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Abstract

We present an algorithm for the empirical group distributionally robust (GDR) least squares prob-
lem. Given m groups, a parameter vector in Rd, and stacked design matrices and responses A and b,
our algorithm obtains a (1+ε)-multiplicative optimal solution using Õ(min(rank(A),m)1/3ε−2/3)
linear system solves of matrices of the form A⊤BA for block-diagonal B. Our technical methods
follow from a recent technique that relates the empirical GDR problem to a carefully chosen least
squares problem and an application of ball-oracle acceleration. For moderate accuracy regimes, our
algorithm improves over all known interior point methods and matches the state-of-the-art guaran-
tees for the special case of ℓ∞ regression.

1. Introduction

Machine learning algorithms and their training datasets have grown tremendously in the past decade,
both in size and complexity. This increased model complexity has made it more challenging to in-
terpret and predict their behavior in unobserved scenarios. Hence, many applications that involve
societal decisions still rely on simple, interpretable models like linear regression (often after some
feature engineering). Examples of such applications are predicting housing prices across cities,
estimating wages across industries, forecasting loan amounts across banks, predicting life insur-
ance premiums for different groups, and projecting energy consumption in various communities
[SVWZ24].

A shared safety and sometimes legal concern across the above applications is the potential for unfair
outcomes, i.e., outputting a notably worse model for some disadvantaged groups. Specifically,
consider fitting a linear model x ∈ Rd to make predictions on some task over n groups where
group i’s dataset consisting of ni entries is denoted by Si = {(aj

i , b
j
i )}j∈[ni]. The utilitarian or the

social-cost-minimizing objective minimizes the weighted prediction error across groups, i.e.,

min
x∈Rd

1∑
j∈[m] nj

∑
i∈[m]

ni ·
(

1

ni
∥ASix− bSi∥

2
2

)
, (1.1)

where ASi
:= [ai

i . . .a
ni
i ]⊤ ∈ Rni×d is the feature matrix and bSi

:= [b1i . . . b
ni
i ]⊤ ∈ Rni is the

label vector for group i ∈ [m]. Note that the objective (1.1) is equivalent to ignoring any group
differences and combining all the datasets into a single large data set of size n :=

∑
j∈[M ] nj . In

particular, denoting the concatenation of all feature matrices by A := [A⊤
S1

. . .A⊤
SM

]⊤ and of all
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the label vectors by b := [b⊤S1
. . . b⊤SM

]⊤, we get the following equivalent problem to (1.1),

min
x∈Rd

1

n
∥Ax− b∥22 =

1

n

∑
i∈[m],j∈[ni]

(〈
aj
i ,x
〉
− bji

)2
. (1.2)

Due to an imbalance in dataset sizes across groups or the presence of outlier behavior in some
groups, the solution obtained by optimizing objective (1.1) might be unfair to some groups. Specif-
ically, the prediction error might be disproportionately higher for those groups. To overcome these
limitations, the following egalitarian or group Distributionally Robust Optimization (DRO) objec-
tive has been considered in several recent works [BDDMR13; DGN16; SKHL19; LCDS20; SGJ22;
AAKMRZ22; SVWZ24],

min
x∈Rd

max
i∈[m]

1

ni
∥ASix− bSi∥

2
2 . (1.3)

Objective (1.3) is the “fairest" objective among all objectives that balance utility and fairness
by adding group fairness constraints across demographic groups [KLMR18; CR18; ANSS22;
CGSB22; RVFRWYT19], as it optimizes for the worst possible group’s utility [GNPS24].

In this paper, we give a new algorithm to approximately optimize (1.3). We will be interested in
finding x̂ ∈ Rd such that

max
i∈[m]

1

ni
∥ASix̂− bSi∥2 ≤ (1 + ε) min

x∈Rd
max
i∈[m]

1

ni
∥ASix− bSi∥2 , (1.4)

for some pre-specified multiplicative-accuracy ε > 0. Since (1.3) is a convex problem, it is natural
to apply standard black-box optimization techniques to solve the problem. However, we identify
several challenges in applying existing methods:

• Efficient first-order algorithms have geometry-dependent rates. To our knowledge,
using an efficient first-order method (such as sub-gradient descent) will incur a geometry-
dependent runtime. In particular, if the matrices ASi or if the stacked matrix A ∈ Rn×d are
poorly conditioned, then this will be reflected accordingly in the convergence rates. This is a
drawback of the existing results by Abernethy, Awasthi, Kleindessner, Morgenstern, Russell,
and Zhang [AAKMRZ22] and Song, Vakilian, Woodruff, and Zhou [SVWZ24].

• The objective is not smooth. As written, objective (1.3) may not be smooth. Since the
objective is the pointwise maximum of several continuous functions, the derivative is not well-
defined at the points at which the maximizing function changes. Thus, applying subgradient
descent to this objective without a customized analysis will result in a rather unimpressive
1/ε2 dependence in the iteration complexity.

