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Abstract

Safe reinforcement learning (RL) trains a policy to maximize the task reward while
satisfying safety constraints. While prior works focus on performance optimality,
we find that the optimal solutions of many safe RL problems are not robust and safe
against observational perturbations. We formally analyze the unique properties of
designing effective state adversarial attackers in the safe RL setting. We show that
baseline adversarial attack techniques for standard RL tasks are not always effective
for safe RL and proposed two new approaches - one maximizes the cost and the
other maximizes the reward. One interesting and counter-intuitive finding is that the
maximum reward attack is strong, as it can both induce unsafe behaviors and make
the attack stealthy by maintaining the reward. We further propose a more effective
adversarial training framework for safe RL and evaluate it via comprehensive
experiments 1. This paper provides a pioneer work to investigate the safety and
robustness of RL under observational attacks for future safe RL studies.

1 Introduction
Despite the success of deep reinforcement learning (RL), it is still challenging to ensure safety when
deploying them to real-world applications. Safe RL tackles the problem by solving a constrained
optimization that can maximize the task reward while satisfying certain constraints [1–5]. The success
of recent safe RL approaches leverages the power of neural networks (NNs) [6, 7]. However, it
has been shown that NNs are vulnerable to adversarial attacks [8, 9], which raises a concern when
deploying an NN-based RL policy to safety-critical scenarios [10]. We consider the observational
perturbations that commonly exist in the physical world, such as unavoidable sensor errors and
perception inaccuracy [11]. Several recent works of observational robust RL propose attackers that
can drastically decrease their rewards [12, 13]. However, the methods in standard RL settings may
not be suitable for safe RL because of an additional metric that characterizes the cost of constraint
violations [14]. The cost should be more important than the measure of reward since any constraint
violations could be fatal and unacceptable in the real world [15]. We find little research formally
studying the robustness in the safe RL setting with adversarial observation perturbations, while we
believe this should be an important aspect in the safe RL area, because a vulnerable policy under
adversarial attacks cannot be regarded as truly safe in the physical world.

We aim to address the following questions in this work: 1) How vulnerable would a learned RL agent
be under observational adversarial attacks? 2) How to design effective attackers in the safe RL setting?
3) How to obtain a robust policy that can maintain safety even under worst-case perturbations? To
answer them, we formally define the observational robust safe RL problem and discuss how to
evaluate the adversary and robustness of a safe RL policy. We also propose two strong adversarial
attacks that can induce the agent to perform unsafe behaviors and show that adversarial training can
help improve the robustness of constraint satisfaction. We summarize the contributions as follows.

1video demos are available at: https://sites.google.com/view/robustsaferl/home
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1. As far as we are aware, we are the first to formally analyze the unique vulnerability of the optimal
policy in safe RL under observational corruptions. We define the state-adversarial safe RL problem
and investigate its fundamental properties. We show that the optimal solutions of safe RL problems
are theoretically vulnerable under observational adversarial attacks.

2. We show that existing adversarial attack algorithms focusing on minimizing agent rewards do not
always work, and propose two effective attack algorithms. Surprisingly, the maximum reward
attack is very strong in inducing unsafe behaviors, both in theory and practice.

3. We propose an adversarial training algorithm for safe RL. Extensive experiments show that our
method is more robust against adversarial perturbations regarding constraint satisfaction.

2 State Adversarial Safe RL
2.1 CMDP and the safe RL problem
A Constrained Markov Decision Process (CMDP) [16] is defined by the tuple (S,A,P, r, c, γ, µ0),
where S is the state space, A is the action space, P is the transition probability, r is the reward
function, c is the cost function for violating constraints, γ is the discount factor, and µ0 is the initial
state distribution. We denote a safe RL problem as Mκ

Π := (S,A,P, r, c, γ, µ0,Π, κ), where Π
is the policy class, and κ is a threshold for constraint violation cost. Let π(a|s) ∈ Π denote the
policy and τ = {s0, a0, ..., } denote the trajectory. We use shorthand ft = f(st, at, st+1), f ∈ {r, c}
for simplicity. The value function is V π

f (µ0) = Eτ∼π,s0∼µ0 [
∑∞

t=0 γ
tft], f ∈ {r, c}, which is the

expectation of discounted return under the policy π and the initial state distribution µ0. We denote
Qπ

f (s, a) = Eτ∼π,s0=s,a0=a[
∑∞

t=0 γ
tft], f ∈ {r, c} as the state-action value function under the

policy π. The objective ofMκ
Π is to find the policy that maximizes the reward while limiting the cost

incurred from constraint violations to a threshold κ: π∗ = argmaxπ V
π
r (µ0), s.t. V π

c (µ0) ≤ κ.

(a) Feasibility (b) Optimality (c) Temptation

Figure 1: Illustration of definitions via a mapping from the policy
space to the metric plane Π −→ R2, where the x-axis is the reward return
and the y-axis is the cost return. A point on the metric plane denotes
corresponding policies with the reward and cost return.

We denote the feasible pol-
icy class as the set of policies
that satisfies the constraint with
threshold κ: Πκ

M := {π(a|s) :
V π
c (µ0) ≤ κ, π ∈ Π}; the op-

timal policy π∗ as the policy
with the highest reward return in
the feasible policy class: π∗ ∈
Πκ

M,∀π ∈ Πκ
M, V π∗

r (µ0) ≥
V π
r (µ0); the tempting policy

class as the set of policies that
have a higher reward return than
the optimal policy: ΠT

M :=

{π(a|s) : V π
r (µ0) > V π∗

r (µ0), π ∈ Π}. The figure illustration is shown in Fig. 1. Note that
although the temptation concept naturally exists in many safe RL settings, we did not find formal
descriptions or definitions of it in the literature. We show that all the tempting policies are unsafe:

Lemma 1. The tempting policy class and the feasible policy class are disjoint: ΠT
M ∩ Πκ

M = ∅.
Namely, all the tempting policies violate the constraint: ∀π ∈ ΠT

M, V π
c (µ0) > κ.

See proof in Appendix A.1. The existence of tempting policies is a unique feature and one challenge
of safe RL since the agent needs to maximize the reward carefully to avoid being tempted.
2.2 Safe RL under observational perturbations
We introduce a deterministic observational adversary ν(s) : S −→ S which corrupts the state
observation of the agent. We denote the corrupted state as s̃ := ν(s) and the corrupted policy as
π ◦ ν := π(a|s̃) = π(a|ν(s)), as the state is first contaminated by ν and then used by the operator
π. Furthermore, we restrict the power of the adversary by defining the perturbation set Bϵ

p(s) as the
ℓp-ball around the original state: ∀s′ ∈ Bϵ

p(s), ∥s′ − s∥p ≤ ϵ, where ϵ is the ball size.

A strong attacker in safe RL should be 1) effective in increasing the constraint violation cost and 2)
stealthy such that the perturbations can hardly be identified. While the stealthiness regarding the
state perturbation range is naturally satisfied based on the perturbation set definition, we introduce
another level of stealthiness in terms of the task reward in the safe RL task. In some situations, the
agent might easily detect a dramatic reward drop, so a more stealthy attack maintains the agent’s task
reward while increasing constraint violations; see Appendix B.1 for more discussions.
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Motivated by Lemma 1, we propose the following Maximum Reward (MR) attacker that corrupts
the observation of a policy π by maximizing the reward value: νMR = argmaxν V

π◦ν
r (µ0)

Proposition 1. For an optimal policy π∗, the MR attacker is guaranteed to be reward stealthy and
effective, given enough large perturbation set Bϵ

p(s) such that V π∗◦νMR
r > V π∗

r .
The MR attacker is counter-intuitive because it is exactly the goal for standard RL.This is an interesting
phenomenon worthy of highlighting since we observe that the MR attacker effectively makes the
optimal policy unsafe and retains stealthy regarding the reward in the safe RL setting. The proof is in
Appendix A.1. We further observe the following important property for the optimal policy:
Lemma 2. The optimal policy π∗ of a tempting safe RL problem satisfies: V π∗

c (µ0) = κ.
The proof is given in Appendix A.2. It suggests that the optimal policy in a tempting safe RL
problem is vulnerable as it is on the safety boundary, which motivates us to propose the Maximum
Cost (MC) attacker that corrupts the observation of a policy π by maximizing the cost value:
νMC = argmaxν V

π◦ν
c (µ0). It is apparent to see that the MC attacker is effective since we directly

solve the adversarial state such that it can maximize the constraint violations. The two proposed
attacker implementation details can be found in Appendix C.1. The theoretical analysis of adversarial
attacks such as the cost value bound can be found in Appendix A.3.
2.3 Observational robust safe RL
To defend against observational perturbations, we propose an adversarial training method for safe RL,
which directly optimize the policy upon the attacked sampling trajectories τ̃ = {s0, ã0, s1, ã1, ...},
where ãt ∼ π(a|ν(st)). We can compactly represent the adversarial safe RL objective under
observational perturbation as: π∗ = argmaxπ V

π◦ν
r (µ0), s.t. V π◦ν

c (µ0) ≤ κ. It can be solved
by many policy-based safe RL methods [2, 3], and we show that the Bellman operator for evaluating
the policy performance under a deterministic adversary is a contraction (see Appendix A.7 for proof).

Theorem 1 (Bellman contraction). Define the Bellman policy operator as Tπ : R|S| −→ R|S|:

(TπV π◦ν
f )(s) =

∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
f(s, a, s′) + γV π◦ν

f (s′)
]
, f ∈ {r, c}. (1)

The Bellman equation can be written as V π◦ν
f (s) = (TπV π◦ν

f )(s). In addition, the operator Tπ is a
contraction under the sup-norm ∥ · ∥∞ and has a fixed point.

Theorem 1 provides the theoretical justification of adversarial training, since we can accurately
evaluate the reward and cost values of a policy under one fixed deterministic adversary. Then the
key part is selecting proper adversaries during learning, such that the trained policy is robust and
safe against any other attackers. We show that performing adversarial training with the MC or the
MR attacker will enable the agent to be robust against the most effective or the most reward stealthy
perturbations, respectively (see Appendix A.7 for detailed discussions and proof). The adversarial
training algorithm and implementation details could be found in Appendix C.3.

3 Experiment
We aim to answer the questions raised in Sec. 1. To this end, we adopt the constrained robot
locomotion continuous control tasks that are used in many previous works [17–20]: Car-Run,
Car-Circle, Drone-Run, Drone-Circle, Ant-Run, Ant-Circle. The detailed description is in
Appendix C.6. We use the PID PPO-Lagrangian (abbreviated as PPOL) method [3] as the base safe
RL algorithm to fairly compare different robust training approaches, while the proposed methods can
be easily used in other safe RL methods as well (see Appendix C.8 for more results with other safe
RL methods: FOCOPS [19], SAC-Lagrangian [21], and CVPO [5]). The detailed hyperparameters of
the adversaries and safe RL algorithms can be found in Appendix C.

Adversarial attacker baselines. We adopt three adversary baselines: 1) Random attacker, which
samples the corrupted observations randomly within the perturbation set; 2) Maximum Action
Difference (MAD) attacker [11] for standard RL tasks, which is shown to be effective in decreasing
a trained RL agent’s reward return; 3) Adaptive MAD (AMAD) attacker, which is an improved
version of MAD by performing attacks only in high-risk regions (motivated by Lemma 2. See
Appendix C.4 for derivation and implementation details of the attacker baselines.

Robust training baselines. We adopt 5 baselines, including PPOL-vanilla without robust training,
the training under random noise PPOL-random, the state-adversarial algorithm SA-PPOL proposed
in [11]. The original SA-PPOL utilizes the MAD attacker to perform adversarial training, while
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we add two additional baselines SA-PPOL(MC) and SA-PPOL(MR) for the ablation study, where
the attacker is replaced by our proposed MC and MR attackers. Our adversarial training methods
are named as ADV-PPOL(MC) and ADV-PPOL(MR), which are trained under the MC and MR
attackers respectively. More details can be found in Appendix C.5-C.7.

Figure 2: Reward and cost curves of all 5 attackers evaluated on well-
trained vanilla PPO-Lagrangian models w.r.t. the perturbation range ϵ.

