
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RankGen: A Statistically Robust Frame-
work for Ranking Generative Models Using
Classifier-Based Metrics

Anonymous authors
Paper under double-blind review

Abstract

Standard metrics for evaluating generative models are brittle, easy to game,
and often ignore task relevance. We introduce RankGen, a unified evalua-
tion framework built on four metrics: Quality, Utility, Indistinguishability,
and Similarity; each designed to capture a distinct failure mode and sup-
ported by PAC-style generalization bounds. RankGen follows a two-stage
process: models that violate bounds are discarded, while the rest are ranked
using robust, quantile-based summaries. The resulting composite score,
Exchangeability, captures both fidelity and task relevance. By exposing
hidden pathologies such as memorization, RankGen provides a principled
foundation for safer model selection and deployment.

1 Introduction

Generative models are rapidly becoming core components of modern machine learning
pipelines. They power text assistants, accelerate drug discovery, and enable creative ap-
plications across images, audio, and code. Their reach means the reliability of generative
systems is no longer an academic concern: it directly shapes the safety, fairness, and utility
of downstream applications. Yet despite the dramatic progress in generative capability, one
question remains unresolved: how should we evaluate generative models in a way that is both
rigorous and actionable?

Flawed evaluation protocols can reward models that memorize training data, masking pri-
vacy violations behind inflated similarity scores. They can overlook subtle distributional
shifts that later collapse downstream performance, or promote models that look impressive
to human inspection while offering no measurable utility in task-centric pipelines. Con-
versely, a sound evaluation framework would expose such failure modes and guide principled
model selection in settings where human curation is infeasible.

Meeting this bar demands treating generator quality as multi-faceted. Fidelity must be
distinguished from diversity; surface resemblance from task relevance; broad distribution
alignment from the generated samples fit among their real nearest neighbours. Failures along
any of these axes can derail deployment even when headline scores look strong. Figure 1
previews these pathologies, framing evaluation as a search for complementary probes rather
than a single scalar.

Existing heuristics rarely satisfy these requirements. Popular scalar scores and ad-hoc sum-
maries collapse diverse behaviours into one number, providing little diagnostic value and
remaining brittle to seemingly innocuous design choices. While Sec. 2 surveys alternatives,
most lack principled uncertainty estimates and are easy to game.

We therefore advocate reframing evaluation as diagnosis.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Four common generative failure modes—and how RankGen detects them. Each
panel shows real data (blue and green) and generated data (red and orange) for a binary
classification task. Marker shapes denote classes. (i) Quality – Poor task fidelity: The
generated data lies in dense regions of the real distribution but fails to produce a decision
boundary that generalizes. A classifier trained only on generated data underperforms, re-
vealing a fidelity gap. (ii) Utility – No added value: Generated points are near-copies of
real data. When added to real training data, they do not shift the decision boundary or
improve performance. Useful generative data should meaningfully expand the training set.
(iii) Indistinguishability – Easy to tell apart: A subtle tell-tale (e.g., a shift in a single
feature) allows a classifier to distinguish generated from real. While the two distributions
may appear similar overall according to the majority of features, a discriminator easily sep-
arates them. (iv) Similarity – Local mismatch: In a well-behaved model, the neighbourhood
around any instance should contain a balanced mix of real and generated samples. When
neighbourhoods contain only one type—either real or generated—it signals poor mixing,
reflecting structural differences or mode collapse. Neighbourhood entropy quantifies this
mismatch, even when the global distributions appear to overlap.

Our approach and contributions. We present RankGen, a general framework for
evaluating generative models that goes beyond fragile one-number scores. RankGen looks
at models from four different angles: Quality (does the model capture the true signal?),
Utility (does it add useful new data?), Indistinguishability (can real and generated data be
told apart?), and Similarity (do real and generated data mix well at a local level?). Instead
of relying on raw numbers alone, RankGen attaches statistical guarantees to each measure,
so results are trustworthy rather than misleading.

The evaluation runs in two stages. First, models that clearly fail the PAC statistical checks
are filtered out. Second, the remaining models are compared using robust summaries that
take uncertainty into account. A final combined score, called Exchangeability, balances
predictive value and distributional alignment, making sure that strength in one area cannot
hide weakness in another.

We test RankGen on both controlled experiments (e.g., mode collapse, label noise, copying)
and real datasets (molecules and images). The framework consistently uncovers problems—
especially memorization—that standard metrics overlook. More than just ranking models,
RankGen provides an interpretable profile of how each model falls short, helping guide safer
choices and deployments in settings where human inspection is not feasible.

2 Background and Related Work

Scalar heuristics. Evaluation has long been dominated by scalar scores such as IS (Sali-
mans et al., 2016), FID (Heusel et al., 2017), and kernel distances like MMD/KID (Gretton
et al., 2012; Binkowski et al., 2018). These metrics offer convenient one-number comparisons
but rest on restrictive assumptions, are sensitive to feature choice and preprocessing (Bar-
ratt and Sharma, 2018; Chong and Forsyth, 2020; Parmar et al., 2022; Betzalel et al., 2022),
and often fail to track human judgment or downstream utility (Theis et al., 2016; Borji,
2019). Empirical studies show that small changes in embedding or sample size can flip
rankings, and the resulting scores provide little diagnostic insight. Multi-dimensional
diagnostics. To capture more structure, precision–recall curves for distributions (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019), density–coverage (Naeem et al., 2020), and more
recent measures such as VENDI and FKEA (Friedman and Dieng, 2023; Jalali et al., 2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

separate fidelity from diversity. These methods detect issues like mode collapse that scalars
miss, but they inherit fragility from their embeddings and lack distribution-free guaran-
tees, limiting trustworthiness across domains (Parmar et al., 2022; Betzalel et al., 2022).
Classifier-based evaluation. Protocols like GAN-train/test (Shmelkov et al., 2018) and
TSTR (Hyland et al., 2017; Yoon et al., 2019) assess whether synthetic data supports down-
stream prediction. This connects evaluation to practical utility, but results are usually re-
ported as point estimates without uncertainty, making it hard to know whether differences
are significant. Moreover, they conflate distinct failure modes: poor fidelity, diversity loss,
and copying can all produce similar outcomes. Memorization and leakage. Generators
can achieve deceptively strong scores by memorizing training data. This inflates similarity-
style metrics while adding no useful variation and raises privacy risks. Attacks on GANs
and diffusion models have demonstrated practical data leakage (Hayes et al., 2019; Chen
et al., 2020; Carlini et al., 2023), yet most evaluation protocols are not designed to expose
it (Bhattacharjee et al., 2023). Domain-specific benchmarks. In molecules and graphs,
benchmarks such as GuacaMol and MOSES (Brown et al., 2019; Polykovskiy et al., 2020)
emphasize validity, uniqueness, and novelty. These checks are useful but narrow: a model
can satisfy them while merely reproducing known molecules. Broader graph generation of-
ten relies on plausibility heuristics or manual inspection (You et al., 2018), highlighting the
lack of systematic, statistically grounded tools. Across domains, the field has moved from
brittle scalars to fragile multi-dimensional measures and under-specified classifier probes.
Memorization remains a persistent blind spot, and domain-specific metrics only partially
address the problem. This fragmented landscape motivates the need for evaluation that is
interpretable, statistically guaranteed, resistant to copying, and applicable across modalities.

3 The Method: RankGen

RankGen evaluates generators not by surface similarity alone, but by combining down-
stream predictive utility and distributional alignment, both global and local. We unify
evaluation into four classifier-based metrics—Quality, Utility, Indistinguishability, and
Similarity—each equipped with a PAC-style generalization bound that links finite-sample
estimates to their population counterparts with high confidence (see Appendix 7 for as-
sumptions and constants). To balance reliability and resolution, bounds act as gates that
filter out statistically invalid models, while robust quantile summaries (medians/IQRs) rank
those that pass, capturing both the typical performance (via the median) and its variability
across resamples (via the interquartile range).

Our procedure has four stages. (i) Data preparation: multiple stratified train/test splits
with class-conditional generation under strict isolation. (ii) Metric evaluation: compute
the four metrics per split with PAC bounds and quantile summaries. (iii) Ranking: filter
models by bound violations, then order survivors using quantile summaries and pairwise
dominance. (iv) Diagnosis: metric profiles reveal characteristic failure modes—e.g., high
Similarity but low Utility (copying) or strong Quality but low Indistinguishability (global
shifts)—providing interpretable fingerprints rather than opaque scores.

3.1 Data Preparation and Sampling

Let a labeled dataset D = {(Xi, yi)} consist of domain instances Xi (e.g., images, graphs, or
tabular records) and class labels yi ∈ {0, 1, . . . , c}. The dataset is partitioned into a training
and a test set, Dtrain and Dtest. The training set is then split, preserving class ratios,
into two equal-size subsets Dtrain1 and Dtrain2. We train a class-conditional generator f on
Dtrain1, and denote by f (i) the i-th stochastic realization of its sampling process. For each
class y, we draw synthetic examples until the number of generated points matches |Dy

train2|.
The resulting dataset D

(i)
generated =

⋃
y f

(i)(Dy
train1) therefore mirrors the class balance of

the held-out real split, allowing a like-for-like comparison between synthetic and real data.
To ensure robust evaluation, the full pipeline is repeated multiple times, with resampling of
Dtrain1, Dtrain2, Dgenerated, and Dtest.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 Classifier Performance Scores (ρi)

We propose 4 key metrics of Quality, Utility, Indistinguishability, and Similarity defined via

classifier-derived scores ρ
(i)
j (Table 1), with every score corresponding to a distinct training-

and-testing configuration on split i. All models are evaluated on the same shared test set

D
(i)
test. Here, Φθ denotes a task classifier, Ψθ a binary real-vs-generated discriminator, and

Γθ a structure-aware similarity model (e.g., a data-specific kernel).

Table 1: Classifier-based evaluation metrics used in RankGen.

Metric Description

ρ
(i)
1 = Φθ(D

(i)
train1) Accuracy of classifier trained on real data only (baseline).

ρ
(i)
2 = Φθ(D

(i)
generated) Accuracy when trained on generated data only (signal fidelity).

ρ
(i)
3 = Φθ(D

(i)
train1 ∪D

(i)
train2) Accuracy with extra real data (upper bound).

ρ
(i)
4 = Φθ(D

(i)
train1 ∪D

(i)
generated) Accuracy with real+generated data (usefulness).

ρ
(i)
5 = Ψθ(D

(i)
train1, D

(i)
generated) Discriminator accuracy distinguishing real vs. generated.

ρ
(i)
6 = Γθ(D

(i)
train1, D

(i)
generated) Entropy-based similarity of local feature neighborhoods.

3.3 Quality Metric

Definition. The quality score measures how much predictive signal synthetic data preserves

relative to real data. For split i, let ρ
(i)
1 be the task classification score (e.g. accuracy, AUC

ROC, F1) of a classifier trained on D
(i)
train1 and tested on D

(i)
test, and ρ

(i)
2 the same score when

trained on D
(i)
generated. We define the normalized ratio quality(i) = min

(
ρ
(i)
2

ρ
(i)
1

, 1

)
∈ [0, 1].

PAC bound. Under PAC-learning assumptions, with probability 1−δ, quality(i) ≥ 1− ε1
ρ
(i)
1

,

where ε1 = 4Rn + 2
√

ln(2/δ)
2n and Rn is the Rademacher complexity of the classifier class

(derivation in App. 6). We assume both classifiers are ERM solutions within the same
hypothesis class Φθ and evaluate them on a shared held-out test distribution; Appendix 7
details the conditioning and confidence allocation.

Diagnostic role. High scores imply synthetic data supports task learning; low scores flag
fidelity gaps (e.g., noise, mode collapse).

