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Abstract

Reinforcement Learning has emerged as a dominant post-training approach to
elicit agentic RAG behaviors such as search and planning from language models.
Despite its success with larger models, applying RL to compact models (e.g.,
0.5-1B parameters) presents unique challenges. The compact models exhibit poor
initial performance, resulting in sparse rewards and unstable training. To overcome
these difficulties, we propose Distillation-Guided Policy Optimization (DGPO),
which employs cold-start initialization from teacher demonstrations and continuous
teacher guidance during policy optimization. To understand how compact models
preserve agentic behavior, we introduce Agentic RAG Capabilities (ARC), a fine-
grained metric analyzing reasoning, search coordination, and response synthesis.
Comprehensive experiments demonstrate that DGPO enables compact models
to achieve sophisticated agentic search behaviors, even outperforming the larger
teacher model in some cases. DGPO makes agentic RAG feasible in computing
resource-constrained environments.

1 Introduction

Agentic RAG [Singh et al.l |2025] has emerged as a new paradigm where LLMs function as au-
tonomous search agents, coordinating retrieval, query reformulation, and evidence integration. While
externalizing knowledge storage, these systems require sophisticated reasoning abilities within the
LLM for effective search coordination. Consequently, existing agentic RAG systems predominantly
rely on large language models with billions of parameters [Xu and Peng}, [2025]], limiting widespread
access in computing resource-constrained environments. The emergence of small language models
(SLMs) [[Lu et al., 2024} Belcak et al., [2025]], particularly compact models (e.g., 0.5B) suitable for
edge deployment, presents a compelling opportunity: can we democratize agentic RAG by unlocking
the latent potential of compact language models?

Eliciting agentic search capabilities from smaller language models typically requires two approaches:
RL via self-exploration and distillation from a teacher model. We refer to the compact model under
training as the student, regardless of the approach. Yet both approaches become largely ineffective
for compact models (0.5—1B) due to their poor initial capability. RL [Schulman et al., 2017, |Shao
et al.} 2024] suffers from sparse rewards and poor exploration due to weak student-generated outputs
(SGOs). Standard KD [Hinton et al.,|2015| |Shing et al.,2025] using only teacher-generated outputs
(TGOs) leads to exposure bias [Bengio et al., 2015]], while on-policy distillation methods [Gu et al.,
2024, |Agarwal et al., 2024 also suffer from the noisy and low-quality nature of SGOs. Neither
approach addresses the fundamental bottleneck of poor initial output quality in compact models.
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Figure 1: Distillation-Guided Policy Optimization (DGPO) establishes a stable reward mechanism
by guiding incorrect answers through teacher mimicry.
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. <information>
<think> whose album was Red? Doc 1(Title: "Red (Taylor Swift album)") as Jennifer ..

P 3 </information>
To answer this question, | need to...

</think> <search> Red album artist </search> <answer> Taylor Swift </answer>

Figure 2: Agentic RAG Capability (ARC) characterizes the core capabilities of LLMs required for
agentic RAG systems — thinking, query rewriting, and source referencing.

To overcome this fundamental bottleneck, we propose Distillation-Guided Policy Optimization
(DGPO), a novel RL framework that addresses the core issue of low-quality SGOs through the
strategic integration of teacher guidance and RL. DGPO operates through two key mechanisms. First,
cold-start initialization through KD using TGOs dramatically stabilizes early training by providing
high-quality initial trajectories. Second, selective teacher guidance during RL that rewards correct
self-reasoning while providing teacher mimicry for incorrect attempts. Figure[T]illustrates how DGPO
maintains the stability of KD-based initialization and continuous “mimic if wrong, reward if right”
guidance, preventing training collapse and enabling compact models to develop sophisticated agentic
behaviors limited to larger models.

To understand how DGPO preserves agentic capability in compact models, we introduce Agentic
RAG Capabilities (ARC), a fine-grained evaluation framework that decomposes the agentic search
into three core dimensions: thinking, query rewriting, and source referencing (Figure [2). Unlike
conventional metrics that focus on final accuracy, ARC evaluates the agentic search process, revealing
how different aspects of agentic behavior emerge and decline across different models. Comprehensive
evaluations demonstrate that DGPO consistently outperforms baselines in final accuracy. ARC
reveals that DGPO improves multi-hop reasoning and coordination while maintaining competitive
performance in source referencing and query rewriting. Such capability-level insights are crucial for
advancing agentic RAG in compact models.

Our contributions are summarized in four key dimensions. (i) Problem: we pioneer the chal-
lenging domain of agentic RAG post-training for extremely compact models (0.5—1B), identifying
fundamental challenges that existing methods fail to address. (ii) Methodology: We propose
Distillation-Guided Policy Optimization (DGPO), an RL framework designed to stabilize training
in compact models via cold-start initialization and selective teacher guidance. (iii) Evaluation: we
present ARC, a capability-level evaluation framework that provides a detailed diagnosis of agentic
behavior. (iv) Results: DGPO outperforms RL and distillation baselines. Remarkably, our method
achieves teacher-surpassing performance on several datasets.

