∇fm(θk)− qk−1
m ). (3)

For communication frequency reduction, the lazy aggregation strategy allows the device m ∈ M to
upload its newly-quantized gradient innovation at epoch k only when the change in local gradient is
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sufficiently larger than a threshold. Hence, the quantization of the local gradient qkm of device m at
epoch k can be calculated by

qkm :=

 qk−1
m , if

∥∥∥Q(∇fm

(
θk

)
− qk−1

m )
∥∥∥2
2
⩽ Threshold

qk−1
m +∆qkm, otherwise

. (4)

If the device m skips the upload of ∆qkm, the central server will reuse the last gradient qk−1
m for

aggregation. Therefore, the global aggregation rule can be changed from (2) to:

θk+1 = θk − α

M

∑
m∈M

qkm = θk − α

M

∑
m∈Mk

(
qk−1
m +∆qkm

)
− α

M

∑
m∈Mk

c

qk−1
m , (5)

where Mk denotes the subset of devices that upload their quantized gradient innovation, and Mk
c =

M \ Mk denotes the subset of devices that skip the gradient update and reuse the old quantized
gradient at epoch k.

For AdaQuantFL, it is proposed to achieve a better error-communication trade-off by adaptively
adjusting the quantization levels during the FL training process. Specifically, AdaQuantFL computes

the optimal quantization level (bk)∗ by (bk)∗ = ⌊
√

f(θ0)/f(θk) · b0⌋, where f(θ0) and f(θk) are
the global objective loss defined in (1).

However, AdaQuantFL transmits quantized gradients at every communication round. In order
to skip unnecessary communication rounds and adaptively adjust the quantization level for each
communication jointly, a naive approach is to quantize lazily aggregated gradients with AdaQuantFL.
Nevertheless, it fails to achieve efficient communication for several reasons. First, given the descend-
ing trend of training loss, AdaQuantFL’s criterion may lead to a high quantization bit number even
exceeding 32 bits in the training process (assuming a floating point is represented by 32 bits in our
case), which is too large for cases where the global convergence is already approaching and makes
the quantization meaningless. Second, a higher quantization level results in a smaller quantization
error, leading to a lower communication threshold in the lazy aggregation criterion (4) and thus a
higher transmission frequency.

Consequently, it is desirable to develop a more efficient adaptive quantization method in the lazily-
aggregated setting to improve communication efficiency in FL systematically.

3 ADAPTIVE QUANTIZATION OF LAZILY-AGGREGATED GRADIENTS

Given the above limitations of the naive joint use of the existing adaptive quantization criterion
and lazy aggregation strategy, this paper aims to design a unifying procedure for communication
efficiency optimization where the quantization level and communication frequency are considered
synergistically and interactively.

3.1 OPTIMAL QUANTIZATION LEVEL

First, we introduce the definition of a deterministic rounding quantizer and a fully-aggregated model.

Definition 3.1. (Deterministic mid-tread quantizer.) Every element of the gradient innovation of
device m at epoch k is mapped to an integer [ψk

m]i as[
ψk

m

]
i
=


[
∇fm(θk)

]
i
−
[
qk−1
m

]
i
+Rk

m

2τkmRk
m

+
1

2

 ,∀i ∈ {1, 2, ..., d}, (6)

where ∇f(θkm) denotes the current unquantized gradient, Rk
m = ∥∇fm(θk) − qk−1

m ∥∞ denotes
the quantization range, bkm denotes the quantization level, and τkm := 1/(2b

k
m − 1) denotes the

quantization granularity. More explanations on this quantizer are exhibited on Appendix A.2.

Definition 3.2 (Fully-aggregated model). The fully-aggregated model θ̃ without lazy aggregation at
epoch k is computed by

θ̃
k+1

= θk − α

M

∑
m∈M

(
qk−1
m +∆qkm

)
. (7)
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Lemma 3.1. The influence of lazy aggregation at communication round k can be bounded by

∥∥∥θ̃k−θk∥∥∥2
2
⩽

4α2|Mk
c |

M2

∑
m∈Mk

c

((∥∥∥∇fm(θk)−qk−1
m

∥∥∥
2
−
∥∥τkmRk

m1
∥∥
2

)2

+4(Rk
m)2d+

d

2

)
. (8)

Corresponding to Lemma 3.1, since Rk
m is independent of τkm, we can formulate an optimization

problem to minimize the upper bound of this model deviation caused by update skipping for each
device m:

minimize
0<τk

m⩽1

(∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
−

∥∥τkmRk
m1

∥∥
2

)2

subject to τkm =
1(

2b
k
m − 1

) . (9)

Solving the below optimization problem gives AQUILA an adaptive strategy (10) that selects the
optimal quantization level based on the quantization range Rk

m, the dimension d of the local model,
the current gradient ∇fm(θk), and the last uploaded quantized gradient qk−1

m :

(bkm)∗ =

log2
 Rk

m

√
d∥∥∥∇fm(θk)− qk−1

m

∥∥∥
2

+ 1

 . (10)

The superiority of (10) comes from the following three aspects. First, since Rk
m ⩾ [∇fm(θk)]i −

[qk−1
m ]i ⩾ −Rk

m, the optimal quantization level (bkm)∗ must be greater than or equal to 1. Second,
AQUILA can personalize an optimal quantization level for each device corresponding to its own gra-
dient, whereas, in AdaQuantFL, each device merely utilizes an identical quantization level according
to the global loss. Third, the gradient innovation and quantization range Rk

m tend to fluctuate along
with the training process instead of keeping descending, and thus prevent the quantization level from
increasing tremendously compared with AdaQuantFL.

3.2 PRECISE LAZY AGGREGATION CRITERION

Definition 3.3 (Quantization error). The global quantization error εk is defined by the subtraction
between the current unquantized gradient ∇f(θk) and its quantized value qk−1 +∆qk, i.e.,

εk = ∇f(θk)− qk−1 −∆qk, (11)

where ∇f(θk) =
∑

m∈M ∇fm(θk), qk−1 =
∑

m∈M qk−1
m ,∆qk =

∑
m∈M ∆qkm.