3.4 Utility Metric

Definition. The utility score measures how much useful and non redundant information

synthetic data provides when used to augment real training data. For split i, let ∆
(i)
real =

ρ
(i)
3 −ρ

(i)
1 be the gain from extra real samples and ∆

(i)
gen = ρ

(i)
4 −ρ

(i)
1 the gain from generated

samples (same budget). We define utility(i) = min{1, max{0, ∆
(i)
gen/∆

(i)
real}}.

PAC bound. With probability 1 − δ, utility(i) ≥ 1 − εsyn+εreal

∆̂
(i)
real

, where εsyn captures

finite-sample noise when learning on synthetic data (including how reliably we can detect
generated-vs-real differences), and εreal quantifies the analogous estimation noise for the
real-data baseline (derivation in App. 6). Auxiliary estimates of domain discrepancy and
joint optimal risk, along with the small-denominator safeguard, are described in Appendix 7.

Diagnostic role. Low utility can indicate memorization (no added information), while
values near 1 indicate that synthetic data adds task-relevant diversity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.5 Indistinguishability Metric

Definition. The indistinguishability score asks how hard it is for a discriminator to tell real
from generated samples, i.e. if there are tell-tale features that can be exploited to distinguish

them. For split i, let ρ
(i)
5 be the accuracy of a balanced real-vs-generated classifier (chance

0.5). We define indist(i) = 1 − 2|ρ(i)
5 − 0.5| ∈ [0, 1], so values near 1 mean chance-level

discrimination (good alignment) and 0 means perfect separation.

PAC bound. For a discriminator class of VC dimension d and a balanced evaluation

set of size m, with probability 1− δ,
∣∣indist(i) − indist?

∣∣ ≤ 2
√

2d ln(2m)+ln(8/δ)
m . Details and

variants are in App. 6; we union-bound over resampling splits and generators when reporting
pass/fail decisions.

Diagnostic role. Low scores are indicative of artefacts or distribution shifts; high scores
indicate good alignment.

3.6 Similarity Metric

Definition. The similarity score asks whether generated samples sit in the same neighbour-
hoods as their real counterparts. For each x in the pooled dataset Dmix, let p̂x be the fraction
of points from the same domain among its k nearest neighbours. Mapping p̂x through nor-
malized binary entropy gives for each split i, sim(i) = 1

n

∑
x∈Dmix

H(p̂x)/ log 2 ∈ [0, 1], with
high values indicating that real and generated samples cohabit the same neighbourhoods.

PAC bound. Using Lipschitz continuity of H and Serfling-type bounds for the hyperge-
ometric draw induced by k-NN neighbourhoods, with probability 1 − δ,

∣∣sim(i) − sim?
∣∣ ≤

1
log 2

(
LH

√
log(2n/δ)

2k + log 2
√

log(2/δ)
2n

)
, where LH captures the Lipschitz constant of the

normalized entropy (see Appendix 7 for the bound and derivation).

Diagnostic role. High similarity means real and synthetic data interleave locally; low
scores reveal mode collapse or geometric shifts. The choice of k trades bias for variance (we
use k = 10–50). Note that similarity can be inflated by memorization.

3.7 Exchangeability Metric

Definition. To provide a single summary score, we combine predictive value (quality Q,
utility U) and distributional alignment (indistinguishability I, similarity S). We form block
averages ∆qual = 1

2 (Q + U) and ∆sim = 1
2 (I + S), and define the conservative composite

Emin = min{∆qual,∆sim} ∈ [0, 1], which is high only when both blocks perform well.

PAC guarantee. If each base metric satisfies M ≥ 1− εM with probability 1− δM , then
Emin ≥ 1−max{ 1

2 (εQ+εU), 1
2 (εI +εS)}, provided we allocate δQ = δU = δI = δS = δ/4 and

apply a union bound, yielding a composite guarantee that holds with confidence at least
1− δ (derivation in App. 11).

Diagnostic role. Emin acts as a fail-safe summary: copying yields high S but low U , while
models that boost accuracy yet are easily detected score low on alignment. We report Emin as
the headline number, using the (Q,U, I, S) breakdown to diagnose weaknesses. Weighted or
soft-min variants are possible, but we adopt the hard minimum for conservative semantics.

3.8 Quantile-Based Estimation

Performance of each metric across resampled splits is frequently heavy–tailed or multimodal,
so simple mean±std summaries are unstable. We therefore describe every generator–metric
pair using empirical quartiles: the first quartile Q1, median M , and third quartile Q3. The
median together with the interquartile range (IQR = Q3−Q1) serves as a robust summary
of central tendency and dispersion, remaining well behaved under outliers and skew.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Some baselines nevertheless expect mean and variance. For these comparisons we convert
the quartiles into pseudo-moments using the quantile-to-moment rules of Wan et al. (2016);
explicit formulas appear in App. 5. The resulting descriptors provide the raw material for
the ranking procedure developed in Sec. 3.9.

3.9 Ranking Across Metrics

RankGen adopts a two-stage ranking procedure that balances statistical reliability with
resolution. In the first stage, we apply PAC-style bounds to each generator-metric pair to
determine whether the empirical score exceeds a theoretical threshold with high confidence.
This yields a binary pass/fail outcome for each metric (as shown in Table 2), allowing us to
group generators by the number of metrics they satisfy. Generators that fail fewer bounds are
considered more trustworthy and are placed in higher-priority groups. This hybrid strategy
ensures that only statistically validated models are ranked, while still distinguishing subtle
differences among high-performing generators.

Once this filtering is complete, we perform fine-grained ranking within each group using
the quantile summaries introduced in Sec. 3.8. For each generator, the median acts as the
location parameter and the IQR is converted into a pseudo standard deviation. We sample
from a Gaussian with these parameters, truncate draws to the valid [0, 1] range, and add a
small ridge to the variance so that generators with nearly identical quartiles still participate.
Repeating this Monte Carlo step produces synthetic metric profiles from which we compute
pairwise dominance scores—the frequency with which one generator outperforms another
across all metrics. Aggregating these dominance counts yields the final, uncertainty-aware
ranking among statistically equivalent models. The algorithmic details are provided in
App. 5.

Generator Quality Utility

Indistinguish

ability Similarity

Exchange-

ability

s4dd u 1 X X X X X
s4dd u m X X X X X
stgg X X X X X

ns1 X 7 X X 7

s4dd f m 7 7 X X 7

ns2 X 7 X 7 7

ns3 X 7 X 7 7

wgan X 7 X 7 7

gdss 7 7 X 7 7

hiervae 7 7 X 7 7

jtnn 7 7 X 7 7

moflow 7 7 X 7 7

swingnn 7 7 X 7 7

Table 2: Pass/fail checklist for each generator with respect to the PAC-style bounds of the
four base metrics and the composite Exchangeability. A blue X indicates the empirical score
exceeds its theoretical lower bound (pass); a red 7 indicates a violation. Full details of the
datasets and generator variants appear in Sec. 4.2.

4 Empirical Evaluation

Experimental scope and protocol. Our empirical study spans three settings: (i) Syn-
thetic data, where we inject controlled perturbations (label noise, class imbalance, mode
collapse, exact/noisy copies, Gaussian corruption) to stress–test metric sensitivity (Sec-
tions 4.1); (ii) Molecular graphs from the Therapeutics Data Commons (Huang et al., 2021)
across AMES, BBB, CYP1A2, CYP2C19, hERG, and Lipophilicity (Section 4.2); and (iii)
Images on MNIST (LeCun et al., 1998), Fashion–MNIST (Xiao et al., 2017), and CIFAR–
10 (Krizhevsky, 2009) (Section 4.3). Across all settings we use class–conditional generation
with strict train/test isolation, repeated stratified resampling, the same task classifier ar-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

chitecture, and median/IQR reporting. Implementation details, hyperparameters, and ad-
ditional analyses are available in Appendix 13 and Appendix 21. Every metric is computed
on held-out evaluation sets that are never touched during generator training or vectorizer

fitting; auxiliary quantities such as d̂isc or λ̂ use disjoint resamples (cross-fitting) so that
independence assumptions in the PAC derivations remain valid.

Diagnostic framing. Our goal is not to produce a leaderboard, but to demonstrate
RankGen’s diagnostic power. Synthetic perturbations establish fingerprints—copies yield
Utility collapse, mode collapse degrades Quality, corruption and label flips erode Indis-
tinguishability or Quality. In molecular and image domains we show these patterns
reappear: adversarial (WGAN) and flow models echo the low-utility signature, VAEs/flows
display fidelity collapse, StyleGAN2 mirrors the sharp-but-narrow profile, and diffusion
models achieve balanced performance. Linking stress tests to real generators across the four
metrics explains why models fail instead of merely ranking them.

4.1 Quantile Sensitivity Analysis on Synthetic Data

To test the sensitivity of our quantile-based evaluation strategy—particularly its ability to
distinguish fine-grained differences between generators—we design a controlled experimental
setting with synthetic data. These experiments do not aim to validate the PAC bounds,
but rather to empirically examine how the RankGen metrics, when computed via medians
and IQRs, respond to different generative pathologies.

We synthesize balanced binary datasets with 27 Gaussian features, split them into surrogate
Dtrain1, Dtrain2, Dgenerated, and Dtest, and apply five perturbations to Dgenerated: (1) label
flips, (2) class imbalance, (3) mode collapse to a few real modes, (4) copy noise via near-
duplicates from Dtrain1, and (5) additive Gaussian corruption. This controlled suite coaxes
distinct failure modes for RankGen to probe (Appendix 12).

To test robustness we sweep dataset size (100–10k), classifier family, and scoring metric (F1,
AUC, precision, recall); the Default configuration uses KNN, F1, balanced classes, and 10k
samples (Appendix 13). Table 3 shows that each perturbation leaves a compact diagnostic
fingerprint: Utility alone collapses for exact or noisy copies while Quality and Similarity
stay inflated; mode collapse slashes Quality yet scarcely moves Indistinguishability; label
flips and Gaussian corruption again erode Quality but leave Similarity high. The quartet
is therefore necessary to separate copying, collapse, corruption, and noise.

Table 3: Spearman rank correlation between metric scores and perturbation magnitude.

Perturbation Variation Quality Utility Similarity Indist. Exchange.