2 Related Work

Agentic RAG. WebGPT [Nakano et al.} 2022]] introduced RLHF-driven browser interaction for
retrieval-grounded QA. ReAct [Yao et al.l[2023]] generalized this idea by interleaving chain-of-thought
and tool calls via special <think> or <act> tokens. To tighten the coupling between retrieval and
reasoning, IRCoT [Trivedi et al.| 2023]] explicitly alternates each CoT step with a targeted retrieval.
Adaptive-RAG [Wang et al., [2025] further predicts retrieval steps based on question complexity.
Most recently, Search-R1 [Jin et al.| [2025]] leveraged PPO to teach an LLM to generate multi-turn
search queries while reasoning, achieving state-of-the-art results. Our work specifically focuses on



Table 1: An example of Reasoning Processes. The agent exhibits thinking through deliberative
reasoning, query rewriting by reformulating the original query into the actual search query, and
source referencing by incorporating retrieved information in to the final answer.

Question: Whose album was Red?

<think> To answer this question, I need to find out which artist released the album titled "Red". </think>

<search> Red album artist </search>

<information> Doc 1(Title: ""Red (Taylor Swift album)') as Jennifer Lopez, Ed Sheeran (who also ...
Doc 2(Title: ""Red (band)') deal with Christian label Essential Records in 2004. Their debut albums ...
Doc 3(Title: ""Red (Dia Frampton album)'') Red (Dia Frampton album) Red is ... </information>

<think> From the information provided, it is clear that the album "Red" was released by Taylor Swift. It
was her fourth studio album and had a country sound. </think>

<answer> Taylor Swift </answer>

enabling agentic RAG in compact models and introduces a comprehensive evaluation framework for
multi-dimensional capability evaluation.

Post-training for LLMs. RL algorithms such as PPO [Schulman et al.,|2017]] and GRPO [Shao
et al.| 2024] have proven effective in enhancing reasoning capabilities for LLMs [et al.,2025| Yang
et al 2025]], particularly in domains like mathematical problem solving. At the initial stage of
training, base models require sufficient performance to obtain meaningful rewards; otherwise, sparse
reward signals lead to training instability. To address this cold-start problem, DeepSeek-R1 [[Guo
et al.| 2025]] demonstrates that SFT-based model initialization effectively warms up the model prior
to RL, achieving favorable results through chain-of-thought (CoT) demonstrations. To the best of our
knowledge, our work is the first to integrate distillation principles into both cold-start initialization
and concurrent RL training, enabling stable distillation-guided learning in compact models.

Knowledge Distillation for LLLMs. Knowledge distillation (KD) [Hinton et al.l |2015]] enables
smaller student models to learn from larger teacher models by matching softened output distributions.
To mitigate the capacity gap between student and teacher models [Mirzadeh et al., 2020} Zhang et al.,
2023a]], some methods use interpolated or smoothed intermediate student and teacher distributions
[Ko et al.; 2024, Shing et al., 2025]]. However, because these methods rely on TGOs during training
while inference still uses the SGOs, a train—inference mismatch arises, leading to exposure bias
[Bengio et al.,|2015]]. To mitigate this, recent work also proposes on-policy distillation from SGOs
[Agarwal et al., 2024} Gu et al.| [2024, |Yang et al., 2025], where the student learns directly from
its own generated outputs during training. Another limitation is that distillation methods require
sensitive teacher-guidance schedulers [Ko et al.,|2024] [Shing et al.,[2025]], which are hard to tune and
affect stability. Meanwhile, conventional single-hop RAG distillation methods [Kang et al.| 2023
Zhang et al.| 2023b, [Liao et al., 2025]] typically use sequence-level knowledge distillation (SeqKD)
[Kim and Rushl 2016], an SFT-based approach where students learn from teacher-generated CoT
demonstrations rather than matching output distributions . While SeqKD improves the reasoning
capability of SLMs [Guo et al., [2025]], cross-entropy training with hard targets alone is insufficient
to transfer the richer distributional knowledge from the teacher [Hinton et al.,2015]]. Our method
addresses hese challenges through a two-stage approach: off-policy KD on TGOs for cold-start
initialization, followed by off-policy KD-driven RL optimization on SGOs to further extract model
capabilities without requiring handcrafted schedulers.