To better fit the larger quantization errors induced by fewer quantization bits in (10), AQUILA
possesses a new communication criterion to avoid the potential expansion of the devices group being
skipped: ∥∥∆qkm∥∥2

2
+
∥∥εkm∥∥2

2
⩽

β

α2

∥∥∥θk − θk−1
∥∥∥2
2
,∀m ∈ Mk

c , (12)

where β ⩾ 0 is a tuning factor. Note that this skipping rule is employed at epoch k, in which each
device m calculates its quantized gradient innovation ∆qkm and quantization error εkm, then utilizes
this rule to decide whether uploads ∆qkm.

The comparison of AQUILA’s skip rule and LAQ’s is also shown in Appendix A.2. Instead of storing
a large number of previous model parameters as LAQ, the strength of (12) is that AQUILA directly
utilizes the global model for two adjacent rounds as the skip condition, which does not need to estimate
the global gradient (more precise), requires fewer hyperparameters to adjust, and considerably reduces
the storage pressure of local devices. This is especially important for small-capacity devices (e.g.,
sensors) in practical IoT scenarios.
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Algorithm 1 Communication Efficient FL with AQUILA

Input: the number of communication rounds K, the learning rate α.
Initialize: the initial global model parameter θ0.

1: Server broadcasts θ0 to all devices. ▷ For the initial round k = 0.
2: for each device m ∈ M in parallel do
3: Calculates local gradient ∇fm(θ

0
).

4: Compute (b0m)∗ by setting qk−1
m = 0 in (10) and the quantized gradient innovation ∆q0m,

and transmits it back to the server side.
5: end for
6: for k = 1, 2, ...,K do
7: Server broadcasts θk to all devices.
8: for each device m ∈ M in parallel do
9: Calculates local gradient ∇fm(θ

k
), the optimal local quantization level (bkm)∗ by (10),

and the quantized gradient innovation ∆qkm.
10: if (12) does not hold for device m then ▷ If satisfies, skip uploading.
11: device m transmits ∆qkm to the server.
12: end if
13: end for
14: Server updates θk+1 by the saving previous global quantized gradient qk−1

m and the received
quantized gradient innovation ∆qkm: θk+1 := θk − α

(
qk−1 + 1/M

∑
m∈Mk ∆qkm

)
.

15: Server saves the average quantized gradient qk for the next aggregation.
16: end for

The detailed process of AQUILA is comprehensively summarized in Algorithm 1. At epoch k = 0,
each device calculates b0m by setting qk−1

0 = 0 and uploads ∆qk0 to the server since the (12) is
not satisfied. At epoch k ∈ {1, 2, ...,K}, the server first broadcasts the global model θk to all
devices. Each device m computes ∇f(θ

k
m) with local training data and then utilizes it to calculate

an optimal quantization level by (10). Subsequently, each device computes its gradient innovation
after quantization and determines whether or not to upload based on the communication criterion
(12). Finally, the server updates the new global model θk+1 with up-to-date quantized gradients
qk−1
m +∆qkm for those devices who transmit the uploads at epoch k, while reusing the old quantized

gradients qk−1
m for those who skip the uploads.

4 THEORETICAL DERIVATION AND ANALYSIS OF AQUILA

As aforementioned, we bound the model deviation caused by skipping updates with respect to
quantization bits. Specifically, if the communication criterion (12) holds for the device m at epoch
k, it does not contribute to epoch k’s gradient. Otherwise, the loss caused by device m will be
minimized with the optimal quantization level selection criterion (10). In this section, the theoretical
convergence derivation of AQUILA is based on the following standard assumptions.

Assumption 4.1 (L-smoothness). Each local objective function fm is Lm-smooth, i.e., there exist a
constant Lm > 0, such that ∀x,y ∈ Rd,

∥∇fm(x)−∇fm(y)∥2 ⩽ Lm ∥x− y∥2 , (13)

which implies that the global objective function f is L-smooth with L ≤ L̄ = 1
m

∑m
i=1 Lm.

Assumption 4.2 (Uniform lower bound). For all x ∈ Rd, there exist f∗ ∈ R such that f(x) ≥ f∗.

Lemma 4.1. Following the assumption that the function f is L-smooth, we have

f(θk+1)−f(θk) ⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+α


∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

+
∥∥εk∥∥2

2

+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
.

(14)

5



Under review as a conference paper at ICLR 2023

4.1 CONVERGENCE ANALYSIS FOR GENERALLY NON-CONVEX CASE.

Theorem 4.1. Suppose Assumptions 4.1, 4.2, and B.1 (29) be satisfied. If Mk
c ̸= ∅, the global

objective function f satisfies

f(θk+1)−f(θk)⩽−α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1−θk
∥∥∥2
2
+
βγ

α

∥∥∥θk−θk−1
∥∥∥2
2
. (15)

Corollary 4.1. Let all the assumptions of Theorem 4.1 hold and L
2 − 1

2α + βγ
α ⩽ 0, then the AQUILA

requires

K = O
(
2ω1

αϵ2

)
(16)

communication rounds with ω1=f
(
θ1

)
−f (θ∗)+βγ

α

∥∥θ1−θ0∥∥2
2

to achieve mink ∥∇f(θk)∥22 ⩽ ϵ2.

