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Abstract
We study an infinite-armed bandit problem where
actions’ mean rewards are initially sampled from
a reservoir distribution. Most prior works in
this setting focused on stationary rewards (Berry
et al., 1997; Wang et al., 2008; Bonald and
Proutiere, 2013; Carpentier and Valko, 2015) with
the more challenging adversarial/non-stationary
variant only recently studied in the context of rot-
ting/decreasing rewards (Kim et al., 2022; 2024).
Furthermore, optimal regret upper bounds were
only achieved using parameter knowledge of non-
stationarity and only known for certain regimes
of regularity of the reservoir. This work shows
the first parameter-free optimal regret bounds
while also relaxing these distributional assump-
tions. We also study a natural notion of significant
shift for this problem inspired by recent develop-
ments in finite-armed MAB (Suk and Kpotufe,
2022). We show that tighter regret bounds in
terms of significant shifts can be adaptively at-
tained. Our enhanced rates only depend on the
rotting non-stationarity and thus exhibit an inter-
esting phenomenon for this problem where rising
non-stationarity does not factor into the difficulty
of non-stationarity.

1. Introduction
We study the multi-armed bandit (MAB) problem, where an
agent sequentially plays arms from a set A, based on partial
and random feedback for previously played arms called
rewards. The agent’s goal is to maximize earned rewards.

Much of the classical literature (see Bubeck and Cesa-
Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári,
2020, for surveys) focuses on finite armed bandits where
A = [K] for some fixed K ∈ N. The theory here then
typically assumes a large time horizon of play T relative to
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K. However, in practice, the number of arms can be pro-
hibitively large as is the case in recommendation engines or
adaptive drug design motivating the so-called many-armed,
or infinite-armed, model.

At the same time, another practical reality is that of changing
reward distributions or non-stationarity. While there has
been a surge of works here (Kocsis and Szepesvári, 2006;
Yu and Mannor, 2009; Garivier and Moulines, 2011; Mellor
and Shapiro, 2013; Liu et al., 2018; Auer et al., 2019; Chen
et al., 2019; Cao et al., 2019; Manegueu et al., 2021; Wei
and Luo, 2021; Suk and Kpotufe, 2022; Jia et al., 2023;
Abbasi-Yadkori et al., 2023; Suk, 2024), most works here
again focus on the finite-armed problem.

This work studies infinite-armed bandits where mean re-
wards of actions are initially drawn from a reservoir distri-
bution and evolve over time under rested non-stationarity.
While much of the existing literature on this topic focuses
on stationary rewards (Berry et al., 1997; Wang et al., 2008;
Bonald and Proutiere, 2013; Carpentier and Valko, 2015),
the more challenging adversarial or non-stationary scenario
has only recently been explored in the context of rotting
(i.e., decreasing) rewards (Kim et al., 2022; 2024). Kim
et al. (2024)’s state-of-the-art algorithm for rotting bandits
relies on prior knowledge of non-stationarity parameters and
further regularity assumptions on the reservoir distribution
to attain optimal regret bounds. However, these assumptions
can be impractical in real-world applications.

This work studies a broader non-stationary model where
rewards are decided by an adaptive adversary and aims to
derive regret bounds without requiring algorithmic knowl-
edge of non-stationarity. Additionally, we go beyond the
task of attaining optimal regret bounds as posed by Kim
et al. (2024), and show enhanced regret bounds which can
be tighter (i.e., possibly near-stationary rates) despite large
non-stationarity, thus more properly capturing the theoret-
ical limits of learnability in changing environments. Such
insights are inspired by similar developments in the finite-
armed analogue (Suk and Kpotufe, 2022), where substantial
changes in best arm, called significant shifts, can be de-
tected leading to more conservative procedures which don’t
overestimate the severity of non-stationarity.
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1.1. More on Related Works

The most relevant works are Kim et al. (2022; 2024). The
first of these works studies a simpler model where the reser-
voir distribution is uniform on [0, 1] and there’s a fixed
upper bound ρ on the magnitude of round-to-round non-
stationarity. Kim et al. (2022) show the minimax regret rate
is ρ1/3 · T +

√
T and derive a matching upper bound, up to

log terms, but using algorithmic knowledge of ρ as well as
a suboptimal regret upper bound without knowledge of ρ.

Kim et al. (2024) study a general setting where the reservoir
distribution for initial mean reward µ0(a) of arm a satisfies
P(µ0(a) > 1−x) = Θ(xβ) for all x ∈ (0, 1). They study a
more general setting of 1-sub-Gaussian random rewards vs.
our setting of [0, 1]-bounded rewards. They show a regret
lower bound of order min{V

1
β+2 · T

β+1
β+2 , L

1
β+1 · T

β
β+1 } in

terms of number of changes L in rewards or total variation
V (quantifying magnitude of changes over time).

With knowledge of L and V , they show a matching regret
upper bound for β ≥ 1 and a worse min{V 1/3T 2/3,

√
LT}

bound for β < 1. We suspect this latter bound for β < 1
is in fact tight due to earlier works (Carpentier and Valko,
2015, Theorem 1) showing T−1/2 lower bounds on the final-
round regret. Interestingly, in our [0, 1]-bounded rewards
setting, this phenomenon does not occur and the minimax
regret behaves the same for β < 1 or β ≥ 1. Finally,
Kim et al. (2024) also have suboptimal regret upper bounds
without knowledge of L or V .

We also note that non-stationarity is well-studied in more
structured many or infinite-armed bandit settings such as
(generalized) linear (Cheung et al., 2019; Russac et al., 2020;
Zhao et al., 2020; Kim and Tewari, 2020; Wei and Luo,
2021), kernel (Hong et al., 2023; Iwazaki and Takeno, 2024),
or convex bandits (Wang, 2022). To contrast, our infinite-
armed setting does not assume any metric structure on the
arm space and so these works are not easily to comparable to
this paper. We also note there are no known results on more
nuanced measures of non-stationarity, like the significant
shifts, even for such structured settings.

1.2. Contributions

• We show the first optimal and adaptive (a.k.a.
parameter-free) regret upper bounds for non-stationary
infinite-armed bandits (Theorem 5). In fact, our bounds
are expressed in terms of tighter and more optimistic
measures of non-stationarity (Subsection 2.2 and Theo-
rem 3) new to this work. This resolves open questions
of Kim et al. (2022; 2024).

We note our procedures are substantially different from
Kim et al. (2022; 2024) who rely on explore-then-
exploit strategies whereas we revisit the subsampling
approach of Bayati et al. (2020) which partially reduces

the problem to analyzing finite-armed bandits.

• Along the way, we develop the first high-probability
regret bounds for the infinite-armed setting. Our regret
upper bound in Theorem 5 also relaxes distributional
assumptions on the reservoir distribution, not requiring
an upper bound on the masses of randomly sampled
rewards. Both such generalizations were unknown in
prior works even in the stationary setting.

• To our knowledge, our work is the first to develop adap-
tive dynamic regret bounds of the style V 1/3T 2/3 ∧√
LT with bandit feedback and adaptively adversarial

changes. Notably, such results are yet unknown in the
finite-armed setting. Note our setting is not directly
comparable to finite-armed bandits as we assume a
known optimal reward value.

• We validate our findings via experiments on synthetic
data, showing our procedures perform better than the
previous art for rotting infinite-armed bandits.

2. Setup
2.1. Non-Stationary Infinite-Armed Bandits

We consider a multi-armed bandit with infinite armset A.
At each round t, the agent plays an arm at, choosing either
to newly sample at from A or to play an already sampled
arm among the previously chosen arms {a1, . . . , at−1}.

When the agent samples arm at ∈ A at round t, it observes
a random reward Yt(at) ∈ [0, 1] with mean µt(at) ∈ [0, 1]
whose value is randomly drawn from a mean reservoir dis-
tribution. The reward of this chosen arm in the subsequent
round is then decided according to an adaptive adversary
with access to prior decisions {as}s≤t and observations
{Yt(as)}s≤t. As in prior works (Berry et al., 1997; Wang
et al., 2008; Carpentier and Valko, 2015; Bayati et al., 2020;
Kim et al., 2024), we assume the reservoir distribution is
β-regular, parametrized by a shape parameter β > 0.

Assumption 1 (β-Regular Reservoir Distribution). We as-
sume a β-regular reservoir distribution for some β > 0:
there exists constants κ1, κ2 > 0 such that for all x ∈ [0, 1]:

κ1 · xβ ≤ P(µ0(a) > 1− x) ≤ κ2 · xβ .

Remark 1. Prior works on non-stationary bandits (e.g. Bes-
bes et al., 2019) typically allow for unplayed arms’ rewards
to change each round, which is equivalent to our setting
with a different accounting of changes, as changes in yet
unplayed arms do not affect performance.

Let δt(a) := 1 − µt(a) be the gap of arm a at round t.
Then, the cumulative regret is RT :=

∑T
t=1 δt(at). Let

δt(a, a
′) := µt(a)− µt(a

′) be the relative regret of arm a′

to a at round t.
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2.2. Non-Stationarity Measures

Let V :=
∑T

t=2 |µt−1(at−1) − µt(at−1)| denote the real-
ized total variation which measures the total variation of
changes in mean rewards through the sequence of played
arms. In Section 5, we also consider the total realized rotting
variation VR :=

∑T
t=2(µt−1(at−1) − µt(at−1))+ which

sums the magnitudes of rotting in rewards over time.

Let L :=
∑T

t=2 111{µt(at−1) ̸= µt−1(at−1)} denote the
realized count of changes, and LR :=

∑T
t=2 111{µt(at−1) <

µt−1(at−1)} the realized number of rotting changes

To contrast, the prior works Kim et al. (2022; 2024) con-
sider a priori upper bounds on V,L (i.e., the adversary is
constrained to incur non-stationarity at most size V or count
L), and so only show expected regret bounds in terms of
such bounds. Our work establishes stronger high-probability
regret bounds in terms of our tighter realized values of V,L.
Remark 2. We note that our measures of non-stationarity
V, VR, L, LR depend on the agent’s decisions and so may
not be directly comparable for different algorithms and/or
adversaries. For an oblivious adversary, these quantities
can be upper bounded by worst-case analogues which do
not depend on the agent’s decisions. Even in this more
limited setting, optimal and adaptive regret upper bounds
were previously unknown.

3. Regret Lower Bounds
Kim et al. (2024, Theorem 4.1 and 4.2) show regret lower

bounds of order (LR+1)
1

β+1 ·T
β

β+1 ∧(V
1

β+2

R ·T
β+1
β+2 +T

β
β+1 )

for the rotting infinite-armed bandit problem, which is a sub-
case of our non-stationary setup. Our regret upper bound
in Theorem 5 matches this lower bound up to log factors,
without algorithmic knowledge of LR, VR.