Attackers comparison. Fig. 2
shows the attack results of the
5 adversaries on PPOL-vanilla.
The first row is the reward and
the second row is the cost of
constraint violations. We can
see that the vanilla safe RL poli-
cies are vulnerable, since the
safety performance deteriorates
(cost increases) significantly. Al-
though baselines can reduce the
reward, they fail to perform an
effective attack in increasing the cost. Our proposed MC and MR attackers outperform all baselines
by increasing the cost by a large margin in most tasks. Surprisingly, MR can achieve even higher
costs than MC and is more stealthy as it can maintain or increase the reward.
Table 1: Evaluation results of natural performance (no attack) and under 3 attackers. Our methods are ADV-
PPOL(MC/MR). Each value is reported as: mean ± standard deviation for 50 episodes and 5 seeds. We shadow
two lowest-costs agents under each attacker column and break ties based on rewards, excluding the failing agents
(whose natural rewards are less than 50% of PPOL-vanilla’s). We mark the failing agents with ⋆.

Natural AMAD MC MREnv Method Reward Cost Reward Cost Reward Cost Reward Cost
PPOL-vanilla 678.4±12.64 1.23±1.4 676.23±12.27 2.68±2.16 661.3±58.17 66.41±14.07 706.32±18.83 112.33±25.57
PPOL-random 673.42±14.47 1.01±1.06 670.6±13.59 1.9±1.47 661.47±10.02 45.94±10.2 670.85±18.73 46.97±11.63

SA-PPOL 658.83±14.14 0.46±0.82 658.42±13.96 0.66±0.87 668.14±25.7 67.68±20.17 694.86±11.05 87.1±20.78
SA-PPOL(MC) 574.36±25.69 3.03±3.15 574.85±26.37 3.16±3.48 604.77±30.51 21.39±10.83 619.4±31.35 32.87±12.69
⋆ SA-PPOL(MR) 90.49±60.14 5.33±4.27 77.64±84.93 5.17±4.24 77.99±72.79 6.33±4.87 69.93±96.51 6.17±4.87
ADV-PPOL(MC) 601.25±18.6 0.0±0.0 599.31±18.34 0.0±0.0 666.73±15.21 1.1±1.02 665.47±18.29 1.75±1.54

Ant-Run
ϵ = 0.025

ADV-PPOL(MR) 620.17±27.28 0.17±0.41 618.04±24.66 0.31±0.55 634.96±14.94 4.07±2.35 648.95±17.67 4.69±2.81
PPOL-vanilla 157.44±26.21 2.7±6.02 143.37±36.86 3.23±9.87 153.98±34.52 38.93±29.78 208.81±20.1 70.53±22.6
PPOL-random 155.81±16.84 2.67±6.6 150.65±17.63 2.17±5.02 114.24±35.22 1.83±6.08 183.07±24.63 58.53±22.3

SA-PPOL 143.34±32.08 0.13±0.56 142.66±35.01 4.53±10.67 159.02±43.95 37.47±26.5 203.85±27.56 51.47±27.79
⋆ SA-PPOL(MC) -0.62±1.72 0.0±0.0 0.09±1.27 0.0±0.0 -0.17±1.46 0.0±0.0 -0.34±1.61 0.0±0.0
⋆ SA-PPOL(MR) -0.8±2.28 0.0±0.0 -0.57±2.2 0.0±0.0 -0.89±2.12 0.0±0.0 -0.86±2.09 0.0±0.0
ADV-PPOL(MC) 135.98±15.99 0.3±1.62 130.76±18.87 0.77±4.13 137.13±29.4 6.33±13.96 134.68±22.01 5.3±9.39

Ant Circle
ϵ = 0.025

ADV-PPOL(MR) 133.27±19.53 0.87±3.25 127.19±32.64 1.2±4.49 118.57±26.37 0.83±2.02 141.74±23.63 1.07±3.08

Robust training comparison. The results of different trained policies under adversarial attacks are
shown in Table 1, where Natural is the noise-free performance. Due to page limits, we leave the
results in the other four environments and the results under random and MAD attackers to Appendix
C.8. We can observe that although most baselines can achieve near zero natural cost, their safety
performances are vulnerable to the proposed MC and MR attackers. The proposed adversarial
training methods (ADV-PPOL) consistently outperform baselines in safety with the lowest costs
while maintaining high rewards in most tasks. The comparison with PPOL-random indicates that
the MC and MR attackers are essential ingredients of adversarial training. Although SA-PPOL
agents can maintain reward very well, they are not safe as to constraint satisfaction under adversarial
perturbations in most environments. The ablation studies with SA-PPOL(MC) and SA-PPOL(MR)
suggest that the KL-regularized robust training technique, which is successful in standard robust RL
setting, does not work well for safe RL even with the same adversarial attacks during training, and
they may also fail to obtain a high-rewarding policy in some tasks (see discussions of the training
failure in Appendix B.2). As a result, we can conclude that the proposed adversarial training methods
with the MC and MR attackers are better than baselines regarding both training stability and testing
robustness and safety.
Conclusion We study the observational robustness regarding constraint satisfaction for safe RL and
show that the optimal policy of tempting safe RL problems could be vulnerable. We propose two
effective attackers to induce unsafe behaviors. An interesting and surprising finding is that maximizing
the reward attack is as effective as directly maximizing the cost while keeping stealthiness. We further
propose an adversarial training method to increase the robustness and safety performance for safe RL,
and extensive experiments show that the proposed method outperforms the robust training techniques
for standard RL settings. Our results show the existence of a previously unrecognized problem in
safe RL, and we hope this work encourages other researchers to study safety from the robustness
perspective, as both safety and robustness are important ingredients for real-world deployment.
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A X-Risk Sheet

Individual question responses do not decisively imply relevance or irrelevance to existential risk
reduction. Do not check a box if it is not applicable.

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?
Answer: Though deep RL has witnessed great success in solving challenging problems, the
potential risks arise while deploying deep RL in real-world applications, among which safety and
robustness are two non-negligible factors. This work studies RL safety by enforcing the learning
agent to satisfy certain constraints, such that the safety performance could be evaluated separately
from the task performance (reward). Though the recent advances in safe RL effectively solve
challenging RL problems with safety constraints, can we guarantee that the learned policy is really
safe in the real world? The answer is probably no if we only consider the constraints during policy
optimization, because in this work, we find that the learned safe RL policies are vulnerable
to adversarial attacks both in theory and practice: a small perturbation in the observation
space could induce dangerous behaviors of the agent and cause a dramatic drop in the safety
performance. Therefore, a well-trained safe RL policy in the noise-free simulation environment
may not be truly safe for real-world deployment due to the commonly existing sensing noises,
and thus improving its robustness against observational perturbations is of equal importance as
learning a constraint satisfaction policy.
We propose two effective attack algorithms with theoretical justifications for constrained RL – one
directly maximizes the constraint violation cost, and one maximizes the task reward to induce a
tempting but risky policy. We surprisingly find that the maximum reward attack is very strong
in inducing unsafe behaviors. We believe this property is overlooked as maximizing reward
is the optimization goal for standard RL, yet it leads to risky and stealthy attacks to safety
constraints. Since this attack can maintain the nominal reward, it may not be detected in practice
before catastrophic failures. For example, in some real-world applications, task-related metrics
(such as velocity, acceleration, goal distances) are usually easy to be monitored from sensors.
However, the safety metrics can be sparse and hard to monitor until breaking the constraints, such
as colliding with obstacles and entering hazard states, which are determined by binary indicator
signals. Therefore, a dramatic task-related metrics (reward) drop might be easily detected by the
agent, while constraint violation signals could be hard to detect until catastrophic failures. Our
experiment results also show that all the vanilla safe RL methods suffer the vulnerability issue –
though they are safe in noise-free environments, they are not safe anymore under strong attacks.
The finding of the stealthy and effective maximum reward attack brings up the potential risks of
deploying safe RL methods in safety-critical applications, and again validates the necessity of
studying the observational robustness of safe RL agents.
Based on the above findings regarding attacks, we further propose an adversarial training mecha-
nism based on the attacks to reduce the risks for safe RL deployment. The proposed robust training
can be served as a plugin for any on-policy safe RL algorithms in principle, which is simple yet
effective. Our results show that the robustified policies can achieve much safer performance under
strong attacks while maintaining good task performance. We believe this work sheds light on the
inherited connection between observational robustness and safety in RL and provides a pioneer
work for future safe RL studies.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulnera-
bilities, or failure modes that it directly affects?
Answer: Constraint violations of AI agents, the vulnerability of safety performance under noises,
AI inducing dangerous behaviors and catastrophic failures.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main
contributing factors that it affects?
Answer: Simulation to the real-world transfer of learning agents, generalization capability of AI
agents to unseen domains.
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4. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
Answer: This research direction can benefit a large-scale of deep RL agents that will be deployed
in real life, such as self-driving vehicles and household robots. For example, consider the
autonomous vehicle navigation task where the reward is to reach the goal as fast as possible and
the safety constraint is to not collide with obstacles, then sacrificing some reward is not comparable
with violating the constraint because the latter may cause catastrophic consequences. However,
our results suggest that under carefully-designed adversarial attacks to the sensing system, the
vehicle may falsely decide to violate traffic rules or even collide with pedestrians to maximize
the reward. Unfortunately, we find little research formally studying the robustness in the safe RL
setting with adversarial observation perturbations, while we believe this should be an important
aspect in the safe RL area because a vulnerable policy under adversarial attacks cannot be
regarded as truly safe in the physical world. Our work can hopefully inspire more research in
this direction by considering both the safety and the robustness of the learning AI agents.

5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demonstrated
using leading-edge tasks or models; or are the findings highly sensitive to hyperparameters? □

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform
humans at this task? □

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability? □

8. Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? □

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

9. Overview. How does this improve safety more than it improves general capabilities?
Answer: This work suggests the natural balance between safety performance (defined by cost)
and task performance (defined by reward) by introducing the tempting policy class definition.
Recall that the tempting policies have higher reward returns than the optimal policy but are unsafe.
Therefore, the goal of safe RL is to find a policy that can maximize the reward without being
tempted. In addition, we separate task rewards and constraint violation costs in the problem
formulation. Combining the cost with reward to a single scalar metric, which can be viewed
as manually selecting Lagrange multipliers, may work in simple problems. However, it lacks
interpretability – it is hard to explain what a single scalar value means, and requires good domain
knowledge of the problem – the weight between costs and rewards should be carefully balanced,
which is difficult when the task rewards already contain many objectives/factors. On the other hand,
separating the costs from rewards is easy to monitor the safety performance and task performance,
respectively, which is more interpretable and applicable for different cost constraint thresholds.

10. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?
Answer: This work finds that improving the robustness and safety performance under adversarial
attacks may induce a certain loss of task performance. In other words, the robustified agent may
have conservative behavior. However, we believe a small range of reward loss is acceptable when
compared to the large margin of safety performance improvement. We also believe that with a
larger model capacity and carefully designed safe RL optimization techniques, this type of reward
loss could be mitigated further.

11. General Tasks. Does this work advance progress on tasks that have been previously considered
the subject of usual capabilities research? ⊠

12. General Goals. Does this improve or facilitate research towards general prediction, classification,
state estimation, efficiency, scalability, generation, data compression, executing clear instructions,
helpfulness, informativeness, reasoning, planning, researching, optimization, (self-)supervised
learning, sequential decision making, recursive self-improvement, open-ended goals, models
accessing the Internet, or similar capabilities? ⊠
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13. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted by
general cognitive ability or educational attainment? ⊠

14. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? ⊠

A.3 Elaborations and Other Considerations

15. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer: This trustworthiness of an RL agent doesn’t only contain robustness and safety, and
other aspects such as generalization and interpretability are also important as well. We believe that
the conceptions between them have non-negligible overlaps, though they are mostly discussed
as orthogonal directions in the RL literature. For example, we could view robustness regarding
observation noises as a generalization capability to the adversarial states around the training
samples. Similarly, a generalizable policy for uncertain environments can be regarded as the
robustness property to unseen scenarios. Therefore, those concepts are inseparable in a certain
context, and we can also see similar discussions and thoughts in the other machine learning
domain other than RL. In addition, safety is closely related to the other aspects, because an agent
cannot be regarded as safe if it is not generalizable to novel situations or robust against sensing
noises. Our work unveils the connections between robustness and safety, and we hope to see more
interdisciplinary discussions in this direction.