3 Agentic RAG

3.1 Framework

While agentic RAG [Singh et al.| 2025]] encompasses diverse interpretations, we define it through
two key characteristics: (1) autonomous, adaptive search coordination behaviors, and (2) three
fundamental actions—thinking, searching, and answering—that constitute agentic intelligence. In
the agentic RAG framework, LLMs function as agents making sequential decisions at each timestep
t. Given a user question x and an external retrieval system R, the LLM agent operates as a policy



0.4 .
3 X 03
£ 03 - _
g Y L] ;
s . &2 02
L2 02 Py
<
' .
2 o " e RL-based (PPO) <
¢  Prompt-based
0.0—£ 0.0]
0.5 1.5 3.0 7.0 0 100 200 300
Model Size (B) Training Step

Figure 3: Comparison of prompt-based and RL-  Figure 4: Training curve of the 0.5B model using
based agentic RAG across different model sizes. = PPO and GRPO.

7o (yr|x; R) , where y € { THINK(-), SEARCH(-), ANSWER(-)}. TableHillustrates typical

example outputs of our agentic RAG system. We employ structured tokens [Jin et al. [2025] to
organize the actions: <think> for reasoning, <search> for database queries, <information>
for retrieved documents, and <answer> for final responses.

3.2 Agentic RAG Capability (ARC)

We propose Agentic RAG Capability (ARC) as a comprehensive metric to systematically evaluate
agentic behavior across multiple dimensions. As shown in fig.[2] we characterize ARC through three
core dimensions:

Source Referencing. Accurately incorporating retrieved information into final answers (shown
in the <information> and <answer> entries). If the retrieved documents contain the correct
answer, the agent must incorporate this information accurately and explicitly into the final answer.
Query Rewriting. Reformulating user questions into effective search queries, as literal keyword
matching often fails to retrieve relevant documents. The agent must paraphrase key concepts and
introduce related terms to maximize retrieval effectiveness (illustrated by transforming "Whose album
was Red?" into "Red album artist" in <search>).

Thinking. Making informed decisions about when to retrieve information, which documents
contain relevant answers, and how to synthesize multiple pieces of evidence into coherent responses.
This involves assessing context sufficiency and integrating retrieved sources in a logically consistent
manner (demonstrated in <think> entries).

3.3 Reinforcement Learning for Agentic RAG

We ground the reinforcement learning framework on the skeletal formalization of Search-R1 [Jin et al.}
2025]], which is one of the state-of-the-art agentic RAG frameworks. We model the agentic search
process as a sequential decision-making problem where the LLM agent must learn to coordinate
reasoning and retrieval operations. At each step, the agent can either generate text to advance its
reasoning or issue queries to the external search engine R to gather additional information.

Learning Objective. The Reinforcement Learning for agentic RAG framework is formulated as:
H}%XEIND7;L/~W9(-\$;R) [’I"¢(l‘, y)] - /BDKL [7'('9(2,/ | Z; R) || ﬂ-fef(y | € R)] )

where 7y denotes the trainable agent policy that generates action trajectories y conditioned on the
input user question  and an external retrieval system R. The reward function r(x, y) evaluates
accuracies of generated answers. The KL-divergence term with coefficient 5 provides regularization
against the frozen reference policy mys.

3.4 Challenges in Agentic RAG with Compact Language Models

Performance Gap. Our preliminary experiments compared the performance of prompt-based and
RL-based agentic RAG models across various model sizes, evaluated on the average of seven QA
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Figure 5: Top: Standard PPO pipeline for post-training LLMs. The reference LLM serves as a
regularization anchor to prevent excessive deviation from the initial policy. Bottom: Our proposed
distillation-guided PPO pipeline. Unlike conventional approaches where the reference model merely
constrains policy drift, our framework employs the teacher model to actively guide the student toward
correct behaviors when autonomous attempts fail, transforming the reference’s role from passive
regularization to active pedagogical guidance.

datasets (Figure [3). Here prompt-based refers to Qwen2.5-instruction checkpoints and RL-based
refers to further post-trained models using PPO [Jin et al., 2025]]. The experimental setup is detailed
in Section[5] While RL models boosted performance overall in the context of agentic RAG, smaller
models still lagged far behind their larger counterparts.

Performance Plateau. Figure[d]presents the RL training curves of the smallest 0.5B model with
PPO [Schulman et al., 2017|] and GRPO [Shao et al.,|2024]]. Smaller models converge faster but
tends to become unstable relatively early in training [Jin et al.l 2025]], preventing further performance
gains beyond that point. PPO provides more stable optimization than GRPO but converges slower.
We include these results here to highlight the limitations of applying RL directly to compact models.
These observations motivate our proposed approach, DGPO, introduced in the next section.

4 DGPO: Distillation-Guided Policy Optimization

4.1 Core Framework

Figure [5] depicts our framework which combines distillation and reinforcement learning to train
compact agentic RAG models through a two-phase learning strategy, eliminating the need for a
handcrafted scheduler. Early-stage student-generated outputs (SGOs) are often noisy and unstable,
while teacher-generated outputs (TGOs) provide quality guidance but suffer from exposure bias. To
address these challenges, we propose two key mechanisms:

Cold-Start Initialization via KD. In the initial phase, students learn purely from TGOs via
knowledge distillation. This provides stable, high-quality trajectories that dramatically improve early
training dynamics and establish a strong foundation for subsequent RL optimization.