• Min-max optimization approaches have a 1/ε2 dependence on iteration complexity.
Since problem 1.3 is a min-max optimization objective, it is also natural to try to use game
theory-inspired approaches that use some oracle (such as gradients) for each group as a black
box. Perhaps the most basic such algorithm is casting objective (1.3) as a repeated game
between a min player (equipped with a no-regret algorithm) and a max player (equipped with
the best response oracle). There are two shortcomings to this approach: first, the guarantee
is inherently weaker than (1.3) as the min player must randomize to get low regret (thus
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the output x̂ is random); second even though the function for each group is smooth, the
iteration complexity (to get ε average regret) for smooth online convex optimization still
has an unimpressive 1/ε2 dependence (as opposed to 1/ε for smooth convex optimization).
Thus, this approach is no better than directly applying sub-gradient descent to objective (1.3).
Several works have built upon this idea [SGJ22; ZZZYZ24].

• Interior point methods have a poor iteration complexity for large m. Another natu-
ral approach (that can partially address the previous two issues), following the discussion by
Boyd and Vandenberghe [BV04, Section 6.4], is to rewrite the problem (1.3) in its epigraph
form and use an interior point method (IPM) to solve the resulting problem (which is, in this
case, a quadratically constrained linear program). Unfortunately, this will give an algorithm
whose analysis is only known to yield an iteration complexity of O(

√
m), where each itera-

tion solves a linear system in matrices of the form A⊤BA for a block-diagonal B. A naïve
implementation of this algorithm will, therefore, have a superlinear runtime in the number of
groups, which is undesirable when the number of groups is large. Furthermore, note that (1.3)
is not a linear program when at least one group i is such that ni > 1. So, we cannot immedi-
ately apply recent advances in linear programming that get iteration complexities independent
of the number of constraints [LS19].

Hence, designing an algorithm without these shortcomings requires novel ideas.

2. Our results

Our main result is an algorithm for optimizing (1.3) up to the guarantee (1.4) that overcomes all of
the difficulties mentioned in the previous section. We state our guarantee in the following theorem.

Theorem 1. Let AS1 , . . . ,ASm be such that ASi ∈ Rni×d and let bS1 , . . . , bSm be such that
bSi ∈ R|Si|. Let A ∈ R(

∑m
i=1 ni)×d and b ∈ R

∑m
i=1 ni be formed by stacking the ASi and bSi . Let

ε > 0, then there exists an algorithm (Algorithm 1) that returns x̂ satisfying (1.4) and runs in

O

min (rank(A),m)1/3
(
log (n logm/ε)14/3 + log (m)

)
ε2/3


linear system solves in matrices of the form A⊤BA, where B is a block-diagonal matrix where
each block has size |Si| × |Si|.

We compare the guarantee of Theorem 1 against those of the other black-box methods that we
are aware of in Table 1. From this, we see that unlike the mentioned first-order methods, our
algorithm does not have any geometry-dependent terms. Additionally, our algorithm improves over
the standard log-barrier IPM when the desired accuracy ε ≥ m−1/4 – this improvement is more
pronounced when m ≫ rank (A), which is the case in which the number of data sources is much
larger than the dimension of the parameter vector x. Additionally, for ε ≥ rank (A)−1/4, our
guarantee matches the best known guarantee for ℓ∞ regression [LS19; JLS22].
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Algorithm Iteration Complexity Each Iteration

Subgradient Descent ∥x⋆∥2 max1≤i≤m∥ASi∥op

ε2
Evaluate ∇f(x)

Nesterov Acceleration
on Smoothened Objective

∥x⋆∥2
(
max1≤i≤m∥ASi∥op

)1/2

ε
Evaluate ∇f̃β,δ(x)

[AAKMRZ22] ∥x⋆∥2 max1≤i≤m∥ASi∥op

ε
Evaluate ∇f̃β,δ(x)

Interior Point with
Log-Barrier [BV04] m1/2 log

(
1
ε

)
Linear system solve in A⊤BA

Naïve application of
[CJJJLST20]

m1/3

ε2/3
Linear system solve in A⊤BA

ℓ∞ Regression with
Lewis Weights [JLS22]

rank(A)1/3

ε2/3
Linear system solve in A⊤DA

ℓ∞ Regression
with IPM [LS19] rank (A)1/2 log

(
1
ε

)
Linear system solve in A⊤DA

This Paper (Theorem 1) min(rank(A),m)1/3

ε2/3
Linear system solve in A⊤BA

Table 1: Here, we list the complexities of algorithms for optimizing (1.3) or for ℓ∞ regression,
assuming OPT = 1 (the first three guarantees are additive approximations) and ignoring
polylog(n,m) terms. We write D to be a diagonal matrix and B to be a block-diagonal
matrix where each block has size |Si| × |Si| + O(|Si|). To explain why we describe the
second-order method results in terms of linear system solve complexity, see the discussion
in [JLS22, Section 1.2]. We remark that in the special case where |Si| = 1, our algorithm
exactly recovers that of [JLS22].

3. Our algorithm and technical overview

For the rest of the paper, for c ∈ Rd, let f(x) := max1≤i≤m ∥ASix− bSi∥2 (we drop the scalings
ni as they can simply be folded into ASi and bSi).

Without loss of generality (by rescaling), let OPT ≥ 1, where OPT := minx∈Rd f(x). So, it is
enough to get an ε-additive optimal solution x̂.