Exact Copies Dataset Size 0.1083 0.8915 -0.9923 -0.9474 0.7184
Classifier -0.3349 0.4261 -0.9923 -0.9281 -0.1549
Scorer 0.0469 0.9923 -0.9923 -0.9735 0.9762
Positive Ratio -0.3238 0.6245 -0.9922 -0.9894 -0.1810
Default 0 1.0000 -1.0000 -0.9701 0.9762

Mode Collapse Dataset Size 0.7953 0.8100 0.9923 0.9817 0.9619
Classifier 0.9065 0.8844 0.9923 0.9923 0.9896
Scorer 0.9659 0.9923 0.9923 0.9923 0.9923
Positive Ratio 0.7956 0.8646 0.9898 0.9922 0.9571
Default 1.0000 1.0000 1.0000 1.0000 1.0000

Noisy Copies Dataset Size -0.3268 0.8438 -0.9889 -0.9359 0.5627
Classifier -0.4106 0.3975 -0.9923 -0.9105 -0.1391
Scorer -0.0391 0.9899 -0.9923 -0.9681 0.9885
Positive Ratio -0.3474 0.5376 -0.9922 -0.9918 -0.1851
Default 0 1.0000 -1.0000 -1.0000 1.0000

Flipping Labels Dataset Size 0.9383 0.6937 0.9643 0.0513 0.9494
Classifier 0.9880 0.7779 0.9923 -0.0866 0.9659
Scorer 0.9798 0.7579 0.9923 0.2585 0.9923
Positive Ratio 0.9652 0.7371 0.9886 -0.0709 0.9852
Default 1.0000 0.7638 1.0000 0.0127 1.0000

Gaussian Noise Dataset Size 0.9214 0.7950 0.9735 0.5974 0.8964
Classifier 0.8449 0.5967 0.9923 0.9915 0.7219
Scorer 0.9923 0.8472 0.9923 0.9897 0.9923
Positive Ratio 0.9109 0.8274 0.9087 0.9872 0.9547
Default 1.0000 0.8729 1.0000 1.0000 1.0000

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 Real-World Molecular Graph Datasets

We evaluate the quality of molecular graphs generators, a domain where human inspec-
tion is infeasible and rigorous metrics are essential. To reflect realistic low-resource settings,
models are trained on relatively small datasets (hundreds to a few thousand molecules) with-
out large-scale pretraining. We use a representative subset of classification tasks from the
Therapeutics Data Commons (TDS) (Huang et al., 2021): AMES (mutagenicity), BBB
(blood–brain barrier penetration), CYP1A2/CYP2C19 (enzyme binding), hERG (car-
diotoxicity), and Lipophilicity (logP estimation). Molecules, given as SMILES (Weininger,
1988), are converted into atom–bond graphs. We benchmark several types of genera-
tors: STGG (Ahn et al., 2021) (autoregressive), WGAN-GP + R-GCN (Akensert,
2021) (adversarial), JTNN (Jin et al., 2018) and HierVAE (Jin et al., 2020) (hierarchi-
cal VAEs), MoFlow (Zang and Wang, 2020) (flow), GDSS (Jo et al., 2022) (score-based
diffusion), and SWINGNN (Yan et al., 2023) (graph diffusion with shifted windows),

S4DD (Özçelik et al., 2023)(operates on molecular strings). As a baseline we also intro-
duce a Neighborhood Swap (NS) generator, which perturbs input graphs by swapping
small ego-subgraphs within instances of the same class iteratively for 1 to 3 iterations (NS-
1/2/3). Together these span autoencoding, flow, adversarial, diffusion, and perturbation
paradigms (details in App. 15.1, 16.1). Graphs are embedded via (1) fingerprints (Morgan,
Torsion, Atom Pair, RDKit (O’Boyle et al., 2011)), (2) neural encoders (GIN (Xu
et al., 2019), GraphCL (You et al., 2020), InfoGraph (Sun et al., 2019)), and (3) kernels
(NSPDK (Costa and Grave, 2010)). While overall trends are consistent, rankings can shift
across embeddings, underscoring the role of representation in evaluation. More details about
each vectorizer in Appendix 14.

Results. Figure 2 shows average quantile-based ranks across datasets and encoders.1

S4DD variants and STGG consistently rank highest, reflecting strong generalization and
alignment. In contrast, WGAN and MoFlow perform poorly, especially in Exchange-
ability, which shows that these generators cannot produce molecules useful for predictive
tasks. Interestingly, S4DD pretrained on over a million molecules (s4dd u m) shows no
improvement over dataset-specific training on only a few thousand (s4dd u 1). The metric
breakdown mirrors the synthetic fingerprints: WGAN couples moderate Indistinguisha-
bility with negligible Utility, indicating that its samples offer little downstream value,
while flow- and VAE-based models (MoFlow, GDSS, HierVAE, JTNN) exhibit low Quality
and Similarity, consistent with fidelity collapse. By contrast, S4DD and STGG variants
remain strong on all four axes, signalling genuinely novel, task-relevant molecules rather
than copies.

Figure 2: Average generator rank per metric across all TDS datasets and vectorizers (lower
is better).

1Table 2 reports a single dataset; Fig. 2 averages across all TDS datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 Image Benchmarks: MNIST, Fashion–MNIST, and CIFAR–10

We use three canonical benchmarks: MNIST (LeCun et al., 1998), Fashion–
MNIST (Xiao et al., 2017), and CIFAR–10 (Krizhevsky, 2009), with consistent pre-
processing and stratified splits (Appendix 21). Test images are never used for training or
selection. We evaluate class-conditional generators spanning multiple paradigms. VAEs:
MLP-VAE, Conv-VAE, and ResNet-VAE (Kingma and Welling, 2014; Rezende et al., 2014).
GANs: DCGAN (Radford et al., 2016), WGAN–GP with projection discriminator (Gulra-
jani et al., 2017; Miyato and Koyama, 2018), and a 32×32 StyleGAN2-lite (Karras et al.,
2020). Diffusion: cDDPM with UNet backbone (Ho et al., 2020; Ronneberger et al., 2015;
Ho and Salimans, 2022) and a Transformer2D backbone (DiT style) (Peebles and Xie, 2023),
using HuggingFace Diffusers samplers (von Platen et al., 2022) (see architectural and train-
ing details in Appendix 16.2.1). Figure 3 shows RankGen ranks across datasets. RankGen
again uncovers characteristic fingerprints. StyleGAN2-lite delivers high Quality but almost
no Utility and weak Similarity, mirroring the synthetic mode-collapse profile: crisp yet
narrow samples. DCGAN lands near chance in Utility while keeping Indistinguishability
high, signalling shallow realism that fails to expand the task dataset. Diffusion models are
the only family balancing all four probes, achieving strong Exchangeability by jointly pre-
serving fidelity, task gain, and local mixing. VAEs lag on CIFAR–10 because Quality and
Utility deteriorate, but they remain competitive on MNIST and Fashion–MNIST where
capacity demands are lower. Each architecture family is therefore diagnosed with a distinct
failure mode instead of being flattened into a single score. The underlying metric values
supporting these trends are detailed in Appendix 21.2, and illustrative panels of generated
samples are shown in Figures 7, 6, and 5 from Appendix 17.

Figure 3: RankGen ranks on CIFAR–10, MNIST, and Fashion–MNIST. Lower is bet-
ter. StyleGAN2-lite exhibits high Quality but low Utility and Similarity, echoing our syn-
thetic mode-collapse setting. This suggests strong precision but poor coverage—models of
this type risk overfitting narrow regions of the data. VAEs remain competitive on digits.

Conclusion

RankGen treats evaluation as diagnosis: four probes (Quality, Utility, Indistinguishability,
Similarity) plus PAC-style bounds and quantile summaries provide reliable, interpretable
failure reports, while Exchangeability rejects generators that are not simultaneously use-
ful and aligned. Across synthetic, molecular, and image domains RankGen recovers preci-
sion–recall trends yet exposes issues scalar metrics miss—copying and corruption signatures,
adversarial and flow models’ low downstream value, and the contrast between StyleGAN2’s
sharp-but-narrow samples and diffusion’s balanced coverage. It still requires labeled data,
task-relevant embeddings, and repeated classifiers, limiting label-scarce settings. Extending
RankGen with self-supervised probes and regression tasks is a promising direction. Ul-
timately RankGen offers a principled alternative to heuristics by revealing why generators
succeed or fail, enabling safer deployment when human inspection is unfeasible or expensive.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Acknowledgments

For the purpose of open access, the authors have applied a Creative Commons Attribution
(CC BY) license to any Author Accepted Manuscript version arising from this submission.

References

Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. Spanning tree-based graph
generation for molecules. In ICLR, 2021.

Akensert. Wgan-gp with r-gcn for the generation of small molecular graphs, 2021. URL
https://keras.io/examples/generative/wgan-graphs/.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018. URL https://arxiv.org/abs/1801.01973.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. In Journal of Machine Learning Research, volume 3, pages
463–482, 2002.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79:151–175, 2010.

Eyal Betzalel, Coby Penso, Aviv Navon, and Ethan Fetaya. A study on the evaluation of
generative models. arXiv preprint arXiv:2206.10935, 2022.

Robi Bhattacharjee, Sanjoy Dasgupta, and Kamalika Chaudhuri. Data-copying in generative
models: A formal framework. arXiv preprint arXiv:2302.13181, 2023. URL https:
//arxiv.org/abs/2302.13181.

Micha l Binkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
MMD GANs. In International Conference on Learning Representations (ICLR), 2018.

Ali Borji. Pros and cons of GAN evaluation measures. Computer Vision and Image Under-
standing, 179:41–65, 2019.

Nathan Brown, Marco Fiscato, Marwin H. S. Segler, and Alain C. Vaucher. GuacaMol:
Benchmarking models for de novo molecular design. Journal of Cheminformatics, 11(1):
10, 2019.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian
Tramer, Borja Balle, Daphne Ippolito, Eric Wallace, et al. Extracting training data from
diffusion models. In USENIX Security Symposium, 2023.

Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. GAN-leaks: A taxonomy of mem-
bership inference attacks against generative models. arXiv preprint arXiv:1909.03935,
2020.

Min Jin Chong and David Forsyth. Effectively unbiased FID and inception score and where
to find them. arXiv preprint arXiv:1911.07023, 2020.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In
Proceedings of the 27th International Conference on International Conference on Machine
Learning, pages 255–262, 2010.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric
for machine learning. Transactions on Machine Learning Research, 2023. URL https:
//arxiv.org/abs/2210.02410.

Arthur Gretton, Karsten M. Borgwardt, Markus J. Rasch, Bernhard Schölkopf, and Alex
Smola. A kernel two-sample test. In Journal of Machine Learning Research, volume 13,
pages 723–773, 2012.

10

https://keras.io/examples/generative/wgan-graphs/
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/2302.13181
https://arxiv.org/abs/2302.13181
https://arxiv.org/abs/2210.02410
https://arxiv.org/abs/2210.02410

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of WGANs. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LOGAN: Mem-
bership inference attacks against generative models. Proceedings on Privacy Enhancing
Technologies, 2019(1):133–152, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. In Advances in Neural Information Processing Systems, volume 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 6840–
6851, 2020.

K. Huang, T. Fu, W. Gao, Y. Zhao, Y. Roohani, J. Leskovec, and M. Zitnik. Therapeutics
data commons: Machine learning datasets and tasks for drug discovery and development.
arXiv preprint arXiv:2102.09548, 2021.

Stephanie L Hyland, Cristobal Esteban, and Gunnar Rätsch. Real-valued (medical) time
series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. Towards a scalable reference-free
evaluation of generative models. arXiv preprint arXiv:2407.02961, 2024. URL https:
//arxiv.org/abs/2407.02961. FKEA; scalable approximations to VENDI and Rényi
Kernel Entropy (RKE).

W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International Conference on Machine Learning, pages 2323–2332,
2018.

W. Jin, R. Barzilay, and T. Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In ICML, pages 4839–4848, 2020.

J. Jo, S. Lee, and S. J. Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations. In International Conference on Machine Learning, pages
10362–10383, 2022.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of StyleGAN. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8110–8119, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila. Improved precision and re-
call metric for assessing generative models. In Proceedings of the International Conference
on Machine Learning (ICML), 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Takeru Miyato and Masanori Koyama. cGANs with projection discriminator. In Interna-
tional Conference on Learning Representations (ICLR), 2018.

M.F. Naeem, S.J. Oh, Y. Uh, Y. Choi, and J. Yoo. Reliable fidelity and diversity metrics for
generative models. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

11

https://arxiv.org/abs/2407.02961
https://arxiv.org/abs/2407.02961

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and
Geoffrey R. Hutchison. Rdkit: A software suite for cheminformatics. Journal of Chemin-
formatics, 3(1):1–10, 2011. doi: 10.1186/1758-2946-3-1.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising
subtleties in gan evaluation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

William Peebles and Saining Xie. DiT: Scalable diffusion models with transformers. arXiv
preprint arXiv:2212.09748, 2023.

Daniil Polykovskiy, Artem Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Olexandr Tatanov, Sergey Belyaev, Rustam Kurbanov, Aleksey Artamonov, Anna V. Al-
adinskaya, Mikhail Veselov, Artur Kadurin, Samuel Johansson, Hongming Chen, Sergey I.
Nikolenko, Alán Aspuru-Guzik, and Alex Zhavoronkov. MOSES: A benchmarking plat-
form for molecular generation models. arXiv preprint arXiv:1811.12823, 2020.

