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Task-Focused Dynamic Network Inference from Node
Attribute Time Series
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Figure 1: Schematic of the DyNRI framework. Historical node attributes are encoded into
dynamic graphs, which guide autoregressive prediction of future attributes.

Extended Abstract

Many systems of scientific and societal importance, ranging from brain connectivity to eco-
logical interactions and financial trust networks, are inherently dynamic. Both the attributes
of individual entities and the patterns of interaction between them evolve over time, leading to
complex dependencies that are most naturally represented as dynamic networks. Yet in most
real-world settings, the underlying network structure is not observed directly, and must instead
be inferred from time series of node-level measurements [1, 2]. Network reconstruction has
a long history in neuroscience, biology, and economics, but most existing approaches assume
static topologies [3—7] or require past observations of edges [8, 9]. These assumptions limit
their ability to capture the transient, heterogeneous, and evolving relationships that shape real-
world dynamics.

We present DyNRI, a framework for task-focused dynamic network inference that recon-
structs evolving interaction networks directly from node attribute time series. DyNRI builds
on Neural Relational Inference (NRI) [10] by extending it to time-varying settings. The model
employs an encoder—decoder architecture in which the encoder infers distributions over latent
edges at each time step using Gumbel-Softmax sampling [11, 12], and the decoder autoregres-
sively predicts future node attributes conditioned on the inferred dynamic graphs. By aligning
network inference with the task of multi-step forecasting, DyNRI learns structures that are not
only plausible explanations of past data but also useful for prediction. This distinguishes our
approach from purely unsupervised structure discovery and grounds inference in predictive
utility.

A major challenge in this domain is evaluation: ground-truth dynamic graphs are rarely
available. To address this, we introduce a co-evolutionary simulation [13] framework that gen-
erates coupled dynamics of node attributes and connectivity. In our simulator, nodes move in a
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latent space according to a stochastic policy that balances attraction to the centroid of their local
neighborhood with independent goal-directed movement. Edges are formed based on k-nearest
neighbors subject to a distance threshold, ensuring that attribute similarity drives connectivity
while connectivity, in turn, influences subsequent attribute updates. This bi-directional cou-
pling produces realistic, non-trivial dynamics where attributes and structure mutually influence
each other, providing a principled testbed for dynamic inference methods.

Preliminary experiments on synthetic data suggest that DyNRI can recover meaningful dy-
namic structures without access to ground-truth edges, while maintaining prediction accuracy
comparable to or exceeding baselines. Ongoing work is extending these experiments to finan-
cial trust networks such as Bitcoin Alpha and OTC [14-16], and to ecological datasets involving
animal movement and implicit interactions within groups.

The ethical implications of this work are significant. In contexts involving human or finan-
cial systems, reconstructing hidden networks could reveal sensitive or private relationships. If
node attributes encode social or demographic biases, inferred networks may amplify these bi-
ases. Moreover, misuse of such inferred structures could enable surveillance or manipulation.
To mitigate these risks, we validate our methods first on synthetic and ecological case studies,
emphasize transparency in modeling assumptions, and commit to reproducibility and open sci-
ence practices. We see DyNRI not as a tool for covert inference, but as a research framework
for understanding the principles of dynamic network reconstruction and evaluating algorithms
under controlled conditions.

In conclusion, DyNRI introduces a task-aligned approach to dynamic network inference
and a co-evolutionary simulation benchmark for its evaluation. This submission represents
work in progress: our goal is to refine the framework, benchmark it against state-of-the-art
baselines, and apply it across domains where dynamic networks are central, from neuroscience
to ecology to finance.

References

[1] Petter Holme and Jari Saramiki. “Temporal Networks”. In: Physics Reports 519.3 (2012),
pp. 97-125.

[2] Mladen Kolar et al. “Estimating time-varying networks”. In: Annals of Applied Statistics
4.1 (2010), pp. 94-123.

[3] Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-Temporal Graph Convolutional Net-
works: A Deep Learning Framework for Traffic Forecasting”. In: IJCAI. 2018. URL:
https://www.ijcai.org/proceedings/2018/505.

[4] Yaguang Li et al. “Diffusion Convolutional Recurrent Neural Network: Data-Driven
Traffic Forecasting”. In: /CLR. 2018. URL: https ://openreview . net/pdf ?7id=
SJiHXGWAZ.

[S] Shengnan Guo et al. “Attention Based Spatial-Temporal Graph Convolutional Networks
for Traffic Flow Forecasting”. In: AAAI. 2019. URL: https://ojs.aaai.org/index.
php/AAAI/article/view/3881.

[6] Zonghan Wu et al. “Graph WaveNet for Deep Spatial-Temporal Graph Modeling”. In:
IJCAI. 2019. URL: https://www.ijcai.org/proceedings/2019/264.

[7] Lei Zhao et al. “T-GCN: A Temporal Graph Convolutional Network for Traffic Predic-
tion”. In: arXiv:1811.05320 (2018). URL: https://arxiv.org/pdf/1811.05320.



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

NetSciX2026: International School and Conference on Network Science
February 17/7-20"", 2026 - Auckland, New Zealand

Aldo Pareja et al. “EvolveGCN: Evolving Graph Convolutional Networks for Dynamic
Graphs”. In: AAAI 2020, pp. 5363-5370. URL: https://ojs.aaai.org/index.php/
AAAT/article/view/5984.

Emanuele Rossi et al. “Temporal Graph Networks for Deep Learning on Dynamic Graphs™.
In: arXiv:2006.10637 (2020). URL: https://arxiv.org/abs/2006.10637.

Thomas Kipf et al. “Neural Relational Inference for Interacting Systems”. In: ICML.
2018. URL: https://proceedings.mlr.press/v80/kipf18a/kipf18a.pdf.

Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-
Softmax”. In: arXiv:1611.01144 (2017). URL: https : //www . cs . toronto . edu/
~bonner/courses/2022s/csc2547/papers/generative/background/categorical-
reparameterization’2C-jang}2C-arxiv-2017.pdf.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables”. In: arXiv:1611.00712 (2017).
URL: https://arxiv.org/abs/1611.00712.

Thilo Gross and Bernd Blasius. “Adaptive Coevolutionary Networks: A Review”. In:
Journal of the Royal Society Interface 5.20 (2008), pp. 259-271.

Bitcoin Alpha trust weighted signed network. SNAP Dataset page. Accessed 2025-09-05.
2016. URL: https://snap.stanford.edu/data/soc-sign-bitcoinalpha.html.

Bitcoin OTC trust weighted signed network. SNAP Dataset page. Accessed 2025-09-05.
2016. URL: https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.

Srijan Kumar et al. “Edge Weight Prediction in Weighted Signed Networks”. In: IEEE
International Conference on Data Mining (ICDM). 2016, pp. 221-230. URL: https:
//cs.stanford.edu/~srijan/pubs/wsn-icdm16.pdf.