Our algorithm (Algorithm 1) and analysis use the ball oracle acceleration framework of Carmon,
Jambulapati, Jiang, Jin, Lee, Sidford, and Tian [CJJJLST20], which itself exploits an acceleration
framework due to Monteiro and Svaiter [MS13]. At a high level, the ball oracle acceleration frame-
work breaks the problem of optimizing a smooth convex function f into subproblems of the form

argmin
∥x−x∥M≤r

f(x), (3.1)

where ∥x∥M :=
√
x⊤Mx for positive semidefinite M. The main result of [CJJJLST20] is that

if we can identify M for which we can implement an approximate solver for (3.1) (called a “ball
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optimization oracle”) and for which we can identify an initialization x0 with f(x0)− f(x⋆) ≤ ε0,
then we can optimize f up to ε additive accuracy in Õ

(
(∥x⋆ − x0∥M /r)2/3 log (ε0/ε)

)
calls to

the ball oracle.

To apply this result in this form, we need to choose M and some surrogate objective f̃ so that:

1. The approximation error
∥∥∥f̃ − f

∥∥∥
∞

is small;

2. The surrogate objective f̃ is smooth in ∥·∥M;

3. We can find an initialization x0 that witnesses both a small ∥x⋆ − x0∥M and f̃(x0)− f̃(x⋆);

4. With an appropriate choice of r, the ball oracle subproblems (3.1) (but using the surrogate f̃
in place of f ) can be implemented efficiently.

To smoothen f(x), we consider the family of objectives parameterized by β, δ

f̃β,δ(x) := β log

 m∑
i=1

exp


√

δ2 + ∥ASix− bSi∥
2
2 − δ

β

 .

It is straightforward to show that for all x ∈ Rd,
∣∣∣f̃β,δ(x)− f(x)

∣∣∣ ≤ β logm + δ, so setting

β = ε/4 logm and δ = ε/4, it is sufficient to optimize f̃β,δ up to ε/2 additive error to get an
ε-additive suboptimal solution to our original objective. Furthermore, f̃ as written can be shown
to be O(1/β + 1/δ)-smooth in the norm ∥Ax∥G∞

:= max1≤i≤m ∥Ax∥2. This gives us our first
requirement on M – namely, that for all x ∈ Rd, we have ∥Ax∥G∞

≤ ∥x∥M (so that we get that f̃
is smooth in ∥·∥M).

For the next desideratum, it will be enough to let M = A⊤WA for positive diagonal W for which

for all x ∈ Rd : f(x) ≤
∥∥∥W1/2Ax−W1/2b

∥∥∥
2
≤ Cf(x).

Then, setting x0 to the optimal point for the least-squares objective minx0∈Rd

∥∥W1/2Ax0 −W1/2b
∥∥
2
,

we get by optimality that f(x0)− f(x⋆) ≤ C − 1 and ∥x0 − x⋆∥M ≤ 2C.

For the final item, we leverage the analysis of [CJJJLST20], which shows that if f̃ satisfies a higher-
order smoothness condition called quasi self concordance with respect to the norm ∥·∥M, then we
can choose r = Θ̃(ε) and implement (3.1) with low linear system solve iteration complexity. We
prove that f̃ is O(1/β + 1/δ)-quasi self concordant in the norm maxi∈[m] ∥ASix∥2, so once again
we need for all x ∈ Rd that maxi∈[m] ∥ASix∥2 ≤

∥∥M1/2x
∥∥
2
.

At this point, it remains how to choose M = A⊤WA, where W is a positive diagonal matrix.
Choosing W = I yields C =

√
m by relating ℓm2 and ℓm∞ (norms defined over Rm), which gives an

iteration complexity of Õ(m1/3ε−2/3). However, Manoj and Ovsiankin [MO25] give an algorithm
that, with Õ(1) linear system solves in matrices A⊤DA for diagonal D, finds W such that we
get C = O(

√
rank(A)). The resulting weights can be seen as a generalization of Lewis weights,

which have been fundamental in getting tight geometric relationships between subspaces of ℓp and
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ℓ2 [LS19; JLS22] and for various matrix approximation problems [BLM89; MMWY22]. This
choice of W then yields a tighter relationship between a subspace of ∥·∥G∞

and an ℓ2 geometry.

Thus, plugging in this algorithm and C =
√

rank(A) yields a Õ(rank(A)1/3ε−2/3) iteration com-
plexity. Finally, switching based on whether rank(A) ≤ m concludes the proof. We state the full
algorithm in Appendix A.

4. Future work

It would be exciting to see whether one could use inverse maintenance techniques (such as those
of Lee and Sidford [LS19]) to obtain a low amortized runtime for each linear system solution.
Another exciting (but probably challenging) open problem is to design high-accuracy algorithms
for minimizing (1.3) whose iteration complexities are independent of the number of groups m.
For the particular case of ℓ∞ regression, the state-of-the-art follows from [LS19], which gives a√
rank (A)-iteration complexity via a specialized self-concordant barrier construction.
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Appendix A. Full Algorithm

Algorithm 1 MinMaxRegression: optimizes (1.3) to (1 + ε)-multiplicative error
1: Input: Regression problems (AS1 , bS1), . . . , (ASm , bSm), accuracy ε > 0
2: Using [MO25, Algorithm 2] with input [A|b], find nonnegative diagonal W such that for all

x ∈ Rd and c ∈ R,

∥Ax− cb∥G∞
≤
∥∥∥W1/2Ax− cW1/2b

∥∥∥
2
≤
√

2(d+ 1) ∥Ax− cb∥G∞
.