4. A Blackbox for Optimally Tracking
Unknown Non-Stationarity

4.1. Intuition for Subsampling

A key idea, used for the stationary problem in Wang et al.
(2008); Bayati et al. (2020), is that of subsampling a fixed
set of arms from the reservoir. The main algorithmic design
principle is to run a finite-armed MAB algorithm over this
subsample. The choice of subsample size is key here and
exhibits its own exploration-exploitation tradeoff, appearing
through a natural regret decomposition with respect to the
subsample, which we’ll denote by A0 ⊆ A:

RT =

T∑
t=1

min
a∈A0

δt(a)︸ ︷︷ ︸
Regret of best subsampled arm

+

T∑
t=1

max
a∈A0

δt(a, at)︸ ︷︷ ︸
Regret to best subsampled arm

.

(1)

Suppose there are K := |A0| subsampled arms. One can
show (e.g., Theorem 11) a size K subsample of a β-regular
reservoir contains, with high probability, an arm with gap
O(K−1/β). Thus, the first sum in (1) is at most T ·K−1/β .

Then, plugging in the classical gap-dependent regret
bounds for finite-armed MAB, the second sum in (1) is
Õ
(∑K

i=2 ∆
−1
(i)

)
where ∆(i) is the (random) i-th smallest

gap to the best subsampled arm. Then, it is further shown
(Bayati et al., 2020, Section A.2) that this gap-dependent
quantity scales like Õ(K) in expectation, by carefully inte-
grating ∆−1

(i) over the randomness of the reservoir.

Then, choosing K to balance the bounds T · K−1/β and
K on (1) yields an optimal choice of K ∝ T

β
β+1 giving a

regret bound of T
β

β+1 which is in fact minimax.

Key Challenges: Extending this strategy to the non-
stationary problem, it’s natural to ask if we can follow an
analogous strategy by reducing to K-armed non-stationary
bandits. However, this poses fundamental difficulties:

(a) As our goal in the non-stationary problem is to achieve
adaptive regret bounds, without parameter knowledge,
a naive approach is to reduce to adaptive K-armed
non-stationary MAB guarantees (Auer et al., 2019;
Wei and Luo, 2021; Suk and Kpotufe, 2022; Abbasi-
Yadkori et al., 2023). However, these guarantees only
hold for an oblivious adversary, and so are inappli-
cable to our problem. Furthermore, these algorithms
only give worst-case rates of the form

√
LKT in terms

of L changes. In fact, it’s known in this literature
that no algorithm can adaptively secure tighter gap-
dependent rates over unknown changepoints (Gariv-
ier and Moulines, 2011, Theorem 13). As the gap-
dependent regret bound is crucial to achieving opti-
mally balancing exploration and exploitation in our
subsampling strategy, we see this approach can only
hope to achieve suboptimal rates.

(b) Secondly, we observe that upon experiencing changes,
one may have to re-sample arms from the reser-
voir distribution as the regret of the best subsampled
arm mina∈A0

δt(a) can itself become large over time.
Thus, we require a more refined subsampling strategy
which works in tandem with non-stationarity detection.

4.2. Our New Approach: Regret Tracking

We handle both of the above issues with the new idea of
tracking the empirical regret δ̂t(at) := 1 − Yt(at) as a
proxy for tracking non-stationarity. The key observation is
that the empirical cumulative regret of played actions up
to round t,

∑t
s=1 δ̂s(as), concentrates around

∑t
s=1 δs(as)

at fast logarithmic rates by Freedman’s inequality and a
self-bounding argument for [0, 1]-valued random variables.
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This means, so long as
∑t

s=1 1 − Ys(as) ≲ t
β

β+1 , our re-
gret will be safe up to the minimax stationary regret rate.
On the other hand, if

∑t
s=1 1 − Ys(as) ≫ t

β
β+1 , then the

agent must be experiencing large regret which means some
non-stationarity has occurred if the agent otherwise plays
optimally for stationary environments.

Thus, at a high level, our procedure (Algorithm 1) restarts
the subsampling strategy outlined in Subsection 4.1 upon
detecting large empirical regret.

Setting up relevant terminology, an episode is the set
of rounds between consecutive restarts and, within each
episode, we further employ doubling epochs, termed blocks,
to account for unknown changepoints and durations of play.

Within each block, we run the subsampling strategy for a
fixed time horizon as a blackbox. The blackbox takes as
input a finite-armed MAB base algorithm, parametrized by
Base-Alg(t,A0) for inputs horizon t and subsampled set of
arms A0 ⊂ A.

Our only requirement of the base algorithm is that it attains
a gap-dependent regret bound in so-called mildly corrupt
environments, defined below. It’s straightforward to show
this is satisfied by classical stochastic MAB algorithms such
as UCB (Lai and Robbins, 1985) (proof in Section C).

Definition 1. We say a finite-armed non-stationary bandit
environment {µt(a)}t∈[T ],a∈A0

over horizon T with armset
A0 is α-mildly corrupt for α > 0 if there exists a reference
reward profile {µ(a)}a∈A0

such that

∀t ∈ [T ], a ∈ A0 : |µt(a)− µ(a)| ≤ α.

Next, in stating the requirement of our base algorithm, we
use δt(a, a′) := µt(a)−µt(a

′) to denote the gap of arm a′ to
a in the context of a finite-armed bandit {µt(a)}t∈[T ],a∈A0

.

Assumption 2. Let {µt(a)}t∈[T ],a∈A0
be an α-mildly cor-

rupt T -round finite-armed bandit with reference reward
profile {µ(a)}a∈A0

. Let ∆(2) ≤ ∆(3) ≤ · · ·∆(|A0|) be the
ordered gaps induced by the reference reward profile. Then,
Base-Alg(T,A0) attains, with probability at least 1− 1/T ,
for all t ∈ [T ], a t-round static regret bound of (for C0 free
of t, T,A0):

max
a∈A0

t∑
s=1

δs(a, as) ≤ 6tα+ C0

|A0|∑
i=2

log(T )

∆(i)
111{∆(i) ≥ 4α},

Remark 3. Our Assumption 2 is at firt glance similar to
Assumption 1 of Wei and Luo (2021), but it in fact stronger
in requiring gap-dependent bounds in environments with
small variation as opposed to their requirement of O(

√
T )

regret in such environments (Wang, 2022, Lemma 3).

Remark 4. Bandit algorithms attaining state-of-the-art
regret bounds in stochastic regimes with adversarial cor-
ruption (Lykouris et al., 2018; Gupta et al., 2019; Zimmert

and Seldin, 2019; Ito, 2021; Ito and Takemura, 2023; Dann
et al., 2023) satisfy Assumption 2.

Algorithm 1: Blackbox Non-Stationary Algorithm

1 Input: Finite-armed MAB algorithm Base-Alg
satisfying Assumption 1. Subsampling rate Sm.

2 Initialize: Episode count ℓ← 1, Starting time
t11 ← 1.

3 for m = 1, 2, . . . , ⌈log(T )⌉ do
4 Subsample Sm ∧ 2m arms Am ⊂ A.
5 Initiate a new instance of Base-Alg(2m,Am).
6 for t = tmℓ , . . . , (tmℓ + 2m − 1) ∧ T do
7 Play arm at (receiving reward Yt(at)) as

chosen by Base-Alg(2m,Am).
8 Changepoint Test: if

t∑
s=tmℓ

δ̂s(as) ≥ C1 · (|Am| ∨2m/2) · log3(T )

then
9 Restart: t1ℓ+1 ← t+ 1, ℓ← ℓ+ 1.

10 Return to Algorithm 1 (Restart from
m = 1).

11 else if t = tmℓ + 2m − 1 then
12 tm+1

ℓ ← t+ 1 (Start of the (m+ 1)-th
block in the ℓ-th episode).

4.3. Blackbox Regret Upper Bound

The main result of this section is that Algorithm 1 attains the
optimal regret in terms of number of changes L and total-
variation V when β ≥ 1 and matches the state-of-art regret
bounds with known L, V for β < 1 (Kim et al., 2024).

Theorem 2. Under Assumption 1 with β ≥ 1, Algorithm 1
with Sm :=

⌈
2m· β

β+1

⌉
satisfies, w.p. 1−O(1/T ):

RT ≤ Õ
(
(L+ 1)

1
β+1T

β
β+1 ∧ (V

1
β+2T

β+1
β+2 + T

β
β+1 )

)
.

If β < 1, Algorithm 1 with Sm :=
⌈
2m·β/2⌉ satisfies w.p.

1−O(1/T ):

RT ≤ Õ
(√

(L+ 1) · T ∧ (V 1/3T 2/3 +
√
T )
)
.

Proof. (Outline) We given an outline of the proof with full
details deferred to Section A. We also focus on the setting
of β ≥ 1 with (minor) modifications of the argument for
β < 1 discussed in Subsection A.6. Let tℓ := t1ℓ be the start
of the ℓ-th episode [tℓ, tℓ+1). Let L̂ be the (random) number
of restarts triggered over T rounds. Let mℓ be the index of
the last block in ℓ-th episode.
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•Converting Empirical Regret Bound to Per-Episode Re-
gret Bound. Following the discussion of Subsection 4.2,
we first use concentration to upper bound the per-block

regret
∑tm+1

ℓ −1
s=tmℓ

δs(as) on each block and to also lower
bound it on blocks concluding with a restart. We first have
by Freedman’s inequality (Theorem 7) and AM-GM, with
high probability, for all subintervals [s1, s2] of rounds:∣∣∣∣∣

s2∑
s=s1

δs(as)− δ̂s(as)

∣∣∣∣∣ ≲
√√√√log(T )

s2∑
s=s1

δs(as) + log(T )

≲
1

2

s2∑
s=s1

δs(as) + log(T ) (2)

This allows us to upper bound the regret on each block
[tmℓ , tm+1

ℓ ) by Õ(Sm) using the bound on empirical regret∑tm+1
ℓ −1
s=tmℓ

δ̂s(as) from Algorithm 1 of Algorithm 1.

Then, summing Sm ∝ 2m· β
β+1 over blocks and episodes

yields a total regret bound of Õ
(∑L̂

ℓ=1(tℓ+1 − tℓ)
β

β+1

)
.

• Bounding the Variation Over Each Episode. It now
remains to relate

∑L̂
ℓ=1(tℓ+1 − tℓ)

β
β+1 to the total count L

of changes and total-variation V . To this end, we show there
is a minimal amount of variation in each episode [tℓ, tℓ+1)
which will allow us to conclude the total regret bound using
arguments similar to prior works (Suk and Kpotufe, 2022,
Corollary 2) (Chen et al., 2019, Lemma 5).