Compared to LAG. Corresponding to Eq.(70) in Chen et al. (2018), LAG defines a Lyapunov
function Vk := f(θk)− f(θ∗) +

∑D
d=1 βd∥θk+1−d − θk−d∥22 and claims that it satisfies

Vk+1 − Vk ≤ −
(α
2
− c̃ (α, β1) (1 + ρ)α2

)∥∥∥∇f(θk)
∥∥∥2
2
, (17)

where c̃ (α, β1) = L/2 − 1/(2α) + β1, β1 = Dξ/(2αη), ξ < 1/D, and ρ > 0. The above result
(17) indicates that LAG requires

KLAG = O
(

2ω1

(α− 2c̃ (α, β1) (1 + ρ)α2) ϵ2

)
(18)

communication rounds to converge. Since the non-negativity of the term c̃ (α, β1) (1 + ρ)α2, we can
readily derive that α < α − 2c̃ (α, β1) (1 + ρ)α2, which demonstrates AQUILA achieves a better
convergence rate than LAG with the appropriate selection of α.

4.2 CONVERGENCE ANALYSIS UNDER POLYAK-ŁOJASIEWICZ CONDITION.

Assumption 4.3 (µ−PŁ condition). Function f satisfies the PL condition with a constant µ > 0,
that is, ∥∥∥∇f(θk)

∥∥∥2
2
⩾ 2µ(f(θk)− f(θ∗)). (19)

Theorem 4.2. Suppose Assumptions 4.1, 4.2, and 4.3 be satisfied and Mk
c ̸= ∅, if the hyperparame-

ters satisfy βγ
α ⩽ (1− αµ)

(
1
2α − L

2

)
, then the global objective function satisfies

f(θk+1)−f(θk)⩽−αµ(f(θk)−f(θ∗))+

(
L

2
− 1

2α

)∥∥∥θk+1−θk
∥∥∥2
2
+
βγ

α

∥∥∥θk−θk−1
∥∥∥2
2
, (20)

and the AQUILA requires

K = O
(
− 1

log(1− αµ)
log

ω1

ϵ

)
(21)

communication round with ω1 = f(θ1) − f(θ∗) +
(

1
2α − L

2

) ∥∥θ1 − θ0∥∥2
2

to achieve f(θK+1) −
f(θ∗) + ( 1

2α − L
2 )∥θ

K+1 − θK∥22 ⩽ ϵ.

Compared to LAG. According to Eq.(50) in Chen et al. (2018), we have that

VK ≤
(
1− αµ+ αµ

√
Dξ

)K

V0, (22)

where ξ < 1/D. Thus, we have that LAG requires

KLAG = O
(
− 1

log(1− αµ+ αµ
√
Dξ)

log
ω1

ϵ

)
(23)

communication rounds to converge. Compared to Theorem 4.2, we can derive that log(1− αµ) <
log(1− αµ+ αµ

√
Dξ), which indicates that AQUILA has a faster convergence than LAG under the

PŁ condition.
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Remark. We want to emphasize that LAQ introduces the Lyapunov function into its proof, making
it extremely complicated. In addition, LAQ can only guarantee that the final objective function
converges to a range of the optimal solution rather than an accurate optimum f(θ∗). Nevertheless, as
discussed in Section 3.2, we utilize the precise model difference in AQUILA as a surrogate for the
global gradient and thus simplify the proof.

5 EXPERIMENTS AND DISCUSSION

5.1 EXPERIMENT SETUP

In this paper, we evaluate AQUILA on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
WikiText-2 dataset (Merity et al., 2016), considering IID, Non-IID data scenario, and heteroge-
neous model architecture (which is also a crucial challenge in FL) simultaneously.

The FL environment is simulated in Python 3.9 with PyTorch 11.1 (Paszke et al., 2019) im-
plementation. For the diversity of the neural network structures, we train ResNet-18 (He et al.,
2016) at CIFAR-10 dataset, MobileNet-v2 (Sandler et al., 2018) at CIFAR-100 dataset, and
Transformer (Vaswani et al., 2017) at WikiText-2 dataset.

As for the FL system setting, in the majority of our experiments, the whole system exists M = 10 total
devices. However, considering the large-scale feature of FL, we also validate AQUILA on a larger
system of M = 100/80 total devices for CIFAR / WikiText-2 dataset. The hyperparameters and
additional details of our experiments are revealed in Appendix A.3.

(f)(e)(d)

(b)(a) (c)

Figure 1: Comparison of AQUILA with other communication-efficient algorithms on IID and Non-
IID settings with homogeneous model structure. (a)-(c): training loss v.s. total transmitted bits,
(d)-(f): transmitted bits per epoch v.s. global epoch.

5.2 HOMOGENEOUS ENVIRONMENT

We first evaluate AQUILA with homogeneous settings where all local models share the same model
architecture as the global model. To better demonstrate the effectiveness of AQUILA, its performance
is compared with several state-of-the-art methods, including AdaQuantFL, LAQ with fixed levels,
LENA (Ghadikolaei et al., 2021), MARINA (Gorbunov et al., 2021), and the naive combination of
AdaQuantFL with LAQ. Note that based on this homogeneous setting, we conduct both IID and Non-
IID evaluations on CIFAR-10 and CIFAR-100 dataset, and an IID evaluation on WikiText-2.
To simulate the Non-IID FL setting as (Diao et al., 2020), each device is allocated two classes of data
in CIFAR-10 and 10 classes of data in CIFAR-100 at most, and the amount of data for each label
is balanced.
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The experimental results are presented in Fig. 1, where 100% implies all local models share a similar
structure with the global model (i.e., homogeneity), 100% (80 devices) denotes the experiment is
conducted in an 80 devices system, and LAdaQ represents the naive combination of AdaQuantFL
and LAQ. For better illustration, the results have been smoothed by their standard deviation. The
solid lines represent values after smoothing, and transparent shades of the same colors around them
represent the true values. Additionally, Table 2 shows the total number of bits transmitted by all
devices throughout the FL training process. The comprehensive experimental results are established
in Appendix A.4.