10



Contents

1 Introduction 1

2 State Adversarial Safe RL 2

2.1 CMDP and the safe RL problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Safe RL under observational perturbations . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Observational robust safe RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Experiment 3

A X-Risk Sheet 8

A.1 Long-Term Impact on Advanced AI Systems . . . . . . . . . . . . . . . . . . . . 8

A.2 Safety-Capabilities Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.3 Elaborations and Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . 10

A Proofs and Discussions 12

A.1 Proof of Lemma 1 and Proposition 1 – infeasible tempting policies . . . . . . . . . 12

A.2 Proof of Lemma 2 – optimal policy’s cost value . . . . . . . . . . . . . . . . . . . 12

A.3 Theoretical analysis of adversarial attacks . . . . . . . . . . . . . . . . . . . . . . 13

A.4 Proof of Theorem 2 – existence of optimal deterministic MC/MR adversary . . . . 14

A.5 Proof of Theorem 3 – one-step attack cost bound . . . . . . . . . . . . . . . . . . 15

A.6 Proof of Theorem 4 – episodic attack cost bound . . . . . . . . . . . . . . . . . . 15

A.7 Proof of Theorem 1 and Proposition 2 – Bellman contraction . . . . . . . . . . . . 16

B Remarks 19

B.1 Remarks of the safe RL setting, stealthiness, and assumptions . . . . . . . . . . . . 19

B.2 Remarks of the failure of SA-PPOL(MC/MR) baselines . . . . . . . . . . . . . . . 20

C Implementation Details 21

C.1 MC and MR attackers implementation . . . . . . . . . . . . . . . . . . . . . . . . 21

C.2 PPO-Lagrangian algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.3 Adversarial training practical implementation . . . . . . . . . . . . . . . . . . . . 22

C.4 Attacker baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.5 SA-PPO-Lagrangian baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.6 Environment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.7 Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.8 More experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11



A Proofs and Discussions

A.1 Proof of Lemma 1 and Proposition 1 – infeasible tempting policies

Lemma 1 indicates that all the tempting policies are infeasible: ∀π ∈ ΠT
M, V π

c (µ0) > κ. We will
prove it by contradiction.

Proof. For a tempting safe RL problemMκ
Π, there exists a tempting policy that satisfies the constraint:

π′ ∈ ΠT
M, V π′

c (µ0) ≤ κ, π′ ∈ Πκ
M. Denote the optimal policy as π∗, then based on the definition of

the tempting policy, we have V π′

r (µ0) > V π∗

r (µ0). Based on the definition of optimality, we know
that for any other feasible policy π ∈ Πκ

M, we have:

V π′

r (µ0) > V π∗

r (µ0) ≥ V π
r (µ0),

which indicates that π′ is the optimal policy forMκ
Π. Then again, based on the definition of tempting

policy, we will obtain:
V π′

r (µ0) > V π′

r (µ0),

which contradicts to the fact that V π′

r (µ0) = V π′

r (µ0). Therefore, there is no tempting policy that
satisfies the constraint.

Proposition 1 suggest that as long as the MR attacker can successfully obtain a policy that has higher
reward return than the optimal policy π∗ given enough large perturbation set Bϵ

p(s), it is guaranteed
to be reward stealthy and effective.

Proof. The stealthiness is naturally satisfied based on the definition. The effectiveness is guaranteed
by Lemma 1. Since the corrupted policy π∗ ◦ νMR can achieve V π∗◦νMR

r > V π∗

r , we can conclude
that π∗ ◦ νMR is within the tempting policy class, since it has higher reward than the optimal policy.
Then we know that it will violate the constraint based on Lemma 1, and thus the MR attacker is
effective.

A.2 Proof of Lemma 2 – optimal policy’s cost value

Lemma 2 says that the optimal policy π∗ of a tempting safe RL problem satisfies: V π∗

c (µ0) = κ. We
will also prove it by contradiction.

Proof. Suppose the optimal policy π∗ for a tempting safe RL problem Mκ
Π has: V π∗

c (µ0) < κ.
Denote π′ ∈ ΠT

M as a tempting policy. Based on Lemma 1, we know that V π′

c (µ0) > κ and
V π′

r (µ0) > V π∗

r (µ0). Then we can compute a weight α:

α =
κ− V π∗

c (µ0)

V π′
c (µ0)− V π∗

c (µ0)
. (2)

We can see that:
αV π′

c (µ0) + (1− α)V π∗

c (µ0) = κ. (3)

We further define another policy π̄ based on the mixture of π∗ and π′, such that a trajectory of a
whole episode has α probability to be sampled from π′ and 1− α probability to be sampled from π∗:

τ ∼ π̄ :=

{
τ ∼ π′, with probability α,

τ ∼ π∗, with probability 1− α.
(4)

Then we can conclude that π̄ is also feasible:

V π̄
c (µ0) = Eτ∼π̄[

∞∑
t=0

γtct] = αEτ∼π′ [

∞∑
t=0

γtct] + (1− α)Eτ∼π∗ [

∞∑
t=0

γtct] (5)

= αV π′

c (µ0) + (1− α)V π∗

c (µ0) = κ. (6)
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In addition, π̄ has higher reward return than the optimal policy π∗:

V π̄
r (µ0) = Eτ∼π̄[

∞∑
t=0

γtrt] = αEτ∼π′ [

∞∑
t=0

γtrt] + (1− α)Eτ∼π∗ [

∞∑
t=0

γtrt] (7)

= αV π′

r (µ0) + (1− α)V π∗

r (µ0) (8)

> αV π∗

r (µ0) + (1− α)V π∗

r (µ0) = V π∗

r (µ0), (9)

where the inequality comes from the definition of the tempting policy. Since π̄ is both feasible, and
has strictly higher reward return than the policy π∗, we know that π∗ is not optimal, which contradicts
to our assumption. Therefore, the optimal policy π∗ should always satisfy V π∗

c (µ0) = κ.

Remark 1. The cost value function V π∗

c (µ0) = Eτ∼π[
∑∞

t=0 γ
tct] is based on the expectation of the

sampled trajectories (expectation over episodes) rather than a single trajectory (expectation within
one episode), because for a single sampled trajectory τ ∼ π, V π∗

c (τ) =
∑∞

t=0 γ
tct may even not

necessarily satisfy the constraint.
Remark 2. The proof also indicates that the range of metric function V := {(V π

r (µ0), V
π
c (µ0))} (as

shown as the blue circle in Fig.1) is convex when enlarging the domain from Π to a linear policy
mixture space Π̄. For simplicity, we define ⟨α,π⟩ as a policy mixture π̄ ∈ Π̄ which samples mixed
trajectories episodically,

τ ∼ ⟨α,π⟩ := τ ∼ πi, with probability αi, i = 1, 2, . . . , (10)

where α = [α1, α2, . . . ], αi ≥ 0,
∑

i=1 αi = 1,π = [π1, π2, . . . ]. Similar to the above proof, we
have

V
⟨α,π⟩
f (µ0) = ⟨α, V π

f (µ0)⟩, f ∈ {r, c}, (11)

where V π
f (µ0) = [V π1

f (µ0), V
π2

f (µ0), . . . ]. Consider ∀(vr1, vc1), (vr2, vc2) ∈ V , suppose they
correspond to policy mixture ⟨α,π⟩ and ⟨β,π⟩ respectively, then ∀t ∈ [0, 1], the new mixture
⟨tα + (1 − t)β,π⟩ ∈ Π̄ and V

⟨tα+(1−t)β,π⟩
f (µ0) = t · vf1 + (1 − t) · vf2 ∈ V . Therefore, V is a

convex set.

A.3 Theoretical analysis of adversarial attacks

We have the following theorem to guarantee the existence of optimal and deterministic MC and MR
adversaries.
Theorem 2 (Existence of optimal and deterministic MC/MR attackers). A deterministic MC attacker
νMC and a deterministic MR attacker νMR always exist, and there is no stochastic adversary ν′ such
that V π◦ν′

c (µ0) > V π◦νMC
c (µ0) or V π◦ν′

r (µ0) > V π◦νMR
r (µ0).

Theorem 2 provides the theoretical foundation of Bellman operators that require optimal and deter-
ministic adversaries in the next section. The proof is given in Appendix A.4. We can also obtain the
upper-bound of constraint violations of the adversary attack at state s. Denote Sc as the set of unsafe
states that have non-zero cost: Sc := {s′ ∈ S : c(s, a, s′) > 0} and ps as the maximum probability
of entering unsafe states from state s: ps = maxa

∑
s′∈Sc

p(s′|s, a).
Theorem 3 (One-step perturbation cost value bound). Suppose the optimal policy is locally L-
Lipschitz continuous at state s: DTV[π(·|s′)∥π(·|s)] ≤ L ∥s′ − s∥p, and the perturbation set of the
adversary ν(s) is an ℓp-ball Bϵ

p(s). Let Ṽ π,ν
c (s) = Ea∼π(·|ν(s)),s′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)]

denote the cost value for only perturbing state s. The upper bound of Ṽ π,ν
c (s) is given by:

Ṽ π,ν
c (s)− V π

c (s) ≤ 2Lϵ

(
psCm +

γCm

1− γ

)
. (12)

Note that Ṽ π,ν
c (s) ̸= V π

c (ν(s)) because the next state s′ is still transited from the original state s,
i.e., s′ ∼ p(·|s, a) instead of s′ ∼ p(·|ν(s), a). Theorem 3 indicates that the power of an adversary is
controlled by the policy smoothness L and perturbation range ϵ. In addition, the ps term indicates
that a safe policy should keep a safe distance from the unsafe state to prevent it from being attacked.
We further derive the upper bound of constraint violation for attacking the entire episodes.
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Theorem 4 (Episodic perturbation cost value bound). Given a feasible policy π ∈ Πκ
M, suppose the

L-Lipschitz continuity holds globally for π, and the perturbation set of ν is within an ℓp-ball, then
the following bound holds:

V π◦ν
c (µ0) ≤ κ+ 2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
. (13)

See Theorem 3, 4 proofs in Appendix A.5, A.6. We can still observe that the maximum cost value
under perturbations is bounded by the Lipschitzness of the policy and the maximum perturbation
range ϵ. The bound is tight since when ϵ −→ 0 (no attack) or L −→ 0 (constant policy π(·|s) for all
states), the RHS is 0 for Eq. (12) and κ for Eq. (13), which means that the attack is ineffective.

A.4 Proof of Theorem 2 – existence of optimal deterministic MC/MR adversary

Existence. Given a fixed policy π, We first introduce two adversary MDPs M̂r = (S, Â, P̂, R̂r, γ)

for reward maximization adversary and M̂c = (S, Â, P̂, R̂c, γ) for cost maximization adversary
to prove the existence of optimal adversary. In adversary MDPs, the adversary acts as the agent
to choose a perturbed state as the action (i.e., â = s̃) to maximize the cumulative reward

∑
R̂.

Therefore, in adversary MDPs, the action space Â = S and ν(·|s) denotes a policy distribution.

Based on the above definitions, we can also derive transition function and reward function for new
MDPs [11]

p̂(s′|s, a) =
∑
a

π(a|â)p(s′|s, a), (14)

R̂f (s, â, s
′) =

{∑
a π(a|â)p(s′|s,a)f(s,a,s′)∑

a π(a|â)p(s′|s,a) , â ∈ Bϵ
p(s)

−C, â /∈ Bϵ
p(s)

, f ∈ {r, c}, (15)

where â = s̃ ∼ ν(·|s) and C is a constant. Therefore, with sufficiently large C, we can guarantee
that the optimal adversary ν∗ will not choose a perturbed state â out of the lp-ball of the given state s,
i.e., ν∗(â|s) = 0,∀â /∈ Bϵ

p(s).

According to the properties of MDP [22], M̂r,M̂c have corresponding optimal policy ν∗r , ν
∗
c , which

are deterministic by assigning unit mass probability to the optimal action â for each state.