3: Let x0 =
(
A⊤WA

)−1
A⊤Wb. ▷ x0 := argmin

x∈Rd

∥∥W1/2Ax−W1/2b
∥∥
2
.

4: Let

f̃β,δ(x) := β log

 m∑
i=1

exp


√
δ2 + ∥ASix− bSi∥

2
2 − δ

β


▷ A family of smoothenings of the objective.

5: Let f̂(x) := f̃ε/4 logm,ε/4(x) +
ε

1000(d+1)

∥∥W1/2A(x− x0)
∥∥2
2
.

6: Using [CJJJLST20, Algorithm 3], implement a
(
C ·
√

2
d+1 ,

76
ε

)
-ball optimization oracle for f̂ ,

where C is a universal constant.
7: Using [CJJJLST20, Algorithm 2] and the oracle from the previous line, implement a 1

2 -MS
oracle for f̂ .

8: Run [CJJJLST20, Algorithm 1] for Õ(n1/3ε−2/3) iterations using the MS oracle from the pre-
vious line and with initial point x0 and final point x̂.

9: return x̂

Appendix B. Analysis

It may be helpful to refer to the overview in Section 3 for an outline of the analysis of Algorithm 1.
For y ∈ Rn, let ∥y∥G∞

:= max1≤i≤m ∥ySi∥2, where for y ∈ Rn we let ySi refer to the vector in
Rni indexed by the indices in Si. Also, for y ∈ Rm, let lseβ(y) refer to the function

lseβ(y) := β log

(
m∑
i=1

exp

(
yi
β

))
.

At a high level, our algorithm will minimize the function

f̃β,δ(x) := β log

 m∑
i=1

exp


√
δ2 + ∥ASix− bSi∥

2
2 − δ

β


for appropriate choices of the parameters β and δ. This choice of smoothening is natural because of
the following approximation statement – see Lemma B.1.
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Lemma B.1. For all x ∈ Rd, we have∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ β logm+ δ.

Proof of Lemma B.1. These guarantees are well-known, but we prove them anyway for the sake of
self-containment. We first prove that for any v ∈ Rm, we have

max
1≤i≤m

vi ≤ lseβ(v) ≤ max
1≤i≤m

vi + β logm.

In one direction, we have

lseβ(v) ≤ β log

(
m∑
i=1

exp

(
max1≤i≤m vi

β

))
= β logm+ max

1≤i≤m
vi,

and in the other, we have

lseβ(v) ≥ β log

(
exp

(
max1≤i≤m vi

β

))
= max

1≤i≤m
vi.

Next, for v ∈ Rm, we will show that

∥v∥2 − δ ≤
√
δ2 + ∥v∥22 − δ ≤ ∥v∥2 .

Indeed, we have √
δ2 + ∥v∥22 − δ ≤

√
δ2 +

√
∥v∥22 − δ = ∥v∥2 ,

and √
δ2 + ∥v∥22 − δ ≥

√
∥v∥22 − δ = ∥v∥2 − δ.

From this, we get

f̃β,δ(x) ≤ max
1≤i≤m

(√
δ2 + ∥ASix− bSi∥

2
2 − δ

)
+ β logm ≤ ∥Ax− b∥G∞

+ β logm

and

f̃β,δ(x) ≥ β log

(
m∑
i=1

exp

(
∥ASix− bSi∥2 − δ

β

))
≥ ∥Ax− b∥G∞

− δ.

Putting these together gives∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ max (β logm, δ) ≤ β logm+ δ,

completing the proof of Lemma B.1.

Eventually, we will choose β = ε/(4 logm) and δ = ε/4 and then minimize f̃β,δ to ε/2 additive
error. In light of Lemma B.1, this will be enough to get an ε-additive approximation to the optimum
for ∥Ax− b∥G∞

.

The rest of this section is organized as follows. In Appendix B.1, we derive the smoothness results
we need regarding a family of objectives that generalizes f̃β,δ. In Appendix B.2, we specialize
these results to f̃β,δ. Finally, in Appendix B.3, we combine these results with the framework from
[CJJJLST20] to complete the proof of Theorem 1.

10
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B.1. Calculus for LOGSUMEXP

We investigate certain properties of lseβ(y) when each entry [y]i is a function hi(t) for t ∈ R for
all i ∈ [m]. Let h(t) ∈ Rm denote the vector where its ith entry is given by hi(t). We treat each hi
as a one-dimensional restriction of a function gi : Rm → R, so hi(t) = gi(y + td) for center y and
direction d (we omit the parameters y,d in the notation hi as it will be clear from context).

We begin with calculating the first two derivatives of lseβ(h(t)) with respect to t in Lemma B.2.

Lemma B.2. Let λi(t) := exp (hi(t)/β). Then, we have(
d

dt

)
lseβ(h(t)) =

∑m
i=1 (λi(t) · h′i(t))∑m

i=1 λi(t)(
d

dt

)2

lseβ(h(t)) =
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(∑m

i=1 λi(t)h
′
i(t)∑m

i=1 λi(t)

)2
)

+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)
.