5.3 NON-HOMOGENEOUS SCENARIO

In this section, we also evaluate AQUILA with heterogeneous model structures as HeteroFL (Diao
et al., 2020), where the structures of local models trained on the device side are heterogeneous.
Suppose the global model at epoch k is θk and its size is d = wg ∗ hg, then the local model of
each device m can be selected by θkm = θk [: wm, : hm], where wm = rmwg and hm = rmhg,
respectively. In this paper, we choose model complexity levels rm = 0.5.

(f)(e)(d)

(b)(a) (c)

Figure 2: Comparison of AQUILA with other communication-efficient algorithms on IID and Non-
IID settings with heterogeneous model structure. (a)-(c): training loss v.s. total transmitted bits,
(d)-(f): transmitted bits per epoch v.s. global epoch.

Most of the symbols in Fig. 2 are identical to the Fig. 1. 100%-50% is a newly introduced symbol
that implies half of the devices share the same structure with the global model while another half
only have 50% * 50% parameters as the global model.

Performance Analysis. First of all, AQUILA achieves a significant transmission reduction compared
to the naive combination of LAQ and AdaQuantFL in all datasets, which demonstrates the superiority
of AQUILA’s efficiency. Specifically, Table 2 indicates that AQUILA saves 57.49% of transmitted
bits in the system of 80 devices at the WikiText-2 dataset and reduces 23.08% of transmitted bits
in the system of 100 devices at the CIFAR-100 dataset, compared to the naive combination. And
other results in Table 3 also show an obvious reduction in terms of the total transmitted bits required
for convergence.

Second, in Fig. 1 and Fig. 2, the changing trend of AQUILA’s communication bits per each round
clearly verifies the necessity and effectiveness of our well-designed adaptive quantization level
and skip criterion. In these two figures, the number of bits transmitted in each round of AQUILA
fluctuates a bit, indicating the effectiveness of AQUILA’s selection rule. Meanwhile, the value of
transmitted bits remains at quite a low level, suggesting that the adaptive quantization principle makes
training more efficient. Moreover, the figures also inform that the quantization level selected by
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AQUILA will not continuously increase during training instead of being as AdaQuantFL. In addition,
based on these two figures, we can also conclude that AQUILA converges faster under the same
communication costs.

Finally, AQUILA is capable of adapting to a wide range of challenging FL circumstances. In the
Non-IID scenario and heterogeneous model structure, AQUILA still outperforms other algorithms
by significantly reducing overall transmitted bits while maintaining the same convergence property
and objective function value. In particular, AQUILA reduces 60.4% overall communication costs
compared to LENA and 57.2% compared to MARINA on average. These experimental results in
non-homogeneous FL settings prove that AQUILA can be stably employed in more general and
complicated FL scenarios.

5.4 ABLATION STUDY ON THE IMPACT OF TUNING FACTOR β

One key contribution of AQUILA is presenting a new lazy aggregation criterion (12) to reduce
communication frequency. In this part, we evaluate the effects of the loss performance of different
tuning factor β value in Fig. 3. As β grows within a certain range, the convergence speed of the
model will slow down (due to lazy aggregation). Still, it will eventually converge to the same model
performance while considerably reducing the communication overhead. Nevertheless, increasing
the value of β will lead to a decrease in the final model performance since it skips so many essential
uploads that make the training deficient. The accuracy (perplexity) comparison of AQUILA with
various selections of the tuning factor β is shown in Fig. 10, which indicates the same trend.To
sum up, we should choose the value of factor β to maintain the model’s performance and minimize
the total transmitted amount of bits. Specifically, we select the value of β = 0.1, 0.25, 1.25 for
CIFAR-10, CIFAR-100, and WikiText-2 datasets for our evaluation, respectively.

(f)(e)(d)

(b)(a) (c)

Figure 3: Comparison of AQUILA with various selections of the tuning factor β in three datasets.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a communication-efficient FL procedure to simultaneously adjust two mutually-
dependent degrees of freedom: communication frequency and quantization level. With the close
cooperation of the novel adaptive quantization and adjusted lazy aggregation strategy derived in this
paper, the proposed AQUILA has been proven to be capable of reducing the transmitted costs while
maintaining the convergence guarantee and model performance compared to existing methods. The
evaluation with Non-IID data distribution and various heterogeneous model architectures demonstrates
that AQUILA is compatible in a non-homogeneous FL environment.
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REPRODUCIBILITY

We present the overall theorem statements and proofs for our main results in the Appendix, as well
as necessary experimental plotting figures. Furthermore, we submit the code of AQUILA in the
supplementary material part, including all the hyperparameters and a requirements to help the public
reproduce our experimental results. Our algorithm is straightforward, well-described, and easy to
implement.

ETHICS STATEMENT

All evaluations of AQUILA are performed on publicly available datasets for reproducibility purposes.
This paper empirically studies the performance of various state-of-art algorithms, therefore, probably
introduces no new ethical or cultural problems. This paper does not utilize any new dataset.
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A APPENDIX

The appendix includes supplementary experimental results, mathematical proof of the aforementioned
theorems, and a detailed derivation of the novel adaptive quantization criterion and lazy aggregation
strategy. Compared to Fig. 1 and Fig. 2 in the main text, the result figures in the appendix show a
more comprehensive evaluation with AQUILA, which contains more detailed information including
but not limited to accuracy vs steps and training loss vs steps curves.

A.1 OVERALL FRAMEWORK OF AQUILA

The cooperation of the novel adaptive quantization criterion (10) and lazy aggregation strategy (12) is
illustrated in Fig. 4a. Compared to the naive combination of AdaQuantFL and LAQ, where the mutual
influence between adaptive quantization and lazy aggregation has not been considered, as shown
in Fig. 4b, AQUILA adaptively optimizes the allocation of quantization bits throughout training to
promote the convergence of lazy aggregation, and at the same time utilizes the lazy aggregation
strategy to improve the efficiency of adaptive quantization by compress the transmission with a lower
quantization level.

∆𝒒!"