Next, we will prove that ν∗r = νMR, ν
∗
c = νMC. Consider value function in M̂f , f ∈ {r, c}, for an

adversary ν ∈ N := {ν|ν∗(â|s) = 0,∀â /∈ Bϵ
p(s)}, we have

V̂ ν
f (s) = Eâ∼ν(·|s),s′∼p̂(·|s,â)[R̂f (s, â, s

′) + γV̂ ν
f (s′)] (16)

=
∑
â

ν(â|s)
∑
s′

p̂(s′|s, â)[R̂f (s, â, s
′) + γV̂ ν

f (s′)] (17)

=
∑
â

ν(â|s)
∑
s′

∑
a

π(a|â)p(s′|s, a)
[∑

a π(a|â)p(s′|s, a)f(s, a, s′)∑
a π(a|â)p(s′|s, a)

+ γV̂ ν
f (s′)

]
(18)

=
∑
s′

p(s′|s, a)
∑
a

π(a|â)
∑
â

ν(â|s)[f(s, a, s′) + γV̂ ν
f (s′)] (19)

=
∑
s′

p(s′|s, a)
∑
a

π(a|ν(s))[f(s, a, s′) + γV̂ ν
f (s′)]. (20)

Recall the value function in original safe RL problem,

V π◦ν
f (s) =

∑
s′

p(s′|s, a)
∑
a

π(a|ν(s))[f(s, a, s′) + γV π◦ν
f (s′)]. (21)

Therefore, V π◦ν
f (s) = V̂ ν

f (s), ν ∈ N . Note that in adversary MDPs ν∗f ∈ N and

ν∗f = argmax
ν

Ea∼π(·|ν(s)),s′∼p(·|s,a)[f(s, a, s
′) + γV̂ ν

f (s′)]. (22)
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We also know that ν∗f is deterministic,

⇒ ν∗f (s) = argmax
ν

Ea∼π(·|s̃),s′∼p(·|s,a)[f(s, a, s
′) + γV̂ ν

f (s′)] (23)

= argmax
ν

Ea∼π(·|s̃),s′∼p(·|s,a)[f(s, a, s
′) + γV π◦ν

f (s′)] (24)

= argmax
ν

V π◦ν
f (s, a). (25)

Therefore, ν∗r = νMR, ν
∗
c = νMC.

Optimality. We will prove the optimality by contradiction. By definition, ∀s ∈ S,

V π◦ν′

c (s0) ≤ V π◦νMC
c (s0). (26)

Suppose ∃ν′, s.t.V π◦ν′

c (µ0) > V π◦νMC
c (µ0), then there also exists s0 ∈ S, s.t.V π◦ν′

c (s0) >
V π◦νMC
c (s0), which is contradictory to Eq.(26). Similarly, we can also prove that the property

holds for νMR by replacing V π◦ν
c with V π◦ν

r . Therefore, there is no other adversary that achieves
higher attack effectiveness than νMR or higher reward stealthiness than νMR.

A.5 Proof of Theorem 3 – one-step attack cost bound

We have
V π,ν
c (s) = Ea∼π(·|ν(s)),s′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)]. (27)

By Bellman equation,

V π
c (s) = Ea∼π(·|s),s′∼p(·|s,a)[c(s, a, s

′) + γV (s′)]. (28)

For simplicity, denote ps
′

sa = p(s′|s, a) and we have

Ṽ π,ν
c (s)− Ṽ π

c (s) =
∑
a∈A

(
π(a|ν(s))− π(a|s)

∑
s∈S

ps
′

sa(c(s, a, s
′) + γV π

c (s′))

)
(29)

≤

(∑
a∈A
|π(a|ν(s))− π(a|s)|

)
max
a∈A

∑
s∈S

ps
′

sa(c(s, a, s
′) + γV π

c (s′)). (30)

By definition, DTV[π(·|ν(s)∥π(·|s)] = 1
2

∑
a∈A |π(a|ν(s))− π(a|s)|, and c(s, a, s′) = 0, s′ ∈ Sc.

Therefore, we have

Ṽ π,ν
c (s)− V π

c (s) ≤ 2DTV [π(·|ν(s)∥π(·|s)]max
a∈A

(∑
s∈Sc

ps
′

sac(s, a, s
′) +

∑
s∈S

ps
′

saγV
π
c (s′)

)
(31)

≤ 2L∥ν(s)− s∥p max
a∈A

(∑
s∈Sc

ps
′

saCm +
∑
s∈S

ps
′

saγ
Cm

1− γ

)
(32)

≤ 2Lϵ

(
psCm +

γCm

1− γ

)
. (33)

A.6 Proof of Theorem 4 – episodic attack cost bound

According to the Corollary 2 in CPO [17],

V π◦ν
c (µ0)− V π

c (µ0) ≤
1

1− γ
Es∼dπ,a∼π◦ν

[
Aπ

c (s, a) +
2γδπ◦νc

1− γ
DTV[π

′(·|s)∥π(·|s)]
]
, (34)

where δπ◦νc = maxs |Ea∼π◦νA
π
c (s, a)| and Aπ

c (s, a) = Es′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)− V π
c (s)]

denotes the advantage function. Note that

Ea∼π◦νA
π
c (s, a) = Ea∼π◦ν [Es′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)− V π

c (s)]] (35)

= Ea∼π◦ν,s′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)]− V π
c (s) (36)

= Ṽ π,ν
c (s)− V π

c (s). (37)

15



By theorem 3,

δπ◦νc = max
s
|Ea∼π◦νA

π
c (s, a)| (38)

≤ max
s

∣∣∣∣2Lϵ(psCm +
γCm

1− γ

)∣∣∣∣ (39)

= 2LϵCm

(
max

s
ps +

γ

1− γ

)
. (40)

Therefore, we can derive

V π◦ν
c (µ0)− V π

c (µ0) ≤
1

1− γ
max

s
|Ea∼π◦νA

π
c (s, a)|+

2γδπ◦νc

(1− γ)2
DTV[π

′(·|s)∥π(·|s)] (41)

=

(
1

1− γ
+

2γDTV

(1− γ)2

)
δπ◦νc (42)

≤ 2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
. (43)

Note π is a feasible policy, i.e., V π
c (µ0) ≤ κ. Therefore,

V π◦ν
c (µ0) ≤ κ+ 2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
. (44)

A.7 Proof of Theorem 1 and Proposition 2 – Bellman contraction

Recall Theorem 1, the Bellman policy operator Tπ is a contraction under the sup-norm ∥ · ∥∞ and
will converge to its fixed point. The Bellman policy operator is defined as:

(TπV π◦ν
f )(s) =

∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
f(s, a, s′) + γV π◦ν

f (s′)
]
, f ∈ {r, c}, (45)

The proof is as follows:

Proof. Denote fs′

sa = f(s, a, s′), f ∈ {r, c} and ps
′

sa = p(s′|s, a) for simplicity, we have:∣∣∣(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∣∣∣ = ∣∣∣∑

a∈A
π(a|ν(s))

∑
s′∈S

ps
′

sa

[
fs′

sa + γUπ◦ν
f (s′)

]
(46)

−
∑
a∈A

π(a|ν(s))
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν
f (s′)

] ∣∣∣ (47)

= γ
∣∣∣∑
a∈A

π(a|ν(s))
∑
s′∈S

ps
′

sa

[
Uπ◦ν
f (s′)− V π◦ν

f (s′)
] ∣∣∣ (48)

≤ γmax
s′∈S

∣∣∣Uπ◦ν
f (s′)− V π◦ν

f (s′)
∣∣∣ (49)

= γ
∥∥Uπ◦ν

f (s′)− V π◦ν
f (s′)

∥∥
∞, (50)

Since the above holds for any state s, we have:

max
s

∣∣∣(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∣∣∣ ≤ γ

∥∥Uπ◦ν
f (s′)− V π◦ν

f (s′)
∥∥
∞,

which implies that:∥∥(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∥∥
∞ ≤ γ

∥∥V π◦ν2

f (s′)− V π◦ν2

f (s′)
∥∥
∞,

Then based on the Contraction Mapping Theorem [23], we know that Tπ has a unique fixed point
V ∗
f (s), f ∈ {r, c} such that V ∗

f (s) = (TπV ∗
f )(s).

Proposition 2. Suppose a trained policy π′ under the MC attacker satisfies: V π′◦νMC
c (µ0) ≤ κ, then

π′ ◦ ν is guaranteed to be feasible with any Bϵ
p bounded adversarial perturbations.

Similarly, suppose a trained policy π′ under the MR attacker satisfies: V π′◦νMR
c (µ0) ≤ κ, then π′ ◦ ν

is guaranteed to be non-tempting with any Bϵ
p bounded adversarial perturbations.
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Proposition 2 indicates that by solving the adversarial constrained optimization problem under the
MC attacker, all the feasible solutions will be safe under any bounded adversarial perturbations. It
also shows a nice property for training a robust policy, since the max operation over the reward in the
safe RL objective may lead the policy to the tempting policy class, while the adversarial training with
MR attacker can naturally keep the trained policy at a safe distance from the tempting policy class.
Practically, we observe that both MC and MR attackers can increase the robustness and safety via
adversarial training, and could be easily plugged into any on-policy safe RL algorithms, in principle.
We leave the robust training framework for off-policy safe RL methods as future work.

Before proving Proposition 2, we first give the following definitions and lemmas.
Definition 1. Define the Bellman adversary effectiveness operator as T ∗

c : R|S| −→ R|S|:

(T ∗
c V π◦ν

c )(s) = max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a) [c(s, a, s′) + γV π◦ν
c (s′)] . (51)

Definition 2. Define the Bellman adversary reward stealthiness operator as T ∗
r : R|S| −→ R|S|:

(T ∗
r V π◦ν

r )(s) = max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γV π◦ν
r (s′)] . (52)

Recall that Bϵ
p(s) is the ℓp ball to constrain the perturbation range. The two definitions correspond to

computing the value of the most effective and the most reward-stealthy attackers, which is similar to
the Bellman optimality operator in the literature. We then show their contraction properties via the
following Lemma:
Lemma 3. The Bellman operators T ∗

c , T ∗
r are contractions under the sup-norm ∥ · ∥∞ and will

converge to their fixed points, respectively. The fixed point for T ∗
c is V π◦νMC

c = T ∗
c V π◦νMC

c , and the
fixed point for T ∗

r is V π◦νMR
r = T ∗

r V π◦νMR
r .

To finish the proof of Lemma 3, we introduce another lemma:
Lemma 4. Suppose maxx h(x) ≥ maxx g(x) and denote xh∗ = argmaxx h(x), we have:

|max
x

h(x)−max
x

g(x)| = max
x

h(x)−max
x

g(x) = h(xh∗)−max
x

g(x)

≤ h(xh∗)− g(xh∗) ≤ max
x
|h(x)− g(x)|.

(53)

We then prove the Bellman contraction properties of Lemma 3:

Proof.∣∣∣(T ∗
f V π◦ν1

f )(s)− (T ∗
f V π◦ν2

f )(s)
∣∣∣ = ∣∣∣ max

s̃∈Bϵ
p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν1

f (s′)
]

(54)

− max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν2

f (s′)
] ∣∣∣ (55)

=
∣∣∣γ max

s̃∈Bϵ
p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (56)

≤ γ max
s̃∈Bϵ

p(s)

∣∣∣∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (57)

∆
= γ

∣∣∣∑
a∈A

π(a|s̃∗)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (58)

≤ γmax
s′∈S

∣∣∣V π◦ν1

f (s′)− V π◦ν2

f (s′)
∣∣∣ (59)

= γ
∥∥V π◦ν1

f (s′)− V π◦ν2

f (s′)
∥∥
∞, (60)

where inequality (57) comes from Lemma 4, and s̃∗ in Eq. (58) denote the argmax of the RHS.