Proof of Lemma B.2. The first derivative follows from the chain rule. Indeed, we have

lse′β(h(t)) = β ·
∑m

i=1 λ
′
i(t)∑m

i=1 λi(t)
= β ·

∑m
i=1

(
λi(t) ·

h′
i(t)
β

)
∑m

i=1 λi(t)
=

∑m
i=1 (λi(t) · h′i(t))∑m

i=1 λi(t)
≤ max

i
h′i(t).

For the second derivative, we use the differentiation rule for multiplication and division and the
chain rule, giving

lse′′β(h(t)) =
[(
∑m

i=1 λ
′
i(t)h

′
i(t) + λi(t)h

′′
i (t)) (

∑m
i=1 λi(t))]− 1

β (
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

=

[
1
β

(∑m
i=1 λi(t)h

′
i(t)

2 + βλi(t)h
′′
i (t)

)
(
∑m

i=1 λi(t))
]
− 1

β (
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

=
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

)
+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)
.

This completes the proof of Lemma B.2.

Next, we prove a general fact regarding composing lse with a vector formed by functions that are
themselves quasi self concordant. See Lemma B.3.

Lemma B.3. Let ∥·∥ be an arbitrary norm and h1, . . . , hm be such that for all 1 ≤ i ≤ m and for
all y,d ∈ Rm and t ∈ R,(

d

dt

)
hi(t) ≤ ∥d∥ (Lipschitzness)∣∣∣∣∣

(
d

dt

)3

hi(t)

∣∣∣∣∣ ≤ ν ∥d∥
(

d

dt

)2

hi(t) (quasi self concordance).

Then, for all y,d ∈ Rm and all t ∈ R, we have∣∣∣∣∣
(

d

dt

)3

lseβ(h(t))

∣∣∣∣∣ ≤
(
16

β
+ ν

)
∥d∥

(
d

dt

)2

lseβ(h(t)).

11
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As far as we are aware, this type of composition result was not previously known and may be of
independent interest.

To prove Lemma B.3, we need Lemma B.4.

Lemma B.4. For any two random variables X,Y , we have

Var [XY ] ≤ 2 ∥Y ∥2∞ Var [X] + 2 ∥X∥2∞ Var [Y ] .

Proof of Lemma B.4. The proof follows that of [Gir14], but we reproduce it here for completeness.
First, notice that for random variables U, V , we have

2Var [U ] + 2Var [V ]− Var [U + V ] = Var [U ] + Var [V ]− 2Cov [U, V ] = Var [U − V ] ≥ 0.

Let U = (X − E [X])Y and V = E [X]Y . Then, U + V = XY , and we have

Var [XY ] ≤ 2Var [(X − E [X])Y ] + 2Var [E [X]Y ] = 2Var [(X − E [X])Y ] + 2E [X]2 Var [Y ] .

It remains to bound Var [(X − E [X])Y ]. By Hölder’s inequality, we have

Var [(X − E [X])Y ] ≤ E
[
((X − E [X])Y )2

]
≤ E

[
(X − E [X])2

]
∥Y ∥2∞ = Var [X] ∥Y ∥2∞ .

Combining everything gives us the conclusion of Lemma B.4.

We are now ready to prove Lemma B.3.

Proof of Lemma B.3. Let λi(t) := exp (hi(t)/β).

In this proof, we will encounter many weighted averages of vectors z ∈ Rm of the form∑m
i=1 λi(t)zi∑m
i=1 λi(t)

.

Let D be the distribution over [m] whose entries are given by Dj = λj(t)/
∑m

i=1 λi(t). In the
rest of this proof, all expected values, variances, and covariances will be taken with respect to
this distribution. In an abuse of notation, let h(t) denote the “random” variable that is hi(t) with
probability Di. Define h′(t), h′′(t), h′′′(t) analogously.

To find the third derivative of lseβ(h(t)), we start with its second derivative. By Lemma B.2, it is
given by

lse′′β(h(t)) =
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(∑m

i=1 λi(t)h
′
i(t)∑m

i=1 λi(t)

)2
)

︸ ︷︷ ︸
T1

+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)︸ ︷︷ ︸
T2

=
1

β
Var

[
h′(t)

]
+ E

[
h′′(t)

]
.

We now differentiate the above term by term. First, we have

T ′
2(t) =

∑m
i=1 λi(t)

((
h′
i(t)h

′′
i (t)

β

)
+ h′′′i (t)

)
∑m

i=1 λi(t)
− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t)) (

∑m
i=1 λi(t)h

′′
i (t))

(
∑m

i=1 λi(t))
2

12
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=
1

β

(∑m
i=1 λi(t)h

′
i(t)h

′′
i (t)∑m

i=1 λi(t)
−

(
∑m

i=1 λi(t)h
′
i(t)) (

∑m
i=1 λi(t)h

′′
i (t))

(
∑m

i=1 λi(t))
2

)
+

∑m
i=1 λi(t)h

′′′
i (t)∑m

i=1 λi(t)

=
1

β
Cov

[
h′(t), h′′(t)

]
+ E

[
h′′′(t)

]
.