Device 1 Device 2 Device 3 Device m

Server

…skip

…

𝜽"#! = 𝜽" −
𝛼
𝑀

( 𝒒$"
$∈ℳ

 

∆𝒒$"∆𝒒'"

∆𝒒("

∆𝒒("

∆𝒒'"

𝑏!AdaQuantFL LAQ𝑏! = 𝑓(𝜃")/𝑓(𝜃!) ( 𝑏"

AdaQuantFL + LAQAQUILA

∆𝒒!"

Device 1 Device 2 Device 3 Device m

Server

…

𝑏#!Adaptive quantization level Lazy aggregation strategy

skipskip

…

Compress transmission with low𝑏!"

Minimize model deviation caused by skipping

𝜽"#! = 𝜽" −
𝛼
𝑀

( 𝒒$"
$∈ℳ

 

∆𝒒$"∆𝒒'"

∆𝒒("

∆𝒒("

∆𝒒'"

(b)(a)

∆𝒒$"

Figure 4: The schematic illustration of the communication-efficient FL with AQUILA in comparison
with the naive combination of AdaQuantFL and LAQ. The blue lines indicating the transmission of
quantized gradient innovation in AQUILA are drawn in different thicknesses to represent various
sizes of quantized gradient innovation, considering the heterogeneous FL environment as in our
evaluation part. For instance, the gradient innovation ∆qk3 of a PC is larger than ∆qk2 of a mobile
phone.

A.2 EXPLANATION OF THE QUANTIZER AND THE SKIP RULE OF LAQ’S

The quantizer (6) is a deterministic quantizer that, at each dimension, maps the gradient innovation
to the closest point at a one-dimensional grid. The range of the grid is Rk

m, and the granularity
is determined by quantization level τkm. Each dimension of gradient innovation is mapped to an
integer in {0, 1, 2, 3, . . . , 2b − 1}. More precisely, the 1/2 ensures mapping to the closest integer
instead of flooring to a smaller integer. The Rk

m in the numerator ensures that the mapped integer is
non-negative. As a result, when the gradient innovation is transmitted to the central server, 32 bits are
used for the range, and b ∗ d bits are used for the mapped integer. Thus, 32+ b ∗ d bits are transmitted
in total.

The difference between (6) and (32) (Lemma B.2) is that (6) encodes the raw gradient innovation
vector to an integer vector, whilst (32) decodes the integer vector to a quantized gradient innovation
vector. Specifically, in the training process, each client utilizes (6) to encode the gradient innovation
to an integer at each dimension, and afterwards, the integer vector ψk

m and τkm are sent to a central
server. After receiving them, the central server can decode the quantized gradient innovation as (32)
states.
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The skip rule of LAQ is measured by the summation of the accumulated model difference and
quantization error:

∥∆qkm∥22 ⩽
1

α2M2

D∑
d′=1

ξd′

∥∥∥θk+1−d′
− θk−d′

∥∥∥2
2
+ 3

(∥∥εkm∥∥2
2
+

∥∥∥ε̂k−1
m

∥∥∥2
2

)
, (24)

where ξd′ is a series of manually selected scalars and D is also predetermined. εkm is the quantization
error of client m at epoch k, and ε̂k−1

m is the quantization of client m at last time it uploads its gradient
innovation. Please refer to Sun et al. (2020) for more details on (24). In order to compute the LAQ
skip threshold, each client has to store enormous previous information.

The difference of AQUILA skipping criterion and LAQ skipping criterion is as follows. First, the
AQUILA threshold is easier to compute for a local client. Compared to the LAQ skipping criterion,
AQUILA skipping criterion is more concise and thus requires less storage and computing power.
Second, the AQUILA criterion is easier to tune because much fewer hyperparameters are introduced.
Compared to the LAQ criterion in which α, D and {ξd′}Dd′=1 are all manually selected, whilst
only two hyperparameters α and β are introduced in the AQUILA criterion. Third, with the given
threshold, AQUILA has a good theoretical property. The theoretical analysis of AQUILA is easier to
follow with no Lyapunov function introduced as in LAQ. And the result also shows that AQUILA
can achieve a better convergence rate under the non-convex case and the PL condition.

A.3 EXPERIMENT SETUP

In this section, we provide some extra hyperparameter settings for our evaluation. For the LAQ,
we set D = 10 and ξ1 = ξ2 = · · · = ξD = 0.8/D as the same as the setting in their paper. For
LENA, we set βLENA = 40 in their trigger condition. And for MARINA, we calculate the uploading
probability of Bernoulli distribution as p = ξQ/d as announced in their paper. In addition, we
choose the CrossEntropy function as our objective function in the experiment part. Table 1 shows the
hyperparameter details of our evaluation.

Table 1: The hyperparameters for CIFAR-10, CIFAR-100, and WikiText-2 datasets in the FL
training process.

Dataset CIFAR-10 CIFAR-100 WikiText-2

Model ResNet-18 MobileNet-v2 Transformer

Data Distribution IID Non-IID IID Non-IID IID

Global Epoch 200 200 1000 500 1000

Local Batch Size 256 256 256 256 64

Optimizer SGD SGD SGD SGD SGD

Momentum 0.9 0.9 0.9 0.9 0.9

Weight Decay 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04

Learning Rate α 0.1 0.1 0.1 0.1 0.5

Tuning factor β 0.1 0.005 0.25 0.003 1.25

A.4 COMPREHENSIVE EXPERIMENT RESULTS

This section will cover all the experimental results in our paper.
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Table 2: Numerical numbers of total communication bits in the homogeneous environment.