We first introduce a regret decomposition, alluded to ear-
lier in (1), based on the “best initially subsampled arm”,
âℓ,mℓ

:= argmaxa∈Amℓ
µ0(a), where we use µ0(a) to de-

note the initial reward of arm a when it’s first sampled. The
regret in the last block [tmℓ

ℓ , tℓ+1,) of the ℓ-th episode is:

tℓ+1−1∑
t=t

mℓ
ℓ

δt(at) =

tℓ+1−1∑
t=t

mℓ
ℓ

δt(âℓ,mℓ
)

︸ ︷︷ ︸
(A)

+

tℓ+1−1∑
t=t

mℓ
ℓ

δt(âℓ,mℓ
, at)

︸ ︷︷ ︸
(B)

Then from the above and concentration, one of two possible
cases must hold if a restart occurs on round tℓ+1: either (A)
or (B) is Ω(Smℓ

). In either case, we claim large variation
occurs over the episode:

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥ (tℓ+1 − tℓ)
− 1

β+1 . (3)

• Regret of Best Subsampled Arm is Large. In the
case where (A) is Ω(Smℓ

), we know due to our subsam-
pling rate Smℓ

that âℓ,mℓ
will w.h.p. have an initial gap of

Õ(2−mℓ· 1
β+1 ) (Theorem 11). On the other hand, (A) being

large means there’s a round t′ ∈ [tmℓ , tℓ+1) such that

δt′(âℓ,mℓ
) ≳ Smℓ

/(tℓ+1 − tmℓ

ℓ ) ≳ 2−mℓ
1

β+1 .

Thus, from 2−mℓ
1

β+1 ≥ (tℓ+1 − tℓ)
− 1

β+1 , (3) holds.

• Regret of Base is Large. Now, if (B) is Ω(Smℓ
) but

(A) is o(Smℓ
), suppose for contradiction that (3) is reversed.

Then, this means the finite MAB environment experienced
by the base algorithm is (tℓ+1 − tℓ)

− 1
β+1 -mildly corrupt

(Theorem 1). Thus, Assumption 2 bounds the regret of the
base, which in turn bounds the per-block regret above:

tℓ+1−1∑
s=t

mℓ
ℓ

δt(âℓ,mℓ
, at) ≲ t

1
β+1

+

Smℓ∑
i=2

log(T )

∆(i)
111

{
∆(i)

4
≥ t−

β
β+1

}
. (4)

where {∆(i)}
Smℓ
i=1 are the ordered initial gaps to âℓ,mℓ

of the
arms in Amℓ

.

We then bound the RHS of (4) by O(Smℓ
) to contradict our

premise that (B) is Ω(Smℓ
). In Bayati et al. (2020, Lemma

D.4), bounding (4) by O(Smℓ
) was done in expectation by

carefully integrating the densities of each random variable
∆−1

(i) . But, this requires additional regularity conditions on
an assumed density for the reservoir distribution when β ̸= 1
(op. cit. Section 6.1). To contrast, we bound (4) in high
probability using a novel binning argument on the values of
the ∆(i)’s and then using Freedman-type concentration on
the number of subsampled arms within each bin. Details of
this can be found in Subsection A.4.

4.4. Comparison with MASTER of Wei and Luo (2021)

While our blackbox (Algorithm 1) bears similarities to the
MASTER algorithm of Wei and Luo (2021), we highlight
that Algorithm 1’s design is much simpler in not requiring
randomized multi-scale scheduling of re-exploration for the
sake of changepoint detection.

The method of detecting changes is also different. MASTER
detects changes by comparing the UCB indices of base
algorithms scheduled at different times. To contrast, we
only track the estimated cumulative regret in each block
to track changes. This results in a simpler regret analysis
where we don’t need to bound the regret incurred while
waiting for a re-exploration phase to be triggered.

5. Tracking Significant Shifts
While Algorithm 1 is a flexible blackbox which can make
use of any reasonable finite-armed MAB algorithm, the
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regret bound of Theorem 2 is suboptimal for β < 1. Futher-
more, we aim to show regret upper bounds in terms of the
tighter rotting measures of non-stationarity LR and VR (cf.
Subsection 2.2).

In fact, we go beyond this aim and define a new measure of
non-stationarity which precisely tracks the rotting changes
which are most severe to performance.

5.1. Defining a Significant Shift

Recent works on non-stationary finite-armed MAB achieve
regret bounds in terms of more nuanced non-stationarity
measures, which only track the most significant switches in
best arm, or those truly necessitating re-exploration (Suk and
Kpotufe, 2022; Buening and Saha, 2023; Suk and Agarwal,
2023; Suk and Kpotufe, 2023; Suk, 2024).

Here, we develop and study an analogous notion for the
infinite-armed bandit. First, we note in the infinite-armed
bandit problem, there’s no single “best arm”, as the arm-
space is infinite and, almost surely, no sampled arm will
have the optimal reward value of 1. Yet, the core inution
behind the notion of significant shift for finite MAB (Suk
and Kpotufe, 2022, Definition 1) remains by definining a
significant shift in terms of the regret experienced by each
arm. First, we say an arm a is safe on an interval [s1, s2] of
rounds if:

s2∑
s=s1

1− µs(a) ≤ κ−1
1 · (s2 − s1 + 1)

β
β+1 . (5)

Then, a significant shift is roughly defined as occurring
when every arm in some set of arms Â is unsafe and violates
(5). If we let Â = A be the full reservoir set of arms, then
this proposed definition may not by meaningful as there
could always exist an unsampled arm which is safe in terms
of regret, but unknown to the agent.

For the subsampling strategy discussed in Subsection 4.1,
we argue it is sensible to let Â = A0, the set of sub-sampled
arms. Based on the discussion of Section 4, we see that a
subsample of size Ω(t

β
β+1 ) contains w.h.p. a safe arm with

gap O(t−
1

β+1 ). This motivates the following definition of
significant shift, which is defined for any agent (regardless
of whether a subsampling strategy is used).

Definition 3 (Significant Shift). We say a bandit environ-
ment over t rounds is safe if there exists an arm a among the
first t

β
β+1 arms sampled by the agent such that (5) holds for

all intervals of rounds [s1, s2] ⊆ [t]. Let τ0 := 1. Define the
(i+ 1)-th significant shift τi+1 given τi as the first round
t > τi such that the bandit environment over rounds [τi, t] is
not safe. Let L̃ be the largest significant shift over T rounds
and by convention let τL̃+1 := T + 1.

5.2. Comparing Significant Shifts with LR, VR

We first note that the significant shift, like LR and VR, is an
agent-based measure of non-stationarity and so depends on
the agent’s past decisions.

Next, we caution that a significant shift does not always
measure non-stationarity and can in fact be triggered in sta-
tionary environments for a “bad” algorithm. For example,
consider an agent sampling exactly one arm from the reser-
voir and committing to it. Then, due to the large variance
of a single sample, such an algorithm incurs constant regret
with constant probability. In this case, a significant shift is
triggered even in a stationary environment as none of the
subsample is safe. Thus, in this example, the significant
shift tracks the agent’s suboptimality.

In spite of this example, we argue that Theorem 3 is still a
meaningful measure of non-stationarity for all algorithms
of theoretical interest, and indeed learning significant shifts
via Algorithm 2 will allow us to attain optimal rates w.r.t.
LR, VR (Theorem 5). Note that any algorithm attaining
the optimal high-probability regret of O(T

β
β+1 ) in station-

ary environments must sample at least T
β

β+1 arms. Intu-
itively, this is because securing an arm with gap at most
δ := T− 1

β+1 (which occurs for a given arm with probability
P(µ0(a) > 1−δ) = Θ(δβ)) requires Ω(δ−β) trials. Indeed,
this claim is also seen in the proofs of the stationary regret
lower bounds (e.g., Wang et al., 2008, Theorem 3).

At the same time, any sample of Ω(T
β

β+1 ) arms from the
reservoir will contain an arm with gap O(δ) w.h.p.. (Theo-
rem 11), which will maintain (5) over all subintervals. Then,
a significant shift will not be triggered unless this best sub-
sampled arm’ gap increases. Thus, any algorithm attaining
optimal regret in stationary environments will satisfy w.h.p.
L̃ ≤ L.

Additionally, the only way an arm with initial gap O(δ)
becomes unsafe and violates (5) is if there’s large rotting
total variation (i.e., VR is bounded below). This means
L̃ ≤ LR and we’ll see in the next subsection that learning
significant shifts in fact allows us to recover the optimal rate

V
1

β+2

R · T
β+1
β+2 in terms of VR (Theorem 5).

5.3. Regret Upper Bounds

Here, we derive a tight and adaptive regret bound in terms of
the significant shifts. In particular, we show a regret bound

of (L̃+ 1)
1

β+1T
β

β+1 ∧ (V
1

β+2

R T
β+1
β+2 + T

β
β+1 ) in terms of L̃

significant shifts and VR total rotting variation.

A preliminary task here is as follows:

Goal 1. Show a regret bound of Õ(t
β

β+1 ) in t-round safe
environments.
Given a base procedure achieving said goal, we can then use

6
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a restart strategy similar to Algorithm 1 where we restart
the base upon detecting a significant shift.

For the finite K-armed setting, the analogous preliminary
claim (Suk, 2024, Theorem 11) is to show a regret bound
of O(

√
KT ) in safe environments. This is achieved using

a randomized variant of successive elimination (Even-Dar
et al., 2006).

However, once again the infinite-armed setting is more nu-
anced and so this claim cannot directly be applied. In-
deed, setting K := T

β
β+1 results in a suboptimal rate of√

KT = T
β+1/2
β+1 . The fundamental issue here is that the√

KT rate captures a worst-case variance of estimating
bounded rewards. To get around this, we do a more refined
variance-aware regret analysis relying on self-bounding tech-
niques similar to those used to show Theorem 2 in Section 4.

To further emphasize the more challenging nature of show-
ing Goal 1, we notice that the regret analysis of our blackbox
procedure Algorithm 1 in Subsection 4.3 crucially relies on
bounding the logarithmic gap-dependent regret rate of As-
sumption 2 over periods of small total-variation (used to
show (3)). However, such a gap-dependent regret rate is
ill-defined when the gaps ∆i can be changing substantially
over time (as to violate Assumption 2) which can happen in
safe environments while we expect stationary regret rates.

Nevertheless, we show that a different per-arm regret analy-
sis gets around this difficulty. Our procedure (Algorithm 2)
is a restarting randomized elimination using the same dou-
bling block scheme of Algorithm 1.