Next, we have

d

dt
E
[
h′(t)

]2
= 2E

[
h′(t)

]
· d

dt
E
[
h′(t)

]
= 2E

[
h′(t)

]( 1

β
Var

[
h′(t)

]
+ E

[
h′′(t)

])
and

d

dt
E
[
h′(t)2

]
=

(∑m
i=1 λ

′
i(t)h

′
i(t)

2 + 2h′i(t)h
′′
i (t)λi(t)

)
(
∑m

i=1 λi(t))− 1
β (
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=

(∑m
i=1 λ

′
i(t)h

′
i(t)

2 + 2h′i(t)h
′′
i (t)λi(t)

)∑m
i=1 λi(t)

− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=

∑m
i=1 λi(t)

(
h′
i(t)

3

β + 2h′i(t)h
′′
i (t)

)
∑m

i=1 λi(t)
− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=
1

β
Cov

[
h′(t), h′(t)2

]
+ 2E

[
h′(t)h′′(t)

]
.

Combining everything gives us

lse′′′β (h(t))

=
1

β

(
1

β
Cov

[
h′(t), h′(t)2

]
+ 2E

[
h′(t)h′′(t)

]
− 2E

[
h′(t)

]( 1

β
Var

[
h′(t)

]
+ E

[
h′′(t)

]))
+

1

β
Cov

[
h′(t), h′′(t)

]
+ E

[
h′′′(t)

]
=

1

β2
Cov

[
h′(t), h′(t)2

]
− 2

β2
E
[
h′(t)

]
Var

[
h′(t)

]
+

3

β
Cov

[
h′(t), h′′(t)

]
+ E

[
h′′′(t)

]
.

We first analyze the terms that only depend on h′(t). To do so, we use Lemma B.4 to write∣∣Cov [h′(t), h′(t)2]∣∣ ≤√Var [h′(t)]
√
Var [h′(t)2] ≤ 2 ∥d∥Var

[
h′(t)

]
.

Now, we have

1

β2

∣∣Cov [h′(t), h′(t)2]− 2E
[
h′(t)

]
Var

[
h′(t)

]∣∣
≤ 1

β2

∣∣Cov [h′(t), h′(t)2]∣∣+ 2

β2

∣∣E [h′(t)]Var [h′(t)]∣∣
≤ 4

β2
∥d∥Var

[
h′(t)

]
≤ 4

β
∥d∥ lse′′β(h(t)).

13
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Next, we take care of the remaining terms. We have

3

β

∣∣Cov [h′(t), h′′(t)]∣∣+ ∣∣E [h′′′(t)]∣∣ ≤ 6

β

(
max

i
h′i(t)

)
E
[∣∣h′′(t)− E

[
h′′(t)

]∣∣]+ ∣∣E [h′′′(t)]∣∣
≤ 12

β
∥d∥ lse′′β(h(t)) + E

[∣∣h′′′(t)∣∣]
≤ 12

β
∥d∥ lse′′β(h(t)) + ν ∥d∥E

[
h′′(t)

]
≤
(
12

β
+ ν

)
∥d∥ lse′′β(h(t)),

where the penultimate line follows from Lemma B.7. Combining these conclusions yields

∣∣lse′′′β (h(t))∣∣ ≤ (16

β
+ ν

)
∥d∥ lse′′β(h(t)),

completing the proof of Lemma B.3.

B.2. Smoothness and quasi-self concordance of the modified objective

The main result of this subsection is Lemma B.5.

Lemma B.5. Let W be such that for all z ∈ Rd, we have ∥Az∥G∞
≤
∥∥W1/2Az

∥∥
2
. For all

x, z ∈ Rd and t ∈ R, we have(
d

dt

)2

f̃β,δ(x+ tz) ≤
(
1

δ
+

1

β

)∥∥∥W1/2Az
∥∥∥2
2

(smoothness)∣∣∣∣∣
(

d

dt

)3

f̃β,δ(x+ tz)

∣∣∣∣∣ ≤
(
16

δ
+

3

β

)∥∥∥W1/2Az
∥∥∥
2

(
d

dt

)2

f̃β,δ(x+ tz) (quasi self concordance).

Our goal in the rest of this section is to prove Lemma B.5.

We begin with defining hi(t) as (absorb the δ,y,d parameters into the definition of hi)

hi(t) :=

√
δ2 + ∥ySi + tdSi∥

2
2.

Let h(t) denote the vector whose ith entry is hi(t). Then, observe that

lseβ(h(t)) = β log

(
m∑
i=1

exp

(
hi(t)

β

))
= β log

 m∑
i=1

exp


√

δ2 + ∥ySi + tdSi∥
2
2

β

 .

It is easy to see that every one-dimensional restriction of f̃β,δ can be obtained by an affine transfor-
mation of lseβ(h(t)) after appropriate choices of y,d ∈ Rm. Hence, we first analyze lseβ(h(t)) for
all y,d ∈ Rm.

We begin with proving the smoothness of lseβ(h(t)) with respect to ∥·∥G∞
.

14
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Lemma B.6. For all y,d ∈ Rm and all t ∈ R, we have(
d

dt

)2

lseβ(h(t)) ≤
(
1

δ
+

1

β

)
∥d∥2G∞

.

Proof of Lemma B.6. By direct calculation, it is easy to see that

h′i(t) =
⟨ySi + tdSi ,dSi⟩

hi(t)

h′′i (t) =
∥dSi∥

2
2 hi(t)− h′i(t)

2hi(t)

hi(t)2
=

∥dSi∥
2
2 − h′i(t)

2

hi(t)
.