Selective KL Penalty. During the RL phase, we apply KL divergence penalties selectively, only
to incorrect predictions. This approach guides students toward informative teacher behaviors while
still preserving exploration capabilities. Such targeted regularization enables autonomous reasoning
development without being overly constrained by the teacher model.



4.2 KD Initialization with TGOs

During the cold-start phase, we initialize the student model by distilling from a strong teacher policy
using a general KD loss that combines cross-entropy from hard labels and KL divergence. This
formulation is flexible and supports various KD variants,

Laisin = Lce (g, m0) + ADxe [ (- | @)||7a(- | 2)] , (D

where 7y denotes the student policy and 7 is the frozen teacher. We filter TGOs to retain only correct
outputs, ensuring the student 7y learns from high-quality teacher samples.

4.3 Distillation-guided RL with SGOs

Upon reaching a performance threshold, we transition to PPO-based RL using the distilled student as
the initial policy. This staged approach stabilizes training dynamics and improves sample efficiency,
particularly when the student model has significantly fewer parameters than the teacher. By avoiding
premature exploration from a weak policy, our method ensures that RL begins with a reasonable
approximation of agentic behaviors.

PPO with Search Engine. Proximal Policy Optimization (PPO) [Schulman et al.,2017] is a widely
used RL algorithm for LLM fine-tuning, offering stable training for compact models. Our method
optimizes LLMs with search engine R by maximizing the following objective,

[y

1 . To(ye | 7, y<i; R) ( mo(yilz, y<i; R)
Eond ymrgatlzR)| ——7—— mln( : : Ag, Chp(;,l—e, 1+€)A )
Pl ’R){Ztyl]l(yt)(tz); Toa(ye | 2,y<i; R) ol (Yelz, y<t; R) '
1(ye)=1

)

@
where my and myq represent the current and previous student policy models, respectively. « denotes
input samples and y represent the generated outputs interleaved with search engine calling results.
The term e is a clipping-related hyperparameter introduced in PPO to stabilize training. The advantage
estimate A; is computed using Generalized Advantage Estimation (GAE) [[Schulman et al.| 2018]],
based on future rewards and a learned value function. 1(y;) is a token loss masking operation. See
appendix [A.T| for details on token masking.

Reward and Selective KL Penalty. We employ binary exact matching (EM) for answer rewards to
prevent reward hacking:
1 ify=y*
Tanswer(xa y) = { 3)

0 otherwise,

where y is the predicted answer and y* is the ground-truth. However, eq. (3] provides no learning
signal for incorrect predictions, causing training stagnation with poor SGOs. To address this, we
introduce a selective KL penalty. The student 7y receives a reward for correct self-reasoning, but when
incorrect, the teacher 7, guides the student to mimic teacher behavior through KL regularization,

ro(@,y) = 1 ify=y*
By = —BDke [mo(y|xR)||me(y|2;R)]  otherwise.

As illustrated in Figure [5} our approach differs fundamentally from standard PPO-based LLM
tuning. While conventional PPO uses a frozen initial LLM as a reference regularizer to prevent
excessive drift from the initial policy, DGPO employs the teacher LLM as an active guide that steers
the student toward correct behaviors when errors occur. This can be seen as a form of targeted
regularization [Laroche et al., [2019]], which allows free exploration during correct predictions but
applies corrective guidance through KL penalties when the student fails. By selectively emphasizing
high-divergence incorrect outputs, our method focuses learning on error correction while maintaining
autonomous reasoning capabilities, resulting in efficient and stable training.

“

5 Experiments

5.1 Experimental setup

We focus our experiments on addressing the following questions:



Table 2: Overall performance of various methods across different QA benchmarks for Qwen 2.5
family. The best and second-best results are highlighted in bold and underline, respectively. Scores
that outperform the teacher are highlighted in green .

Methods NQ TriviaQA PopQA  HotpotQA 2wiki MuSiQue Bamboogle Avg.
Student-0.5b 0.004 0.006 0.007 0.007 0.015 0.000 0.000 0.006
Teacher-3b 0.365 0.569 0.393 0.340 0.368 0.135 0.298 0.353
"PPO [Jinetal.]2025] 0.306 ~ 0.444 0379 0205 0218 ~ 0.041  0.073 ~ 0.238
GKD [Agarwal et al.|[2024] 0.266 0.408 0.358 0.216 0.217 0.055 0.161 0.240
SeqKD [Kim and Rush![2016]  0.331 0416 0.364 0.283 0.273 0.089 0.169 0.275
KD [Hinton et al.[[2015] 0.331 0.431 0.373 0.286 0.284 0.091 0.290 0.298
DistiLLM [Ko et al.[[2024] 0.333 0.442 0.373 0.288 0.270 0.095 0.209 0.287
TAID [Shing et al.[[2025] 0.325 0.427 0.365 0.290 0.270 0.079 0.218 0.282
DGPO (ours) 0.378 0.481 0.402 0.342 0.303 0.120 0.274 0.329

91 Do our compact models preserve the overall performance of the teacher model?

Q2 How well do compact models retain individual ARC components? (a) Source Referencing, (b)
Query Rewriting, (c) Thinking.