PyTorch Geometric Contributors. Graphgym encoder module - pytorch geometric doc-
umentation, 2021. URL https://pytorch-geometric.readthedocs.io/en/2.0.2/
_modules/torch_geometric/graphgym/models/encoder.html. Accessed: 2025-03-20.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In International Conference on
Learning Representations (ICLR), 2016. arXiv:1511.06434.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on
Machine Learning (ICML), pages 1278–1286, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pages 234–241. Springer, 2015.

Mehdi S.M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in Neural Information
Processing Systems, volume 29, 2016.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In
ECCV, 2018.

F.Y. Sun, J. Hoffmann, V. Verma, and J. Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization.
arXiv preprint arXiv:1908.01000, 2019.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. In ICLR, 2016.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif
Rasul, Mishig Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models.
https://github.com/huggingface/diffusers, 2022.

Xiang Wan, Wenqian Wang, Jiming Liu, and Tiejun Tong. Estimating the sample mean
and standard deviation from the sample size, median, range and/or interquartile range,
2016. URL https://arxiv.org/abs/1407.8038.

David Weininger. SMILES, a chemical language and information system. 1. introduction
to methodology and encoding rules. Journal of Chemical Information and Computer
Sciences, 28(1):31–36, 1988. doi: 10.1021/ci00057a005.

12

https://pytorch-geometric.readthedocs.io/en/2.0.2/_modules/torch_geometric/graphgym/models/encoder.html
https://pytorch-geometric.readthedocs.io/en/2.0.2/_modules/torch_geometric/graphgym/models/encoder.html
https://github.com/huggingface/diffusers
https://arxiv.org/abs/1407.8038

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
ICLR, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

Q. Yan, Z. Liang, Y. Song, R. Liao, and L. Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.0164,
2023.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. TimeGAN: Time-series genera-
tive adversarial networks. In NeurIPS, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), pages 5708–5717, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

C. Zang and F. Wang. Moflow: An invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 617–626, 2020.

R. Özçelik, S. de Ruiter, and F. Grisoni. Structured state-space sequence models for de
novo drug design, 2023. ChemRxiv, Preprint, doi:10.26434/chemrxiv-2023-jwmf3.

Rıza Özçelik, Sarah de Ruiter, Emanuele Criscuolo, and Francesca Grisoni. Chemical lan-
guage modeling with structured state space sequence models. Nature Communications,
15(6176), 2024. doi: 10.1038/s41467-024-50469-9. URL https://doi.org/10.1038/
s41467-024-50469-9.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1038/s41467-024-50469-9
https://doi.org/10.1038/s41467-024-50469-9

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

5 Model Ranking Methodology

5.1 Ranking of Generative Models

To compare generative models in a principled and uncertainty-aware way, we use a Monte
Carlo-based ranking procedure built on four base metrics: Quality, Utility, Similarity, and
Indistinguishability. Each is computed per dataset and model, then aggregated across sam-
ples using quantile-based estimators for the mean and standard deviation.

Note (summary vs. base metrics). We also report an Exchangeability summary score
(Sec. 11), but it is not used in the pairwise domination test below to avoid double-counting,
since it is derived from the four base metrics.

Let there be m models and n base metrics (here n = 4). Each model Mi has a performance
vector

µi = (µi1, µi2, . . . , µin), (1)

with standard deviations

σi = (σi1, σi2, . . . , σin), (2)

reflecting variability across data splits and training randomness. At each Monte Carlo
iteration, we draw

Sik ∼ N (µik, σ
2
ik), then clip Sik ∈ [0, 1]. (3)

Model Mi dominates Mj at iteration t iff Sik ≥ Sjk for all k and Sik > Sjk for at least one
k. We accumulate domination counts Dij .

Algorithm 1 Uncertainty-Aware Ranking of Generative Models

Require: Models M = {M1, . . . ,Mm}; means µi ∈ [0, 1]n; stds σi ≥ 0; iterations N
Ensure: Ranked list of models (using the four base metrics only)
1: Initialize domination count matrix D ← 0m×m
2: for t = 1 to N do
3: for i = 1 to m do
4: for k = 1 to n do
5: Draw S̃ik ∼ N (µik, σ

2
ik); set Sik ← min{1,max{0, S̃ik}}

6: end for
7: end for
8: for i = 1 to m do
9: for j = 1 to m, i 6= j do

10: if Sik ≥ Sjk ∀k and ∃k : Sik > Sjk then
11: Dij ← Dij + 1
12: end if
13: end for
14: end for
15: end for
16: Ri ←

∑m
j=1Dij ; sort models by descending Ri and return

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

6 Bounds Derivations

Table 4: Glossary of symbols used throughout Secs. 3.3–3.7. A superscript (i) indicates the
i-th cross-validation split, a hat ̂ denotes an empirical estimate from finite data, and a
star ? denotes the corresponding population (infinite-sample) quantity.

Symbol Type Meaning / definition

Datasets and sample sizes

D
(i)
train1 set Real training subset used for the baseline classifier.

D
(i)
train2 Additional real data used for the upper-bound classifier.

D
(i)
generated Generated data produced by the generator.

D
(i)
test Held-out real test set for all accuracy evaluations.

Dr, Dg sets Real and generated points (context of similarity metric).
Dmix = Dr ∪Dg set Real+generated pool used to measure local mixing.
n, nr, ng scalars Total, real and generated sample sizes (n = nr + ng).
m scalar Size of the discriminator’s validation pool (m = nr + ng).
k scalar Number of nearest neighbors in the similarity metric.

Model classes
Φθ map Task classifier architecture (fixed across experiments).
Ψθ Real-vs-generated discriminator.
Γθ Helper for k-NN similarity estimation.

Raw classifier accuracies

ρ
(i)
1 num. Φθ(D

(i)
train1) — baseline real-only.

ρ
(i)
2 Φθ(D

(i)
generated) — generated-only.

ρ
(i)
3 Φθ(D

(i)
train1∪D

(i)
train2) — real+real.

ρ
(i)
4 Φθ(D

(i)
train1∪D

(i)
generated) — real+generated.

ρ
(i)
5 Ψθ accuracy (indistinguishability test).

ρ
(i)
6 Entropy-based similarity score (local mixing).
ρ?j Population version of the same accuracy.

Derived quantities

∆real num. ρ
(i)
3 − ρ

(i)
1 — gain from more real data.

∆generated ρ
(i)
4 − ρ

(i)
1 — gain from generated data.

q̂uality
(i) ρ

(i)
2

ρ
(i)
1

Empirical quality on split i (reported clipped to [0, 1]).

quality?
ρ?2
ρ?1

Population (infinite-sample) quality.

ûtility
(i) ∆generated

∆real
Empirical utility on split i.

utility?
∆?

generated

∆?
real

Population utility.

îndist
(i)

1− ρ(i)5 Empirical indistinguishability on split i.
indist? 1− ρ?5 Population indistinguishability.

ŝim
(i)

— Empirical similarity (entropy average) on split i.
sim? — Population similarity.

Error terms and constants in PAC bounds

εgen bnd.
√

log(2/δ)/(2n) — test-accuracy sampling error.

εdisc

√(
2d ln(2m) + ln(8/δ)

)
/m — H-discrepancy error.

εsyn, εreal Composite errors for ∆generated and ∆real.
εsim Error radius for similarity metric.
Rn scalar Rademacher complexity of the classifier class.
d scalar VC dimension of the discriminator’s hypothesis class.
LH scalar Lipschitz constant of entropy on [1

k+1
, 1− 1

k+1
] (≤ 4).

λ num. Joint optimal risk term in domain discrepancy.
δ scalar Confidence level (all PAC bounds hold w.p. 1− δ).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

7 Bound Ingredients and Assumptions

For completeness we collect the constants, estimators, and confidence allocations used in
the PAC-style bounds from Sec. 3. This material is supplementary; the main text states
only the bound forms.

Confidence allocation. Unless otherwise noted, we set δ∗ = δ/(MTS) where M is the
number of models, T the number of metrics, and S the number of resamples. Each bound
then holds with probability at least 1 − δ∗, and all results jointly with probability at least
1− δ by a union bound.

Quality. We assume ρ
(i)
1 > 0 for the ratio form; if ρ

(i)
1 = 0 we revert to the difference form

ρ
(i)
2 ≥ ρ

(i)
1 − 2U . The empirical Rademacher surrogate R̂ is computed via a ghost hold-out

split.

Utility. We estimate d̂iscH by training a balanced domain classifier on held-out batches
(cross-fitting when necessary), which upper-bounds the H∆H discrepancy up to constants.

We compute λ̂ = minh∈Φθ R̂D′r(h)+R̂Ds
(h) on an auxiliary split disjoint from the evaluation

pool. If ∆
(i)
real < τ with τ = 10−3 we use the difference utility ∆

(i)
gen; otherwise we form the

ratio U (i).

Indistinguishability. The map g(a) = 1 − 2|a − 0.5| from discriminator accuracy a to
the indistinguishability score is 2-Lipschitz; our constants absorb this factor. We apply a
VC-dimension bound on the discriminator’s risk over a balanced pool.

Similarity. Neighbourhood label proportions are without-replacement samples. We there-
fore use Serfling-type deviations for hypergeometric draws. Restricting p ∈ [1/(k+1), 1 −
1/(k+1)] bounds the entropy derivative |H ′(p)|, yielding a Lipschitz constant LH ≤ 4/ ln 2.

Combined with a union bound over n points, this yields the stated O(
√

log(n/δ)/k) rate.

Composite. We set δQ = δU = δI = δS = δ/4 so that the Exchangeability bound holds
with confidence at least 1− δ by a union bound.

8 PAC-style Derivation of the Quality Metric Bound

The quality score measures how well a classifier trained exclusively on generated data can
match the generalization performance of one trained on real data:

quality(i) =
ρ

(i)
2

ρ
(i)
1

. (4)

Values near 1 indicate that generated data provides almost as much signal as real data (we

report min{1, ρ(i)
2 /ρ

(i)
1 } for interpretability).

Generalization bound. Let ` : X × Y → {0, 1} be the 0–1 loss, and define population
and empirical risks

L(h) = E(x,y)∼Preal
[`(h(x), y)], L̂S(h) = 1

n

∑
(x,y)∈S

`(h(x), y). (5)

By a standard Rademacher bound Bartlett and Mendelson (2002), with prob. ≥ 1−δ, every
h satisfies ∣∣L(h)− L̂S(h)

∣∣ ≤ U, U = 2Rn +

√
ln(2/δ)

2n . (6)

Let ĥr = arg minh L̂Sr (h) and ĥg = arg minh L̂Sg (h). Then

L(ĥg) ≤ L̂Sg (ĥg) + U ≤ L̂Sr (ĥr) + U ≤ L(ĥr) + 2U. (7)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since ρ
(i)
1 = 1 − L(ĥr) and ρ

(i)
2 = 1 − L(ĥg), we get ρ

(i)
2 ≥ ρ

(i)
1 − 2U . Setting ε1 = 2U =

4Rn + 2
√

ln(2/δ)
2n and dividing by ρ

(i)
1 > 0 gives

quality(i) ≥ 1− ε1

ρ
(i)
1

. (8)

9 PAC-style Derivation of the Utility Bound

We consider the lower bound

utility(i) ≥ 1− ε2

ρ
(i)
3 − ρ

(i)
1

(A.1)

quoted in Sec. 3.4. All probabilities below hold with confidence at least 1− δ.

Notation. Let X ×Y be the input–label space and H a hypothesis class of VC-dimension
d. Define

Dr := Dtrain1, nr := |Dr|,
D′r := Dtrain2, nr′ := |D′r|,
Ds := Dgenerated, ns := |Ds|,
Dt := Dtest.