Total Comm Bits (GB) QSGD AdaQ LAQ LAdaQ LENA MARINA AQUILA

CIFAR-10

IID-100 156.07 226.33 153.26 226.36 160.2 162.84 138.35

IID 15.61 34.19 15.22 34.18 15.95 16.28 4.59

Non-IID 15.61 20.39 14.48 19.86 17.64 16.28 11.53

CIFAR-100

IID-100 165.55 224.02 164.11 223.64 166.87 167.71 142.55

IID 16.56 28.68 16.28 14.41 16.63 16.77 3.98

Non-IID 8.28 14.54 8.27 14.25 9.19 8.49 6.12

WikiText-2
IID-80 470.95 711.49 513.07 710.17 341.17 338.38 218.59

IID 134.56 340.97 106.92 170.40 150.07 136.31 71.91

Table 3: Numerical numbers of total communication bits in the heterogeneous environment.

Total Comm Bits (GB) QSGD Ada LAQ Ada+LAQ LENA MARINA AQUILA

CIFAR-10
IID 9.76 21.99 9.55 10.98 9.97 10.18 2.65

Non-IID 9.76 16.15 9.25 14.67 11.19 10.18 7.16

CIFAR-100
IID 10.56 19.42 10.56 9.7 10.61 10.7 2.51

Non-IID 5.28 10.07 5.28 5.02 5.56 5.42 3.66

WikiText-2 IID 99.09 248.87 92.74 124.47 119.83 100.38 53.84
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Figure 5: Comparison on 100 devices at CIFAR-10 and CIFAR-100, 80 devices at WikiText-2
dataset in the IID, homogeneous scenario.
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Figure 6: Comparison on 10 devices at three datasets in the IID, homogeneous scenario.
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Figure 7: Comparison on 10 devices at three datasets in the Non-IID, homogeneous scenario..
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Figure 8: Comparison on 10 devices at three datasets in the IID, heterogeneous scenario.
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Figure 9: Comparison on 10 devices at three datasets in the Non-IID, heterogeneous scenario.
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Figure 10: Accuracy (Perplexity) comparison of AQUILA with various selections of the tuning factor
β in three datasets.
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B BASIC FACTS AND SOME LEMMAS

Notations: Bold fonts denote vectors (e.g., θ). Normal fonts denote scalars (e.g., α). Subscript m is
used to describe functions about a local device m (e.g., fm(θ)). A function without a subscript is
used to describe an average among all devices (e.g., f(θ)).

Frequently used norm inequalities Suppose n ∈ N+ and ∥ · ∥2 denotes the ℓ2−norm. For p in
R+,xi,a, b ∈ Rd, there holds

1. Norm summation inequality.

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

2

⩽ n

n∑
i=1

∥xi∥22 . (25)

2. Inner-product inequality.

⟨a, b⟩ = 1

2

(
∥a∥22 + ∥b∥22 − ∥a− b∥22

)
. (26)

3. Young’s Inequality.

∥a+ b∥22 ⩽ (1 + p) ∥a∥22 + (1 + p−1) ∥b∥22 . (27)

4. Minkowski’s Inequality.

∥a+ b∥2 ⩽ ∥a∥2 + ∥b∥2 . (28)

Assumption B.1. All devices’ quantization errors εk will be constrained by the total error of the
omitted devices., i.e., ∀ k = 0, 1, · · · ,K, if Mk

c ̸= ∅, ∃ γ ⩾ 1, such that

∥∥εk∥∥2
2
=

∥∥∥∥∥ 1

M

∑
m∈M

εkm

∥∥∥∥∥
2

2

⩽
γ

M2

∥∥∥∥∥∥
∑

m∈Mk
c

εkm

∥∥∥∥∥∥
2

2

, (29)

where K denotes the termination time, and εkm = ∇fm(θk) −
(
qk−1
m +∆qkm

)
. This lemma is

easy to verify when Mk
c ̸= ∅, a bounded variable (here is εk) will always be bounded by a part

of itself ( 1
M

∑
m∈Mk

c
εkm) multiplied by a real number (γ). Note that there is another nontrivial

scenario that Mk
c ̸= ∅ but εkm = 0 for all m ∈ Mk

c , which implies that γ = 0 or not exists and
conflicts with our assumption. However, this situation only happens when all entries of εkm = 0, i.e.,
[∇fm(θk)]i = [qk−1

m ]i for all 0 ⩽ i ⩽ d.

Lemma B.1. The summation of quantized gradient innovation and quantization error is bounded by
the global model difference:

∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

+
∥∥εk∥∥2

2
⩽

βγ

α2

∥∥∥θk − θk−1
∥∥∥2
2
, (30)
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Proof. ∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

+
∥∥εk∥∥2

2

(a)

⩽

∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

+ γ

∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

εkm

∥∥∥∥∥∥
2

2

(25)
⩽ |Mk

c |
∑

m∈Mk
c

∥∥∥∥ 1

M
∆qkm

∥∥∥∥2
2

+ γ|Mk
c |

∑
m∈Mk

c

∥∥∥∥ 1

M
εkm

∥∥∥∥2
2

=
|Mk

c |
M2

∑
m∈Mk

c

(∥∥∆qkm∥∥2
2
+ γ

∥∥εkm∥∥2
2

)
(b)

⩽
|Mk

c |
M2

∑
m∈Mk

c

(
γ
∥∥∆qkm∥∥2

2
+ γ

∥∥εkm∥∥2
2

)
(c)

⩽
βγ|Mk

c |2

α2M2

∥∥∥θk − θk−1
∥∥∥2
2

⩽
βγ

α2

∥∥∥θk − θk−1
∥∥∥2
2
,

(31)

where (a) follows Assumption B.1, (b) follows γ is larger than 1 by definition, and (c) utilizes our
novel trigger condition (12).

Lemma B.2. From Definition 3.1, we can derive that the relationship between quantized gradient
innovation ∆qkm and its quantization representation ψk

m which applies bkm bits for each dimension:

∆qkm = 2τkmRk
mψ

k
m −Rk

m1, (32)

where 1 ∈ Rd denotes a vector filled with scalar value 1.

Remark:We can utilize (32) to calculate the quantized gradient innovation in the experimental
implementation.