Going into more detail, we note, by uniformly exploring a
candidate armset Gt at round t, we can maintain importance-
weighted estimates of the gaps of each arm a ∈ Gt:

δ̂IW
t (a) :=

(1− Yt(at)) · 111{at = a}
P(at = a | Ht−1)

,

where Ht−1 is the σ-algebra generated by decisions and
observations up to round t− 1.

Next, we note, by Freedman’s inequality that the estima-
tion error of the cumulative estimate

∑
t∈I δ̂

IW
t (a) over an

interval I of rounds scales like
√∑

t∈I δt(a) · |Gt|. The
inclusion of the δt(a) term inside of the square root is cru-
cial here and, using self-bounding arguments, yield tighter
concentration bounds of order Õ(maxt∈I |Gt|), which we
can use as a threshold for fast variance-based elimination.

Theorem 4. Let L̂ be the number of episodes [tℓ, tℓ+1)
elapsed in Algorithm 2 over T rounds. Algorithm 2 satisfies,
w. p. at least 1− 1/T :

RT = Õ

 L̂∑
ℓ=1

(tℓ+1 − tℓ)
β

β+1

 .

Algorithm 2: Restarting Subsampling Elimination

1 Initialize: Episode count ℓ← 1, start t11 ← 1.
2 for m = 1, 2, . . . , ⌈log(T )⌉ do
3 Subsample

⌈
2(m+1)· β

β+1 log(T )
⌉
∧ 2m arms Am

and let Gtmℓ ← Am.
4 for t = tmℓ , . . . , (tmℓ + 2m − 1) ∧ T do
5 Play arm at as Unif{Gt} and observe reward

Yt(at).
6 Eliminate arms: Gt+1 ←

Gt\

a :

t∑
s=tmℓ

δ̂IW
s (a) ≥ C2 · |Am| log(T )

.

7 Restart Test: if Gt+1 = ∅ then
8 Restart: t1ℓ+1 ← t+ 1, ℓ← ℓ+ 1.
9 Return to Algorithm 2 (Restart from

m = 1).
10 else if t = tmℓ + 2m − 1 then
11 tm+1

ℓ ← t+ 1 (Start of the m+ 1-th
block in the ℓ-th episode).

Proof. (Outline) We give a proof outline here and full details
are found in Section B. It suffices to bound the regret on
block [tmℓ , tm+1

ℓ ) by Õ(Sm). To show this, we do a variance-
aware version of the per-arm regret analysis of Section B.1
in Suk and Kpotufe (2022).

We first transform the regret according to its conditional
expectation. Note that, from the uniform sampling strategy,

E[δt(at) | Ht−1] =
∑
a∈Gt

δt(a)

|Gt|
.

Next, note that

Var[δt(at) | Ht−1] ≤ E[δ2t (at) | Ht−1] ≤ E[δt(at) | Ht−1].

Then, using Freedman’s inequality (Theorem 7) with the
above, we have for all subintervals I ⊆ [T ], with probability
at least 1− 1/T :∑
t∈I

δt(at)−
∑
a∈Gt

δt(a)

|Gt|
≲

√
log(T )

∑
t∈I

E[δt(at) | Ht−1]

+ log(T )

≲
∑
t∈I

∑
a∈Gt

δt(a)

|Gt|
+ log(T ),

where the second inequality is from AM-GM. In light of the
above, it remains to bound

∑K
a=1

∑ta

t=tmℓ

δt(a)
|Gt| where ta is

the last round in block [tmℓ , tm+1
ℓ ) that a is retained.

We next again use Freedman’s inequality (Theorem 7) and
self-bounding to relate

∑
t∈I δt(a) to

∑
t∈I δ̂

IW
t (a). We

7
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have w.p. at least 1− 1/T :∣∣∣∣∣∣
ta∑

t=tmℓ

δt(a)− δ̂IW
t (a)

∣∣∣∣∣∣
≲ max

t∈[tmℓ ,ta]
|Gt| log(T ) +

√√√√log(T )

ta∑
t=tmℓ

δt(a) · |Gt|

≤ 1

2

ta∑
t=tmℓ

δt(a) + C ′ max
t∈[tmℓ ,ta]

|Gt| log(T ), (6)

where again we use AM-GM in the second inequality. Next,

ta∑
t=tmℓ

δt(a)

|Gt|
≤
(

max
s∈[tmℓ ,ta]

1

|Gs|

) ta∑
t=tmℓ

δt(a).

Moving the 1
2

∑
t∈I δt(a) to the other side in (6), we get

ta∑
t=tmℓ

δt(a) ≲
ta∑

t=tmℓ

δ̂IW
t (a) + log(T ) max

t∈[tmℓ ,ta]
|Gt|.

Combining the above two displays with Algorithm 2 of
Algorithm 2, we have:

ta−1∑
t=tmℓ

δt(a)

|Gt|
≲ max

s∈[tmℓ ,ta−1]

Sm

|Gs|
log(T ),

Now, summing maxs∈[tmℓ ,ta−1] |Gs|−1 over arms a ∈ Am

yields another log(Sm) factor, while summing over blocks
m ∈ [mℓ] and episodes ℓ ∈ [L̂] finishes the proof.

We next show the regret bound of Theorem 4 in fact recovers
the minimax regret rates in terms of L̃ and VT .

Corollary 5. Algorithm 2 satisfies, w.p. at least 1− 1/T :

RT ≤ Õ

(
(L̃+ 1)

1
β+1T

β
β+1 ∧ (V

1
β+2

R T
β+1
β+2 + T

β
β+1 )

)
.

Proof. (Sketch) Using similar arguments to the proof of
Theorem 2, within each block the best initial arm âℓ,m

has gap Õ(2−m· 1
β+1 ). On the other hand, within a block

[tmℓ

ℓ , tℓ+1) ending in a restart, this best initial arm is elimi-
nated meaning there exists a round t ∈ [tmℓ

ℓ , tℓ+1) such
that δt(âℓ,mℓ

) ≳ (tℓ+1 − tmℓ

ℓ )−
1

β+1 . Thus, the gap of
âℓ,mℓ

must have increased by at least this amount which
gives a lower bound on the per-episode total variation of
Ω((tℓ+1 − tℓ)

− 1
β+1 ). Then, by similar arguments to the

proof of Theorem 2, we deduce the total regret bound.

6. Comparing Blackbox vs. Elimination
Theorem 5 and the nearly matching lower bounds of Sec-
tion 3 show that only rotting non-stationarity (L̃ ≤ LR and
VR) factor into the difficulty of non-stationarity. In other
words, rising non-stationarity is benign for non-stationary
infinite-armed bandits. Intuitively, this is because our prob-
lem assumes knowledge of both the top reward value and
upper bound on rewards, which coincide and are equal to 1.
Hence, arms with rising rewards require less exploration.

Interestingly, unlike the case with Algorithm 1, the elimi-
nation algorithm’s bound in Theorem 5 does not require an
upper bound on masses of the reservoir (Assumption 1), or
there’s no dependence on κ2 in the regret upper bounds of
Theorem 5. This is new to this work and was not known
even in the previous stationary regret bounds (Wang et al.,
2008; Bayati et al., 2020; Kim et al., 2024). This suggests
our regret analysis is simpler and, indeed, we only require
that the initial best arm in the subsample has small gap
(which only requires lower bounded masses of the reservoir
as we see in Theorem 11). To contrast, the regret analysis
of Theorem 2 (more similar to those of the aforementioned
works) uses the upper bound on tail probabilities scaling
with κ2 to bound the regret of the finite-armed MAB base
algorithm. Such a step is avoided in the regret analysis of
Theorem 4 by estimating the regret of each arm separately.

On the other hand, the blackbox can be seen as more ex-
tensible as it allows for a wide range of finite-armed MAB
algorithms to be used as a base. We finally note Algorithm 2
can essentially be reformulated as an instantiation of the
blackbox with a successive elimination base algorithm.

7. Experiments
Here, we demonstrate the performance of Algorithms 1
and 2 on synthetic datasets. For the Base-Alg in Algo-
rithm 1 we use UCB (Auer et al., 2002). As benchmarks,
we implement SSUCB (Bayati et al., 2020) and a variant
of it using a sliding window with size

√
T (SSUCB-SW),

and AUCBT-ASW (Kim et al., 2024), which achieves
a suboptimal regret bound of Õ(min{V

1
β+2T

β+1
β+2 , (L +

1)
1

β+1T
β

β+1 }+min{T
2β+1
2β+2 , T

3
4 }) in rested rotting setups.

• Comparing Total Variation-based Regret Bounds. To
ensure a fair comparison between algorithms, we consider a
rotting scenario where the mean reward of each selected arm
decreases at a rate of O(1/t) at time t. In this environment,
for all our algorithms, it can be shown that L = Ω(T ),
V = Õ(1). For the case of β = 1 such that initial mean
rewards follow a uniform distribution on [0, 1] (Figure 1(b)),
both our algorithms outperform the benchmarks, with the
elimination one achieving the best performance. These
results validate the insights of Section 6. Specifically, our
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(a) β = 0.6
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(b) β = 0.8
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(c) β = 1

Figure 1: Experimental results showing regret of algorithms

algorithms have a regret bound of Õ(T 2/3) (Theorem 2 and
Theorem 5) vs. AUCBT-ASW’s bound of Õ(T 3/4) (Kim
et al., 2024).

In Figure 1, we observe that our algorithms outperform the
benchmarks across various β values, aligning with theo-
retical results. Furthermore, the performance gap between
the elimination and blackbox algorithms increases as β de-
creases, which is also consistent with our theoretical results.
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Figure 2: Experimental results showing regret of algorithms

• Comparing Regret Bounds based on Number of
Changes. Figure 2 covers the piecewise stationary set-
ting where we use a rotting rate of ρt = 1 at L =

√
T

different rounds with β = 1. The prior art AUCBT-ASW
(Kim et al., 2024) has a regret bound of

√
LT = T 3/4, yet

we see from the plot that our procedures have empirically
better regret owing to the small number of significant shifts.
Surprisingly, we see the blackbox algorithm has comparable
performance to our elimination procedure, suggesting that

the blackbox algorithm may also be capable of adapting to
significant shifts.

Remark 5. Our implementation of Algorithm 2 does not
include the log(T ) factor in the subsampling rate of Algo-
rithm 2, as this lead to more stable experimental results. One
can show this only changes the bound of Theorem 5 up to a
log2/β(T ) factor, which is not large for β ∈ {0.6, 0.8, 1}.