For any sample S, let ĥS ∈ arg minh∈H R̂S(h) be the ERM with R̂S(h) =
1
|S|
∑

(x,y)∈S 1{h(x) 6= y}. Let R(h) = Pr(x,y)∼Dt
[h(x) 6= y].

Define (population) gains from extra real or generated data and their empirical counterparts:

∆?
real := R

(
ĥDr

)
−R

(
ĥDr∪D′r

)
, ∆?

syn := R
(
ĥDr

)
−R

(
ĥDr∪Ds

)
, (A.2)

with ∆̂real = ρ
(i)
3 − ρ

(i)
1 and ∆̂syn = ρ

(i)
4 − ρ

(i)
1 .

Step 1: domain-adaptation inequality. Following Ben-David et al. (2010), for any h
and distributions P,Q,

|RQ(h)−RP (h)| ≤ discH(P,Q) + λ(P,Q), (A.3)

where discH is the H-discrepancy and λ the joint optimal risk. Apply (A.3) to P = D′r,

Q = Ds with h = ĥDr∪Ds
to obtain

Rs −R′r ≤ discH(D′r, Ds) + λ. (A.4)

Combining with (A.2) yields

∆?
syn ≥ ∆?

real −
[
discH(D′r, Ds) + λ

]
. (A.5)

Step 2: empirical–population deviations. With probability ≥ 1− δ
2 (after apportion-

ing δ over models and resampling splits),∣∣Rr − R̂r

∣∣, ∣∣R′r − R̂′r∣∣, ∣∣Rs − R̂s

∣∣ ≤ εgen, εgen =
√

ln(2/δ)
2nmin

, (A.6)

discH(D′r, Ds) ≤ d̂iscH(D′r, Ds) + εdisc, εdisc =

√
2d ln(2m)+ln(8/δ)

m ,

(A.7)

where nmin := min{nr, n
′
r, ns} and m = nr′ + ns.

Plugging into (A.5) and rearranging, with probability ≥ 1− δ
2 ,

∆̂syn ≥ ∆̂real −
[
d̂iscH(D′r, Ds) + εdisc + λ+ 2εgen

]
. (A.8)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Step 3: the utility ratio. If ∆̂real > 0 (else set utility(i) = 0), divide (A.8) by ∆̂real to
obtain

utility(i) =
∆̂syn

∆̂real

≥ 1− d̂iscH(D′r, Ds) + εdisc + λ+ 2εgen

∆̂real

. (A.9)

Step 4: notation match. We estimate the joint optimal risk via

λ̂ := min
h∈H

R̂D′r(h) + R̂Ds
(h), (9)

using an auxiliary split (or cross-fitting) that remains disjoint from the evaluation data.
Define

ε2 := d̂iscH(D′r, Ds)︸ ︷︷ ︸
observed

+ εdisc︸︷︷︸
ε3

+ 2εgen︸ ︷︷ ︸
εutil4

+λ̂, (A.10)

so (A.9) matches (A.1). In practice we guard against small denominators by reporting the

ratio bound only when ∆̂real > τ (Section 3.4). Otherwise we fall back to the difference

guarantee ∆̂syn ≥ ∆̂real − (d̂iscH + εdisc + λ̂+ 2εgen).

10 PAC-style Derivation of the Similarity Bound

10.1 Problem Definition

LetDr = {Xr, yr} andDg = {Xg, yg} be real and generated datasets. Merge toX = Xr∪Xg

and define binary origin labels Y ∈ {0, 1}.

10.2 Similarity Computation

Use cosine similarity K(x, x′) = x>x′

‖x‖ ‖x′‖ to form k-NN neighborhoods N (xi). Let pi be the

in-domain fraction among neighbors of xi and

Hi = −pi log pi − (1− pi) log(1− pi), ρ6 =
1

|X|
∑
i

Hi. (10)

10.3 Derivation of the Similarity Bound

Let Zx = k p̂x count in-domain neighbours. Because we sample without replacement from
Dr ∪Dg, Zx follows a hypergeometric law; Serfling’s inequality yields

Pr
[
|p̂x − px| >

√
log(2/δ1)

2k

]
≤ δ1. (B.2)

On p ∈ [τ, 1− τ] with τ = 1
k+1 , entropy H is LH -Lipschitz with LH ≤ 4/ ln 2, so with prob.

≥ 1− δ
2 (allocating δ/(2n) per point and union-bounding),

|H(p̂x)−H(px)| ≤ LH
√

log(2n/δ)
2k ∀x. (B.3)

Averaging and applying Hoeffding to the empirical mean gives∣∣∣ 1
n

∑
x

H(px)− 1
n

∑
x

H(p̂x)
∣∣∣ ≤√ log(2/δ)

2n log 2. (B.4)

Thus, with probability ≥ 1− δ,∣∣ŝim− sim?
∣∣ ≤ εsim

log 2
, εsim := LH

√
log(2n/δ)

2k +

√
log(2/δ)

2n log 2. (B.5–B.6)

Since sim? ≤ 1, we get the PAC lower bound

sim? ≥ 1− εsim

log 2
. (B.7)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

11 PAC-style Derivation of the Exchangeability Metric
Bound

Define ∆qual = (Q+ U)/2 and ∆sim = (I + S)/2. The exchangeability score is

Emin = min{∆qual, ∆sim}. (12)

If Q ≥ 1− εQ, U ≥ 1− εU , I ≥ 1− εI , S ≥ 1− εS , then

Emin ≥ 1−max
{
εQ+εU

2 , εI+εS
2

}
. (13)

12 Perturbation Techniques Applied to the Synthetically
Generated Dataset

In this study, we applied several perturbation techniques to the generated dataset to simulate
real-world challenges such as label noise, class imbalance, and data corruption. These per-
turbations are designed to test the robustness of the rank given by each metric in handling
imperfect data.

All experiments were designed to start with Dgenerated ≈ Dtrain, and apply a perturba-
tion degree t ∈ [0, 1] that quantifies the dissimilarity between the generated and reference
datasets. To objectively assess the performance of each metric, we compute the Spearman
rank correlation between the metric scores ρ̂ and the perturbation degree t. An ideal metric
would exhibit a rank correlation of 1.0, indicating a perfect monotonic relationship between
the perturbation degree and the metric score.

We applied the following perturbation techniques:

• Mode Collapse: We progressively replaced each data point with exact duplicates
of a representative instance from each class.

• Class Imbalance: Introduced by either increasing or decreasing the number of
instances in each class, based on a specified ratio or exact count.

• Label Noise: Added by randomly flipping a fraction of the target labels in the
dataset.

• Exact Copy Noise: Introduced by replacing a subset of the Dgenerated instances
with copies of samples drawn from Dtrain.

• Noise Copies: A subset of Dgenerated is replaced with near-duplicates of real train-
ing samples from Dtrain, each perturbed by zero-mean Gaussian noise with standard
deviation σ = 0.05.

• Gaussian Noise: Both additive and multiplicative noise were applied to the in-
stances, and features were swapped to simulate data corruption.

13 Classifiers, Dataset Sizes, and Scorers Used in the
synthetic Experiments

We evaluate multiple dataset sizes (100–10000), classifiers (e.g., ExtraTrees, RandomForest,
Logistic Regression, SVC, KNN), and scorers.

Dataset Size Classifier Scorer Positive Class Ratio
100 ExtraTreesClassifier F1 Score 0.40
500 RandomForestClassifier Balanced Accuracy 0.50
1000 GradientBoostingClassifier Precision 0.20
2500 AdaBoostClassifier Recall 0.60
5000 LogisticRegression ROC-AUC Score 0.35
10000 DecisionTreeClassifier Jaccard Score 0.25

SVC Average Precision 0.90

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dataset Size Classifier Scorer Positive Class Ratio
KNeighborsClassifier Precision 0.30

GaussianNB 0.80
ExtraTreesClassifier 0.95

RandomForestClassifier 0.15
GradientBoostingClassifier 0.10

13.1 Experimental Setup and Function Parameters

Parameter Value Description
n iterations 100 Number of iterations for scoring computation.
use resampling True Whether to resample the data during evaluation.
use replacement False Whether to sample with replacement.
fraction 0.8 Fraction of data to use for training when resam-

pling.
data estimator KNeighborsClassifierClassifier used to estimate model performance.
scorer F1, AUC, etc. Scoring functions used to evaluate discriminative

performance.
verbose 2 Level of verbosity for logging during scoring.
parallel True Whether computations are parallelized for effi-

ciency.

14 Vectorizers Used in the Graph Data Experiments

In this study, we utilized several vectorizers for our experiments. Below is a brief overview
of each method used:

- GIN (Xu et al., 2019) Xu et al. (2019): The Graph Isomorphism Network (GIN) is a
graph neural network based on the idea of learning a graph’s structural properties through
a series of message-passing layers. GIN has demonstrated strong performance on graph
classification tasks, especially when combined with sufficient training data and appropriate
network architectures.

- GraphCL (You et al., 2020) You et al. (2020): GraphCL is a contrastive learning method
for graph data, whcih leverages a self-supervised learning framework that maximizes the
agreement between augmented views of a graph while minimizing the distance between
distinct views. This technique helps capture better graph representations, even without
labeled data, making it suitable for semi-supervised learning settings.

- InfoGraph (Sun et al., 2020) Sun et al. (2019): InfoGraph is a method for unsupervised and
semi-supervised graph learning that focuses on learning graph-level representations. It uses
mutual information maximization to capture global graph structures, enabling the model to
generate meaningful and informative embeddings.

- GraphVectorizer (Custom Implementation): The GraphVectorizer processes graph struc-
tures derived from SMILES strings. It extracts few graph features, including degree his-
tograms, clustering coefficients, and node labels. These features are then encoded into
fixed-length vectors, capturing graph topology and node-level information. The vectorizer
includes padding to standardize feature lengths and applies label encoding to handle node
labels.

-NSPDK (Costa and Grave, 2010) Costa and Grave (2010): The Fast Neighborhood Sub-
graph Pairwise Distance Kernel (NSPDK) computes the similarity between two graphs based
on the pairwise distances between their corresponding subgraphs. This kernel is designed
to efficiently capture structural information by evaluating local neighborhoods and pairwise
distances.

- HashedAPVectorizer O’Boyle et al. (2011): Computes Atom Pair fingerprints by capturing
relationships between atom pairs in a molecule, resulting in a fixed-length hashed vector.
This vectorizer is used for molecular similarity tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- HashedMorganVectorizer O’Boyle et al. (2011): Generates Morgan fingerprints, which are
circular and capture local atom environments. It is widely used in molecular similarity and
classification tasks.

- HashedRDKVectorizer O’Boyle et al. (2011): Computes RDKit Fingerprints, which are
based on atom connectivity and properties. This vectorizer is suitable for general molecular
similarity and topological feature representation.

- HashedTorsionVectorizer O’Boyle et al. (2011): Generates Topological Torsion fingerprints,
focusing on torsion angles between atoms to capture 3D molecular arrangements. This
vectorizer is useful for tasks that involve molecular conformation analysis.