(B.1)

We plug this into the result of Lemma B.2 and get

lse′′β(h(t)) ≤
1

β
max

i
h′i(t)

2 +max
i

h′′i (t)

=
1

β
max

i

 ⟨ySi + tdSi ,dSi⟩√
δ2 + ∥ySi + tdSi∥

2
2

2

+max
i

∥dSi∥
2
2 − h′i(t)

2√
δ2 + ∥ySi + tdSi∥

2
2

≤ 1

β
max

i
∥dSi∥

2
2 +

1

δ
max

i
∥dSi∥

2
2 =

(
1

β
+

1

δ

)
∥d∥2G∞

,

completing the proof of Lemma B.6.

Our next task is to show that lseβ(h(t)) is O(1/β + 1/δ)-quasi self concordant in ∥·∥G∞
. To do so,

we will appeal to Lemma B.3. To be able to do this, we first have to prove the quasi self concordance
of each component function in lseβ(h(t)).

Lemma B.7. For all y,d ∈ Rm and all t ∈ R, we have∣∣∣∣∣
(

d

dt

)3√
δ2 + ∥ySi + tdSi∥

2
2

∣∣∣∣∣ ≤ 3

δ
∥dSi∥2

((
d

dt

)2√
δ2 + ∥ySi + tdSi∥

2
2

)
.

Proof of Lemma B.7. Although a similar fact appears in [OB20, Section 2.1.2], it is not in the exact
form we need. So, we prove the required statement here.

Recycling the computation from (B.1), recall

h′′i (t) =
∥dSi∥

2
2 − h′i(t)

2

hi(t)
,

which gives

h′′′i (t) =
−2h′i(t)h

′′
i (t)hi(t)− h′i(t)(hi(t)h

′′
i (t))

hi(t)2
= −3h′i(t)h

′′
i (t)

hi(t)
.

Finally, again recalling (B.1), notice that∣∣∣∣h′i(t)hi(t)

∣∣∣∣ = ∣∣∣∣⟨ySi + tdSi ,dSi⟩
hi(t)2

∣∣∣∣ =
∣∣∣∣∣∣
〈

ySi + tdSi√
δ2 + ∥ySi + tdSi∥

2
2

,
dSi√

δ2 + ∥ySi + tdSi∥
2
2

〉∣∣∣∣∣∣ ≤ ∥dSi∥2
δ

.

Combining everything completes the proof of Lemma B.7.
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We are now ready to prove the quasi self concordance of lseβ(h(t)) in ∥·∥G∞
.

Lemma B.8. For all y,d ∈ Rm and t ∈ R, we have∣∣∣∣∣
(

d

dt

)3

lseβ(h(t))

∣∣∣∣∣ ≤
(
16

β
+

3

δ

)
∥d∥G∞

(
d

dt

)2

lseβ(h(t)).

Proof of Lemma B.8. In the statement of Lemma B.3, let ∥·∥ = ∥·∥G∞
. By the definition of ∥·∥G∞

and hi, we have for all i and t that h′i(t) ≤ ∥d∥G∞
. Additionally, from Lemma B.7, we have

that the hi(t) are 3/δ-quasi self concordant in the norm ∥d∥G∞
for all i. Lemma B.8 now follows

immediately from Lemma B.3.

Finally, we can prove Lemma B.5.

Proof of Lemma B.5. By the conclusion of Lemma B.6, we know that for all y,d ∈ Rm and t ∈ R
that (

d

dt

)2

lseβ(h(t)) ≤
(
1

δ
+

1

β

)
∥z∥2G∞

.

Let y = Ax− b for some x and d = Az for some z. Let

g(y) := β log

 m∑
i=1

exp


√
δ2 + ∥ySi∥

2
2 − δ

β

 .

Then, (
d

dt

)2

f̃β,δ(x+ tz) =

(
d

dt

)2

g(Ax− b+ tAz) ≤
(
1

δ
+

1

β

)
∥Az∥2G∞

.

With the exact same reasoning applied to the conclusion of Lemma B.8, we also see that∣∣∣∣∣
(

d

dt

)3

f̃β,δ(x+ tz)

∣∣∣∣∣ ≤
(
16

δ
+

3

β

)
∥Az∥G∞

(
d

dt

)2

f̃β,δ(x+ tz).

The conclusion of Lemma B.5 then follows from remembering that we have W such that for all
z ∈ Rd, ∥Az∥G∞

≤
∥∥W1/2Az

∥∥
2
.

B.3. Analysis of Algorithm 1

In this subsection, we use the calculus facts from the previous two subsections to analyze Algo-
rithm 1. The outline of this proof follows that of [JLS22, Theorem 2], which in turn builds up to
using the proof used in [CJJJLST20, Corollary 12]. The main idea is to define the algorithm based
on the norm given by the right choice of positive semidefinite M.

In the rest of this section, let W be factor-2 block Lewis weight overestimates for [A|b]. As in Line
2 of Algorithm 1 and from the corresponding guarantee given in [MO25, Lemmas 5.6, 5.8], this

16



MINIMIZING MAXIMUM OF EUCLIDEAN NORMS

means that within 2 logm linear system solves in A⊤DA for diagonal D, we can find W such that
for all x ∈ Rd and c ∈ R we have

∥Ax− cb∥G∞
≤
∥∥∥W1/2Ax− cW1/2b

∥∥∥
2
≤
√
2(rank (A) + 1) ∥Ax− cb∥G∞

.