Q3 Which components of our method contribute most to performance improvements?

94 Does our method mitigate training instability and avoid performance plateau in compact models?

Datasets. We evaluate DGPO on seven benchmark datasets, categorized as follows: (1) General
Question Answering: NQ [Kwiatkowski et al., 2019], TriviaQA [Joshi et al., 2017], and PopQA
[Mallen et al.,|2023]] datasets, which generally require single-hop searching, i.e., the answer can be
derived from a single fact or passage. (2) Multi-Hop Question Answering: HotpotQA [Yang et al.|
2018|], 2WikiMultiHopQA [Ho et al., 2020], MuSiQue [Trivedi et al., 2022], and Bamboogle [Press
et al.| 2023]] datasets, which require multi-hop searching across multiple documents.

Base Models. As the base student model, we use Qwen2.5-0.5b-instruct [Qwen et al.,[2025]]. For the
teacher model, we adopt Search-R1-ppo-3b based on Qwen2.5-3b-instruct. To assess generalizability
across different model sizes and families, we also evaluate variants using Qwen2.5-7B-instruct and
Llama 3 (Llama-3.2-1B-Instruct and Llama-3.1-8B-Instruct-based model) [Grattafiori et al., 2024]].

Baselines. We compare our method against baselines from three categories:

* Reinforcement Learning: Standard PPO [Jin et al.; [2025] illustrated in Figure 5| top [}

* On-policy Distillation on SGOs: GKD [Agarwal et al., [2024]] minimizes reverse KL divergence
between teacher and student distributions on SGOs.

* Off-policy Distillation on TGOs: SeqKD [Kim and Rushl, |2016] applies SFT on teacher outputs;
KD [Hinton et al.,[2015]] combines cross-entropy loss with KL divergence; DistiLLM [Ko et al.,
2024 adopts an adaptive off-policy strategy that integrates both SGOs and TGOs. TAID [Shing
et al.l 2025]] employs dynamic scheduling to interpolate from student to teacher distributions.
Off-policy methods, except for DistiLLM, train exclusively on correct TGO

Detailed configurations for baseline and ablation variants can be found in Appendix

Evaluation Metrics. For all evaluations except the search results shown in Table[5] we use Exact
Match (EM) as the evaluation metric, following Jin et al.| [2025], [Yu et al.[[2024].

Retrieval Settings. We follow Jin et al.|[2025] and use the 2018 Wikipedia [Karpukhin et al., 2020]
as the knowledge source and E5 [Wang et al.} [2024] as the retriever. We set the number of retrieved
passages to 3.

Training Settings. We used the training sets of NQ and HotpotQA datasets. Training was conducted
on NVIDIA 8 x H200 GPUs. Implementation details can be found in Appendix [A.3]

*We excluded GRPO [|Shao et al., [2024] as it proved unstable for compact models, collapsing early.
*We observed that training on only the correct TGOs led to better performance.



Table 3: Overall performance across QA benchmarks under different model configurations.

Methods NQ TriviaQA PopQA HotpotQA 2wiki MuSiQue Bamboogle Avg.
Model Family: Qwen 2.5 (7B — 0.5B)
Student-0.5B 0.004 0.006 0.007 0.007 0.015 0.000 0.000 0.006
Teacher-7B 0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385
PPOJin et al.|[2025] 0.306 0.444 0.379 0.205 0.218 0.041 0.073 0.238
KD |Hinton et al.|[2015] 0.338 0.428 0.371 0.288 0.223 0.100 0.210 0.280
DGPO (ours) 0.371 0.474 0.396 0.334 0.257 0.113 0.315 0.323
Model Family: Llama 3 (8B — 1B)
Student-1B 0.052 0.080 0.044 0.027 0.042 0.001 0.024 0.039
Teacher-8B 0.475 0.647 0.448 0.427 0.443 0.179 0.444 0.438
PPOJin et al.|[2025] 0.354 0.499 0.394 0.222 0.181 0.037 0.065 0.250
KD |Hinton et al.|[2015] 0.406 0.508 0.405 0.369 0.355 0.119 0.266 0.347
DGPO (ours) 0.448 0.553 0.437 0.412 0.379 0.155 0.339 0.389
Table 4: Source referencing and thinking perfor- Table 5: Query rewriting performance on NQ
mances on NQ and Musique datasets. and thinking performance on MuSiQue.
NQ MuSiQue NQ (firsthop)  MuSiQue (multi-hop)
Models w/o  w/thinking w/o  w/ thinking Models Hit ratio Hit ratio  Search step
Student-0.5b  0.386 0.034 0.166 0.013 Student-0.5b 0.004 0.052 3.86
Teacher-3b  0.589 0.560 0.413 0.357 Teacher-3b 0.682 0.668 1.60
PPO 0.547 0.581 0.258 0.242 PPO 0.711 0.568 1.68
KD 0.540 0.544 0.321 0.256 KD 0.675 0.570 2.45
DGPO 0.565 0.593 0.312 0.287 DGPO 0.682 0.583 2.64