15 Datasets

15.1 Molecular Datasets

We conduct experiments using several datasets from the Therapeutic Data Commons Huang
et al. (2021), which are designed for single prediction tasks. By default, the datasets are
split into training, testing, and validation sets with proportions of 70%, 20%, and 10%,
respectively, using random splitting. The raw data is initially provided as SMILES strings
Weininger (1988). For this study, we apply multiple vectorization techniques, including
both molecular and graph-based vectorizers. The molecular vectorizers process the SMILES
strings and generates molecular features, which are then used by our metric. Additionally,
we employ the graph-based vectorizers to convert SMILES into graph representations, where
nodes correspond to atoms and edges correspond to bonds in the molecule. Each record
is represented as a graph G = (V,E,X, ε), where V represents the vertices (atoms), E
represents the edges (bonds), with E = {(i, j) | i, j ∈ {1, . . . , |V |}}. X ∈ RN×D is the
node feature matrix, E ∈ R(N×N×1) is the edge attribute matrix, and N is the number of
nodes. The dimensionality of the node features D is set to 9, and the dimensionality of
the edge features F is set to 3. The node features for molecular graph generation include:
atomic number, chirality, degree, formal charge, number of hydrogen atoms, number of
radical electrons, hybridization, aromaticity, and whether the atom is part of a ring. The
edge features include: bond type, bond stereo, and whether the bond is conjugated.PyTorch
Geometric Contributors (2021)

• AMES Mutagenicity: Consists of 7,255 binary drugs labeled as mutagenic or
non-mutagenic with 3 ≤ |V | ≤ 55.

• BBB Martins: 1,975 drugs classified into those that can penetrate the blood-brain
barrier (BBB) or not with 2 < |V | < 132.

• Cyp1a2 Veith: 12,579 drugs classified into those that can / cannot inhibit the
CYP1A2 gene with 7 ≤ |V | ≤ 123.

• Cyp2c19 Veith: 12,665 drugs classified into ones that can / cannot inhibit the
CYP2C19 gene with 7 ≤ |V | ≤ 114.

• Herg Karim: Consists of 13,445 molecular structures labeled as hERG (< 10µM)
and non-hERG (≥ 10µM) blockers with 6 < |V | < 58.

• Lipophilicity AstraZeneca: 4,200 binary labeled drugs based on their ability to
dissolve in lipids.

15.2 SYNTHETIC Dataset

The generated dataset in this study was generated using scikit-learn’s make classification
function, producing 27 features sampled from Gaussian distributions. Initially the dataset is
balanced, with equal class distributions (50% positive and 50% negative), and includes both
informative and redundant features. The data is split into four sets—training, reference,
test, and generated—using stratified sampling to maintain class balance. While the features
are Gaussian by default, they can be adapted for non-Gaussian experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Sizes of training and testing sets used in our experiments with real generators.

Dataset Dgen Dtrain1 Dtrain2 Dtest

ames 2340 2340 2340 1316
bbb martins 318 318 318 206
cyp1a2 veith 4128 4401 4128 2376
cyp2c19 veith 3956 3956 3956 2326
herg karim 4700 4700 4700 2686
lipophilicity astrazeneca 524 524 524 316

Table 8: General statistics for molecular datasets used in our experiments. Node types are
shown for positive and negative samples separately.

Dataset Size Positives Negatives Node Types (Pos,
Neg)

Edge Types

ames 5094 2759 2335 10 (Pos), 10 (Neg) 4
bbb martins 1421 1096 325 12 (Pos), 11 (Neg) 4
cyp1a2 veith 8805 4060 4745 17 (Pos), 25 (Neg) 4
cyp2c19 veith 8866 4063 4803 17 (Pos), 25 (Neg) 4
herg karim 9412 4714 4698 10 (Pos), 15 (Neg) 4
lipophilicity astrazeneca 2940 2446 494 12 (Pos), 10 (Neg) 4

Table 9: Atomic Numbers for Positive and Negative Classes

Atomic Numbers (Positive)
[1, 35, 6, 7, 8, 9, 15, 16, 17, 53]
[1, 5, 6, 7, 8, 9, 11, 15, 16, 17, 35, 53]
[1, 3, 6, 7, 8, 9, 11, 14, 15, 16, 17, 80, 78, 20, 24, 25, 26, 29, 30, 33, 34, 35, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 80, 19, 78, 26, 29, 35, 53]
[1, 35, 6, 7, 8, 9, 14, 16, 17, 53]
[1, 6, 7, 8, 9, 14, 15, 16, 17, 34, 35, 53]
Atomic Numbers (Negative)
[1, 35, 6, 7, 8, 9, 15, 16, 17, 53]
[1, 35, 6, 7, 8, 9, 11, 15, 16, 17, 53]
[1, 5, 6, 7, 8, 9, 11, 78, 15, 16, 17, 14, 19, 20, 25, 26, 29, 30, 33, 34, 35, 44, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 78, 15, 16, 17, 14, 19, 20, 80, 25, 26, 29, 30, 33, 34, 35, 44, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 79, 34, 35, 53]
[1, 35, 5, 6, 7, 8, 9, 15, 16, 17]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

15.3 Image Datasets

We evaluate on three canonical benchmarks: MNIST (LeCun et al., 1998), Fash-
ion–MNIST (Xiao et al., 2017), and CIFAR–10 (Krizhevsky, 2009). All models share
preprocessing and canonical stratified splits (details in Appendix 21); test images are never
used for training or model selection.

16 Generators Used

16.1 Molecular(graph) data generation

In this study, we utilized several graph generation models for our experiments. Below is a
brief overview of each method used, along with the corresponding citations:

Table 10: Overview of Generative Models Used in This Study

Generator Model Class Description

STGG Ahn et al. (2021) Autoregressive Spanning-tree-based decoder with Transformer backbone

WGAN-GP Akensert (2021) GAN-based Adversarial model using R-GCN for graph discrimination

JTNN Jin et al. (2018) VAE-based Junction-tree structured variational autoencoder

HierVAE Jin et al. (2020) VAE-based Hierarchical VAE with coarse-to-fine motif decoding

MoFlow Zang and Wang (2020) Flow-based Conditional normalizing flow model for molecules

GDSS Jo et al. (2022) Diffusion-based SDE-based generative diffusion over graphs

S4DD Özçelik et al. (2024) State Space / Hybrid Dual-mode state-space model with Transformer-style decoding

SWINGNN Yan et al. (2023) Diffusion-based 2-WL guided diffusion with shifted-window attention

Neighborhood Swap (NS-1/2/3) Perturbation-based Iterative, non-parametric local rewiring for augmentation

• STGG (Spanning Tree Graph Generator) Ahn et al. (2021): Formulates the
graph generation of a molecular graph as a sequence of tree-constructive opera-
tions applied through the composition of a spanning tree with the residual edges.
STGG adopts a transformer architecture which generates the tree by using relative
positional encodings and residual edges using an attention-based predictor.

• WGAN-GP with R-GCN (Wasserstein GAN with Gradient Penalty and
Relational Graph Convolutional Networks) Akensert (2021): Originally de-
signed for the generation of small molecular graphs such as QM9, but adjusted to
generate larger compounds. The generator network consists of two fully connected
networks, and the discriminator implements non-linearly transformed neighborhood
aggregations through the means of R-GCN.

• JTNN (Junction Tree Variational Autoencoder for Molecular Graph
Generation) Jin et al. (2018): Generates graphs in two stages. In the first stage, a
tree structured object is generated by exploiting the coarse-grained representations
of the training molecular graphs. In the second stage, the nodes in the tree (which
are essentially subgraphs) are assembled back into molecules.

• HierVAE Jin et al. (2020): Uses a hierarchical encoder-decoder architecture for
graph generation. The encoder produces a multi-resolution representation for each
input graph in a fine to coarse fashion, starting with the atoms and finishing with
fully connected motifs. During the decoding process, the molecules are assembled
back in a coarse to fine manner, where three consecutive predictions are made at
each pass: new motif selection, which part of it attaches, and the points of contact
with the current molecule.

• Moflow Zang and Wang (2020): Works by using two different graph conditional
flows, one for atoms and one for bonds, for obtaining their latent representations.
The molecule generation uses the inverse transformations of the inference opera-
tions, followed by post-validity correction.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• GDSS Jo et al. (2022): Proposes a continuous-time SDE system to model the
diffusion process over nodes and edges simultaneously, where Gaussian noise is
directly inserted into the adjacency matrix and node features. Sampling is done
by solving the SDE used to describe the reverse-time diffusion process.

• S4DD or S4 for Denovo Molecule Design as in Özçelik et al. (2024):A dual-mode
generative model that combines the recurrence of LSTMs with the global context
modeling of Transformers, trained via global convolution and recurrent sequence
generation. We evaluate three training configurations, each followed by fine-tuning
on our target datasets:

– unfiltered 1: trained directly on the target dataset without pretraining or
filtering.

– unfiltered m: pretrained on a large, diverse set of over 1 million molecules
(e.g., toxic and non-toxic compounds from the Therapeutics Data Commons),
then fine-tuned.

– filtered m: pretrained on a combined dataset (ZINC + QM9 + ChEMBL),
filtered to include only common atom types, then fine-tuned.

• SWINGNN Yan et al. (2023): A non-invariant diffusion model that employs an
edge-to-edge 2-WL message passing network and utilizes shifted window-based self-
attention. They propose a 2nd order sampler with correction for generating large
molecular graphs.

• Neighborhood Swap Generator (NS): A non-parametric, perturbation-based
generator that produces augmented graphs through iterative local rewiring. It be-
gins by decomposing each input graph into small neighborhoods (e.g., 1–2-hop sub-
graphs) and then perturbs them via controlled rewiring and recombination. The
generator operates in multiple sequential rounds, where each round applies per-
turbations not only to the original structure but also to neighborhoods altered in
previous steps. This compounding process introduces increasingly diverse graph
structures while preserving essential properties. We define three versions—NS-1,
NS-2, and NS-3—corresponding to one, two, and three rounds of perturbation, re-
spectively. NSG requires no training and is well-suited for data augmentation and
robustness evaluation in graph learning tasks.

16.1.1 Hyperparameters for molecular graph generators

Table 11: HierVAE Hyperparameters

Parameter Value Parameter Value

rnn type LSTM depthG 15
hidden size 250 diterT 1
embed size 250 diterG 3
batch size 50 dropout 0
latent size 32 learning rate 1× 10−3

depthT 15 clip norm 5
step beta 1× 10−3 max beta 1
warmup 10000 kl anneal rate 0.9
epochs 25000 – –

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: JTNN Hyperparameters

Parameter Value Parameter Value

epochs 5 beta 0
learning rate 1× 10−3 max beta 1
annealing rate 0.9 save iter 5000
clip norm 50 step beta 0.002
total step 0 annealing iterations 40000
kl anneal iter 2000 hidden size 56
latent size 40 – –

Table 13: S4forDenovoDesign S4DD Hyperparameters

Parameter Value Parameter Value

model dim 256 state dim 64
n layers 4 n ssm 1
dropout 0.25 vocab size 50
sequence length 120 n max epochs 400
learning rate 1× 10−3 batch size 500
device "cuda" – –

Table 14: GDSS Model Hyperparameters

Parameter Value Parameter Value

s theta 2 s phi 16
GCN layers 4 hidden dim 2
attention heads 8 initial channels 4
hidden channels 3 final channels 16
SDE X VP sampling steps X 1000

β
(X)
min 0.1 β

(X)
max 1

SDE A VE sampling steps A 1000

β
(A)
min 0.2 β

(A)
max 1

solver Rev + Langevin – –

Table 15: GDSS Training Settings

Setting Optimizer LR Weight Decay Batch Epochs EMA

Mol Graphs Adam 5× 10−3 1× 10−4 56 1000 0.999

Table 16: STGG Hyperparameters

LR Optimizer Epochs Layers Embedding Size Dropout

0.0001 Adam 100 3 1024 0.1

Table 17: MoFlow Hyperparameters

Batch LR LR Decay Epochs b n flow b n block b hidden ch

12 0.001 0.999995 200 10 1 128/128

b conv lu a n flow a n block a hidden gnn a hidden lin learn dist noise scale

1 27 1 64 128/64 True 0.6

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 18: Neighborhood Swap Generator Hyperparameters

Version num iterations min size max size nbits size max permutations parallel

NS1 1 1 2 12 20 2 True
NS2 2 1 2 12 20 2 True
NS3 3 1 2 12 20 2 True

Table 19: WGAN-GP Hyperparameters

Parameter Value

Dense Units 128, 256, 512
Dropout Rate 0.2
Discriminator Steps 1
GConv Units 128, 128, 128, 128
Generator Dense Units 512, 512
Generator Dropout Rate 0.2
Generator Steps 1
Gradient Penalty Weight 10
Optimizer Adam
Learning Rate 0.001
Epochs 20
Batch Size 28

Table 20: SWINGNN Hyperparameters

Graph Type MCMC Model Precond Sigma Dist Steps

Molecular edm edm edm 256 -1, 1, x0

Model Name Feature Dims Depths Window Size Patch Size Sample Clip

swin gnn Molecular 1 1 3 1 2 3 –

16.2 Image data Generators

16.2.1 Generative Models and Training Setups

We evaluate conditional VAEs (Kingma and Welling, 2014; Rezende et al., 2014), GAN
variants (DCGAN (Radford et al., 2016), WGAN-GP with projection critic (Gulrajani
et al., 2017; Miyato and Koyama, 2018), StyleGAN2-lite adapted to 32×32 (Karras et al.,
2020)), and conditional diffusion models (UNet backbones (Ronneberger et al., 2015) and
Transformer2D/DiT-style backbones (Peebles and Xie, 2023)) trained as DDPMs (Ho et al.,
2020) with classifier-free guidance.