8. Conclusion and Future Directions
We’ve shown the first optimal and adaptive dynamic re-
gret bounds for infinite-armed non-stationary bandit with
arms drawn from a reservoir distribution. For future work,
it would be interesting to see if our techniques can be ex-
tended to non-stationary linear bandits, and to design more
practical/computationally efficient procedures for detecting
changes.

Impact Statement
As our contribution here is primarily theoretical, advancing
the state-of-art in infinite-armed non-stationary bandits, we
do not foresee any major societal impact concerns.
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A. Blackbox Algorithm Regret Analysis (Details for the Proof of Theorem 2)
Here, we present the details of the proof of Theorem 2 following the outline of Section 4. Again, we focus on the case of
β ≥ 1 and discuss modifications of the argument required for β < 1 in Subsection A.6.

A.1. Preliminaries

Let c0, c1, c2, . . . denote constants not depending on T , κ1, or κ2 (Assumption 1). In what follows, all logarithms will

be base 2. We’ll also assume WLOG that log(T ) ≥ κ
− 1

β

1 ∨ κ2, as otherwise we can bound the regret by a constant only
depending on κ1 and κ2.

Next, we establish a basic fact about the block structure of Algorithm 1.

Fact 6. Recall from Section 4 that mℓ is the index of the last block in the ℓ-th episode. Then, for any episode [tℓ, tℓ+1)
terminating in a restart (via Algorithm 1 of Algorithm 1), we have

Smℓ
=
⌈
2mℓ· β

β+1

⌉
≤ 2mℓ , (7)

and

(tℓ+1 − tmℓ

ℓ )
1

β+1 ≥ C1

2
1

β+1

log3(T ) (8)

Proof. By Algorithm 1 of Algorithm 1, we must have

2mℓ ≥ tℓ+1 − tmℓ

ℓ + 1 ≥
tℓ+1−1∑
s=t

mℓ
ℓ

1− Ys(as) ≥ C1 · |Amℓ
| · log3(T ).

Now, recall the definition of Sm so that |Amℓ
| :=

⌈
2m· β

β+1

⌉
∧ 2m. We first note that we cannot have |Amℓ

| = 2mℓ since

the above display would then become 1 ≥ C1 log
3(T ). Thus

tℓ+1 − tmℓ

ℓ + 1 ≥ C1 · 2mℓ· β
β+1 · log3(T ) ≥ C1 · (tℓ+1 − tmℓ

ℓ + 1)
β

β+1 · log3(T ).

Rearranging this becomes (tℓ+1− tmℓ

ℓ +1)
1

β+1 ≥ C1 log
3(T ). Further, bounding tℓ+1− tmℓ

ℓ +1 ≤ 2 · (tℓ+1− tmℓ

ℓ ) finishes
the proof.

A.2. Using Concentration to Bound Per-Block Regret (Proof of Theorem 8)

We first present Freedman’s inequality which is used in Section 4 to bound the regret using the empirical regret bound of
Algorithm 1 of Algorithm 1.

Lemma 7 (Strengthened Freedman’s Inequality, Theorem 9 (Zimmert and Lattimore, 2022)). Let X1, X2, . . . , XT be a
martingale difference sequence with respect to a filtration F1 ⊆ F2 ⊆ · · · ⊆ FT such that E[Xt | Ft] = 0 and assume
E[|Xt| | Ft] <∞ a.s.. Then, with probability at least 1− δ,

T∑
t=1

Xt ≤ 3

√
Vt log

(
2max{Ut,

√
VT }

δ

)
+ 2UT log

(
2max{UT ,

√
VT }

δ

)
,

where VT =
∑T

t=1 E[X2
t | Ft], and UT = max{1,maxs∈[T ] Xs}.

We next use this to relate the per-episode regret to the empirical bounds of Algorithm 1.

Lemma 8. Let E1 be the event that (a) for all blocks [tmℓ , tm+1
ℓ ),

tm+1
ℓ −1∑
s=tmℓ

δs(as) < 3C1 · |Am| · log3(T ). (9)
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and (b) for the last block [tmℓ

ℓ , tℓ+1) of episodes [tℓ, tℓ+1) concluding in a restart, we have:

tℓ+1−1∑
s=t

mℓ
ℓ

δs(as) ≥
C1

2
· |Amℓ

| · log3(T ). (10)

Then, E1 occurs with probability at least 1− 1/T .

Proof. First, fix an interval of rounds [s1, s2]. Then, we note that

s2∑
s=s1

1− Ys(as)− E[1− Ys(as) | Hs−1],

is a martingale difference sequence with respect to the natural filtration {Ht}t of σ-algebrasHt, generated by the observations
and decisions (of both decision-maker and adversary) up to round t− 1. Now, since the choice of arm at at round t is fixed
conditional onHt−1, we have E[Yt(at) | Ht−1] = µt(at). We also have since Yt(at) ∈ [0, 1]:

Var(1− Yt(at) | Ht−1) ≤ E[(1− Yt(at))
2 | Ht−1] ≤ E[1− Yt(at) | Ht−1] = δt(at).

Then, by Freedman’s inequality (Theorem 7) we have with probability at least 1 − 1/T 3: for all choices of intervals
[s1, s2] ⊆ [T ]:

∣∣∣∣∣
s2∑

s=s1

(1− Ys(as))− (1− µs(as))

∣∣∣∣∣ ≤ 3

√√√√log (2T 3)

s2∑
s=s1

δs(as) + 2 log
(
2T 3

)
≤ 1

2

s2∑
s=s1

δs(as) +
13

2
log(2T 3), (11)

where the second inequality is by AM-GM. Going forward, suppose the above concentration holds for all subintervals of
rounds [s1, s2] ⊆ [T ].

At the same time, on each m-th block, Algorithm 1 of Algorithm 1 gives us an empirical regret upper bound since the
changepoint test is not triggered until possibly the last round of the block. Specifically, the inequality in Algorithm 1 of
Algorithm 1 must be reversed for the second-to-last round of the block or

tm+1
ℓ −2∑
s=tmℓ

1− Ys(as) < C1 · (|Am| ∨ 2m/2) · log3(T ),

where by convention we let tmℓ+1
ℓ := tℓ+1. Thus,

tm+1
ℓ −1∑
s=tmℓ

1− Ys(as) < C1 · (|Am| ∨ 2m/2) · log3(T ) + 1. (12)

Combining the above with (11), we conclude

tm+1
ℓ −1∑
s=tmℓ

δs(as) < 2C1 · (|Am| ∨ 2m/2) · log3(T ) + 2 + 13 log(2T 3) ≤ 3C1 · (|Am| ∨ 2m/2) · log3(T ).

where the last inequality holds for C1 large enough.
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At the same time, for constant C1 in Algorithm 1 of Algorithm 1 chosen large enough, we have that, for the last block
[tmℓ

ℓ , tℓ+1) of an episode concluding in a restart, we must have

tℓ+1−1∑
s=t

mℓ
ℓ

1− Ys(as) ≥ C1 · (|Am| ∨ 2m/2) · log3(T ) =⇒

tℓ+1−1∑
s=t

mℓ
ℓ

δs(as) ≥
2C1

3
· (|Amℓ

| ∨ 2m/2) · log3(T )− 13

3
log(2T 3) ≥ C1

2
· (|Amℓ

| ∨ 2m/2) · log3(T ),

where the first inequality in the second line above comes from combining the first line with (11) and the last inequality holds
for C1 large enough.

Finally, we note that for β ≥ 1, we have |Am| = Sm ∧ 2m =
⌈
2m· β

β+1

⌉
∧ 2m ≥ 2m/2. Thus, |Am| ∨ 2m/2 = |Am| in all

our above inequalities.

A.3. Summing Regret Over Blocks

Next, we sum the per-block regret bound of Theorem 8 over blocks m and episodes ℓ to obtain a total regret bound.

Lemma 9. Under event E1, we have

T∑
t=1

δt(at) ≤ c0 log
3(T )

∑
ℓ∈[L̂]

(tℓ+1 − tℓ)
β

β+1 .

We first decompose the regret along episodes and blocks contained therein:

T∑
t=1

1− µt(at) =

L̂∑
ℓ=1

∑
m∈[mℓ]

tm+1
ℓ −1∑
t=tmℓ

1− µt(at).

Then, on event E1, we have summing (9):

T∑
t=1

1− µt(at) ≤
∑
ℓ∈[L̂]

∑
m∈[mℓ]

3C1 · |Am| · log3(T )

≤ c1
∑
ℓ∈[L̂]

∑
m∈[mℓ]

2m· β
β+1 log3(T )

≤ c2
∑
ℓ∈[L̂]

(tℓ+1 − tℓ)
β

β+1 · log3(T ).

where in the last line we sum the geometric series over m and the fact that 2mℓ· β
β+1 ≤ (tℓ+1 − tℓ)

β
β+1 ∧ 2mℓ .

A.4. Showing there is Large Variation in Each Episode

Next, following the proof outline of Section 4, our goal is to show there is a minimal amount of variation in each episode.

Lemma 10. ∀ℓ ∈ [L̂− 1], w.p. ≥ 1− 4/T :

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥
log3(T )

(tℓ+1 − tℓ)
1

β+1

.

Proof. As outlined in the proof outline of Section 4, in light of the regret lower bound (10) of Theorem 8, we consider two
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different cases which we recall below:

tℓ+1−1∑
t=t

mℓ
ℓ

1− µt(âℓ,mℓ
) ≥ C1

4
|Amℓ

| log3(T ) (A)

tℓ+1−1∑
t=t

mℓ
ℓ

1− µt(âℓ,mℓ
) ≤ C1

4
|Amℓ

| log3(T ) and
tℓ+1−1∑
t=t

mℓ
ℓ

µt(âℓ,mℓ
)− µt(at) ≥

C1

4
|Amℓ

| log3(T ) (B)

Now, on event E1, due to (10), one of (A) or (B) must hold. Our goal is to show that in either case, large variation must have
elapsed over the episode.

• Best Initial Arm has Large Dynamic Regret. We first consider the former case (A). First, we establish a lemma
asserting the best initially subsampled arm has small initial gap with high probability.

Lemma 11. (Proof in Subsection A.7) Recall that µ0(a) is the initial mean reward of arm a. Let âℓ,mℓ
denote the best

initial arm among the arms sampled in the last block of episode [tℓ, tℓ+1) or âℓ,mℓ
:= argmaxa∈Amℓ

µ0(a). Let E3 be the
event that

∀ℓ ∈ [L̂] : 1− µ0(âℓ,mℓ
) ≤ log3(T )

2mℓ· 1
β+1

.

Then, E3 occurs with probability at least 1− 1/T .

