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Abstract

Standard metrics for evaluating generative models are brittle, easy to game,
and often ignore task relevance. We introduce RankGen, a unified evalua-
tion framework built on four metrics: Quality, Utility, Indistinguishability,
and Similarity; each designed to capture a distinct failure mode and sup-
ported by PAC-style generalization bounds. RankGen follows a two-stage
process: models that violate bounds are discarded, while the rest are ranked
using robust, quantile-based summaries. The resulting composite score,
Exchangeability, captures both fidelity and task relevance. By exposing
hidden pathologies such as memorization, RankGen provides a principled
foundation for safer model selection and deployment.

1 Introduction

Generative models are rapidly becoming core components of modern machine learning
pipelines. They power text assistants, accelerate drug discovery, and enable creative ap-
plications across images, audio, and code. Their reach means the reliability of generative
systems is no longer an academic concern: it directly shapes the safety, fairness, and utility
of downstream applications. Yet despite the dramatic progress in generative capability, one
question remains unresolved: how should we evaluate generative models in a way that is both
rigorous and actionable?

Flawed evaluation protocols can reward models that memorize training data, masking pri-
vacy violations behind inflated similarity scores. They can overlook subtle distributional
shifts that later collapse downstream performance, or promote models that look impressive
to human inspection while offering no measurable utility in task-centric pipelines. Con-
versely, a sound evaluation framework would expose such failure modes and guide principled
model selection in settings where human curation is infeasible.

Meeting this bar demands treating generator quality as multi-faceted. Fidelity must be
distinguished from diversity; surface resemblance from task relevance; broad distribution
alignment from the generated samples fit among their real nearest neighbours. Failures along
any of these axes can derail deployment even when headline scores look strong. Figure 1
previews these pathologies, framing evaluation as a search for complementary probes rather
than a single scalar.

Existing heuristics rarely satisfy these requirements. Popular scalar scores and ad-hoc sum-
maries collapse diverse behaviours into one number, providing little diagnostic value and
remaining brittle to seemingly innocuous design choices. While Sec. 2 surveys alternatives,
most lack principled uncertainty estimates and are easy to game.

We therefore advocate reframing evaluation as diagnosis.
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Figure 1: Four common generative failure modes—and how RankGen detects them. Each
panel shows real data (blue and green) and generated data (red and orange) for a binary
classification task. Marker shapes denote classes. (i) Quality – Poor task fidelity: The
generated data lies in dense regions of the real distribution but fails to produce a decision
boundary that generalizes. A classifier trained only on generated data underperforms, re-
vealing a fidelity gap. (ii) Utility – No added value: Generated points are near-copies of
real data. When added to real training data, they do not shift the decision boundary or
improve performance. Useful generative data should meaningfully expand the training set.
(iii) Indistinguishability – Easy to tell apart: A subtle tell-tale (e.g., a shift in a single
feature) allows a classifier to distinguish generated from real. While the two distributions
may appear similar overall according to the majority of features, a discriminator easily sep-
arates them. (iv) Similarity – Local mismatch: In a well-behaved model, the neighbourhood
around any instance should contain a balanced mix of real and generated samples. When
neighbourhoods contain only one type—either real or generated—it signals poor mixing,
reflecting structural differences or mode collapse. Neighbourhood entropy quantifies this
mismatch, even when the global distributions appear to overlap.

Our approach and contributions. We present RankGen, a general framework for
evaluating generative models that goes beyond fragile one-number scores. RankGen looks
at models from four different angles: Quality (does the model capture the true signal?),
Utility (does it add useful new data?), Indistinguishability (can real and generated data be
told apart?), and Similarity (do real and generated data mix well at a local level?). Instead
of relying on raw numbers alone, RankGen attaches statistical guarantees to each measure,
so results are trustworthy rather than misleading.

The evaluation runs in two stages. First, models that clearly fail the PAC statistical checks
are filtered out. Second, the remaining models are compared using robust summaries that
take uncertainty into account. A final combined score, called Exchangeability, balances
predictive value and distributional alignment, making sure that strength in one area cannot
hide weakness in another.

We test RankGen on both controlled experiments (e.g., mode collapse, label noise, copying)
and real datasets (molecules and images). The framework consistently uncovers problems—
especially memorization—that standard metrics overlook. More than just ranking models,
RankGen provides an interpretable profile of how each model falls short, helping guide safer
choices and deployments in settings where human inspection is not feasible.

2 Background and Related Work

Scalar heuristics. Evaluation has long been dominated by scalar scores such as IS (Sali-
mans et al., 2016), FID (Heusel et al., 2017), and kernel distances like MMD/KID (Gretton
et al., 2012; Binkowski et al., 2018). These metrics offer convenient one-number comparisons
but rest on restrictive assumptions, are sensitive to feature choice and preprocessing (Bar-
ratt and Sharma, 2018; Chong and Forsyth, 2020; Parmar et al., 2022; Betzalel et al., 2022),
and often fail to track human judgment or downstream utility (Theis et al., 2016; Borji,
2019). Empirical studies show that small changes in embedding or sample size can flip
rankings, and the resulting scores provide little diagnostic insight. Multi-dimensional
diagnostics. To capture more structure, precision–recall curves for distributions (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019), density–coverage (Naeem et al., 2020), and more
recent measures such as VENDI and FKEA (Friedman and Dieng, 2023; Jalali et al., 2024)
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separate fidelity from diversity. These methods detect issues like mode collapse that scalars
miss, but they inherit fragility from their embeddings and lack distribution-free guaran-
tees, limiting trustworthiness across domains (Parmar et al., 2022; Betzalel et al., 2022).
Classifier-based evaluation. Protocols like GAN-train/test (Shmelkov et al., 2018) and
TSTR (Hyland et al., 2017; Yoon et al., 2019) assess whether synthetic data supports down-
stream prediction. This connects evaluation to practical utility, but results are usually re-
ported as point estimates without uncertainty, making it hard to know whether differences
are significant. Moreover, they conflate distinct failure modes: poor fidelity, diversity loss,
and copying can all produce similar outcomes. Memorization and leakage. Generators
can achieve deceptively strong scores by memorizing training data. This inflates similarity-
style metrics while adding no useful variation and raises privacy risks. Attacks on GANs
and diffusion models have demonstrated practical data leakage (Hayes et al., 2019; Chen
et al., 2020; Carlini et al., 2023), yet most evaluation protocols are not designed to expose
it (Bhattacharjee et al., 2023). Domain-specific benchmarks. In molecules and graphs,
benchmarks such as GuacaMol and MOSES (Brown et al., 2019; Polykovskiy et al., 2020)
emphasize validity, uniqueness, and novelty. These checks are useful but narrow: a model
can satisfy them while merely reproducing known molecules. Broader graph generation of-
ten relies on plausibility heuristics or manual inspection (You et al., 2018), highlighting the
lack of systematic, statistically grounded tools. Across domains, the field has moved from
brittle scalars to fragile multi-dimensional measures and under-specified classifier probes.
Memorization remains a persistent blind spot, and domain-specific metrics only partially
address the problem. This fragmented landscape motivates the need for evaluation that is
interpretable, statistically guaranteed, resistant to copying, and applicable across modalities.