Conditional VAEs. Shared training hyperparameters (per dataset) and compact archi-
tecture deltas are listed in Tables 21 and 22. All VAEs are class-conditional with label
embeddings concatenated at encoder/latent/decoder as appropriate.

Table 21: VAE training setup shared across MLP/Conv/Res (per dataset).

Dataset z Cond Ep Bs LR KW β FB Loss Aug

MNIST 32 32 80 128 1× 10−3 20 1.0 0.0 BCE none

FashionMNIST 32 32 100 128 1× 10−3 25 1.0 0.0 BCE none

CIFAR-10 128 64 250 128 1× 10−3 30 1.0 0.0 MSE flip + crop

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 22: VAE architecture details; decoders mirror encoders unless noted.

Arch Datasets Encoder Decoder / Notes

MLP MNIST / FashionMNIST FC: 512, 512; heads µ, log σ2 (z per
Tbl. 21)

FC: 512, 512 → reshape to
1×28×28

MLP CIFAR-10 FC: 1024, 1024 FC: 1024, 1024 → 3×32×32
Conv MNIST / FashionMNIST 3×3/s2: 32, 64, 128 Deconv s2: 128, 64, 32 → C
Conv CIFAR-10 4×4/s2: 64, 128, 256, 256 Deconv s2: 256, 256, 128, 64 → C
ResConv MNIST / FashionMNIST ResDown s2: 32, 64, 128 ResUp mirror; final 3×3 to C
ResConv CIFAR-10 ResDown s2: 64, 128, 256, 256 ResUp mirror; final 3×3 to C

WGAN-GP (projection critic). Tables 23–25 summarize preprocessing deviations,
training hyperparameters, and architectures.

Table 23: WGAN-GP data preprocessing deviations relative to Table 34.

Dataset Train input Export size Aug Notes

MNIST 1×32×32 (28→32) 28×28 none Center-crop 32→28 on export; scale [−1, 1].
FashionMNIST 1×32×32 (28→32) 28×28 none Center-crop 32→28 on export; scale [−1, 1].
CIFAR-10 3×32×32 32×32 none No cropping; scale [−1, 1].

Table 24: WGAN-GP training hyperparameters (shared across datasets).

Ep Batch LR z Cond G base D base D feat ncritic λGP Adam (β1, β2)

100 64 1×10−4 128 128 256 64 256 5 10.0 (0.0, 0.9)

Table 25: WGAN-GP model: DCGAN-style conditional generator and projection
critic (Miyato and Koyama, 2018).

Generator z∈R128, label emb. ∈ R128; concat → FC to 4×4×256; deconvs: 256→128→64→32 (stride 2,
BN+ReLU); 3×3 conv → C; tanh output in [−1, 1].

Critic (proj) Convs: C→64→128→256 (stride 2, LeakyReLU 0.2) to 4×4; global sum pool → R256; score

= w>h+ 〈h, E[y]〉 with class embedding E∈RK×256.
Objective WGAN-GP with projection discriminator; gradient penalty λGP=10; ncritic=5.
Exports Per-class sampler: generates [−1, 1] then maps to [0, 1]; MNIST/FashionMNIST center-cropped

32→28 on save; CIFAR-10 kept at 32×32.

DCGAN and StyleGAN2-lite. Preprocessing and training settings are summarized in
Tables 26–28.

Table 26: Data preprocessing deviations for DCGAN (Radford et al., 2016) and
StyleGAN2-lite (Karras et al., 2020) relative to Table 34.

Model Dataset Train input Export size Notes

DCGAN MNIST / FashionMNIST 1×28×28 28×28 No aug; scale [−1, 1].
DCGAN CIFAR-10 3×32×32 32×32 No aug; scale [−1, 1].

StyleGAN2-lite MNIST / FashionMNIST 1×32×32 (28→32) 32×32 SG2-lite fixed to 322; no ex-
port crop.

StyleGAN2-lite CIFAR-10 3×32×32 32×32 SG2-lite fixed to 322.

Table 27: Training hyperparameters for DCGAN and StyleGAN2-lite.

Model Dataset Epochs Batch z Cond. dim LRG LRD Adam (β1, β2) Reg. EMA

DCGAN
MNIST 100 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

FashionMNIST 120 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

CIFAR-10 200 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

StyleGAN2-lite
MNIST 100 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999

FashionMNIST 120 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999

CIFAR-10 200 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 28: DCGAN and StyleGAN2-lite architectures. C=1 (MNIST/Fashion-MNIST),
C=3 (CIFAR-10).

DCGAN (cond.) G: [z| emb(y)]→ FC→ seed (7×7 if 28×28, else 8×8), width gch=128; two
ConvT 4× 4, s=2 (BN+ReLU) to gch/4; final 3× 3 conv → C; tanh.
D: concat one-hot (10 ch) on input; Conv 4× 4, s=2: C+10→ dch/2→ dch
(BN+LReLU 0.2); final conv k=7/8→ logit.

StyleGAN2-lite (cond., 32× 32) G: MLP on [z| emb(y)]→ w (256-d, 4× LReLU); learned 4×4×gch constant;
StyledConv (mod+demod, per-layer noise) with upsampling 4 → 8 → 16 →
32; skip-sum ToRGB at 4/8/16/32; tanh.
D: FromRGB → residual downs 32 → 16 → 8 → 4 (avg-pool); final convs;
projection: scalar +〈proj(h), emb(y)〉 (256-d).

Conditional diffusion models (cDDPM). We train both UNet- and Transformer2D-
based cDDPMs with classifier-free guidance and evaluate using fast samplers at test time.
Training and model configurations appear in Tables 29–33.

Table 29: Optimization and diffusion schedule for cDDPM (all datasets). Data/splits
follow Table 34.

Datasets Epochs Batch Optim LR Timesteps Pred. type EMA Clip Seed

MNIST / FashionMNIST / CIFAR-10 50 128 AdamW 1×10−4 1000 v-pred 0.999 1.0 42

Table 30: UNet config, conditioning, and sampling for cDDPM (only C/H/W vary by
dataset).

UNet blocks Stage ch. Heads Cond dim puncond Sampler Steps CFG Preview

3 ↓ /3 ↑, 2 layers (cross-attn) (128, 256, 256) 4 128 0.10 DPM-Solver++ 50 2.0 10/class

Table 31: Training hyperparameters for Transformer2D cDDPM. Optimizer: AdamW
(β1=0.9, β2=0.999); loss: MSE on v (v-prediction).

Dataset Epochs Batch LR Weight decay Timesteps Pred. type EMA decay Sample steps Seed

MNIST 150 256 1×10−4 0.0 1000 v-pred 0.9999 16 42

FashionMNIST 160 256 1×10−4 0.0 1000 v-pred 0.9999 20 42

CIFAR-10 400 256 1×10−4 0.0 1000 v-pred 0.9999 20 42

Table 32: Model and conditioning for Transformer2D cDDPM. Scheduler (train):
DDPM with linear β (10−4→2×10−2); sampler: DPM-Solver++ (CFG).

Dataset Patch Layers Heads Head dim Cond dim puncond CFG scale In ch Size

MNIST 2 8 4 64 128 0.20 2.0 1 28
FashionMNIST 2 10 4 64 128 0.20 2.0 1 28
CIFAR-10 4 12 6 64 128 0.20 2.0 3 32

Table 33: Model and sampling configuration for UNet cDDPM. Training scheduler:
DDPM (squared-cosine β, v-pred); sampler: Euler Ancestral with CFG.

Dataset Blocks (ch.) Layers/block In/Out ch. Size Class slots Cond. type Pred. type Sampler

MNIST / FashionMNIST (128, 256, 256) 2 1→ 1 28 K+1 (0=null) class embed (timestep) v-pred EulerA

CIFAR-10 (128, 256, 256) or (128, 256, 512)† 2 3→ 3 32 K+1 (0=null) class embed (timestep) v-pred EulerA

† --wide switches CIFAR-10 to (128, 256, 512); --channels accepts a custom comma list (e.g.,
128,256,256).

Classifier-free guidance: during training labels drop to the null class with prob. puncond; at
sampling, batches are doubled with uncond/cond labels (0, c+1) and combined as u+ s(c−u).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

17 Example Generated Molecules by Each Generator

Figure 4: Examples of molecules generated by different models across the six datasets. Each
row is a generator; each dataset contributes a positive and a negative sample.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 5: Samples generated by each model on MNIST. Rows: generators; columns: class-
conditional samples (uncurated).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 6: Samples generated by each model on Fashion–MNIST. Rows: generators;
columns: class-conditional samples (uncurated).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 7: Samples generated by each model on CIFAR–10. Rows: generators; columns:
per-class conditional samples (uncurated).

18 Precision, Recall, Density, and Coverage Rank of Real
Generators

Figure 8: Rank comparisons of real graph generators: Precision vs. Recall (left) and Density
vs. Coverage (right). Lower rank is better.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

19 Robustness of Alternative Metrics to Data Perturbations

Figure 9: Effect of perturbations on Coverage, Density, F1-DC, Precision, Recall, F1-PR,
FID, MMD Linear, MMD RBF across dataset sizes.

Despite broad use, many alternative metrics show limited robustness to perturbations; e.g.,
MMD RBF is nearly unchanged under noisy copies.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

20 Real-World Dataset Generation Experiments in Detail

20.1 Average Rank per Dataset for Each Vectorizer

20.1.1 AMES

Figure 10: Average generator rank on AMES across vectorizers (lower is better).

20.1.2 BBB Martins

Figure 11: Average generator rank on BBB Martins across vectorizers (lower is better).

20.1.3 CYP1A2

Figure 12: Average generator rank on CYP1A2 across vectorizers (lower is better).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

20.1.4 CYP2C19

Figure 13: Average generator rank on CYP2C19 across vectorizers (lower is better).

20.1.5 hERG Karim

Figure 14: Average generator rank on hERG Karim across vectorizers (lower is better).

20.1.6 Lipophilicity AstraZeneca

Figure 15: Average generator rank on Lipophilicity AstraZeneca across vectorizers (lower
is better).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

21 Image-Domain Experiments: Datasets, Models, and Full
Results

21.1 Datasets, Preprocessing, and Splits

Table 34: Shared preprocessing and canonical splits used for all models and experiments.

Dataset Shape (C ×H ×W) Pixel scale Default train aug. Split policy

MNIST 1× 28× 28 [−1, 1] from [0, 1] none stratified 50/50 train1/train2 (seed 42); test untouched
FashionMNIST 1× 28× 28 [−1, 1] none same

CIFAR-10 3× 32× 32 [−1, 1] none† same

† Some models enable flip/crop at training time; exports match dataset size.