Since the above holds for any state s, we can also conclude that:∥∥(T ∗
f V π◦ν1

f )(s)− (T ∗
f V π◦ν2

f )(s)
∥∥
∞ ≤ γ

∥∥V π◦ν2

f (s′)− V π◦ν2

f (s′)
∥∥
∞,
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After proving the contraction, we prove that the value function of the MC and MR adversaries
V π◦νMC
c (s), V π◦νMR

r (s) are the fixed points for T ∗
c , T ∗

r as follows:

Proof. Recall that the MC, MR adversaries are:

νMC(s) = arg max
s̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
c (s, ã))] , νMR(s) = arg max

s̃∈Bϵ
p(s)

Eã∼π(a|s̃) [Q
π
r (s, ã))] . (61)

Based on the value function definition, we have:

V π◦νMC
c (s) = Eτ∼π◦νMC,s0=s[

∞∑
t=0

γtct] = Eτ∼π◦νMC,s0=s[c0 + γ

∞∑
t=1

γt−1ct] (62)

=
∑
a∈A

π(a|νMC(s))
∑
s′∈S

ps
′

sa

[
c(s, a, s′) + γEτ∼π◦νMC,s1=s′ [

∞∑
t=1

γt−1ct]

]
(63)

=
∑
a∈A

π(a|νMC(s))
∑
s′∈S

ps
′

sa [c(s, a, s
′) + γV π◦νMC

c (s′)] (64)

= max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa [c(s, a, s
′) + γV π◦νMC

c (s′)] (65)

= (T ∗
c V π◦νMC

c )(s), (66)

where Eq. (65) is from the MC attacker definition. Therefore, the cost value function of the MC
attacker V π◦νMC

c is the fixed point of the Bellman adversary effectiveness operator T ∗
c . With the same

procedure (replacing νMC, T ∗
c with νMR, T ∗

r ), we can prove that the reward value function of the MR
attacker V π◦νMR

r is the fixed point of the Bellman adversary stealthiness operator T ∗
r .

With Lemma 3 and the proof above, we can easily obtain the conclusions in Proposition 2: if the
trained policy is safe under the MC or the MR attacker, then it is guaranteed to be feasible or non-
tempting under any Bϵ

p(s) bounded adversarial perturbations respectively, since there are no other
attackers can achieve higher cost or reward returns than them.
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B Remarks

B.1 Remarks of the safe RL setting, stealthiness, and assumptions

Safe RL setting regarding the reward and the cost. We consider the safe RL problems that have
separate task rewards and constraint violation costs, i.e. independent reward and cost functions.
Combining the cost with reward to a single scalar metric, which can be viewed as manually selecting
Lagrange multipliers, may work in simple problems. However, it lacks interpretability – it is hard to
explain what does a single scalar value mean, and requires good domain knowledge of the problem
– the weight between costs and rewards should be carefully balanced, which is difficult when the
task rewards already contain many objectives/factors. On the other hand, separating the costs from
rewards is easy to monitor the safety performance and task performance respectively, which is more
interpretable and applicable for different cost constraint thresholds.

Safe RL setting regarding the constraint violations. There are multiple definitions of the safe RL
problem, such as safe deployment and safe exploration. Safe deployment focuses on the safety of
the policy after training, so constraint violations during training are tolerant. This is a widely used
setting in many constrained-optimization-based safe RL papers, since it requires minimum domain
knowledge of the problem and could be applied to a wide range of tasks. Safe exploration requires the
agent to be safe throughout the training and testing time, which is much stricter than safe deployment.
However, without domain knowledge or certain assumptions of the tasks, safe exploration is very
difficult to solve. While we focus on the safe deployment setting in this paper, we want to point out
that safe exploration is also an interesting but also challenging direction.

(Reward) Stealthy attack for safe RL. As we discussed in Sec. 3.2, the stealthiness concept in
supervised learning refers to that the adversarial attack should be covert to prevent from being easily
identified. While we use the perturbation set Bϵ

p to ensure the stealthiness regarding the observation
corruption, we notice that another level of stealthiness regarding the task reward performance is
interesting and worthy of being discussed. In some real-world applications, the task-related metrics
(such as velocity, acceleration, goal distances) are usually easy to be monitored from sensors.
However, the safety metrics can be sparse and hard to monitor until breaking the constraints, such as
colliding with obstacles and entering hazard states, which are determined by binary indicator signals.
Therefore, a dramatic task-related metrics (reward) drop might be easily detected by the agent, while
constraint violation signals could be hard to detect until catastrophic failures. An unstealthy attack
in this scenario may decrease the reward a lot and prohibit the agent from finishing the task, which
can warn the agent that it is attacked and thus lead to a failing attack. On the contrary, a stealthy
attack can maintain the agent’s task reward such that the agent is not aware of the existence of the
attacks based on "good" task metrics, while performing successful attacks by leading to constraint
violations. In other words, a stealthy attack should corrupt the policy to be tempted, since all the
tempting policies are high-rewarding while unsafe.

Stealthiness definition of the attacks. There is an alternative definition of stealthiness by viewing
the difference in the reward regardless of increasing or decreasing. The two-sided stealthiness is a
more strict one than the one-sided lower-bound definition in this paper. However, if we consider a
practical system design, people usually set a threshold for the lower bound of the task performance
to determine whether the system functions properly, rather than specifying an upper bound of the
performance because it might be tricky to determine what should be the upper-bound of the task
performance to be alerted by the agent. For instance, an autonomous vehicle that fails to reach the
destination within a certain amount of time may be identified as abnormal, while reaching the goal
faster may not since it might be hard to specify such a threshold to determine what is an overly
good performance. Therefore, increasing the reward with the same amount of decreasing it may not
attract the same attention from the agents. In addition, finding a stealthy and effective attacker with
minimum reward change might be a much harder problem with the two-sided definition, since the
candidate solutions are much fewer and the optimization problem could be harder to be formulated.
But we believe that this is an interesting point that is worthy to be investigated in the future, while we
will focus on the one-sided definition of stealthiness in this work.

Independently estimated reward and cost value functions assumption. Similar to most existing
safe RL algorithms, such as PPO-Lagrangian [2, 3], CPO [17], FOCOPS [19], and CVPO [5], we
consider the policy-based (or actor-critic-based) safe RL in this work. There are two phases for this
type of approach: policy evaluation and policy improvement. In the policy evaluation phase, the
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reward and cost value functions V π
r , V π

c are evaluated separately. At this stage, the Bellman operators
for reward and cost values are independent. Therefore, they have contractions (Def. 6) and will
converge to their fixed points separately. In the policy improvement phase, the interconnections
between the cost and reward functions exist since the policy optimizer needs to balance the two value
functions together. However, no Bellman operators are involved in this phase. Therefore, we avoid the
‘combined iteration‘ for computing the reward and cost values. This is a commonly used treatment
in safe RL papers to train the policy: first evaluating the reward and cost values independently by
Bellman equations and then optimizing the policy based on the learned value estimations. Therefore,
our theoretical analysis of the Bellman contraction properties is also developed under this setting.

Locally Lipschitz assumption of the policy class. We use the locally Lipschitzness assumption for
deriving Theorem 2 and 3. It is a reasonable assumption from a theoretical point of view because
it is necessary for analysis. Without this assumption, the attacker may arbitrarily change the cost
values, and it is hard to conduct a useful theoretical analysis. For the same reason, the Lipschitzness
assumption is widely used in the adversarial ML and the RL literature, explicitly or implicitly. Second,
we want to emphasize that the assumption is used in analysis rather than implementation. Even
if a policy is not locally Lipschitz, the attackers and the adversarial training framework can still
be implemented by using black-box optimizers to obtain the adversarial perturbations. Finally, in
the real world, actions usually take effects via physical actuators that are usually continuous. For
example, a real-world bang-bang controller for MountainCar sends signals to the engine or hydraulic
braking systems. Their effects on states are continuous with finite Lipschitz constant. Therefore, the
assumption is often valid in robotics.

Non-tempting safe RL problem. According to Def. 1-3, no tempting policy indicates a non-
tempting safe RL problem, where the optimal policy has the highest reward while remaining under
the constraint threshold. In the non-tempting setting, the MR attacker is not effective anymore, since
maximizing the reward can not lead to tempting policies and constraint violations, while the MC
attacker could still be effective. However, for the safe deployment problem that only cares about
safety after training, no tempting policy means that the cost signal is unnecessary for training, because
one can simply focus on maximizing the reward. As long as the most rewarding policies are found,
the safety requirement would be automatically satisfied, and thus many standard RL algorithms can
solve the problem. Since safe RL methods are not required in this setting, the non-tempting tasks are
usually not discussed in safe RL papers, and are also not the focus of this paper.

B.2 Remarks of the failure of SA-PPOL(MC/MR) baselines

The detailed algorithm of SA-PPOL [11] can be found in Appendix C.5. The basic idea can be
summarized via the following equation:

ℓν(s) = −DKL[π(·|s)||πθ(·|ν(s))], (67)

which aims to minimize the divergence between the corrupted and original states. Note that we
only optimize (compute gradient) for πθ(·|ν(s)) rather than π(·|s), since we view π(·|s) as the
"ground-truth" target action distribution. Adding the above KL regularizer to the original PPOL
loss yields the SA-PPOL algorithm. We could observe the original SA-PPOL that uses the MAD
attacker as the adversary can learn well in most of the tasks, though it is not safe under strong attacks.
However, SA-PPOL with MR or MC adversaries often fail to learn a meaningful policy in many tasks,
especially for the MR attacker. The reason is that: the MR attacker aims to find the high-rewarding
adversarial states, while the KL loss will make the policy distribution of high-rewarding adversarial
states to match with the policy distribution of the original relatively lower-rewards states. As a
result, the training could fail due to wrong policy optimization direction and prohibited exploration to
high-rewarding states. Since the MC attacker can also lead to high-rewarding adversarial states due
to the existence of tempting polices, we may also observe failure training with the MC attacker.
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C Implementation Details

C.1 MC and MR attackers implementation

Practically, given a fixed policy π and its critics Qπ
f (s, a), f ∈ {r, c}, we obtain the corrupted state s̃

of s from the MR and MC attackers by solving:

νMR(s) = arg max
s̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
r (s, ã))] , νMC(s) = arg max

s̃∈Bϵ
p(s)

Eã∼π(a|s̃) [Q
π
c (s, ã))] (68)

Suppose the policy π and the critics Q are all parametrized by differentiable models such as neural
networks, then we can back-propagate the gradient through Q and π to solve the adversarial state s̃.
This is similar to the policy optimization procedure in TD3 [24] and DDPG [25], whereas we replace
the optimization domain from the policy parameter space to the observation space Bϵ

p(s).

We use the gradient of the state-action value function Q(s, a) to provide the direction to update states
adversarially in K steps (Q = Qπ

r for MR and Q = Qπ
c for MC):

sk+1 = Proj[sk − η∇skQ(s0, π(sk))], k = 0, . . . ,K − 1 (69)

where Proj[·] is a projection to Bϵ
p(s

0), η is the learning rate, and s0 is the state under attack. Note
that we use the gradient of Q(s0, π(sk)) rather than Q(sk, π(sk)) to make the optimization more
stable, since the Q function may not generalize well to unseen states in practice. The implementation
of MC and MR attacker is shown in algorithm 1.

Algorithm 1 MC and MR attacker
Input: A policy π under attack, corresponding Q networks, initial state s0, attack steps K, attacker
learning rate η, perturbation range ϵ, two thresholds ϵQ and ϵs for early stopping
Output: An adversarial state s̃

1: for k = 1 to K do
2: gk =∇sk−1Q(s0, π(s

k−1))
3: sk ← Proj[sk−1 − ηgk]
4: Compute δQ = |Q(s0, π(s

k))−Q(s0, π(s
k−1))| and δs = |sk − sk−1|

5: if δQ < ϵQ and δs < ϵs then
6: break for early stopping
7: end if
8: end for

C.2 PPO-Lagrangian algorithm

The objective of PPO (clipped) has the form [26]:

ℓppo = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)Aπθk (s, a)) (70)

We use PID Lagrangian [3] that addresses the oscillation and overshoot problem in Lagrangian
methods. The loss of the PPO-Lagrangian has the form:

ℓppol =
1

1 + λ
(ℓppo + V π

r − λV π
c ) (71)

The Lagrangian multiplier λ is computed by applying feedback control to V π
c and is determined by

KP , KI , and KD that need to be fine-tuned.
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C.3 Adversarial training practical implementation

Algorithm 2 Adversarial safe RL training meta algorithm
Input: Safe RL learner, Adversary scheduler
Output: Observational robust policy π

1: Initialize policy π ∈ Π and adversary ν : S −→ S
2: for each training epoch n = 1, ..., N do
3: Rollout trajectories: τ̃ = {s0, ã0, ...}T , ãt ∼ π(a|ν(st))
4: Run safe RL learner: π ←− learner(τ̃ ,Π)
5: Update adversary: ν ←− scheduler(τ̃ , π, n)
6: end for

Due to the page limit, we omit some implementation details in the main content. The meta adversarial
training algorithm is shown in Algo. 2. We particularly adopt the primal-dual methods [2, 3] that are
widely used in the safe RL literature as the learner, then the adversarial training objective can be
converted to a min-max form by using the Lagrange multiplier λ:

(π∗, λ∗) = min
λ≥0

max
π∈Π

V π◦ν
r (µ0)− λ(V π◦ν

c (µ0)− κ) (72)

Solving the inner maximization (primal update) via any policy optimization methods and the outer
minimization (dual update) via gradient descent iteratively yields the Lagrangian algorithm. Under
proper learning rates and bounded noise assumptions, the iterates (πn, λn) converge to a fixed point
(a local minimum) almost surely [27, 28].