3 The Method: RankGen

RankGen evaluates generators not by surface similarity alone, but by combining down-
stream predictive utility and distributional alignment, both global and local. We unify
evaluation into four classifier-based metrics—Quality, Utility, Indistinguishability, and
Similarity—each equipped with a PAC-style generalization bound that links finite-sample
estimates to their population counterparts with high confidence (see Appendix 7 for as-
sumptions and constants). To balance reliability and resolution, bounds act as gates that
filter out statistically invalid models, while robust quantile summaries (medians/IQRs) rank
those that pass, capturing both the typical performance (via the median) and its variability
across resamples (via the interquartile range).

Our procedure has four stages. (i) Data preparation: multiple stratified train/test splits
with class-conditional generation under strict isolation. (ii) Metric evaluation: compute
the four metrics per split with PAC bounds and quantile summaries. (iii) Ranking: filter
models by bound violations, then order survivors using quantile summaries and pairwise
dominance. (iv) Diagnosis: metric profiles reveal characteristic failure modes—e.g., high
Similarity but low Utility (copying) or strong Quality but low Indistinguishability (global
shifts)—providing interpretable fingerprints rather than opaque scores.

3.1 Data Preparation and Sampling

Let a labeled dataset D = {(Xi, yi)} consist of domain instances Xi (e.g., images, graphs, or
tabular records) and class labels yi ∈ {0, 1, . . . , c}. The dataset is partitioned into a training
and a test set, Dtrain and Dtest. The training set is then split, preserving class ratios,
into two equal-size subsets Dtrain1 and Dtrain2. We train a class-conditional generator f on
Dtrain1, and denote by f (i) the i-th stochastic realization of its sampling process. For each
class y, we draw synthetic examples until the number of generated points matches |Dy

train2|.
The resulting dataset D

(i)
generated =

⋃
y f

(i)(Dy
train1) therefore mirrors the class balance of

the held-out real split, allowing a like-for-like comparison between synthetic and real data.
To ensure robust evaluation, the full pipeline is repeated multiple times, with resampling of
Dtrain1, Dtrain2, Dgenerated, and Dtest.
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3.2 Classifier Performance Scores (ρi)

We propose 4 key metrics of Quality, Utility, Indistinguishability, and Similarity defined via

classifier-derived scores ρ
(i)
j (Table 1), with every score corresponding to a distinct training-

and-testing configuration on split i. All models are evaluated on the same shared test set

D
(i)
test. Here, Φθ denotes a task classifier, Ψθ a binary real-vs-generated discriminator, and

Γθ a structure-aware similarity model (e.g., a data-specific kernel).

Table 1: Classifier-based evaluation metrics used in RankGen.

Metric Description

ρ
(i)
1 = Φθ(D

(i)
train1) Accuracy of classifier trained on real data only (baseline).

ρ
(i)
2 = Φθ(D

(i)
generated) Accuracy when trained on generated data only (signal fidelity).

ρ
(i)
3 = Φθ(D

(i)
train1 ∪D

(i)
train2) Accuracy with extra real data (upper bound).

ρ
(i)
4 = Φθ(D

(i)
train1 ∪D

(i)
generated) Accuracy with real+generated data (usefulness).

ρ
(i)
5 = Ψθ(D

(i)
train1, D

(i)
generated) Discriminator accuracy distinguishing real vs. generated.

ρ
(i)
6 = Γθ(D

(i)
train1, D

(i)
generated) Entropy-based similarity of local feature neighborhoods.

3.3 Quality Metric

Definition. The quality score measures how much predictive signal synthetic data preserves

relative to real data. For split i, let ρ
(i)
1 be the task classification score (e.g. accuracy, AUC

ROC, F1) of a classifier trained on D
(i)
train1 and tested on D

(i)
test, and ρ

(i)
2 the same score when

trained on D
(i)
generated. We define the normalized ratio quality(i) = min

(
ρ
(i)
2

ρ
(i)
1

, 1

)
∈ [0, 1].

PAC bound. Under PAC-learning assumptions, with probability 1−δ, quality(i) ≥ 1− ε1
ρ
(i)
1

,

where ε1 = 4Rn + 2
√

ln(2/δ)
2n and Rn is the Rademacher complexity of the classifier class

(derivation in App. 6). We assume both classifiers are ERM solutions within the same
hypothesis class Φθ and evaluate them on a shared held-out test distribution; Appendix 7
details the conditioning and confidence allocation.

Diagnostic role. High scores imply synthetic data supports task learning; low scores flag
fidelity gaps (e.g., noise, mode collapse).