C MISSING PROOF OF LEMMA 3.1 AND THE DERIVATION OF bkm

With lazy aggregation, the actual aggregated model at epoch k is:

θk+1 = θk − α

M

∑
m∈Mk

(
qk−1
m +∆qkm

)
− α

M

∑
m∈Mk

c

qk−1
m . (33)

Suppose ∆k
m denotes the quantization loss of device m at epoch k and ψk

m denotes the quantization
representation of local gradient innovation as in Definition 3.1, i.e.,

∆k
m = ψk

m −
∇fm

(
θk

)
− qk−1

m +Rk
m1

2τkmRk
m

− 1

2
1 (34)
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With (7), (33), and (34), the model deviation ∥θ̃
k
− θk∥22 caused by skipping gradients can be written

as:

∥∥∥θ̃k − θk
∥∥∥2
2
=

∥∥∥∥∥∥ α

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ α

M

∑
m∈Mk

c

(
2τkmRk

mψ
k
m −Rk

m1
)∥∥∥∥∥∥

2

2

(25)
⩽

α2|Mk
c |

M2

∑
m∈Mk

c

∥∥∥2τkmRk
mψ

k
m −Rk

m1
∥∥∥2
2

(34)
⩽

α2|Mk
c |

M2

∑
m∈Mk

c

(∥∥∥∇fm(θk)− qk−1
m +Rk

m1+ τkmRk
m1+∆k

m −Rk
m1

∥∥∥2
2

)
(34)
⩽

2α2|Mk
c |

M2

∑
m∈Mk

c

(∥∥∥∇fm(θk)− qk−1
m + τkmRk

m1
∥∥∥2
2
+

∥∥∆k
m

∥∥2
2

)
(a)

⩽
2α2|Mk

c |
M2

∑
m∈Mk

c

(∥∥∥∇fm(θk)− qk−1
m + τkmRk

m1
∥∥∥2
2
+ d

)
(28)
⩽

2α2|Mk
c |

M2

∑
m∈Mk

c

((∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
+

∥∥τkmRk
m1

∥∥
2

)2

+ d

)

=
2α2|Mk

c |
M2

∑
m∈Mk

c

((∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
−

∥∥τkmRk
m1

∥∥
2
+ 2

∥∥τkmRk
m1

∥∥
2

)2

+ d

)

⩽
4α2|Mk

c |
M2

∑
m∈Mk

c

((∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
−

∥∥τkmRk
m1

∥∥
2

)2

+ 4
∥∥τkmRk

m1
∥∥2
2
+

d

2

)
(b)

⩽
4α2|Mk

c |
M2

∑
m∈Mk

c

((∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
−

∥∥τkmRk
m1

∥∥
2

)2

+ 4(Rk
m)2d+

d

2

)
,

(35)
where 1 ∈ Rd denotes the vector filled with scalar value 1, (a) ∆k

m ∈ (−1, 0], (b) Rk
m ⩾ τkmRk

m ⩾ 0.

Since Rk
m is independent of τkm, we can formulate an optimization problem about τkm for device m at

communication round k as follows:

min
0<τk

m⩽1

(∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2
−

∥∥τkmRk
m1

∥∥
2

)2

(36)

Therefore, the optimal solution of τkm in (36) is

(τkm)∗ =

∥∥∥∇fm(θk)− qk−1
m

∥∥∥
2

Rk
m

√
d

. (37)

Then, the optimal adaptive quantization level (bkm)∗ is equal to

(bkm)∗ =

⌊
log2(

1

(τkm)∗
+ 1)

⌋

=

log2
 Rk

m

√
d∥∥∥∇fm(θk)− qk−1

m

∥∥∥
2

+ 1

 (38)

Notice that (bkm)∗ ⩾ 1 is always true since (τkm)∗ ⩽ 1
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D MISSING PROOF OF LEMMA 4.1, THEOREM 4.1 AND COROLLARY 4.1.

Proof. Suppose Assumptions 4.1, 4.2, and 4.3 are satisfied and Mk
c ̸= ∅. For the simplicity of the

convergence proof, we assume Φk = 1
M

∑
m∈Mk

c
∆qkm. First, we prove Lemma 4.1.

f(θk+1)− f(θk)

⩽
〈
∇f(θk),θk+1 − θk

〉
+

L

2

∥∥∥θk+1 − θk
∥∥∥2
2

=
〈
∇f(θk),−α

(
∇f(θk)− εk − Φk

)〉
+

L

2

∥∥∥θk+1 − θk
∥∥∥2
2

=− α
∥∥∥∇f(θk)

∥∥∥2
2
+ α

〈
∇f(θk), εk +Φk

〉
+

L

2

∥∥∥θk+1 − θk
∥∥∥2
2

(26)
= − α

∥∥∥∇f(θk)
∥∥∥2
2
+

α

2

(∥∥∥∇f(θk)
∥∥∥2
2
+
∥∥εk +Φk

∥∥2
2
− 1

α2

∥∥∥θk+1 − θk
∥∥∥2
2

)
+

L

2

∥∥∥θk+1 − θk
∥∥∥2
2

⩽− α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

α

2

∥∥εk +Φk
∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2

(25)
⩽ − α

2

∥∥∥∇f(θk)
∥∥∥2
2
+ α

∥∥εk∥∥2
2
+ α

∥∥Φk
∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
.

(39)

Hence, we have

f(θk+1)− f(θk)
(30)
⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+

βγ

α

∥∥∥θk − θk−1
∥∥∥2
2
, (40)

which gives us Theorem 4.1. Sum it up for k = 1, 2, · · · ,K, we have

f(θK+1)− f(θ1) ⩽− α

2

K∑
k=1

∥∥∥∇f(θk)
∥∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θK+1 − θK
∥∥∥2
2

+

K−1∑
k=1

(
L

2
− 1

2α
+

βγ

α

)∥∥∥θk+1 − θk
∥∥∥2
2
+

βγ

α

∥∥θ1 − θ0∥∥2
2
.