Based on previous theoretical analysis, we adopt MC or MR as the adversary when sampling
trajectories. The scheduler function aims to train the reward and cost Q-value functions for the
MR and the MC attackers, because many on-policy algorithms such as PPO do not provide them. In
addition, the scheduler can update the adversary’s power based on the learning progress accordingly,
since a strong adversary at the beginning may prohibit the learner from exploring the environment
and thus corrupt the training. We gradually increase the perturbation range ϵ along with the training
epochs to adjust the adversary perturbation set Bϵ

p, such that the agent will not be too conservative in
the early stage of training. A similar idea is also used in adversarial training [29–31] and curriculum
learning literature [32, 33].

We then present the full algorithm and some implementation tricks in the following. Without
otherwise statements, the critics’ and policies’ parameterization is assumed to be neural networks
(NN), while we believe other parameterization forms should also work well.

Critics update. Denote ϕr as the parameters for the task reward critic Qr, and ϕc as the parameters
for the constraint violation cost critic Qc. Similar to many other off-policy algorithms [25], we
use a target network for each critic and the polyak smoothing trick to stabilize the training. Other
off-policy critics training methods, such as Re-trace [34], could also be easily incorporated with
PPO-Lagrangian training framework. Denote ϕ′

r as the parameters for the target reward critic Q′
r,

and ϕ′
c as the parameters for the target cost critic Q′

c. Define D as the replay buffer and (s, a, s′, r, c)
as the state, action, next state, reward, and cost respectively. The critics are updated by minimizing
the following mean-squared Bellman error (MSBE):

ℓ(ϕr) = E(s,a,s′,r,c)∼D

[
(Qr(s, a)− (r + γEa′∼π[Q

′
r(s

′, a′)]))
2
]

(73)

ℓ(ϕc) = E(s,a,s′,r,c)∼D

[
(Qc(s, a)− (c+ γEa′∼π[Q

′
c(s

′, a′)]))
2
]
. (74)

Denote αc as the critics’ learning rate, we have the following updating equations:

ϕr ←− ϕr − αc∇ϕr
ℓ(ϕr) (75)

ϕc ←− ϕc − αc∇ϕc
ℓ(ϕc) (76)

Note that the original PPO-Lagrangian algorithm is an on-policy algorithm, which doesn’t require the
reward critic and cost critic to train the policy. We learn the critics because the MC and MR attackers
require them, which is an essential module for adversarial training.
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Polyak averaging for the target networks. The polyak averaging is specified by a weight parameter
ρ ∈ (0, 1) and updates the parameters with:

ϕ′
r = ρϕ′

r + (1− ρ)ϕr

ϕ′
c = ρϕ′

c + (1− ρ)ϕc

θ′ = ρθ′ + (1− ρ)θ.

(77)

The critic’s training tricks are widely adopted in many off-policy RL algorithms, such as SAC, DDPG
and TD3. We observe that the critics trained with those implementation tricks work well in practice.
Then we present the full Robust PPO-Lagrangian algorithm:

Algorithm 3 Robust PPO-Lagrangian Algorithm
Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppol(s, πθ, r, c), adversary
function ν(s), policy parameter θ, critic parameter ϕr and ϕc, target critic parameter ϕ′

r and ϕ′
c

Output: policy πθ

1: Initialize policy parameters and critics parameters
2: for each training iteration do
3: Rollout T trajectories by πθ ◦ ν from the environment {(ν(s), ν(a), ν(s′), r, c)}N
4: ▷ Update learner
5: for Optimization steps m = 1, ...,M do
6: ▷ No KL regularizer!
7: Compute PPO-Lag loss ℓppol(s̃, πθ, r, c) by Eq. (71)
8: Update actor θ ←− θ − α∇θℓppo
9: end for

10: Update value function based on samples {(s, a, s′, r, c)}N
11: ▷ Update adversary
12: Update critics Qc and Qr by Eq. (75) and Eq. (76)
13: Polyak averaging target networks by Eq. (77)
14: Update adversary based on Qc and Qr

15: end for

C.4 Attacker baselines

Maximum Action Difference (MAD) attacker baseline. The MAD attacker is designed for standard
RL tasks [11], which is shown to be effective in decreasing a trained RL agent’s reward return; The
optimal adversarial observation is obtained by maximizing the KL-divergence between the corrupted
policy: νMAD(s) = argmaxs̃∈Bϵ

p(s)
DKL [π(a|s̃)∥π(a|s)]

Adaptive MAD (AMAD) attacker baseline. Since the vanilla MAD attacker is not designed
for safe RL, we further improve it to an adaptive version as a stronger baseline. The motivation
comes from Lemma 2 – the optimal policy will be close to the constraint boundary that with high
risks. To better understand this property, we introduce the discounted future state distribution
dπ(s) [35], which allows us to rewrite the result in Lemma 2 as (see Appendix C.4 for derivation and
implementation details): 1

1−γ

∫
s∈S dπ

∗
(s)
∫
a∈A π∗(a|s)

∫
s′∈S p(s′|s, a)c(s, a, s′)ds′dads = κ. We

can see that performing MAD attack for the optimal policy π∗ in low-risk regions that with small
p(s′|s, a)c(s, a, s′) values may not be effective. Therefore, AMAD only perturbs the observation
when the agent is within high-risk regions that are determined by the cost value function and a

threshold ξ to achieve more effective attacks: νAMAD(s) :=

{
νMAD(s), if V π

c (s) ≥ ξ,

s, otherwise .

The full algorithm of MAD attacker is presented in algorithm 4. We use the same SGLD optimizer as
in [11] to maximize the KL-divergence. The objective of the MAD attacker is defined as:

ℓMAD(s) = −DKL[π(·|s0)||πθ(·|s)] (78)

Note that we back-propagate the gradient from the corrupted state s instead of the original state s0 to
the policy parameters θ. The full algorithm is shown below:
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Algorithm 4 MAD attacker
Input: A policy π under attack, corresponding Q(s, a) network, initial state s0, attack steps K,
attacker learning rate η, the (inverse) temperature parameter for SGLD β, two thresholds ϵQ and ϵs
for early stopping
Output: An adversarial state s̃

1: for k = 1 to K do
2: Sample υ ∼ N (0, 1)

3: gk = ∇ℓMAD(st−1) +
√

2
βηυ

4: sk ← Proj[sk−1 − ηgk]
5: Compute δQ = |Q(s0, π(s

k))−Q(s0, π(s
k−1))| and δs = |sk − sk−1|

6: if δQ < ϵQ and δs < ϵs then
7: break for early stopping
8: end if
9: end for

To motivate the design of AMAD baseline, we denote Pπ(s′|s) =
∫
p(s′|s, a)π(a|s)da as the state

transition kernel and pπt (s) = p(st = s|π) as the probability of visiting the state s at the time t under
the policy π, where pπt (s

′) =
∫
Pπ(s′|s)pπt−1(s)ds. Then the discounted future state distribution

dπ(s) is defined as [35]:

dπ(s) = (1− γ)

∞∑
t=0

γtpπt (s),

which allows us to represent the value functions compactly:

V π
f (µ0) =

1

1− γ
Es∼dπ,a∼π,s′∼p[f(s, a, s

′)]

=
1

1− γ

∫
s∈S

dπ(s)

∫
a∈A

π(a|s)
∫
s′∈S

p(s′|s, a)f(s, a, s′)ds′dads, f ∈ {r, c}
(79)

Based on Lemma 2, the optimal policy π∗ in a tempting safe RL setting satisfies:

1

1− γ

∫
s∈S

dπ
∗
(s)

∫
a∈A

π∗(a|s)
∫
s′∈S

p(s′|s, a)c(s, a, s′)ds′dads = κ. (80)

We can see that performing MAD attack in low-risk regions that with small p(s′|s, a)c(s, a, s′)
values may not be effective – the agent may not even be close to the safety boundary. On the other
hand, perturbing π when p(s′|s, a)c(s, a, s′) is large may have higher chance to result in constraint
violations. Therefore, we improve the MAD to the Adaptive MAD attacker, which will only attack
the agent in high-risk regions (determined by the cost value function and a threshold ξ).

The implementation of AMAD is shown in algorithm 5. Given a batch of states {s}N , we compute
the cost values {V π

c (s)}N and sort them in ascending order. Then we select certain percentile of
{V π

c (s)}N as the threshold ξ and attack the states that have higher cost value than ξ.

Algorithm 5 AMAD attacker
Input: a batch of states {s}N , threshold ξ, a policy π under attack, corresponding Q(s, a) network,
initial state s0, attack steps K, attacker learning rate η, the (inverse) temperature parameter for SGLD
β, two thresholds ϵQ and ϵs for early stopping
Output: batch adversarial state s̃

1: Compute batch cost values {V π
c (s)}N

2: ξ ← (1− ξ) percentile of V π
c (s)

3: for the state s that V π
c (s) > ξ do

4: compute adversarial state s̃ by algorithm 4
5: end for
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C.5 SA-PPO-Lagrangian baseline

Algorithm 6 SA-PPO-Lagrangian Algorithm
Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppo(s, πθ, r, c), adversary
function ν(s)
Output: policy πθ

1: Initialize policy parameters and critics parameters
2: for each training iteration do
3: Rollout T trajectories by πθ from the environment {(s, a, s′, r, c)}N
4: Compute adversary states s̃ = ν(s) for the sampled trajectories
5: ▷ Update actors
6: for Optimization steps m = 1, ...,M do
7: Compute KL robustness regularizer L̃KL = DKL(π(s)∥πθ(s̃)), no gradient from π(s)
8: Compute PPO-Lag loss ℓppol(s, πθ, r, c) by Eq. (71)
9: Combine them together with a weight β: ℓ = ℓppol(s, πθ, r, c) + βℓ̃KL

10: Update actor θ ←− θ − α∇θℓ
11: end for
12: ▷ Update critics
13: Update value function based on samples {(s, a, s′, r, c)}N
14: end for

The SA-PPO-Lagrangian algorithm adds an additional KL robustness regularizer to robustify the
training policy. Choosing different adversaries ν yields different baseline algorithms. The original
SA-PPOL [11] method adopts the MAD attacker, while we conduct ablation studies by using the MR
attacker and the MC attacker, which yields the SA-PPOL(MR) and the SA-PPOL(MC) baselines
respectively.

C.6 Environment description

The simulation environments are from a public available benchmark [20]. We consider two tasks,
and train multiple different robots (Car, Drone, Ant) for each task:

Run task. Agents are rewarded for running fast between two safety boundaries and are given costs for
violation constraints if they run across the boundaries or exceed an agent-specific velocity threshold.
The tempting policies can violate the velocity constraint to obtain more rewards.

Circle task. The agents are rewarded for running in a circle in a clockwise direction but are
constrained to stay within a safe region that is smaller than the radius of the target circle. The
tempting policies in this task will leave the safe region to gain more rewards.

We name each task via the Robot-Task format, for instance, Car-Run. More detailed descriptions
and video demos are available on our anonymous project website 2.

In the Circle tasks, the goal is for an agent to move along the circumference of a circle while remaining
within a safety region smaller than the radius of the circle. The reward and cost functions are defined
as:

r(s) =
−yvx + xvy

1 + |
√

x2 + y2 − r|
+ rrobot(s)

c(s) = 1(|x| > xlim)

where x, y are the position of the agent on the plane, vx, vy are the velocities of the agent along the
x and y directions, r is the radius of the circle, and xlim specified the range of the safety region,
rrobot(s) is the specific reward for different robot. For example, an ant robot will gain reward if its
feet do not collide with each other. In the Run tasks, the goal for an agent is to move as far as possible

2https://sites.google.com/view/robustsaferl/home
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within the safety region and the speed limit. The reward and cost functions are defined as:

r(s) =
√

(xt−1 − gx)2 + (yt−1 − gy)2 −
√
(xt − gx)2 + (yt − gy)2 + rrobot(s)

c(s) = 1(|y| > ylim) + 1(
√
v2x + v2y > vlim)

where vlim is the speed limit and gx and gy is the position of a fictitious target. The reward is the
difference between current distance to the target and the distance in the last timestamp.