3.4 Utility Metric

Definition. The utility score measures how much useful and non redundant information

synthetic data provides when used to augment real training data. For split i, let ∆
(i)
real =

ρ
(i)
3 −ρ

(i)
1 be the gain from extra real samples and ∆

(i)
gen = ρ

(i)
4 −ρ

(i)
1 the gain from generated

samples (same budget). We define utility(i) = min{1, max{0, ∆
(i)
gen/∆

(i)
real}}.

PAC bound. With probability 1 − δ, utility(i) ≥ 1 − εsyn+εreal

∆̂
(i)
real

, where εsyn captures

finite-sample noise when learning on synthetic data (including how reliably we can detect
generated-vs-real differences), and εreal quantifies the analogous estimation noise for the
real-data baseline (derivation in App. 6). Auxiliary estimates of domain discrepancy and
joint optimal risk, along with the small-denominator safeguard, are described in Appendix 7.

Diagnostic role. Low utility can indicate memorization (no added information), while
values near 1 indicate that synthetic data adds task-relevant diversity.
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3.5 Indistinguishability Metric

Definition. The indistinguishability score asks how hard it is for a discriminator to tell real
from generated samples, i.e. if there are tell-tale features that can be exploited to distinguish

them. For split i, let ρ
(i)
5 be the accuracy of a balanced real-vs-generated classifier (chance

0.5). We define indist(i) = 1 − 2|ρ(i)
5 − 0.5| ∈ [0, 1], so values near 1 mean chance-level

discrimination (good alignment) and 0 means perfect separation.

PAC bound. For a discriminator class of VC dimension d and a balanced evaluation

set of size m, with probability 1− δ,
∣∣indist(i) − indist?

∣∣ ≤ 2
√

2d ln(2m)+ln(8/δ)
m . Details and

variants are in App. 6; we union-bound over resampling splits and generators when reporting
pass/fail decisions.

Diagnostic role. Low scores are indicative of artefacts or distribution shifts; high scores
indicate good alignment.

3.6 Similarity Metric

Definition. The similarity score asks whether generated samples sit in the same neighbour-
hoods as their real counterparts. For each x in the pooled dataset Dmix, let p̂x be the fraction
of points from the same domain among its k nearest neighbours. Mapping p̂x through nor-
malized binary entropy gives for each split i, sim(i) = 1

n

∑
x∈Dmix

H(p̂x)/ log 2 ∈ [0, 1], with
high values indicating that real and generated samples cohabit the same neighbourhoods.

PAC bound. Using Lipschitz continuity of H and Serfling-type bounds for the hyperge-
ometric draw induced by k-NN neighbourhoods, with probability 1 − δ,

∣∣sim(i) − sim?
∣∣ ≤

1
log 2

(
LH

√
log(2n/δ)

2k + log 2
√

log(2/δ)
2n

)
, where LH captures the Lipschitz constant of the

normalized entropy (see Appendix 7 for the bound and derivation).

Diagnostic role. High similarity means real and synthetic data interleave locally; low
scores reveal mode collapse or geometric shifts. The choice of k trades bias for variance (we
use k = 10–50). Note that similarity can be inflated by memorization.

3.7 Exchangeability Metric

Definition. To provide a single summary score, we combine predictive value (quality Q,
utility U) and distributional alignment (indistinguishability I, similarity S). We form block
averages ∆qual = 1

2 (Q + U) and ∆sim = 1
2 (I + S), and define the conservative composite

Emin = min{∆qual,∆sim} ∈ [0, 1], which is high only when both blocks perform well.

PAC guarantee. If each base metric satisfies M ≥ 1− εM with probability 1− δM , then
Emin ≥ 1−max{ 1

2 (εQ+εU ), 1
2 (εI +εS)}, provided we allocate δQ = δU = δI = δS = δ/4 and

apply a union bound, yielding a composite guarantee that holds with confidence at least
1− δ (derivation in App. 11).

Diagnostic role. Emin acts as a fail-safe summary: copying yields high S but low U , while
models that boost accuracy yet are easily detected score low on alignment. We report Emin as
the headline number, using the (Q,U, I, S) breakdown to diagnose weaknesses. Weighted or
soft-min variants are possible, but we adopt the hard minimum for conservative semantics.

3.8 Quantile-Based Estimation

Performance of each metric across resampled splits is frequently heavy–tailed or multimodal,
so simple mean±std summaries are unstable. We therefore describe every generator–metric
pair using empirical quartiles: the first quartile Q1, median M , and third quartile Q3. The
median together with the interquartile range (IQR = Q3−Q1) serves as a robust summary
of central tendency and dispersion, remaining well behaved under outliers and skew.
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Some baselines nevertheless expect mean and variance. For these comparisons we convert
the quartiles into pseudo-moments using the quantile-to-moment rules of Wan et al. (2016);
explicit formulas appear in App. 5. The resulting descriptors provide the raw material for
the ranking procedure developed in Sec. 3.9.

3.9 Ranking Across Metrics

RankGen adopts a two-stage ranking procedure that balances statistical reliability with
resolution. In the first stage, we apply PAC-style bounds to each generator-metric pair to
determine whether the empirical score exceeds a theoretical threshold with high confidence.
This yields a binary pass/fail outcome for each metric (as shown in Table 2), allowing us to
group generators by the number of metrics they satisfy. Generators that fail fewer bounds are
considered more trustworthy and are placed in higher-priority groups. This hybrid strategy
ensures that only statistically validated models are ranked, while still distinguishing subtle
differences among high-performing generators.

Once this filtering is complete, we perform fine-grained ranking within each group using
the quantile summaries introduced in Sec. 3.8. For each generator, the median acts as the
location parameter and the IQR is converted into a pseudo standard deviation. We sample
from a Gaussian with these parameters, truncate draws to the valid [0, 1] range, and add a
small ridge to the variance so that generators with nearly identical quartiles still participate.
Repeating this Monte Carlo step produces synthetic metric profiles from which we compute
pairwise dominance scores—the frequency with which one generator outperforms another
across all metrics. Aggregating these dominance counts yields the final, uncertainty-aware
ranking among statistically equivalent models. The algorithmic details are provided in
App. 5.