Now, from (A) (with large enough C1 > 16), we also know that there exists a round t′ ∈ [tmℓ

ℓ , tℓ+1) such that

1− µt′(âℓ,mℓ
) >

C1 · |Amℓ
| · log3(T )

4(tℓ+1 − tmℓ

ℓ )
≥ 16 · 2mℓ· β

β+1 · log3(T )
4 · 2 · 2mℓ

≥ 2 log3(T )

2mℓ
1

β+1

.

This means the mean reward of arm âℓ,mℓ
must have moved by amount at least 2−mℓ· 1

β+1 log3(T ) over the course of the
block, implying

µ0(âℓ,mℓ
)− µt′(âℓ,mℓ

) ≥ log3(T )

2mℓ· 1
β+1

≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

.

Since the adversary can only modify the rewards of an arm at after the round t it is played, the movement must have
occurred on rounds where âℓ,mℓ

was chosen by the agent. Thus,

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥
tℓ+1−1∑
t=tℓ

|µt(âℓ,mℓ
)− µt−1(âℓ,mℓ

)| ≥ µ0(âℓ,mℓ
)− µt′(âℓ,mℓ

) ≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

.

• Regret of Base Algorithm is Large. Now, we consider the other case (B), where the regret of the subsampled bandit
environment over the rounds [tmℓ

ℓ , tℓ+1) is large, while the dynamic regret of the best initial arm is small. In this case,
we want to show a contradiction: that if the total variation over the episode is small, then the finite MAB environment
experienced by the base algorithm must be mildly corrupt (Theorem 1) which means Assumption 2 can be used to bound the
regret of the last block. This will yield a contradiction since by virtue of Algorithm 1 being triggered, we know the regret of
the last block be large.

Suppose for contradiction that

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| <
log3(T )

(tℓ+1 − tℓ)
1

β+1

. (13)

Then, since our adaptive adversary only changes the rewards of arms on the rounds they are played, we have the finite-armed
MAB environment experienced by the base is α-mildly corrupt (Theorem 1) with respect to reference reward profile
{µ(a)}a∈Amℓ

and α := log3(T )

(tℓ+1−t
mℓ
ℓ )

1
β+1

.
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This means we can employ Assumption 2 to bound the regret. In particular, our end goal here is to show that

tℓ+1−1∑
t=tmℓ

µt(âℓ,mℓ
)− µt(at) <

C1

4
· |Amℓ

| · log3(T ), (14)

which will contradict (B) and imply (13) is true. First, by Assumption 2 with α = log3(T )

(tℓ+1−t
mℓ
ℓ )

1
β+1

, we have

tℓ+1−1∑
t=t

mℓ
ℓ

µt(âℓ,mℓ
)− µt(at) ≤ C0

|Amℓ
|∑

i=2

log(T )

∆(i)
· 111

{
∆(i)

4
≥ log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

}
+ (tℓ+1 − tmℓ

ℓ )
β

β+1 · log3(T )

 .

To ease notation, we now parametrize the arms in Amℓ
\{âℓ,mℓ

} via {2, . . . , |Amℓ
|} and let ∆i be the initial gap of arm i to

âℓ,mℓ
:

∆i := µ0(âℓ,mℓ
)− µ0(i),

Now, we will partition the values of ∆i based on a dyadic grid. Let

Nj,ℓ :=

|Amℓ
|∑

i=2

111{∆i ∈ [2−(j+1) − δ0(âℓ,mℓ
), 2−j − δ0(âℓ,mℓ

))},

where j ranges from 0 to

J :=

⌈
1 ∨ 1

β
log

(
(tℓ+1 − tmℓ

ℓ )
β

β+1

42β log3β(T )

)⌉
Next, the following lemma bounds Nj,ℓ in high probability using Freedman’s inequality (Theorem 7).

Lemma 12. (Proof in Subsection A.8) Let E4 be the event that the following hold:

∀j ∈ {0, . . . , J}, ℓ ∈ {1, . . . , L̂− 1} : Nj,ℓ ≤
3κ2

2
|Amℓ

| · 2−jβ +
13

2
log(2T 3) (15)

|Amℓ
|∑

i=2

111

{
4

(
log(T )

tℓ+1 − tmℓ

ℓ

) 1
β+1

≤ ∆i < 2−(J+1)

}
≤ 3κ2

2
|Amℓ

| · 2−(J+1)β +
13

2
log(2T 3) (16)

Then, E4 occurs with probability at least 1− 1/T .

The next lemma relates the cutoff ∆i ≥ 4α to the quantity 2−(J+2) showing that every gap ∆i such that ∆i ≥ 4α lies in
one of the bins of the dyadic grid.

Lemma 13. (Proof in Subsection A.9) We have

2−(J+2) − δ0(âℓ,mℓ
) > 4α.

Now, Theorem 13 implies 2−(J+1) − δ0(âℓ,mℓ
) > 4α. Thus, every gap ∆i such that ∆i/4 ≥ log3(T )

(tℓ+1−t
mℓ
ℓ )

1
β+1

lies in some

interval [2−(j+1) − δ0(âℓ,mℓ
), 2−j − δ0(âℓ,mℓ

)) for some j ∈ {0, . . . , J} or lies in the interval [4α, 2−(J+1) − δ0(âℓ,mℓ
)).

Thus, we bound

|Amℓ
|∑

i=2

log(T )

∆i
· 111
{
∆i

4
≥ α

}
≤

J∑
j=0

Nj,ℓ · (2−(j+1) − δ0(âℓ,mℓ
))−1 · log(T )

+ log(T ) · α−1

|Amℓ
|∑

i=2

111{α ≤ ∆i < 2−(J+1) − δ0(âℓ,mℓ
)} (17)
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Now, by Theorem 13, we have for all j ∈ {0, . . . , J}:

2−(j+1) − δ0(âℓ,mℓ
) > 2−(j+2).

Combining the above with Theorem 12, we have (17) is order

log(T ) · α−1
(
κ2|Amℓ

| · 2−(J+1)β + log(T )
)
+ log(T )

J∑
j=0

κ2 · |Amℓ
| · 2j(1−β)+2 + 2(j+1) log(T ).

We have

2−(J+1)β ≤ 2−β

(
1

2β
∧

(
42β log3β(T )

(tℓ+1 − tmℓ

ℓ )
β

β+1

))
≤ 42β log3β(T )

2β(tℓ+1 − tmℓ

ℓ )
β

β+1

.

Then,

κ2 · log(T ) · α−1 · 2−(J+1)β ≤ c3κ2 · (tℓ+1 − tmℓ

ℓ )
1−β
β+1 log3β−3(T )

≤ c4κ2 log
3(1−β)(T ) · log3β−3(T )

= c5 log(T ),

where the second inequality follows from (8) of Theorem 6 and β ≥ 1, and the third inequality follows from log(T ) ≥ κ2

by choosing T sufficiently large. Thus,

log(T ) · α−1
(
κ2|Amℓ

| · 2−(J+1)β + log(T )
)
≤ c6|Amℓ

| log(T ).

Next,

κ2 log(T )

J∑
j=0

2j(1−β)+2 ≤ 4(J + 1) · 2J(1−β) log2(T )

≤ 8 log2(T )

(
21−β ∨

(tℓ+1 − tmℓ

ℓ )
1−β
β+1

421−β log2(1−β)(T )

)(
1 ∨ log

(
(tℓ+1 − tmℓ

ℓ )
1

β+1

42β log3(T )

))
≤ 8 log2(T ) (1 + log(T ))

≤ c7 log
3(T ),

where the first inequality follows from κ2 ≤ log(T ), and the third inequality follows from β ≥ 1 and (8) of Theorem 6.

Thus, (17) is at most order |Amℓ
| log3(T ). Thus, choosing C1 large enough in Algorithm 1 of Algorithm 1, we have that

(14) holds. Following earlier discussion, this means the subsampled bandit environment over the last block [tmℓ , tℓ+1) is not
mildly corrupt (Theorem 1). Then, for any µ(·) : Amℓ

→ [0, 1], there always exists t′ ∈ [tmℓ , tℓ+1) and a′ ∈ Amℓ
such that

|µt′(a
′)− µ(a′)| > log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

.

This means that since the adversary can only modify the rewards of arms at after the round t, we have
tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥
tℓ+1−1∑
t=t

mℓ
ℓ

|µt(at−1)− µt−1(at−1)|

≥
tℓ+1−1∑
t=t

mℓ
ℓ

|µt(a
′)− µt−1(a

′)|

≥ |µt′(a
′)− µ0(a

′)|

≥ log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

.

17



Tracking Significant Shifts in Infinite Armed Bandits

A.5. Relating Episodes to Non-Stationarity Measures

Now, we show how to derive

L̂∑
ℓ=1

(tℓ+1 − tℓ)
β

β+1 log3(T ) ≤
(
(L+ 1)

1
β+1 · T

β
β+1 ∧ (V

1
β+2T

β+1
β+2 + T

β
β+1 )

)
· log3(T ),

from the fact that, as we have shown by Theorem 10, for all episodes ℓ ∈ [L̂− 1]

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥
log3(T )

(tℓ+1 − tℓ)
1

β+1

.

We first show the bound in terms of total variation V . Let V[s1,s2) :=
∑s2−1

t=s1
|µt(at−1) − µt−1(at−1)|. Then, by using

Hölder’s inequality:

L̂∑
ℓ=1

(tℓ+1 − tℓ)
β

β+1 log3(T ) ≤ T
β

β+1 log3(T ) +

L̂−1∑
ℓ=1

log3(T )

(tℓ+1 − tℓ)
1

β+1

 1
β+2

L̂−1∑
ℓ=1

(tℓ+1 − tℓ) log
3− 3

β+2 (T )


β+1
β+2

≤ T
β

β+1 log3(T ) +

L̂−1∑
ℓ=1

V[tℓ,tℓ+1)

 1
β+2

T
β+1
β+2 · log

3(β+1)2

(β+2)2 (T )

≤ T
β

β+1 log3(T ) + V
1

β+2T
β+1
β+2 · log

3(β+1)2

(β+2)2 (T )

To show the bound in terms of L, we use Jensen’s inequality on the function x 7→ x
β

β+1 combined with the fact that the
number of episodes L̂ ≤ L+ 1 by virtue of Theorem 10.

A.6. A Sketch of Modifications Required for Proving Theorem 2 for β < 1

Next, we describe how to show a suboptimal regret bound of order
∑L̂

ℓ=1

√
tℓ+1 − tℓ in the setting of β < 1. From here,

using the steps of Subsection A.5 with β = 1, it is straightforward to show a regret bound of
√
(L+ 1)T∧(V 1/3T 2/3+

√
T ).

For the sake of redundancy, we only give here a sketch of the modifications to the argument required.