5.2 Main Results (Q1)

Qwen 3B—0.5B. Table[2| shows the overall performance of different methods across seven QA
benchmarks. Our method consistently outperforms all baseline methods on most datasets and
achieves the highest average score. Remarkably, our method even surpasses the teacher model on NQ,
TriviaQA, and HotpotQA datasets, suggesting that the student can explore and generalize better when
guided by both teacher supervision and reinforcement learning. Among the on-policy methods that
only rely on SGOs, both PPO and GKD exhibit lower performance compared to off-policy distillation
methods, due to the difficulty of the multi-turn agentic RAG task and the student’s near-zero initial
performance, which makes SGOs highly noisy. This result highlights the limitations of SGOs, which
tend to be noisy and less informative than TGOs. Skew KLD and TAID perform worse than standard
KD, despite their use of intermediate distributions between the teacher and student. In our setting,
where the student model starts with extremely low performance, interpolating between the teacher
and student distributions might have created noisy or misleading targets, resulting in weaker learning.

Qwen 7B—0.5B and Llama 8B—1B. Table[3|shows the average EM scores for models with a
larger capacity gap (Qwen2.5 0.5B and 7B) and another model family (Llama3 1B and 8B). DGPO
consistently outperforms both PPO and KD across challenging capacity gaps (7-8B—0.5-1B) and
different model architectures (Qwen vs. Llama3). While Qwen 3B—0.5B slightly outperforms
Qwen 7B—0.5B due to a smaller capacity gap, DGPO effectively exploits compact model potential
regardless of the teacher quality.

5.3 ARC - Source Referencing (92a)

Setup. To isolate the capability of Source Referencing from other agentic behaviors, we evaluate
the model’s accuracy when provided only with the ground-truth supporting contexts (i.e., golden
knowledge) as <information>, and forced to answer directly using the <answer> tag. For the
MuSiQue dataset, which consists of multi-hop questions requiring multiple supporting documents,
we concatenate all relevant ground-truth contexts and supply them as <information> . For the NQ
dataset, we use the annotated long answer span as the input <information> . The final answer’s
correctness is measured using EM.



Table 6: Ablation study evaluating the contributions of each component of our method—cold-start
initialization, selective KL penalty, teacher guidance during RL, and the order of RL and KD.

Method NQ  TriviaQA PopQA HotpotQA 2wiki MuSiQue Bamboogle Avg.
DGPO 0.378 0.481 0.402 0.342 0.303 0.120 0.274 0.329

" (a) w/o cold-start initialization ~ 0370 0465 0394 0330 0299 0117 0266 ~ 0.320
(b) w/o selective kl penalty (uniform KL penalty) 0.362 0.464 0.394 0.323 0.306 0.114 0.234 0.314
(c) w/o teacher guidance (KD—PPO) 0.353 0.455 0.384 0.316 0.287 0.098 0.250 0.306
(d) invert pipeline order (PPO—KD) 0.320 0.426 0.371 0.287 0.282 0.084 0.234 0.286

Results. Table[d] (w/o thinking column) shows the results for source referencing capability. Our
model achieves the highest score in extracting information from a single context on the NQ dataset.
However, on the MuSiQue dataset, the KD model performs best. One possible explanation is that
our RL phase may have over-optimized for simpler, single-step examples during RL, leading to
suboptimal performance on complex multi-hop questions.

5.4 ARC - Query Rewriting (Q2b)

Setup. To isolate the Query Rewriting capability from other agentic behaviors, we evaluate whether
the initial search query formulated by the model can retrieve documents containing the correct answer,
using the NQ dataset. As the evaluation metric, we adopt Hit ratio [Ma et al.l 2023]], which measures
whether at least one of the retrieved documents includes the correct answer.

Results. Table[5|(NQ column) shows the results for query rewriting. Interestingly, the PPO model
achieves the best performance, even surpassing the teacher model. Our DGPO performs better than
KD but reaches a similar hit ratio to the teacher. This may be attributed to our training setup, which
mixes both single-hop and multi-hop datasets. Given the limited capacity of the student model, the
PPO agent may have focused its exploration on simpler single-hop query writing tasks, rather than
the more complex multi-hop reasoning required in other datasets.