21.2 Image Data Full Metric Results Tables

Table 35: Metric values (left) and ranks (right) on CIFAR-10. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

DCGAN 0.670 9.0 0.000 6.5 0.450 4.0 0.450 1.0 0.150 4.0
DDPM 0.940 2.5 0.250 3.0 0.550 1.0 0.430 2.0 0.290 1.0
StyleGAN2 0.880 4.0 0.000 6.5 0.190 9.0 0.080 6.0 0.060 7.0
Transformer2D 0.950 1.0 0.290 1.0 0.510 3.0 0.400 4.0 0.280 3.0
UNet CFG 0.940 2.5 0.250 2.0 0.530 2.0 0.410 3.0 0.280 2.0
VAE Conv 0.760 6.0 0.000 6.5 0.230 7.0 0.010 7.5 0.050 8.0
VAE MLP 0.740 7.0 0.000 6.5 0.210 8.0 0.010 7.5 0.040 9.0
VAE Res 0.770 5.0 0.000 6.5 0.400 5.0 0.000 9.0 0.080 5.5
WGAN-GP 0.720 8.0 0.000 6.5 0.280 6.0 0.140 5.0 0.080 5.5

Table 36: Metric values (left) and ranks (right) on Fashion-MNIST. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

DCGAN 0.930 5.5 0.020 1.0 0.300 6.0 0.100 3.0 0.090 5.5
DDPM 0.940 2.5 0.000 5.5 0.500 1.5 0.170 1.0 0.160 1.0
StyleGAN2 0.940 2.5 0.000 5.5 0.220 7.0 0.000 7.0 0.050 7.0
Transformer2D 0.810 8.0 0.000 5.5 0.060 8.0 0.000 7.0 0.010 8.5
UNet CFG 0.940 2.5 0.000 5.5 0.500 1.5 0.140 2.0 0.150 2.0
VAE Conv 0.920 7.0 0.000 5.5 0.400 5.0 0.000 7.0 0.090 5.5
VAE MLP 0.940 2.5 0.000 5.5 0.430 3.5 0.000 7.0 0.100 3.5
VAE Res 0.930 5.5 0.000 5.5 0.430 3.5 0.000 7.0 0.100 3.5
WGAN-GP 0.790 9.0 0.000 5.5 0.050 9.0 0.010 4.0 0.010 8.5

Table 37: Metric values (left) and ranks (right) on MNIST. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

dcgan 0.560 9.0 0.000 7.0 0.010 9.0 0.000 6.0 0.000 9.0
ddpm 0.970 3.0 0.000 7.0 0.570 2.0 0.130 1.5 0.170 1.5
stylegan2 0.920 7.0 0.090 1.0 0.090 7.0 0.060 6.0 0.020 7.0
transformer2d 0.820 8.0 0.000 7.0 0.070 8.0 0.000 6.0 0.020 8.0
unet cfg 0.970 3.0 0.000 7.0 0.580 1.0 0.130 1.5 0.170 1.5
vae conv 0.960 6.0 0.000 7.0 0.480 5.0 0.000 6.0 0.110 5.0
vae mlp 0.970 3.0 0.000 7.0 0.490 4.0 0.000 6.0 0.120 4.0
vae res 0.970 3.0 0.000 4.0 0.520 3.0 0.000 6.0 0.130 3.0
wgangp 0.970 3.0 0.090 2.0 0.400 6.0 0.000 6.0 0.110 6.0

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 38: CIFAR-10 metrics with per-metric ranks (r=1 best). nref=25,000, ngen=25,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 21.62 5 0.0171 5 0.165 6 0.078 3 0.106 3 2.041 1
DDPM 6.67 1 0.0030 1 0.224 3 0.122 1 0.158 1 2.017 2
StyleGAN2 19.26 3 0.0129 3 0.220 4 0.002 6 0.005 6 1.958 3
UNet CFG 9.62 2 0.0069 2 0.288 1 0.093 2 0.141 2 1.944 4
Transformer2D 20.13 4 0.0150 4 0.286 2 0.065 4 0.106 3 1.763 5
VAE Conv 182.67 7 0.1905 7 0.110 7 0.000 7 0.000 7 1.293 7
VAE MLP 206.49 8 0.2182 8 0.094 8 0.000 7 0.000 7 1.280 8
VAE Res 374.51 9 0.4439 9 0.002 9 0.000 7 0.000 7 1.006 9
WGAN-GP 42.62 6 0.0342 6 0.207 5 0.017 5 0.032 5 1.652 6

Table 39: Fashion-MNIST metrics with per-metric ranks (r=1 best). nref=30,000,
ngen=30,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 0.19 1 0.0106 4 0.215 7 0.174 3 0.192 3 2.364 1
DDPM 0.71 2 0.0018 1 0.369 2 0.246 1 0.295 1 1.994 3
StyleGAN2 1.45 4 0.0077 3 0.318 3 0.001 8 0.002 8 1.869 5
UNet CFG 1.10 3 0.0042 2 0.463 1 0.188 2 0.268 2 1.905 4
Transformer2D 5.45 9 0.0587 9 0.090 8 0.001 8 0.002 8 1.570 9
VAE Conv 3.82 6 0.0231 6 0.230 6 0.009 4 0.017 4 1.692 6
VAE MLP 4.59 8 0.0216 5 0.252 5 0.007 5 0.014 5 1.677 7
VAE Res 3.99 7 0.0257 7 0.257 4 0.006 6 0.011 6 1.673 8
WGAN-GP 2.19 5 0.0423 8 0.057 9 0.005 7 0.009 7 2.013 2

Table 40: MNIST metrics with per-metric ranks (r=1 best). nref=30,000, ngen=30,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 3.89 9 0.0321 8 0.307 3 0.003 7 0.007 7 1.276 9
DDPM 0.25 4 0.0016 1 0.488 2 0.319 1 0.386 1 1.634 7
StyleGAN2 2.27 8 0.0144 6 0.291 4 0.000 9 0.000 9 1.478 8
UNet CFG 0.29 5 0.0017 2 0.531 1 0.299 2 0.383 2 1.636 6
Transformer2D 0.83 7 0.1345 9 0.027 9 0.003 7 0.005 8 1.647 5
VAE Conv 0.24 3 0.0114 3 0.223 5 0.072 5 0.109 5 1.784 3
VAE MLP 0.23 2 0.0125 4 0.206 8 0.082 4 0.117 4 1.816 2
VAE Res 0.40 6 0.0141 5 0.212 6 0.052 6 0.084 6 1.716 4
WGAN-GP 0.14 1 0.0163 7 0.210 7 0.207 3 0.209 3 1.865 1

Table 41: Kernel-entropy metrics on CIFAR-10 with per-metric ranks (r=1 best). Higher
is better for RKE gen, FKEA-VENDI gen, FKEA-RKE2 gen; lower is better for RRKE.

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 15.18 0.852 5 2 0.179 5 13.1 3 2.3 3
DDPM 15.72 0.942 1 3 0.120 1 15.7 1 2.6 1
StyleGAN2 15.21 0.858 3 2 0.167 4 12.6 4 2.3 3
UNet CFG 15.54 0.901 2 2 0.129 2 14.0 2 2.4 2
Transformer2D 15.28 0.855 4 2 0.165 3 12.4 5 2.4 2
VAE Conv 15.34 0.335 7 1 0.762 7 2.8 7 1.4 5
VAE MLP 15.54 0.305 8 1 0.829 8 2.5 8 1.4 5
VAE Res 17.04 0.014 9 1 1.228 9 1.1 9 1.0 6
WGAN-GP 14.82 0.745 6 2 0.249 6 9.5 6 2.1 4

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 42: Kernel-entropy metrics on Fashion-MNIST with per-metric ranks (r=1 best).

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 16.63 0.953 1 3 0.120 3 14.7 1 2.6 1
DDPM 16.56 0.945 2 3 0.083 1 13.1 2 2.6 1
StyleGAN2 16.39 0.905 4 2 0.133 4 11.1 4 2.5 2
UNet CFG 16.46 0.923 3 3 0.092 2 11.9 3 2.5 2
Transformer2D 16.62 0.848 7 2 0.357 9 8.7 9 2.3 4
VAE Conv 16.19 0.852 6 2 0.205 6 9.3 6 2.3 4
VAE MLP 16.26 0.852 6 2 0.199 5 9.0 8 2.3 4
VAE Res 16.12 0.837 8 2 0.211 7 9.1 7 2.3 4
WGAN-GP 16.54 0.879 5 2 0.263 8 10.6 5 2.4 3

Table 43: Kernel-entropy metrics on MNIST with per-metric ranks (r=1 best).

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 13.58 0.869 8 2 0.331 8 8.1 8 2.3 5
DDPM 13.48 0.971 3 3 0.070 1 13.5 2 2.7 1
StyleGAN2 13.21 0.882 7 2 0.235 7 8.7 7 2.4 4
UNet CFG 13.40 0.972 2 3 0.071 2 13.0 3 2.6 2
Transformer2D 15.28 0.850 9 2 0.540 9 10.7 6 2.3 5
VAE Conv 13.46 0.937 5 3 0.146 4 12.5 4 2.5 3
VAE MLP 13.67 0.953 4 3 0.150 5 13.0 3 2.6 2
VAE Res 13.38 0.921 6 3 0.161 6 11.9 5 2.5 3
WGAN-GP 13.93 0.994 1 3 0.145 3 15.0 1 2.7 1

21.3 Reproducibility Notes

All experiments use seed 42 unless otherwise stated. Evaluation uses equal nref and ngen

per dataset (see captions). The duplicate metric tables appearing in prior drafts have been
removed to avoid redundancy.

38

	Introduction
	Background and Related Work
	The Method: RankGen
	Data Preparation and Sampling
	Classifier Performance Scores (rho_i)
	Quality Metric
	Utility Metric
	Indistinguishability Metric
	Similarity Metric
	Exchangeability Metric
	Quantile-Based Estimation
	Ranking Across Metrics

	Empirical Evaluation
	Quantile Sensitivity Analysis on Synthetic Data
	Real-World Molecular Graph Datasets
	Image Benchmarks: MNIST, Fashion–MNIST, and CIFAR–10

	Model Ranking Methodology
	Ranking of Generative Models

	Bounds Derivations
	Bound Ingredients and Assumptions
	PAC-style Derivation of the Quality Metric Bound
	PAC-style Derivation of the Utility Bound
	PAC-style Derivation of the Similarity Bound
	Problem Definition
	Similarity Computation
	Derivation of the Similarity Bound

	PAC-style Derivation of the Exchangeability Metric Bound
	Perturbation Techniques Applied to the Synthetically Generated Dataset
	Classifiers, Dataset Sizes, and Scorers Used in the synthetic Experiments
	Experimental Setup and Function Parameters

	Vectorizers Used in the Graph Data Experiments
	Datasets
	Molecular Datasets
	SYNTHETIC Dataset
	Image Datasets

	Generators Used
	Molecular(graph) data generation
	Hyperparameters for molecular graph generators

	Image data Generators
	Generative Models and Training Setups

	Example Generated Molecules by Each Generator
	Precision, Recall, Density, and Coverage Rank of Real Generators
	Robustness of Alternative Metrics to Data Perturbations
	Real-World Dataset Generation Experiments in Detail
	Average Rank per Dataset for Each Vectorizer
	AMES
	BBB Martins
	CYP1A2
	CYP2C19
	hERG Karim
	Lipophilicity AstraZeneca

	Image-Domain Experiments: Datasets, Models, and Full Results
	Datasets, Preprocessing, and Splits
	Image Data Full Metric Results Tables
	Reproducibility Notes