Generator Quality Utility

Indistinguish

ability Similarity

Exchange-

ability

s4dd u 1 X X X X X
s4dd u m X X X X X
stgg X X X X X

ns1 X 7 X X 7

s4dd f m 7 7 X X 7

ns2 X 7 X 7 7

ns3 X 7 X 7 7

wgan X 7 X 7 7

gdss 7 7 X 7 7

hiervae 7 7 X 7 7

jtnn 7 7 X 7 7

moflow 7 7 X 7 7

swingnn 7 7 X 7 7

Table 2: Pass/fail checklist for each generator with respect to the PAC-style bounds of the
four base metrics and the composite Exchangeability. A blue X indicates the empirical score
exceeds its theoretical lower bound (pass); a red 7 indicates a violation. Full details of the
datasets and generator variants appear in Sec. 4.2.

4 Empirical Evaluation

Experimental scope and protocol. Our empirical study spans three settings: (i) Syn-
thetic data, where we inject controlled perturbations (label noise, class imbalance, mode
collapse, exact/noisy copies, Gaussian corruption) to stress–test metric sensitivity (Sec-
tions 4.1); (ii) Molecular graphs from the Therapeutics Data Commons (Huang et al., 2021)
across AMES, BBB, CYP1A2, CYP2C19, hERG, and Lipophilicity (Section 4.2); and (iii)
Images on MNIST (LeCun et al., 1998), Fashion–MNIST (Xiao et al., 2017), and CIFAR–
10 (Krizhevsky, 2009) (Section 4.3). Across all settings we use class–conditional generation
with strict train/test isolation, repeated stratified resampling, the same task classifier ar-
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chitecture, and median/IQR reporting. Implementation details, hyperparameters, and ad-
ditional analyses are available in Appendix 13 and Appendix 21. Every metric is computed
on held-out evaluation sets that are never touched during generator training or vectorizer

fitting; auxiliary quantities such as d̂isc or λ̂ use disjoint resamples (cross-fitting) so that
independence assumptions in the PAC derivations remain valid.

Diagnostic framing. Our goal is not to produce a leaderboard, but to demonstrate
RankGen’s diagnostic power. Synthetic perturbations establish fingerprints—copies yield
Utility collapse, mode collapse degrades Quality, corruption and label flips erode Indis-
tinguishability or Quality. In molecular and image domains we show these patterns
reappear: adversarial (WGAN) and flow models echo the low-utility signature, VAEs/flows
display fidelity collapse, StyleGAN2 mirrors the sharp-but-narrow profile, and diffusion
models achieve balanced performance. Linking stress tests to real generators across the four
metrics explains why models fail instead of merely ranking them.

4.1 Quantile Sensitivity Analysis on Synthetic Data

To test the sensitivity of our quantile-based evaluation strategy—particularly its ability to
distinguish fine-grained differences between generators—we design a controlled experimental
setting with synthetic data. These experiments do not aim to validate the PAC bounds,
but rather to empirically examine how the RankGen metrics, when computed via medians
and IQRs, respond to different generative pathologies.

We synthesize balanced binary datasets with 27 Gaussian features, split them into surrogate
Dtrain1, Dtrain2, Dgenerated, and Dtest, and apply five perturbations to Dgenerated: (1) label
flips, (2) class imbalance, (3) mode collapse to a few real modes, (4) copy noise via near-
duplicates from Dtrain1, and (5) additive Gaussian corruption. This controlled suite coaxes
distinct failure modes for RankGen to probe (Appendix 12).

To test robustness we sweep dataset size (100–10k), classifier family, and scoring metric (F1,
AUC, precision, recall); the Default configuration uses KNN, F1, balanced classes, and 10k
samples (Appendix 13). Table 3 shows that each perturbation leaves a compact diagnostic
fingerprint: Utility alone collapses for exact or noisy copies while Quality and Similarity
stay inflated; mode collapse slashes Quality yet scarcely moves Indistinguishability; label
flips and Gaussian corruption again erode Quality but leave Similarity high. The quartet
is therefore necessary to separate copying, collapse, corruption, and noise.

Table 3: Spearman rank correlation between metric scores and perturbation magnitude.

Perturbation Variation Quality Utility Similarity Indist. Exchange.

Exact Copies Dataset Size 0.1083 0.8915 -0.9923 -0.9474 0.7184
Classifier -0.3349 0.4261 -0.9923 -0.9281 -0.1549
Scorer 0.0469 0.9923 -0.9923 -0.9735 0.9762
Positive Ratio -0.3238 0.6245 -0.9922 -0.9894 -0.1810
Default 0 1.0000 -1.0000 -0.9701 0.9762

Mode Collapse Dataset Size 0.7953 0.8100 0.9923 0.9817 0.9619
Classifier 0.9065 0.8844 0.9923 0.9923 0.9896
Scorer 0.9659 0.9923 0.9923 0.9923 0.9923
Positive Ratio 0.7956 0.8646 0.9898 0.9922 0.9571
Default 1.0000 1.0000 1.0000 1.0000 1.0000

Noisy Copies Dataset Size -0.3268 0.8438 -0.9889 -0.9359 0.5627
Classifier -0.4106 0.3975 -0.9923 -0.9105 -0.1391
Scorer -0.0391 0.9899 -0.9923 -0.9681 0.9885
Positive Ratio -0.3474 0.5376 -0.9922 -0.9918 -0.1851
Default 0 1.0000 -1.0000 -1.0000 1.0000

Flipping Labels Dataset Size 0.9383 0.6937 0.9643 0.0513 0.9494
Classifier 0.9880 0.7779 0.9923 -0.0866 0.9659
Scorer 0.9798 0.7579 0.9923 0.2585 0.9923
Positive Ratio 0.9652 0.7371 0.9886 -0.0709 0.9852
Default 1.0000 0.7638 1.0000 0.0127 1.0000