5.5 ARC - Thinking (Q2c)

Setup. To evaluate the Thinking capability, we assess how and when the model retrieves and
integrates information during the reasoning process. (How:) We provide the ground-truth contexts as
<information> and allow the model to perform an additional <think> step immediately after
<information> (i.e., the second <think> block in Table E]) Note that such additional thinking
was disallowed in the source referencing evaluation (Q2a). While further retrieval is technically
unnecessary, the model is still allowed to perform additional search steps. (When:) We allow multiple
retrieval steps and examine whether the model can determine the necessity of additional searches
based on intermediate results. In this case, we evaluate both the final Hit ratio and the average number
of search steps taken as metrics of efficiency.

Results. As shown in Table [Z_f] (w/ thinking column), many models, including the teacher, exhibit
performance degradation when additional <think> steps are introduced. This suggests that under
our smaller model setting, deliberate reasoning through thinking is not crucial for information
extraction. Only the RL models improve on the NQ dataset. They may have learned to use thinking
to double-check their answers for simpler setting.

As shown in Table[5](MuSiQue column), while the PPO model performs well in the first retrieval step,
our method achieves the highest score for more complex multi-hop reasoning. To achieve higher hit
ratios, the distilled model tends to take more search steps. Compared to the teacher, which achieves
strong performance with fewer steps due to its larger capacity, our method enables the student to
compensate by exploring more extensively.

5.6 Ablation Study (Q3)

Table E] presents the results of our ablation study. (a) w/o cold-start initialization by KD, the
performance drop is relatively small; however, training becomes unstable and collapses around
step 800, so we report the score just before the collapse. (b) w/o selective KL penalty ap-
plies KL regularization uniformly across all trajectories, regardless of whether the student’s at-
tempt is correct or incorrect. (c) w/o teacher guidance denotes KD initialization followed by



standard PPO without KL regularization during RL. Both variants (b) and (c) result in per-
formance degradation for our method. (d) Reversing the order (PPO before KD) causes sub-
stantial performance loss. These results confirm that all proposed components are essential:
KD initialization prevents collapse, pipeline KD—PPO with selective KL penalty is crucial.

5.7 Training Dynamics (Q4)

Figure [f]illustrates the training stability of DGPO 03

and its variants across different RL algorithms and 04

initialization strategies. DGPO maintained a sta- g

ble training curve beyond 1000 steps, achieving the £ 03

best overall performance. However, (1) replacing E) :

PPO with GRPO leads to an early collapse during 5 02 $ e DGPO(Ours)

RL. Even with KD initialization and teacher guid- < ol A
ance, GRPO remains unstable for compact mod- ‘ £e GKD (teacher guidance only)
els. (2) When removing KD initialization from 00| iz~ KD—GKD

our model, training remains more stable until 800 0 200 200 600 300 1000
steps compared to the standard PPO but collapses Training Step

at around 800 steps. (3) Using GKD, i.e., teacher
guidance only, results in stable learning; however,
the absence of self-exploration in RL leads to worse
performance. (4) When KD-based initialization is
further combined with GKD, training collapses due
to the excessive constraints imposed by the teacher.

Figure 6: Training curves comparing DGPO
and its ablations: (1) GRPO version; (2) with-
out cold-start initialization; (3) GKD; and (4)
KD—GKD. Our model sustains stable learning
the longest, achieving the best performance.

6 Conclusion

We propose Distillation-Guided Policy Optimization (DGPO), a novel RL framework that overcomes
the core challenge of poor SGOs in compact models via KD initialization and selective teacher
guidance. DGPO transforms the reference model from a passive regularizer to an active guidance
mechanism, enabling performance improvements rather than merely preventing degradation. Our
two-phase approach achieves consistent improvements without complex scheduling. Our ARC-based
analysis provides a fine-grained breakdown of how DGPO improves agentic behavior, highlighting
its strengths across dimensions such as source referencing, query rewriting, and multi-hop reasoning.

Can we democratize agentic RAG by unlocking the latent potential of compact language
models? Our findings suggest yes. Starting from a 0.5B model with minimal performance (0.006),
DGPO achieves a 55x improvement (0.329), approaching the 3B teacher’s performance (0.353).
Remarkably, our student model even surpasses the teacher on several datasets. Given that 0.5B models
can run efficiently on CPUs, our method democratizes access to search agents across computing
resource-constrained devices like laptops and smartphones, opening possibilities for more practical
agentic RAG deployment. As a foundational study on enabling agentic RAG in compact models, we
focus on QA tasks for comprehensive evaluation. Future work will extend this approach to diverse
tasks requiring agentic reasoning.