We’ll first describe at a high level the difficulty of showing a
∑L̂

ℓ=1(tℓ+1 − tℓ)
β

β+1 regret bound using the same arguments
of the previous sections for β < 1. In fact, the only place where β ≥ 1 was used is in the final step where we bound (17).
In particular, when bounding the sum

∑J
j=0 2

j(1−β)+2 ≤ 4(J + 1) · 2J(1−β), for β ≥ 1, 2J(1−β) is a constant. However,

for β < 1, we may incur an extra (tℓ+1 − tmℓ

ℓ )
1−β
β+1 term in the final regret bound due to this term. Thus, this argument

would only yield a suboptimal regret bound. Interestingly, Bayati et al. (2020, cf. E.1.2) and Kim et al. (2024) also face this
difficulty in bounding similar terms which leads to a suboptimal rate.

However, we can still attain a
√
tℓ+1 − tℓ per-episode regret bound using an altered subsampling rate Sm :=

⌈
2m·β/2⌉∧ 2m

which effectively “targets” a
√
tℓ+1 − tℓ regret rate.

Going into more detail, a first key fact, as observed in Bayati et al. (2020), is that subsampling Sm arms ensures an arm with
gap Õ((tℓ+1 − tℓ)

−1/2). This can be seen analogously to the proof of Theorem 11 in Subsection A.7 where letting β = 1
and |Amℓ

| ≳ 2mℓ·β/2 in Subsection A.7 establishes that the best initial arm has gap at most log3(T ) · 2−mℓ·β/2.

Then, the key fact to show will be an analogue of Theorem 10: with probability at least 1− 4/T , for all ℓ ∈ [L̂− 1]:

tℓ+1−1∑
t=tℓ

|µt(at−1)− µt−1(at−1)| ≥
log3(T )√
tℓ+1 − tℓ

. (18)
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To show this, we’ll essentially repeat the arguments of Subsection A.4 except specializing “β = 1” to target a bound
scaling like

√
tℓ+1 − tℓ. Note that using the scaling |Am| ∨ 2m/2 in the regret threshold for the changepoint detection test

(Algorithm 1 of Algorithm 1) is crucial here as |Am| ∝ 2m·β/2 ≪ 2m/2 in the case of β < 1.

First, if the dynamic regret of the best initial arm âℓ,mℓ
is larger than C1

4 2mℓ/2 ·log3(T ), then using the previously established
fact that δ0(âℓ,mℓ

) ≤ log3(T ) · 2−mℓ·β/2, we have that (18) holds.

Next, following the argument structure of Subsection A.4, suppose
∑tℓ+1−1

t=t
mℓ
ℓ

δt(âℓ,mℓ
) ≤ C1

4 2mℓ/2 log3(T ) but∑tℓ+1−1

t=t
mℓ
ℓ

µt(âℓ,mℓ
)− µt(at) ≥ C1

4 2mℓ/2 log3(T ). Then, we invoke Assumption 2 with α = log3(T ) · (tℓ+1 − tmℓ

ℓ )−1/2

and use the same dyadic gridding argument with

J :=

⌈
1 ∨ log

(
(tℓ+1 − tmℓ

ℓ )1/2

42 log3(T )

)⌉
.

Then, observe the bounds

α−1 · 2−(J+1)β ≲
(tℓ+1 − tmℓ

ℓ )1/2

log3(T )
· log3(T )

(tℓ+1 − tmℓ

ℓ )1/2
≲ O(1)

J · 2J(1−β) · |Amℓ
| ≲ 2mℓ·β/2 · (tℓ+1 − tmℓ

ℓ )(1−β)/2 ≤ 2mℓ/2.

Thus, we can show
∑tℓ+1

t=t
mℓ
ℓ

µt(âℓ,mℓ
) − µt(at) <

C1

4 2mℓ/2 log3(T ) if (18) does not hold, which contradicts our earlier
supposition. This means (18) holds.

A.7. Proof of Theorem 11

Let µ0(a) denote the initial mean reward of arm a. By Assumption 1, we have

P
(
µ0(âℓ,mℓ

) ≤ 1− log3(T )

2mℓ· 1
β+1

)
= P

(
max

a∈Amℓ

µ0(a) ≤ 1− log3(T )

2mℓ· 1
β+1

)

≤
(
1− P

(
µ0(a) > 1− log3(T )

2mℓ· 1
β+1

))|Amℓ
|

≤

(
1− κ1 ·

log3β(T )

2mℓ· β
β+1

)|Amℓ
|

≤ exp

(
−|Amℓ

| · log(T )

2mℓ· β
β+1

)
≤ 1

T 2
,

where the fourth line follows from assuming WLOG that log(T ) ≥ κ
− 1

2β

1 and β ≥ 1, and the last inequality from
|Amℓ

| ≥ 21+mℓ· β
β+1 .

A.8. Proof of Theorem 12

By Freedman’s inequality (Theorem 7), we have with probability at least 1/T 3:

|Nj,ℓ − E[Nj,ℓ]| ≤ 3
√

E[Nj,ℓ] · log(2T 3) + 2 log(2T 3)

Using AM-GM, this yields,

Nj,ℓ ≤
3E[Nj,ℓ]

2
+

13

2
log(2T 3).

Finally,

P(2−(j+1) − δ0(âℓ,mℓ
) ≤ ∆i < 2−j − δ0(âℓ,mℓ

)) = P(2−(j+1) ≤ δ0(i) < 2−j) ≤ P(1− 2−j < µ0(i)) ≤ κ2 · 2−jβ .
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Thus,
E[Nj,ℓ] ≤ (|Amℓ

| − 1) · κ2 · 2−jβ .

This shows (15). (16) is showed in a nearly identical manner.

A.9. Proof of Theorem 13

Recall α := log3(T )

(tℓ+1−t
mℓ
ℓ )

1
β+1

and let δ0 := δ0(âℓ,mℓ
) to ease notation. First, suppose J = 1. Then, by Theorem 11

2−3 − δ0 > 4α ⇐= 1

8
>

log3(T )

2mℓ· 1
β+1

+
4 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

.

Now, since β ≥ 1 and 2mℓ ≥ tℓ+1 − tmℓ

ℓ , it suffices to show

1

8
>

5 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

⇐⇒ (tℓ+1 − tmℓ

ℓ )
1

β+1 > 40 log3(T ).

However, this last inequality is true from (8) of Theorem 6 for sufficiently large C1.

Now, suppose J > 1. Rearranging the desired inequality we have

(δ0 + 4α)−1 > 2J+2 ⇐= 1

4(δ0 + 4α)
> 4 ∨ 2 ·

(tℓ+1 − tmℓ

ℓ )
1

β+1

42 log3(T )

From (8) of Theorem 6, we have for sufficiently large C1:

2 ·
(tℓ+1 − tmℓ

ℓ )
1

β+1

42 log3(T )
> 4.

Thus, in light of Theorem 11 and the definition of α we want to show

21 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

>
4 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

+
16 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

,

which is always true.

B. Elimination Algorithm Regret Analysis (Proofs of Theorem 4 and Theorem 5)
Following the notation of Section C, we let c0, c1, c2, . . . denote constants not depending on T , κ1, or κ2 (Assumption 1).

B.1. Details for the Proof of Theorem 4

As in the proof of Theorem 2 in Section A, we assume WLOG that log(T ) ≥ κ
−(1∧2β)
1 or else we can bound the regret by a

constant only depending on κ1.

Following the proof outline of Subsection 5.3, we have by Freedman’s inequality (Theorem 7) with probability at least
1− 1/T :

tm+1
ℓ −1∑
t=tmℓ

δt(at) ≤
tm+1
ℓ −1∑
t=tmℓ

∑
a∈Gt

δt(a)

|Gt|
+ c8 ·

log(T ) +

√√√√√log(T )

tm+1
ℓ −1∑
t=tmℓ

E[δt(at) | Ht−1]


≤ 3

2

tm+1
ℓ −1∑
t=1

∑
a∈Gt

δt(a)

|Gt|
+ c9 log(T ),
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where the second inequality uses AM-GM. Now, recalling that ta is the last round in block [tmℓ , tm+1
ℓ ) that arm a ∈ [K] is

retained, we have:

ta∑
t=tmℓ

δt(a)

|Gt|
≤
(

max
s∈[tmℓ ,ta]

1

|Gs|

) ta∑
t=tmℓ

δt(a). (19)

We next again use Freedman’s inequality (Theorem 7) to relate
∑

t∈I δt(a) to
∑

t∈I δ̂
IW
t (a). For the variance bound, we

have

E[(δt(a)− δ̂IW
t (a))2|Ht−1] ≤ E[(δ̂IW

t )2(a)|Ht−1]

= E[|Gt|2 · (1− Yt(at))
2 · 111{at = a} | Ht−1]

≤ |Gt|2 · E[(1− Yt(a)) | Ht−1] · E[111{at = a} | Ht−1]

= |Gt|2 · δt(a) ·
1

|Gt|
= δt(a) · |Gt|.

We also have maxs∈I |δs(a)− δ̂IW
s (a)| ≤ maxs∈I |Gs| and E[δ̂IW

t (a) | Ht−1] = δt(a).

From the above and Freedman’s inequality, we can show that w.p. at least 1− 1/T , for any interval I ⊆ [T ] on which arm a
is retained: ∣∣∣∣∣∣

ta∑
t=tmℓ

δt(a)− δ̂IW
t (a)

∣∣∣∣∣∣ ≤ c10

 max
t∈[tmℓ ,ta]

|Gt| log(T ) +

√√√√log(T )

ta∑
t=tmℓ

δt(a) · |Gt|


≤ 1

2

ta∑
t=tmℓ

δt(a) + c11 max
t∈[tmℓ ,ta]

|Gt| log(T ), (20)

where again we use AM-GM in the second inequality. Moving the 1
2

∑
t δt(a) to the other side, we get

ta∑
t=tmℓ

δt(a) ≤ 2

ta∑
t=tmℓ

δ̂IW
t (a) + c12 log(T ) max

t∈[tmℓ ,ta]
|Gt|.

Plugging the above into (19), we have

ta∑
t=tmℓ

δt(a)

|Gt|
≤
(

max
s∈[tmℓ ,ta]

c13
|Gs|

) ta∑
t=tmℓ

δ̂IW
t (a) + log(T ) max

t∈[tmℓ ,ta]
|Gt|


≤ c14 max

s∈[tmℓ ,ta]

|Am|
|Gs|

log(T ),

where the second inequality is from the elimination guarantee (Algorithm 2 of Algorithm 2) and maxt∈[tmℓ ,ta] |Gt| = |Am|.