C.7 Hyper-parameters

In all experiments, we use Gaussian policies with mean vectors given as the outputs of neural
networks, and with variances that are separate learnable parameters. The policy networks and Q
networks for all experiments have two hidden layers of sizes (256, 256) with ReLU activation
functions. We use a discount factor of γ = 0.995, a GAE-λ for estimating the regular advantages
of λGAE = 0.97, a KL-divergence step size of δKL = 0.01, a clipping coefficient of 0.02. The
PID parameters for the Lagrange multiplier are: Kp = 0.1, KI = 0.003, and KD = 0.001. The
learning rate of the adversarial attackers: MAD, AMAD, MC, and MR is 0.05. The optimization
steps of MAD and AMAD is 60 and 200 for MC and MR attacker. The threshold ξ for AMAD is
0.1. The complete hyperparameters used in the experiments are shown in Table 2. We choose larger
perturbation range for the Car robot-related tasks because they are simpler and easier to train.

Table 2: Hyperparameters for all the environments
Parameter Car-Run Dron-Run Ant-Run Car-Circle Dron-Circle Ant-Circle

training epoch 100 250 250 500 500 1000
batch size 10000 20000 20000 15000 15000 30000

minibatch size 300 300 300 300 300 300
rollout length 200 100 200 300 300 300

cost limit 5 5 5 5 5 5
perturbation ϵ 0.05 0.025 0.025 0.05 0.025 0.025

actor optimization step M 80 80 80 80 80 160
actor learning rate 0.0003 0.0002 0.0005 0.0003 0.0003 0.0005
critic learning rate 0.001 0.001 0.001 0.001 0.001 0.001

C.8 More experiment results

All the experiments are performed on a server with AMD EPYC 7713 64-Core Processor CPU.
For each experiment, we use 4 CPUs to train each agent that is implemented by PyTorch, and the
training time varies from 4 hours (Car-Run) to 3 days (Ant-Circle). Video demos are available at:
https://sites.google.com/view/robustsaferl/home

Here we evaluate the performance of MAD and AMAD adversaries by attacking well-trained PPO-
Lagrangian policies in Car-Run and Ant-Run task. We keep the policies’ model weights fixed for
all the attackers for fair comparison. The comparison is shown in Fig. 3. We vary the attacking
fraction (determined by ξ) to thoroughly study the effectiveness of the AMAD attacker. We can see
that AMAD attacker is more effective because the cost increases significantly with the increase in
perturbation, while the reward is maintained well. This validates our hypothesis that attacking the
agent in high-risk regions is more effective and stealthy.
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Figure 3: Reward and cost of AMAD and MAD attacker

The evaluation results of different trained policies under adversarial attacks are shown in Table 3 and
the experiment results of trained safe RL policies under the Random and MAD attackers are shown
in Table 4. The last column shows the average rewards and costs over all the 5 attackers (Random,
MAD, AMAD, MC, MR). Our agent (ADV-PPOL) with adversarial training is robust against all the
5 attackers and achieves the lowest cost. We can also see that AMAD attacker is more effective than
MAD since the cost under the AMAD attacker is higher than the cost under the MAD attacker.

Table 3: Evaluation results of natural performance (no attack) and under 3 attackers. Our methods are ADV-
PPOL(MC/MR). Each value is reported as: mean ± standard deviation for 50 episodes and 5 seeds. We shadow
two lowest-costs agents under each attacker column and break ties based on rewards, excluding the failing agents
(whose natural rewards are less than 50% of PPOL-vanilla’s). We mark the failing agents with ⋆.

Natural AMAD MC MREnv Method Reward Cost Reward Cost Reward Cost Reward Cost
PPOL-vanilla 561.33±1.97 0.15±0.36 548.04±17.72 13.49±30.93 624.49±8.87 184.09±0.52 624.46±8.86 184.06±0.47
PPOL-random 556.84±1.87 0.01±0.08 550.66±1.71 1.73±2.05 584.18±2.69 183.79±0.73 585.79±2.01 183.91±0.59

SA-PPOL 545.87±2.13 0.0±0.0 546.95±2.11 0.0±0.0 571.14±1.5 6.44±7.28 571.07±1.33 1.77±3.31
SA-PPOL(MC) 552.58±3.84 0.0±0.0 541.58±3.6 0.0±0.0 568.96±1.92 1.17±2.07 569.6±1.51 0.67±1.24
SA-PPOL(MR) 543.0±1.14 0.0±0.0 537.19±1.47 0.0±0.0 568.32±1.95 16.27±23.2 568.29±2.12 12.23±17.26

ADV-PPOL(MC) 525.76±2.99 0.0±0.0 516.22±3.52 0.0±0.0 555.64±3.44 0.05±0.21 554.48±2.78 0.01±0.08

Car-Run
ϵ = 0.05

ADV-PPOL(MR) 525.93±2.28 0.0±0.0 514.97±2.68 0.0±0.0 557.38±2.83 0.06±0.24 556.87±3.03 0.05±0.22
PPOL-vanilla 347.17±1.53 0.0±0.0 362.18±11.24 35.69±17.74 336.05±9.43 79.0±0.0 345.64±5.22 79.0±0.0
PPOL-random 343.71±1.55 0.0±0.0 361.85±18.03 65.58±22.58 268.28±4.26 0.9±2.28 317.25±40.34 33.66±29.86

SA-PPOL 284.47±32.13 0.0±0.0 306.55±26.44 11.85±18.04 156.97±384.11 61.88±18.49 403.11±163.75 75.73±7.71
⋆ SA-PPOL(MC) 174.61±34.37 0.06±0.73 86.35±56.22 0.0±0.0 205.34±29.57 10.13±10.67 217.51±24.77 8.31±6.05
⋆ SA-PPOL(MR) 0.13±0.22 0.0±0.0 0.11±0.21 0.0±0.0 0.25±0.37 0.0±0.0 0.28±0.43 0.0±0.0
ADV-PPOL(MC) 273.4±16.98 0.0±0.0 268.0±12.0 0.05±0.57 275.0±28.26 1.1±3.17 294.8±23.67 18.11±25.87

Drone-Run
ϵ = 0.025

ADV-PPOL(MR) 233.31±20.68 0.0±0.0 238.0±22.15 0.0±0.0 229.8±68.0 6.81±8.38 238.11±46.17 0.95±1.92
PPOL-vanilla 337.69±152.34 1.8±3.91 274.61±78.92 92.53±39.32 265.61±12.43 69.33±18.91 238.06±101.01 74.47±38.44
PPOL-random 398.71±48.96 0.17±0.9 293.77±105.83 69.97±46.75 307.77±32.95 59.3±26.29 295.2±45.56 49.73±22.98

SA-PPOL 403.92±22.63 0.4±2.15 382.8±20.57 0.37±1.97 361.0±12.96 109.1±6.0 452.98±26.72 89.03±9.13
SA-PPOL(MC) 417.78±17.79 0.33±1.8 314.13±27.73 0.0±0.0 355.12±13.42 98.43±14.52 468.1±14.41 87.5±9.17
SA-PPOL(MR) 389.03±47.53 0.2±1.0 351.49±34.16 0.14±0.69 342.67±39.23 77.9±21.57 414.87±66.09 75.68±20.73

ADV-PPOL(MC) 302.3±12.24 0.1±0.7 296.23±19.02 1.86±5.49 310.37±25.68 1.12±3.98 261.52±24.51 0.28±1.59

Car Circle
ϵ = 0.05

ADV-PPOL(MR) 309.42±35.45 0.0±0.0 321.44±20.52 6.66±10.94 258.52±31.53 0.08±0.56 308.6±54.7 0.16±1.12
PPOL-vanilla 627.49±55.24 0.27±1.12 527.6±171.54 34.5±36.73 228.79±181.92 95.17±59.23 85.79±159.67 174.4±81.58
PPOL-random 604.31±46.83 0.37±1.97 559.2±173.25 27.67±32.66 159.16±184.15 91.5±98.26 130.08±146.67 103.1±92.03

SA-PPOL 503.13±19.89 0.0±0.0 496.34±20.54 0.0±0.0 430.64±89.64 97.57±27.47 346.99±320.08 109.5±78.1
SA-PPOL(MC) 347.43±97.49 8.5±35.32 346.25±41.68 0.0±0.0 329.05±143.47 58.77±34.94 380.53±176.19 78.07±60.05
⋆ SA-PPOL(MR) 184.7±128.7 11.94±43.67 189.76±118.14 15.38±47.38 189.18±142.46 44.62±35.83 219.87±138.35 49.14±52.87
ADV-PPOL(MC) 359.02±33.01 0.0±0.0 351.57±52.5 1.48±6.44 399.78±69.47 4.16±12.57 356.09±90.42 9.66±28.48

Drone Circle
ϵ = 0.025

ADV-PPOL(MR) 356.6±46.91 0.0±0.0 339.04±72.43 5.36±23.08 275.43±95.08 5.66±22.41 379.52±87.22 1.2±6.47
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Table 4: Evaluation results of natural performance (no attack) and under Random and MAD attackers. The
average column shows the average rewards and costs over all 5 attackers (Random, MAD, AMAD, MC, and
MR). Our methods are ADV-PPOL(MC/MR). Each value is reported as: mean ± standard deviation for 50
episodes and 5 seeds. We shadow two lowest-costs agents under each attacker column and break ties based on
rewards, excluding the failing agents (whose natural rewards are less than 50% of PPOL-vanilla’s. We mark the
failing agents with ⋆.

Random MAD AverageEnv Method Reward Cost Reward Cost Reward Cost
PPOL-vanilla 328.34±118.08 20.67±18.65 178.21±81.31 28.27±49.12 280.42±87.0 42.41±13.74
PPOL-random 393.49±43.87 2.17±3.44 272.0±75.21 81.63±43.47 337.16±51.76 37.65±12.91

SA-PPOL(MAD) 397.71±20.87 0.13±0.5 366.64±25.82 0.93±2.73 394.92±15.33 28.57±1.75
SA-PPOL(MC) 383.92±19.5 0.0±0.0 288.28±25.2 0.0±0.0 376.5±7.09 26.61±2.39
SA-PPOL(MR) 370.71±47.18 0.54±1.94 308.8±22.49 0.1±0.7 366.16±37.08 22.08±4.6

ADV-PPOL(MC) 302.61±11.81 0.0±0.0 292.83±23.04 2.22±4.75 295.46±8.04 0.83±1.35

Car-Circle
ϵ = 0.05

ADV-PPOL(MR) 309.81±34.96 0.0±0.0 312.18±15.81 8.76±11.52 304.34±10.29 2.24±3.1
PPOL-vanilla 603.53±85.34 6.5±7.03 469.47±186.11 69.17±38.21 452.41±51.12 54.57±19.34
PPOL-random 585.71±108.76 6.87±33.14 456.66±155.61 58.6±42.59 442.21±44.87 41.21±24.18

SA-PPOL(MAD) 500.49±18.23 0.0±0.0 491.23±25.15 0.23±0.96 467.1±54.85 29.61±12.62
SA-PPOL(MC) 357.65±49.52 0.0±0.0 343.52±50.41 0.47±1.77 352.13±49.02 20.83±10.19
⋆ SA-PPOL(MR) 187.81±129.74 19.18±53.92 180.62±122.42 15.06±41.66 191.66±123.83 23.4±21.63
ADV-PPOL(MC) 359.45±26.63 0.0±0.0 325.92±46.12 4.22±13.82 358.74±35.95 2.79±4.97

Drone-Circle
ϵ = 0.025

ADV-PPOL(MR) 352.77±51.5 0.0±0.0 331.06±63.45 4.4±14.96 341.8±37.13 2.37±6.06
PPOL-vanilla 152.98±21.02 0.9±3.59 157.36±22.76 5.27±10.27 160.93±17.15 17.69±7.0
PPOL-random 159.02±23.93 3.13±8.15 155.34±27.44 2.8±5.47 153.63±13.59 10.56±4.41