7 Limitations

Our experiments are restricted to Qwen2.5 (3B—0.5B, 7B—0.5B) and Llama3 (8B— 1B) model
families. Given the rapid advancement of LLMs, comprehensive evaluation across all available
models is impractical within current research timelines. Due to computational limitations, we restrict
our investigation to student models of 0.5—1B parameters and teacher models up to 8B parameters.
While larger teacher models are available, this work specifically targets compact models for computing
resource-constrained environments, making exploration of massive teacher models beyond both our
computational capacity and research scope. As stated in Section [5] while our model achieves strong
overall performance, optimization across all capacity dimensions remains an open challenge.We
believe that our ARC analysis framework and proposed DGPO approach provide essential foundations
for enabling compact models to acquire sophisticated agentic behaviors.
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Table 7: Statistics of training and test datasets.

Dataset Training samples  Test samples  License
Natural Questions (NQ) [[Kwiatkowski et al.,[2019] 79,168 3,610 CCBY-SA 3.0
TriviaQA [Joshi et al., 2017] - 11,313  Apache-2.0
PopQA [Mallen et al., [2023]] - 14,267 MIT
HotpotQA [Yang et al., [2018] 90,447 7,405 CCBY-SA 4.0
2WikiMultiHopQA [Ho et al.,2020]] - 12,576  Apache-2.0
MuSiQue [Trivedi et al., [2022] - 2,417 CCBY 4.0
Bamboogle [Press et al.|[2023]] - 125 MIT
Appendix

A Implementation Details

A.1 Token Masking

Following prior work [Jin et al., [2025]], we employ token masking during training. eq. , 1(yy) is
the loss-masking operator defined as,

1 ify; € {LLM-generated tokens}

L) = {O if y; € {external tokens}. ©

In agentic RAG, the token sequence contains both LLM agent-generated tokens ( <search>
, <think> , and <answer> ) and externally retrieved content from the search system R (
<information>). Computing gradients over retrieved tokens is counterproductive, as it encourages
the model to learn how to generate external content rather than focusing on the core agentic capabili-
ties of when and how to search. To prevent this misallocation of model capacity and stabilize training,
we apply loss masking to retrieved tokens and documents, ensuring optimization focuses solely on
agent-generated content.

A.2 Dataset Details

We used preprocessed seven QA datasets following Jin et al.| [2025]]. Table[7]shows dataset statistics.
These datasets are originally designed for QA tasks, and our use aligns with their intended purpose.

A.3 Training Details

On-policy distillation or RL methods were trained for up to 1000 steps. However, PPO training with
a small model is inherently unstable; thus, we report the results at step 200, before training collapse.
All models were initialized from the same pretrained checkpoints and trained once. Training took
approximately one day on 8xH200 GPUs. The hyperparameters and libraries used for implementation
followed those of prior work [Jin et al.l 2025 [Shing et al., 2025]]. Table[§|shows training parameters.

A.4 Prompt Template
Table @] shows the instruction template for agentic RAG [Jin et al.| 2025]).
B Ablation and Baseline Settings

Table[T0]summarizes the ablation and baseline settings used in our study, indicating which components
(e.g., KD, PPO loss, GRPO loss, selective or uniform KL penalties) are included in each variant,
along with references to the corresponding figures or tables where results are reported.
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Table 8: Parameters for DGPO and baselines.

Parameter Value
RL Configuration
Total training steps 1000
Batch size 512
KL divergence coefficient 3 0.001
Maximum prompt length 4096
Maximum response length 500
Maximum conversation turns 4
Top-k retrieved documents 3
Actor learning rate le-6
Critic learning rate le-5
KD (initialization) Configuration
Tortal epochs 5
Batch size 64
Learning rate le-4
KL divergence ratio A 1.0
DistiLLM-specific Configuration
Skew KLD target weight 0.1
TAID-specific Configuration
tstart 0.4
tend 1.0
Updating interpolation () Se-4
Momentum coefficient (/3) 0.99

Table 9: Instruction template for agentic RAG. question is replaced with the specific question during
training and inference.

Instruction Template.

Answer the given question. You must conduct reasoning inside <think> and </think> first every
time you get new information. After reasoning, if you find you lack some knowledge, you can call a
search engine by <search> query </search>, and it will return the top searched results between
<information> and </information>. You can search as many times as you want. If you find
no further external knowledge needed, you can directly provide the answer inside <answer> and
</answer> without detailed illustrations. For example, <answer> xxx </answer> . Question:
question.

Table 10: Ablation and baseline settings and their components.

.5 2 > >
5 & 3 2% g%
5 2 2 & 3%
aE 2 2 25 E
Setting MZE A O wn E] ) Q
DGPO v v v
w/ GRPO v v v
w/o cold-start initialization v v
w/o selective KL penalty (uniform KL penalty) v v v
w/o teacher guidance (KD—PPO) v v
invert pipeline order (PPO—KD) v v
KD—GKD v v
PPO [Jin et al.} [2025] v
KD [Hinton et al., 2015] v
v

GKD [Agarwal et al.,[2024|
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