(41)

Notice that inequality (41) holds for both Mk
c ̸= ∅ and Mk

c = ∅. Therefore, for
(

L
2 − 1

2α + βγ
α

)
⩽

0 and all hyperparameters are chosen properly, considering the minimum of ∥∇f(θk)∥22

min
k=1,2,··· ,K

∥∥∥∇f(θk)
∥∥∥2
2
⩽

1

K

K∑
k=1

∥∥∥∇f(θk)
∥∥∥2
2

(41)
⩽

2

αK

(
f(θ1)− f(θK) +

βγ

α

∥∥θ1 − θ0∥∥2
2

)
.

(42)

For
(

L
2 − 1

2α + βγ
α

)
⩽ 0 and all hyperparameters are chosen properly, we have that

min
k=1,2,··· ,K

∥∥∥∇f(θk)
∥∥∥2
2
⩽

2

αK

(
f(θ1)− f(θ∗) +

βγ

α

∥∥θ1 − θ0∥∥2
2

)
⩽ ϵ2, (43)

which demonstrates AQUILA requires K = O
(
2ω1

αϵ2

)
communication round with ω1 = f(θ1)−

f(θ∗) + βγ
α

∥∥θ1 − θ0∥∥2
2

to achieve mink=1,2,··· ,K

∥∥∥∇f(θk)
∥∥∥2
2
⩽ ϵ2.
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E MISSING PROOF OF COROLLARY 4.1 WHEN Mk
c = ∅.

Proof. Since the skipping subset of devices are the empty set, from (5), we have

θk+1 − θk = − α

M

∑
m∈Mk

(
qk−1
m +∆qkm

)
− α

M

∑
m∈Mk

c

qk−1
m

=− α

M

∑
m∈M

(
qk−1
m +∆qkm

)
(11)
= − α

M

∑
m∈M

(
∇fm(θk)− εkm

)
=− α

(
∇f(θk)− εk

)
.

(44)

From (14) we have:

f(θk+1)− f(θk)

⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+ α

∥∥∥∥∥∥ 1

M

∑
m∈Mk

c

∆qkm

∥∥∥∥∥∥
2

2

+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+ α

∥∥εk∥∥2
2

⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+ α

∥∥εk∥∥2
2

(27)
⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+ α2

(
L

2
− 1

2α

)(
(1 + p)

∥∥∥∇f(θk)
∥∥∥2
2
+

(
1 + p−1

) ∥∥εk∥∥2
2

)
+ α

∥∥εk∥∥2
2

= −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

1

2

(
α2L− α

)
(1 + p)

∥∥∥∇f(θk)
∥∥∥2
2
+

1

2

(
α2L− α

) (
1 + p−1

) ∥∥εk∥∥2
2
+ α

∥∥εk∥∥2
2

=
α

2
((αL− 1) (1 + p)− 1)

∥∥∥∇f(θk)
∥∥∥2
2
+

α

2

(
(αL− 1)

(
1 + p−1

)
+ 2

) ∥∥εk∥∥2
2
.

(45)

If the factor of
∥∥εk∥∥2

2
in (45) is less than or equal to 0, that is,

(αL− 1)
(
1 + p−1

)
+ 2 ⩽ 0, (46)

then the factor of ∥∇f(θk)∥22 will be less than −α
2 , which indicates that

f(θk+1)− f(θk) ⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
. (47)

Note that it is not difficult to demonstrate that (46) and L
2 − 1

2α + βγ
α ⩽ 0 can actually be satisfied at

the same time. For instance, we can set p = 0.1, α = 0.1, β = 0.25, γ = 2, L = 2.5 that satisfies
both of them.

F MISSING PROOF OF THEOREM 4.2.

Proof. Based on the intermediate result (40) of Theorem 4.1 and Assumption 4.4 (µ−PŁ condition),
we have

f(θk+1)− f(θk) ⩽ −α

2

∥∥∥∇f(θk)
∥∥∥2
2
+

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+

βγ

α

∥∥∥θk − θk−1
∥∥∥2
2

(19)
⩽ −αµ(f(θk)− f(θ∗)) +

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+

βγ

α

∥∥∥θk − θk−1
∥∥∥2
2
,

(48)
which is equivalent to

f(θk+1)− f(θ∗)
(19)
⩽ (1− αµ)(f(θk)− f(θ∗)) +

(
L

2
− 1

2α

)∥∥∥θk+1 − θk
∥∥∥2
2
+

βγ

α

∥∥∥θk − θk−1
∥∥∥2
2
.

(49)

24



Under review as a conference paper at ICLR 2023

Suppose βγ
α ⩽ (1− αµ)

(
1
2α − L

2

)
, we can show that

f(θk+1)− f(θ∗) +

(
1

2α
− L

2

)∥∥∥θk+1 − θk
∥∥∥2
2

⩽ (1− αµ)

(
f(θk)− f(θ∗) +

(
1

2α
− L

2

)∥∥∥θk − θk−1
∥∥∥2
2

)
.

(50)

Therefore, after multiply k = 1, 2, · · · ,K, we have

f(θK+1)− f(θ∗) +

(
1

2α
− L

2

)∥∥∥θK+1 − θK
∥∥∥2
2

⩽ (1− αµ)K
(
f(θ1)− f(θ∗) +

(
1

2α
− L

2

)∥∥θ1 − θ0∥∥2
2

)
⩽ ϵ,

(51)

which demonstrates AQUILA requires K = O
(
− 1

log(1−αµ) log
ω1

ϵ

)
communication round with

ω1 = f(θ1)− f(θ∗) +
(

1
2α − L

2

)
∥θ1 − θ0∥22 to achieve f(θK+1)− f(θ∗) +

(
1
2α − L

2

)
∥θK+1 −

θK∥22 ⩽ ϵ.
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