SA-PPOL(MAD) 140.21±39.95 4.6±21.18 146.38±34.43 1.47±5.19 152.47±22.08 14.4±8.09
⋆ SA-PPOL(MC) -0.38±1.57 0.0±0.0 -0.73±1.88 0.0±0.0 -0.3±0.8 0.0±0.0
⋆ SA-PPOL(MR) -0.53±2.07 0.0±0.0 -0.89±2.25 0.0±0.0 -0.66±1.09 0.0±0.0
ADV-PPOL(MC) 131.22±18.72 0.3±1.29 132.95±18.85 0.03±0.18 132.55±14.1 1.86±2.51

Ant-Circle
ϵ = 0.025

ADV-PPOL(MR) 126.91±23.59 0.73±2.93 134.82±19.38 1.63±4.37 131.35±13.22 1.02±1.56
PPOL-vanilla 553.61±2.81 19.47±6.19 504.29±9.71 0.49±5.94 567.75±3.38 58.84±4.68
PPOL-random 555.24±1.89 0.92±1.17 542.84±2.2 2.61±2.44 561.68±1.52 53.28±0.49

SA-PPOL(MAD) 545.86±2.11 0.0±0.0 548.11±2.2 0.0±0.0 553.52±1.62 1.17±1.31
SA-PPOL(MC) 540.36±2.83 0.0±0.0 522.8±3.1 0.0±0.0 549.06±2.55 0.26±0.44
SA-PPOL(MR) 539.04±1.31 0.0±0.0 529.38±1.91 0.0±0.0 546.74±1.12 4.07±5.73

ADV-PPOL(MC) 521.85±3.2 0.0±0.0 504.25±4.23 0.0±0.0 528.93±2.74 0.01±0.04

Car-Run
ϵ = 0.05

ADV-PPOL(MR) 522.15±2.31 0.0±0.0 504.16±3.12 0.0±0.0 529.41±2.36 0.02±0.05
PPOL-vanilla 346.59±2.93 17.33±12.63 348.19±33.21 41.96±28.11 347.52±5.44 37.31±5.46
PPOL-random 342.68±3.16 3.72±5.6 269.88±14.33 1.66±8.4 321.03±8.03 15.11±6.72

SA-PPOL(MAD) 306.73±20.71 1.9±4.8 323.19±24.66 29.19±23.81 296.86±53.06 25.79±5.5
⋆ SA-PPOL(MC) 151.69±19.97 0.01±0.16 77.66±49.01 0.0±0.0 155.15±11.8 2.67±2.11
⋆ SA-PPOL(MR) 0.09±0.29 0.0±0.0 0.05±0.28 0.0±0.0 0.15±0.29 0.0±0.0
ADV-PPOL(MC) 277.23±6.89 0.0±0.0 264.26±12.98 0.12±0.69 275.86±9.33 2.77±3.78

Drone-Run
ϵ = 0.025

ADV-PPOL(MR) 235.17±20.24 0.0±0.0 230.04±24.4 0.0±0.0 233.9±25.83 1.11±1.29
PPOL-vanilla 676.14±12.12 1.89±1.77 672.38±12.71 3.59±2.66 678.37±13.99 27.09±5.09
PPOL-random 671.8±14.45 1.52±1.2 667.73±13.6 2.09±1.43 669.79±8.59 14.37±2.12

SA-PPOL(MAD) 659.01±13.66 0.55±0.8 658.28±13.9 0.75±0.98 665.21±9.41 22.52±4.88
SA-PPOL(MC) 575.82±27.89 3.44±3.51 572.12±27.95 3.17±3.47 584.98±25.62 10.06±4.23
⋆ SA-PPOL(MR) 68.46±93.11 5.27±4.46 77.65±79.75 5.17±4.5 77.83±67.63 5.58±4.34
ADV-PPOL(MC) 599.93±18.22 0.0±0.0 597.65±18.61 0.0±0.0 618.73±17.7 0.41±0.24

Ant-Run
ϵ = 0.025

ADV-PPOL(MR) 618.62±25.38 0.31±0.6 615.31±23.5 0.41±0.68 625.14±21.95 1.46±0.74

The experiment results of the maximum-entropy method: SAC-Lagrangian is shown in Table 5.
We evaluated the effect of different entropy regularizers α on the robustness against observational
perturbation. Although the trained agents can achieve almost zero constraint violations in noise-
free environments, they suffer from vulnerability issues under the proposed MC and MR attacks.
Increasing the entropy cannot make the agent more robust against adversarial attacks.

Table 5: Evaluation results of natural performance (no attack) and under MC and MR attackers of
SAC-Lagrangian w.r.t different entropy regularizer α. Each value is reported as: mean ± standard
deviation for 50 episodes and 5 seeds.

Env α
Natural MC MR

Reward Cost Reward Cost Reward Cost

Car-Circle
ϵ = 0.05

0.1 414.43±7.99 1.04±2.07 342.32±17.8 112.53±6.92 328.5±22.06 43.52±18.39
0.01 437.12±9.83 0.94±1.96 309.0±60.72 92.53±22.04 313.58±21.1 35.0±15.59

0.001 437.41±10.0 1.15±2.36 261.1±53.0 65.92±24.37 383.09±50.06 53.92±16.3
0.0001 369.79±130.6 5.23±11.13 276.32±107.11 84.21±35.68 347.85±117.79 52.97±22.4

Car-Run
ϵ = 0.05

0.1 544.77±17.44 0.32±0.71 599.54±10.08 167.77±29.44 591.7±27.82 158.71±51.95
0.01 521.12±23.42 0.19±0.5 549.43±53.71 73.31±54.43 535.99±23.34 21.71±24.25

0.001 516.22±47.14 0.47±0.95 550.29±34.78 90.47±48.81 546.3±54.49 87.25±60.46
0.0001 434.92±136.81 0.0±0.0 446.44±151.74 41.89±44.41 452.29±119.77 15.16±17.7
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The experiment results of FOCOPS [19] is shown in Table 6. We trained FOCOPS without ad-
versarial attackers FOCOPS-vanilla and with our adversarial training methods FOCOPS(MR) and
FOCOPS(MR) under the MC and MR attackers respectively. We can see that the vanilla method
is safe in noise-free environments, however, they are not safe anymore under the proposed adver-
sarial attack. In addition, the adversarial training can help to improve the robustness and make the
FOCOPS agents much safer under strong attacks, which means that our adversarial training method
is generalizable to different safe RL methods.

Table 6: Evaluation results of natural performance (no attack) and under MAD, MC, and MR attackers
of FOCOPS. Each value is reported as: mean ± standard deviation for 50 episodes and 5 seeds.

Env Method
Natural MAD MC MR

Reward Cost Reward Cost Reward Cost Reward Cost

Car-Circle
ϵ = 0.05

FOCOPS-vanilla 304.2±16.91 0.0±0.0 307.08±42.04 19.94±16.05 286.66±53.7 31.25±18.08 382.99±22.86 48.88±14.25
FOCOPS(MC) 268.56±44.79 0.0±0.0 256.05±45.26 0.0±0.0 284.93±45.84 0.97±2.99 267.37±49.75 0.64±1.92
FOCOPS(MR) 305.91±18.16 0.0±0.0 295.86±20.02 0.04±0.4 264.33±25.76 1.64±3.62 308.62±26.33 0.82±1.98

Car-Run
ϵ = 0.05

FOCOPS-vanilla 509.47±11.7 0.0±0.0 494.74±11.75 0.95±1.32 540.23±12.56 27.0±17.61 539.85±11.85 25.1±17.29
FOCOPS(MC) 473.47±5.89 0.0±0.0 460.79±7.76 0.0±0.0 495.54±9.83 0.45±1.15 497.24±6.6 0.62±1.23
FOCOPS(MR) 486.98±5.53 0.0±0.0 434.96±19.79 0.0±0.0 488.24±23.98 0.62±1.1 488.58±24.65 0.52±0.9

The experiment results of trained safe RL policies under the mixture of MC and MR attackers are
shown in Figure 4 and some detailed results are shown in Table 7. The mixed attacker is computed
as the linear combination of MC and MR, namely, w ×MC + (1− w)×MR, where w ∈ [0, 1] is
the weight. Our agent (ADV-PPOL) with adversarial training is robust against the mixture attacker.
However, there is no obvious trend to show which weight performs the best attack. In addition, we
believe the performance in practice is heavily dependent on the quality of the learned reward and
cost Q functions. If the reward Q function is learned to be more robust and accurate than the cost Q
function, then giving larger weight to the reward Q should achieve better results, and vice versa.

Figure 4: Reward and cost of mixture attackers of MC and MR

Table 7: Evaluation results under different ratio of MC and MR attackers of PPOL. Each value is
reported as: mean ± standard deviation for 50 episodes and 5 seeds.

Env Method
MC:MR=3:1 MC:MR=1:1 MC:MR=1:3

Reward Cost Reward Cost Reward Cost

Car-Circle
ϵ = 0.05

PPOL-vanilla 247.75±92.34 84.68±40.6 253.11±96.46 78.25±35.53 241.91±98.26 75.22±38.55
ADV-PPOL(MC) 268.6±26.79 0.7±3.13 261.98±26.12 0.18±1.27 262.14±23.26 0.77±3.83
ADV-PPOL(MR) 307.76±58.0 0.08±0.8 306.8±56.03 0.39±2.54 308.17±57.43 0.6±3.5

Car-Run
ϵ = 0.05

PPOL-vanilla 624.3±8.55 183.95±0.43 624.68±8.85 184.22±0.45 624.54±8.89 184.03±0.41
ADV-PPOL(MC) 555.45±3.37 0.03±0.18 555.64±3.47 0.02±0.13 555.22±3.09 0.0±0.0
ADV-PPOL(MR) 557.05±3.06 0.02±0.13 557.07±3.05 0.08±0.28 556.9±2.96 0.08±0.28

The experiments for the minimizing reward attack for our method are shown in Table 8. We can
see that the minimizing reward attack does not have an effect on the cost since it remains below the
constraint violation threshold. Besides, we adopted one SOTA attack method (MAD) in standard RL
as a baseline, and improve it (AMAD) in the safe RL setting. The results, however, demonstrate that
they do not perform well. As a result, it does not necessarily mean that the attacking methods and
robust training methods in standard RL settings still perform well in the safe RL setting.
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Table 8: Evaluation results under Minimum Reward attacker. Each value is reported as: mean ±
standard deviation for 50 episodes and 5 seeds.

Method Car-Run
ϵ = 0.05

Drone-Run
ϵ = 0.025

Ant-Run
ϵ = 0.025

Ant-Circle
ϵ = 0.025

PPOL-vanilla Reward 496.65±9.38 265.06±3.23 498.42±98.93 67.9±27.17
Cost 0.0±0.0 0.0±0.0 0.03±0.18 1.17±4.52

ADV-PPOL(MC) Reward 491.95±4.05 211.16±32.02 548.0±15.27 86.26±27.07
Cost 0.0±0.0 0.4±1.5 0.0±0.0 0.0±0.0

ADV-PPOL(MR) Reward 491.48±2.96 214.25±17.23 524.24±65.39 87.24±37.51
Cost 0.0±0.0 1.1±3.14 0.0±0.0 1.4±4.59

Table 9: Evaluation results of natural performance (no attack) and under MAD, MC, and MR attackers
of CVPO. Each value is reported as: mean ± standard deviation for 50 episodes and 5 seeds.

Env
Natural MAD MC MR

Reward Cost Reward Cost Reward Cost Reward Cost
Car-Circle
ϵ = 0.05

412.17±13.02 0.02±0.13 236.93±72.79 49.32±34.01 310.64±37.37 98.03±25.53 329.68±77.66 51.52±24.65

Car-Run
ϵ = 0.05

530.04±1.61 0.02±0.16 481.53±17.43 2.55±3.11 537.51±8.7 23.18±16.26 533.52±2.87 14.42±6.77

The experiments results of CVPO [5] is shown in Table 9. We can that the vanilla version is not
robust against adversarial attackers since the cost is much larger after being attacked. Based on the
conducted experiments of SAC-Lagrangian, FOCOPS, and CVPO, we can conclude that the vanilla
version of them all suffer from vulnerability issues: though they are safe in noise-free environments,
they are no longer safe under strong MC and MR attacks, which validate that our proposed methods
and theories could be applied to a general safe RL setting.
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