Gaussian Noise Dataset Size 0.9214 0.7950 0.9735 0.5974 0.8964
Classifier 0.8449 0.5967 0.9923 0.9915 0.7219
Scorer 0.9923 0.8472 0.9923 0.9897 0.9923
Positive Ratio 0.9109 0.8274 0.9087 0.9872 0.9547
Default 1.0000 0.8729 1.0000 1.0000 1.0000
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4.2 Real-World Molecular Graph Datasets

We evaluate the quality of molecular graphs generators, a domain where human inspec-
tion is infeasible and rigorous metrics are essential. To reflect realistic low-resource settings,
models are trained on relatively small datasets (hundreds to a few thousand molecules) with-
out large-scale pretraining. We use a representative subset of classification tasks from the
Therapeutics Data Commons (TDS) (Huang et al., 2021): AMES (mutagenicity), BBB
(blood–brain barrier penetration), CYP1A2/CYP2C19 (enzyme binding), hERG (car-
diotoxicity), and Lipophilicity (logP estimation). Molecules, given as SMILES (Weininger,
1988), are converted into atom–bond graphs. We benchmark several types of genera-
tors: STGG (Ahn et al., 2021) (autoregressive), WGAN-GP + R-GCN (Akensert,
2021) (adversarial), JTNN (Jin et al., 2018) and HierVAE (Jin et al., 2020) (hierarchi-
cal VAEs), MoFlow (Zang and Wang, 2020) (flow), GDSS (Jo et al., 2022) (score-based
diffusion), and SWINGNN (Yan et al., 2023) (graph diffusion with shifted windows),

S4DD (Özçelik et al., 2023)(operates on molecular strings). As a baseline we also intro-
duce a Neighborhood Swap (NS) generator, which perturbs input graphs by swapping
small ego-subgraphs within instances of the same class iteratively for 1 to 3 iterations (NS-
1/2/3). Together these span autoencoding, flow, adversarial, diffusion, and perturbation
paradigms (details in App. 15.1, 16.1). Graphs are embedded via (1) fingerprints (Morgan,
Torsion, Atom Pair, RDKit (O’Boyle et al., 2011)), (2) neural encoders (GIN (Xu
et al., 2019), GraphCL (You et al., 2020), InfoGraph (Sun et al., 2019)), and (3) kernels
(NSPDK (Costa and Grave, 2010)). While overall trends are consistent, rankings can shift
across embeddings, underscoring the role of representation in evaluation. More details about
each vectorizer in Appendix 14.

Results. Figure 2 shows average quantile-based ranks across datasets and encoders.1

S4DD variants and STGG consistently rank highest, reflecting strong generalization and
alignment. In contrast, WGAN and MoFlow perform poorly, especially in Exchange-
ability, which shows that these generators cannot produce molecules useful for predictive
tasks. Interestingly, S4DD pretrained on over a million molecules (s4dd u m) shows no
improvement over dataset-specific training on only a few thousand (s4dd u 1). The metric
breakdown mirrors the synthetic fingerprints: WGAN couples moderate Indistinguisha-
bility with negligible Utility, indicating that its samples offer little downstream value,
while flow- and VAE-based models (MoFlow, GDSS, HierVAE, JTNN) exhibit low Quality
and Similarity, consistent with fidelity collapse. By contrast, S4DD and STGG variants
remain strong on all four axes, signalling genuinely novel, task-relevant molecules rather
than copies.

Figure 2: Average generator rank per metric across all TDS datasets and vectorizers (lower
is better).

1Table 2 reports a single dataset; Fig. 2 averages across all TDS datasets.
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4.3 Image Benchmarks: MNIST, Fashion–MNIST, and CIFAR–10

We use three canonical benchmarks: MNIST (LeCun et al., 1998), Fashion–
MNIST (Xiao et al., 2017), and CIFAR–10 (Krizhevsky, 2009), with consistent pre-
processing and stratified splits (Appendix 21). Test images are never used for training or
selection. We evaluate class-conditional generators spanning multiple paradigms. VAEs:
MLP-VAE, Conv-VAE, and ResNet-VAE (Kingma and Welling, 2014; Rezende et al., 2014).
GANs: DCGAN (Radford et al., 2016), WGAN–GP with projection discriminator (Gulra-
jani et al., 2017; Miyato and Koyama, 2018), and a 32×32 StyleGAN2-lite (Karras et al.,
2020). Diffusion: cDDPM with UNet backbone (Ho et al., 2020; Ronneberger et al., 2015;
Ho and Salimans, 2022) and a Transformer2D backbone (DiT style) (Peebles and Xie, 2023),
using HuggingFace Diffusers samplers (von Platen et al., 2022) (see architectural and train-
ing details in Appendix 16.2.1). Figure 3 shows RankGen ranks across datasets. RankGen
again uncovers characteristic fingerprints. StyleGAN2-lite delivers high Quality but almost
no Utility and weak Similarity, mirroring the synthetic mode-collapse profile: crisp yet
narrow samples. DCGAN lands near chance in Utility while keeping Indistinguishability
high, signalling shallow realism that fails to expand the task dataset. Diffusion models are
the only family balancing all four probes, achieving strong Exchangeability by jointly pre-
serving fidelity, task gain, and local mixing. VAEs lag on CIFAR–10 because Quality and
Utility deteriorate, but they remain competitive on MNIST and Fashion–MNIST where
capacity demands are lower. Each architecture family is therefore diagnosed with a distinct
failure mode instead of being flattened into a single score. The underlying metric values
supporting these trends are detailed in Appendix 21.2, and illustrative panels of generated
samples are shown in Figures 7, 6, and 5 from Appendix 17.