Note that choosing c = 1 yields our original objective on either side of the above inequality. Moti-
vated by the above, it is natural to use the norm given by M := A⊤WA to give the geometry for
the ball optimization oracle and for the analysis. Additionally, without loss of generality and for the
sake of the analysis, let us rescale the problem so that

1 = OPT := ∥Ax⋆ − b∥G∞
.

Additionally, assume without loss of generality that rank (A) = d.

We begin with Lemma B.9, which bounds our initial suboptimality in f̃ and in ∥·∥M.

Lemma B.9. Let x̃β,δ := argmin
x∈Rd

f̃β,δ(x). Then,

∥x̃β,δ − x0∥M ≤ (2 + 2(β logm+ δ))
√

2(d+ 1)

f̃β,δ(x0)− f̃β,δ(x̃β,δ) ≤
√

2(d+ 1)− 1 + 2(β logm+ δ)
.

Proof of Lemma B.9. It is easy to check that

x0 :=
(
A⊤WA

)−1
A⊤Wb = argmin

x∈Rd

∥∥∥W1/2Ax−W1/2b
∥∥∥
2
.

By Lemma B.1, for all x ∈ Rd,∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ β logm+ δ,

implying ∣∣∣∥Ax⋆ − b∥G∞
− f̃β,δ(x̃β,δ)

∣∣∣ ≤ β logm+ δ.

This easily implies

1 ≤ ∥Ax⋆ − b∥G∞
≤ ∥Ax0 − b∥G∞

≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2

and ∥∥W1/2Ax0 −W1/2b
∥∥
2√

2(d+ 1)
≤
∥∥W1/2Ax⋆ −W1/2b

∥∥
2√

2(d+ 1)
≤ ∥Ax⋆ − b∥G∞

= 1.

Combining these gives

1 ≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2
≤
√
2(d+ 1).
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Additionally,∥∥∥W1/2Ax̃β,δ −W1/2b
∥∥∥
2
≤
√

2(d+ 1) ∥Ax̃β,δ − b∥G∞

≤
√
2(d+ 1)

(
f̃β,δ(x̃β,δ) + β logm+ δ

)
≤
√
2(d+ 1)

(
∥Ax⋆ − b∥G∞

+ 2(β logm+ δ)
)

=
√

2(d+ 1)(1 + 2(β logm+ δ)).

Then,

∥x̃− x0∥M =
∥∥∥(W1/2Ax̃β,δ −W1/2b

)
−
(
W1/2Ax0 −W1/2b

)∥∥∥
2

≤
∥∥∥W1/2Ax̃β,δ −W1/2b

∥∥∥
2
+
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2

≤ (2 + 2(β logm+ δ))
√
2(d+ 1),

and

f̃β,δ(x0)− f̃β,δ(x̃β,δ) ≤ ∥Ax0 − b∥G∞
− ∥Ax⋆ − b∥G∞

+ 2(β logm+ δ)

≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2
− OPT+ 2(β logm+ δ)

≤
√

2(d+ 1)− 1 + 2(β logm+ δ).

This completes the proof of Lemma B.9.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Algorithm 1 optimizes the regularization of f̃ given by

f̂(x) := f̃β,δ(x) +
ε

110R2

∥∥∥W1/2A(x− x0)
∥∥∥2
2
,

where R is such that ∥x0 − x̃β,δ∥M ≤ R. Let x̂ := argmin
x∈Rd

f̂(x). Using [CJJJLST20, Proof of

Corollary 12], we know that for every iterate x of Algorithm 1,∣∣∣f̂(x)− f̃β,δ(x)
∣∣∣ ≤ ε

4
.

We now choose β = ε/(4 logm) and δ = ε/4, so that f̃β,δ approximates f up to error ε/2 on every
point. Using Lemma B.9, this gives R = (2 + ε)

√
2(d+ 1). It is therefore sufficient to optimize f̂

up to ε/4 additive error.

Next, using Lemma B.5 and [CJJJLST20, Lemmas 11, 43], we have that f̂ is (1/ν, e)-Hessian
stable in ∥·∥M for ν = Ω(1/(ε logm)). Finally, using [CJJJLST20, Theorems 6, 9], we get that
Algorithm 1 has a Newton iteration complexity of

O

((1 + ε)
√
d logm

ε

)2/3

log

(√
d+ ε

ε

)(
log

(
(logm/ε)d(1 + (1 + ε)

√
d logm/ε)

ε

))3


18
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= O

(
d1/3

ε2/3
log

(
d logm

ε

)14/3
)
,

as promised.

It remains to determine the form of the Newton steps. For this, it is sufficient to understand the
Hessian of f̂ . A straightforward calculation shows that it is of the form A⊤BA where B is a block-
diagonal matrix where each block has size |Si|×|Si|. Thus, each Newton step solves a linear system
of the form A⊤BAz = v.

Combining this with the iteration complexity guarantee to find W (arising from [MO25, Lemmas
5.6, 5.8]) completes the proof of Theorem 1.
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