We next have ∑
a∈Am

max
s∈[tmℓ ,ta−1]

1

|Gs|
=
∑

a∈Am

1

|Gta−1|
· 111{ta < tm+1

ℓ − 1}+ 1

|Gtm+1
ℓ −1|

· 111{ta = tm+1
ℓ − 1}

≤
|Am|∑
i=1

1

i
+
|Gtm+1

ℓ −1|
|Gtm+1

ℓ −1|

≤ 1 + log(|Am|),

Now, combining the above with our previous bound and summing over arms a, we have:

∑
a∈Am

tm+1
ℓ −1∑
t=tmℓ

δt(a)

|Gt|
· 111{a ∈ Gt} ≤ c15|Am| · log2(T ).
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We know that for any m ̸= mℓ, we have |Am| =
⌈
2(m+1)· β

β+1 · log(T )
⌉

. We also have

|Amℓ
| ≤ 2|Amℓ−1| = 2

⌈
(2(tmℓ+1

ℓ − tmℓ

ℓ ))
β

β+1 log(T )
⌉
.

Then, summing |Am| log2(T ) over m ∈ [mℓ] and ℓ ∈ [L̂] gives us the regret bound of order
∑L̂

ℓ=1(tℓ+1 − tℓ)
β

β+1 log3(T ).

B.2. Details for the Proof of Theorem 5

We define event E5 such that, for any I ⊆ [T ],∣∣∣∣∣∑
t∈I

δt(a)− δ̂IW
t (a)

∣∣∣∣∣ ≤ 1

2

∑
t∈I

δt(a) + c16log(T )max
t∈I
|Gt|, (21)

which holds with probability at least 1− 1/T , by the same reasoning as (20) We consider episode ℓ ∈ [L̂] that terminates in
a restart and let mℓ be the index of the last block in ℓ-th episode and tℓ be the start time of the ℓ-th episode.

• Bounding the Number of Episodes. We claim the number of episodes is at most the number of significant shifts or
L̂ ≤ L̃+ 1. In particular, we prove that a significant shift must have occurred over some block in each episode concluding
with a restart. Let ta be the time when arm a is eliminated. For the mℓ-th block [tmℓ

ℓ , tℓ+1), on E5, for each arm a ∈ Amℓ

we have by (21) and Algorithm 2 of Algorithm 2 with C2 > 0 large enough::

ta∑
s=t

mℓ
ℓ

δt(a) ≥
2

3

 ta∑
s=t

mℓ
ℓ

δ̂IW(a)− c18 log(T ) max
t∈[t

mℓ
ℓ ,ta]

|Gt|

 ≥ c17|Amℓ
| log(T ).

Then, for all a ∈ Amℓ
where |Amℓ

| =
⌈
2(m+1)· β

β+1 log(T )
⌉
≥ (tℓ+1− tmℓ

ℓ )
β

β+1 log(T ) ≥ (ta− tmℓ

ℓ )
β

β+1 log(T ), we have

ta∑
s=t

mℓ
ℓ

δt(a) > 3(tℓ+1 − tmℓ

ℓ )
β

β+1 log3(T ) ≥ 3(ta − tmℓ

ℓ )
β

β+1 log3(T ), (22)

which implies that (5) is violated for log(T ) ≥ κ−1
1 , meaning arm a is unsafe. By Theorem 3, a significant shift must have

occurred within the block [tmℓ

ℓ , tℓ+1).

Now, by considering that the L̂-th episode may end by reaching the horizon T rather than restarting, which does not ensure
a significant shift, we conclude that L̂ ≤ L̃+ 1. Therefore, by using Jensen’s inequality, we have w.p. at least 1− T−1,

L̂∑
ℓ=1

(tℓ+1 − tℓ)
β

β+1 ≤ L̂
1

β+1T
β

β+1 ≤ (L̃+ 1)
1

β+1T
β

β+1 . (23)

• Bounding the Per-Episode Variation. Next, we show that, on event E5 where (21) holds, the total rotting variation over
episode [tℓ, tℓ+1) is at least

tℓ+1−1∑
t=tℓ

(µt−1(at−1)− µt(at−1))+ ≥
log3(T )

(tℓ+1 − tℓ)
1

β+1

.

From (22), we have for all a ∈ Amℓ
, there exists t′ ∈ [tmℓ

ℓ , ta] such that

δt′(a) ≥
3 log3(T )

(ta − tmℓ

ℓ )
1

β+1

≥ 3 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

. (24)
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Recall µ0(a) is the initial mean reward of arm a. Let âℓ,m be the best arm in terms of initial reward value µ0(·) among the
arms Am subsampled for block [tmℓ , tm+1

ℓ ). We have

P
(
µ0(âℓ,mℓ

) < 1− 2 log3(T )

2mℓ· 1
β+1

)
= P

(
max

a∈Amℓ

µ0(a) < 1− 2 log3(T )

2mℓ· 1
β+1

)

≤

(
1− κ1

2 log3β(T )

2mℓ· β
β+1

)|Amℓ
|

≤ exp

(
−|Amℓ

| · 2κ1 log
3β(T )

2mℓ· β
β+1

)

≤ 1

T 2
,

where the last inequality follows from log(T ) ≥ κ
− 1

2β

1 and |Amℓ
| ≥ 2mℓ· β

β+1 · log(T ). Then, we define E6 to be the
corresponding high-probability event

{∀ℓ ∈ [L̂] : 1− µ0(âℓ,mℓ
) ≤ 2 log3(T ) · 2−mℓ· 1

β+1 },

which holds with at least probability of 1− 1/T . On E6, we have

µ0(âℓ,mℓ
) ≥ 1− 2 log3(T )

2mℓ· 1
β+1

≥ 1− 2 log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

. (25)

From (24) and (25), we can observe that the mean reward of arm âℓ,mℓ
must have moved by amount at least

log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

,

over the course of the block, implying

µ0(âℓ,mℓ
)− µt′(âℓ,mℓ

) ≥ log3(T )

(tℓ+1 − tmℓ

ℓ )
1

β+1

≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

.

Since the adversary can only modify the rewards of an arm at after the round t it is played, the movement must have
occurred on rounds where âℓ,mℓ

was chosen by the agent. Thus,

tℓ+1−1∑
t=tℓ

(µt−1(at−1)− µt(at−1))+ ≥
tℓ+1−1∑
t=tℓ

(µt−1(âℓ,mℓ
)− µt(âℓ,mℓ

))+ ≥ µ0(âℓ,mℓ
)− µt′(âℓ,mℓ

) ≥ log3(T )

(tℓ+1 − tℓ)
1

β+1

.

Next, this lower bound on the per-episode variation gives us, in an identical manner Subsection A.5, a cumulative regret
bound:

L̂∑
ℓ=1

(tℓ+1 − tℓ)
β

β+1 log3(T ) ≤ log3(T ) ·
(
V

1
β+2

R T
β+1
β+2 + T

β
β+1

)
.

C. Verifying Assumption 2 for UCB
Here, we show the UCB algorithm satisfies Assumption 2. The proof will mostly follow the standard proof for showing the
classsical logarithmic regret bound (e.g. Lattimore and Szepesvári, 2020, Section 7.1), with some small modifications to
account for the mild corruption (Theorem 1).

We first present a variant of the UCB1 Algorithm of Auer et al. (2002).

Theorem 14. Algorithm 3 satisfies Assumption 2.
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Algorithm 3: Variant of UCB1 (Algoritm 3 of Lattimore and Szepesvári (2020))

1 Input: number of arms K, horizon T .
2 for t = 1, . . . , T do
3 Let Nt−1(a) :=

∑t−1
s=1 111{as = a}.

4 Let UCBa(t− 1) :=

{
∞ Nt−1(a) = 0

1
Nt−1(a)

∑t−1
s=1 111{as = a} · Ys(a) +

√
2 log(T )
Nt−1(a)

otherwise
.

5 Play arm at = argmaxa∈[K] UCBa(t− 1).

Proof. Our goal is to establish a high-probability regret bound over t ≤ T rounds. First, using Theorem 1, we may write the
regret as

max
a∈A0

t∑
s=1

µs(a)− µs(as) ≤ max
a∈A0

t∑
s=1

µ(a)− µ(as) + 2t · α.

Recall Nt(a) :=
∑t

s=1 111{as = a}. Let ∆a denote the gap of arm a ∈ A0. Then, we can decompose the regret based on
whether the gap of each arm is large or small and write:

max
a∈A0

t∑
s=1

µ(a)− µ(as) ≤
∑
a∈A0

∆a ·Nt(a) · 111 {∆a > 4α}+ 4t · α. (26)

It then remains to bound Nt(a) w.h.p for each a ∈ A0 such that ∆a > α. WLOG, suppose arm a = 1 is the best arm among
the arms in A0, which we’ll index by the set [|A0|].

We claim with probability at least 1− 1/T , for t such that Nt(a) >
⌈
32 log(T )

∆2
a

⌉
:

UCBa(t) < UCB1(t). (27)

This will allow us to conclude by bounding Nt(a) ≤
⌈
32 log(T )

∆2
a

⌉
in (26).

Let µ̂t(a) :=
∑t

s=1 Ys(a) · 111{as = a} and let µt(a) :=
∑t

s=1 µs(a) · 111{as = a}. Then, by Azuma-Hoeffding inequality
and a union bound we have

P

(
∀s ∈ [t] : |µ̂s(a)− µs(a)| ≥

√
Ns(a) · log(2T 2)

2

)
≤ 1/T.

Going forward, suppose the above concentration bound holds.

Now, to show the claim, we first note for t such that Nt(a) >
⌈
32 log(T )

∆2
a

⌉
and a ̸= 1 such that ∆a > 4α:

UCBa(t) = µ̂t(a) +

√
2 log(T )

Nt(a)

≤ µt(a) +

√
2 log(T )

Nt(a)
+

√
log(2T 2)

2Nt(a)

≤ µ(a) +

√
2 log(T )

Nt(a)
+

√
log(2T 2)

2Nt(a)
+ α

< µ(a) +
∆a

4
+

∆a

4
+

∆a

4

= µ(a) +
3∆a

4
.
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where the third inequality is by Theorem 1. Meanwhile,

UCB1(t) = µ̂t(1) +

√
2 log(T )

Nt(a)

≥ µt(1) +

√
2 log(T )

Nt(a)
−

√
log(2T 2)

2Nt(a)

> µ(1)− α

≥ µ(1)−∆a/4.

Thus, claim (27) is shown.

Remark 6. Although not shown here for the sake of redundancy, a very similar regret analysis as Theorem 14 shows the
Successive Elimination algorithm (Even-Dar et al., 2006) also satisfies Assumption 2.
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