Figure 3: RankGen ranks on CIFAR–10, MNIST, and Fashion–MNIST. Lower is bet-
ter. StyleGAN2-lite exhibits high Quality but low Utility and Similarity, echoing our syn-
thetic mode-collapse setting. This suggests strong precision but poor coverage—models of
this type risk overfitting narrow regions of the data. VAEs remain competitive on digits.

Conclusion

RankGen treats evaluation as diagnosis: four probes (Quality, Utility, Indistinguishability,
Similarity) plus PAC-style bounds and quantile summaries provide reliable, interpretable
failure reports, while Exchangeability rejects generators that are not simultaneously use-
ful and aligned. Across synthetic, molecular, and image domains RankGen recovers preci-
sion–recall trends yet exposes issues scalar metrics miss—copying and corruption signatures,
adversarial and flow models’ low downstream value, and the contrast between StyleGAN2’s
sharp-but-narrow samples and diffusion’s balanced coverage. It still requires labeled data,
task-relevant embeddings, and repeated classifiers, limiting label-scarce settings. Extending
RankGen with self-supervised probes and regression tasks is a promising direction. Ul-
timately RankGen offers a principled alternative to heuristics by revealing why generators
succeed or fail, enabling safer deployment when human inspection is unfeasible or expensive.

9
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series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. Towards a scalable reference-free
evaluation of generative models. arXiv preprint arXiv:2407.02961, 2024. URL https:
//arxiv.org/abs/2407.02961. FKEA; scalable approximations to VENDI and Rényi
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5 Model Ranking Methodology

5.1 Ranking of Generative Models

To compare generative models in a principled and uncertainty-aware way, we use a Monte
Carlo-based ranking procedure built on four base metrics: Quality, Utility, Similarity, and
Indistinguishability. Each is computed per dataset and model, then aggregated across sam-
ples using quantile-based estimators for the mean and standard deviation.

Note (summary vs. base metrics). We also report an Exchangeability summary score
(Sec. 11), but it is not used in the pairwise domination test below to avoid double-counting,
since it is derived from the four base metrics.

Let there be m models and n base metrics (here n = 4). Each model Mi has a performance
vector

µi = (µi1, µi2, . . . , µin), (1)

with standard deviations

σi = (σi1, σi2, . . . , σin), (2)

reflecting variability across data splits and training randomness. At each Monte Carlo
iteration, we draw

Sik ∼ N (µik, σ
2
ik), then clip Sik ∈ [0, 1]. (3)

Model Mi dominates Mj at iteration t iff Sik ≥ Sjk for all k and Sik > Sjk for at least one
k. We accumulate domination counts Dij .

Algorithm 1 Uncertainty-Aware Ranking of Generative Models

Require: Models M = {M1, . . . ,Mm}; means µi ∈ [0, 1]n; stds σi ≥ 0; iterations N
Ensure: Ranked list of models (using the four base metrics only)
1: Initialize domination count matrix D ← 0m×m
2: for t = 1 to N do
3: for i = 1 to m do
4: for k = 1 to n do
5: Draw S̃ik ∼ N (µik, σ

2
ik); set Sik ← min{1,max{0, S̃ik}}

6: end for
7: end for
8: for i = 1 to m do
9: for j = 1 to m, i 6= j do

10: if Sik ≥ Sjk ∀k and ∃k : Sik > Sjk then
11: Dij ← Dij + 1
12: end if
13: end for
14: end for
15: end for
16: Ri ←

∑m
j=1Dij ; sort models by descending Ri and return

14
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6 Bounds Derivations

Table 4: Glossary of symbols used throughout Secs. 3.3–3.7. A superscript (i) indicates the
i-th cross-validation split, a hat ̂ denotes an empirical estimate from finite data, and a
star ? denotes the corresponding population (infinite-sample) quantity.

Symbol Type Meaning / definition

Datasets and sample sizes

D
(i)
train1 set Real training subset used for the baseline classifier.

D
(i)
train2 Additional real data used for the upper-bound classifier.

D
(i)
generated Generated data produced by the generator.

D
(i)
test Held-out real test set for all accuracy evaluations.

Dr, Dg sets Real and generated points (context of similarity metric).
Dmix = Dr ∪Dg set Real+generated pool used to measure local mixing.
n, nr, ng scalars Total, real and generated sample sizes (n = nr + ng).
m scalar Size of the discriminator’s validation pool (m = nr + ng).
k scalar Number of nearest neighbors in the similarity metric.

Model classes
Φθ map Task classifier architecture (fixed across experiments).
Ψθ Real-vs-generated discriminator.
Γθ Helper for k-NN similarity estimation.

Raw classifier accuracies

ρ
(i)
1 num. Φθ(D

(i)
train1) — baseline real-only.

ρ
(i)
2 Φθ(D

(i)
generated) — generated-only.

ρ
(i)
3 Φθ(D

(i)
train1∪D

(i)
train2) — real+real.

ρ
(i)
4 Φθ(D

(i)
train1∪D

(i)
generated) — real+generated.

ρ
(i)
5 Ψθ accuracy (indistinguishability test).

ρ
(i)
6 Entropy-based similarity score (local mixing).
ρ?j Population version of the same accuracy.

Derived quantities

∆real num. ρ
(i)
3 − ρ

(i)
1 — gain from more real data.

∆generated ρ
(i)
4 − ρ

(i)
1 — gain from generated data.

q̂uality
(i) ρ

(i)
2

ρ
(i)
1

Empirical quality on split i (reported clipped to [0, 1]).

quality?
ρ?2
ρ?1

Population (infinite-sample) quality.

ûtility
(i) ∆generated

∆real
Empirical utility on split i.

utility?
∆?

generated

∆?
real

Population utility.

îndist
(i)

1− ρ(i)5 Empirical indistinguishability on split i.
indist? 1− ρ?5 Population indistinguishability.

ŝim
(i)

— Empirical similarity (entropy average) on split i.
sim? — Population similarity.

Error terms and constants in PAC bounds

εgen bnd.
√

log(2/δ)/(2n) — test-accuracy sampling error.

εdisc

√(
2d ln(2m) + ln(8/δ)

)
/m — H-discrepancy error.

εsyn, εreal Composite errors for ∆generated and ∆real.
εsim Error radius for similarity metric.
Rn scalar Rademacher complexity of the classifier class.
d scalar VC dimension of the discriminator’s hypothesis class.
LH scalar Lipschitz constant of entropy on [ 1

k+1
, 1− 1

k+1
] (≤ 4).

λ num. Joint optimal risk term in domain discrepancy.
δ scalar Confidence level (all PAC bounds hold w.p. 1− δ).
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7 Bound Ingredients and Assumptions

For completeness we collect the constants, estimators, and confidence allocations used in
the PAC-style bounds from Sec. 3. This material is supplementary; the main text states
only the bound forms.

Confidence allocation. Unless otherwise noted, we set δ∗ = δ/(MTS) where M is the
number of models, T the number of metrics, and S the number of resamples. Each bound
then holds with probability at least 1 − δ∗, and all results jointly with probability at least
1− δ by a union bound.

Quality. We assume ρ
(i)
1 > 0 for the ratio form; if ρ

(i)
1 = 0 we revert to the difference form

ρ
(i)
2 ≥ ρ

(i)
1 − 2U . The empirical Rademacher surrogate R̂ is computed via a ghost hold-out

split.

Utility. We estimate d̂iscH by training a balanced domain classifier on held-out batches
(cross-fitting when necessary), which upper-bounds the H∆H discrepancy up to constants.

We compute λ̂ = minh∈Φθ R̂D′r(h)+R̂Ds
(h) on an auxiliary split disjoint from the evaluation

pool. If ∆
(i)
real < τ with τ = 10−3 we use the difference utility ∆

(i)
gen; otherwise we form the

ratio U (i).

Indistinguishability. The map g(a) = 1 − 2|a − 0.5| from discriminator accuracy a to
the indistinguishability score is 2-Lipschitz; our constants absorb this factor. We apply a
VC-dimension bound on the discriminator’s risk over a balanced pool.

Similarity. Neighbourhood label proportions are without-replacement samples. We there-
fore use Serfling-type deviations for hypergeometric draws. Restricting p ∈ [1/(k+1), 1 −
1/(k+1)] bounds the entropy derivative |H ′(p)|, yielding a Lipschitz constant LH ≤ 4/ ln 2.

Combined with a union bound over n points, this yields the stated O(
√

log(n/δ)/k) rate.

Composite. We set δQ = δU = δI = δS = δ/4 so that the Exchangeability bound holds
with confidence at least 1− δ by a union bound.

8 PAC-style Derivation of the Quality Metric Bound

The quality score measures how well a classifier trained exclusively on generated data can
match the generalization performance of one trained on real data:

quality(i) =
ρ

(i)
2

ρ
(i)
1

. (4)

Values near 1 indicate that generated data provides almost as much signal as real data (we

report min{1, ρ(i)
2 /ρ

(i)
1 } for interpretability).

Generalization bound. Let ` : X × Y → {0, 1} be the 0–1 loss, and define population
and empirical risks

L(h) = E(x,y)∼Preal
[`(h(x), y)], L̂S(h) = 1

n

∑
(x,y)∈S

`(h(x), y). (5)

By a standard Rademacher bound Bartlett and Mendelson (2002), with prob. ≥ 1−δ, every
h satisfies ∣∣L(h)− L̂S(h)

∣∣ ≤ U, U = 2Rn +

√
ln(2/δ)

2n . (6)

Let ĥr = arg minh L̂Sr (h) and ĥg = arg minh L̂Sg (h). Then

L(ĥg) ≤ L̂Sg (ĥg) + U ≤ L̂Sr (ĥr) + U ≤ L(ĥr) + 2U. (7)
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Since ρ
(i)
1 = 1 − L(ĥr) and ρ

(i)
2 = 1 − L(ĥg), we get ρ

(i)
2 ≥ ρ

(i)
1 − 2U . Setting ε1 = 2U =

4Rn + 2
√

ln(2/δ)
2n and dividing by ρ

(i)
1 > 0 gives

quality(i) ≥ 1− ε1

ρ
(i)
1

. (8)

9 PAC-style Derivation of the Utility Bound

We consider the lower bound

utility(i) ≥ 1− ε2

ρ
(i)
3 − ρ

(i)
1

(A.1)

quoted in Sec. 3.4. All probabilities below hold with confidence at least 1− δ.

Notation. Let X ×Y be the input–label space and H a hypothesis class of VC-dimension
d. Define

Dr := Dtrain1, nr := |Dr|,
D′r := Dtrain2, nr′ := |D′r|,
Ds := Dgenerated, ns := |Ds|,
Dt := Dtest.

For any sample S, let ĥS ∈ arg minh∈H R̂S(h) be the ERM with R̂S(h) =
1
|S|
∑

(x,y)∈S 1{h(x) 6= y}. Let R(h) = Pr(x,y)∼Dt
[h(x) 6= y].

Define (population) gains from extra real or generated data and their empirical counterparts:

∆?
real := R

(
ĥDr

)
−R

(
ĥDr∪D′r

)
, ∆?

syn := R
(
ĥDr

)
−R

(
ĥDr∪Ds

)
, (A.2)

with ∆̂real = ρ
(i)
3 − ρ

(i)
1 and ∆̂syn = ρ

(i)
4 − ρ

(i)
1 .

Step 1: domain-adaptation inequality. Following Ben-David et al. (2010), for any h
and distributions P,Q,

|RQ(h)−RP (h)| ≤ discH(P,Q) + λ(P,Q), (A.3)

where discH is the H-discrepancy and λ the joint optimal risk. Apply (A.3) to P = D′r,

Q = Ds with h = ĥDr∪Ds
to obtain

Rs −R′r ≤ discH(D′r, Ds) + λ. (A.4)

Combining with (A.2) yields

∆?
syn ≥ ∆?

real −
[
discH(D′r, Ds) + λ

]
. (A.5)

Step 2: empirical–population deviations. With probability ≥ 1− δ
2 (after apportion-

ing δ over models and resampling splits),∣∣Rr − R̂r

∣∣, ∣∣R′r − R̂′r∣∣, ∣∣Rs − R̂s

∣∣ ≤ εgen, εgen =
√

ln(2/δ)
2nmin

, (A.6)

discH(D′r, Ds) ≤ d̂iscH(D′r, Ds) + εdisc, εdisc =

√
2d ln(2m)+ln(8/δ)

m ,

(A.7)

where nmin := min{nr, n
′
r, ns} and m = nr′ + ns.

Plugging into (A.5) and rearranging, with probability ≥ 1− δ
2 ,

∆̂syn ≥ ∆̂real −
[
d̂iscH(D′r, Ds) + εdisc + λ+ 2εgen

]
. (A.8)
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Step 3: the utility ratio. If ∆̂real > 0 (else set utility(i) = 0), divide (A.8) by ∆̂real to
obtain

utility(i) =
∆̂syn

∆̂real

≥ 1− d̂iscH(D′r, Ds) + εdisc + λ+ 2εgen

∆̂real

. (A.9)

Step 4: notation match. We estimate the joint optimal risk via

λ̂ := min
h∈H

R̂D′r(h) + R̂Ds
(h), (9)

using an auxiliary split (or cross-fitting) that remains disjoint from the evaluation data.
Define

ε2 := d̂iscH(D′r, Ds)︸ ︷︷ ︸
observed

+ εdisc︸︷︷︸
ε3

+ 2εgen︸ ︷︷ ︸
εutil4

+λ̂, (A.10)

so (A.9) matches (A.1). In practice we guard against small denominators by reporting the

ratio bound only when ∆̂real > τ (Section 3.4). Otherwise we fall back to the difference

guarantee ∆̂syn ≥ ∆̂real − (d̂iscH + εdisc + λ̂+ 2εgen).

10 PAC-style Derivation of the Similarity Bound

10.1 Problem Definition

LetDr = {Xr, yr} andDg = {Xg, yg} be real and generated datasets. Merge toX = Xr∪Xg

and define binary origin labels Y ∈ {0, 1}.

10.2 Similarity Computation

Use cosine similarity K(x, x′) = x>x′

‖x‖ ‖x′‖ to form k-NN neighborhoods N (xi). Let pi be the

in-domain fraction among neighbors of xi and

Hi = −pi log pi − (1− pi) log(1− pi), ρ6 =
1

|X|
∑
i

Hi. (10)

10.3 Derivation of the Similarity Bound

Let Zx = k p̂x count in-domain neighbours. Because we sample without replacement from
Dr ∪Dg, Zx follows a hypergeometric law; Serfling’s inequality yields

Pr
[
|p̂x − px| >

√
log(2/δ1)

2k

]
≤ δ1. (B.2)

On p ∈ [τ, 1− τ ] with τ = 1
k+1 , entropy H is LH -Lipschitz with LH ≤ 4/ ln 2, so with prob.

≥ 1− δ
2 (allocating δ/(2n) per point and union-bounding),

|H(p̂x)−H(px)| ≤ LH
√

log(2n/δ)
2k ∀x. (B.3)

Averaging and applying Hoeffding to the empirical mean gives∣∣∣ 1
n

∑
x

H(px)− 1
n

∑
x

H(p̂x)
∣∣∣ ≤√ log(2/δ)

2n log 2. (B.4)

Thus, with probability ≥ 1− δ,∣∣ŝim− sim?
∣∣ ≤ εsim

log 2
, εsim := LH

√
log(2n/δ)

2k +

√
log(2/δ)

2n log 2. (B.5–B.6)

Since sim? ≤ 1, we get the PAC lower bound

sim? ≥ 1− εsim

log 2
. (B.7)
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11 PAC-style Derivation of the Exchangeability Metric
Bound

Define ∆qual = (Q+ U)/2 and ∆sim = (I + S)/2. The exchangeability score is

Emin = min{∆qual, ∆sim}. (12)

If Q ≥ 1− εQ, U ≥ 1− εU , I ≥ 1− εI , S ≥ 1− εS , then

Emin ≥ 1−max
{
εQ+εU

2 , εI+εS
2

}
. (13)

12 Perturbation Techniques Applied to the Synthetically
Generated Dataset

In this study, we applied several perturbation techniques to the generated dataset to simulate
real-world challenges such as label noise, class imbalance, and data corruption. These per-
turbations are designed to test the robustness of the rank given by each metric in handling
imperfect data.

All experiments were designed to start with Dgenerated ≈ Dtrain, and apply a perturba-
tion degree t ∈ [0, 1] that quantifies the dissimilarity between the generated and reference
datasets. To objectively assess the performance of each metric, we compute the Spearman
rank correlation between the metric scores ρ̂ and the perturbation degree t. An ideal metric
would exhibit a rank correlation of 1.0, indicating a perfect monotonic relationship between
the perturbation degree and the metric score.

We applied the following perturbation techniques:

• Mode Collapse: We progressively replaced each data point with exact duplicates
of a representative instance from each class.

• Class Imbalance: Introduced by either increasing or decreasing the number of
instances in each class, based on a specified ratio or exact count.

• Label Noise: Added by randomly flipping a fraction of the target labels in the
dataset.

• Exact Copy Noise: Introduced by replacing a subset of the Dgenerated instances
with copies of samples drawn from Dtrain.

• Noise Copies: A subset of Dgenerated is replaced with near-duplicates of real train-
ing samples from Dtrain, each perturbed by zero-mean Gaussian noise with standard
deviation σ = 0.05.

• Gaussian Noise: Both additive and multiplicative noise were applied to the in-
stances, and features were swapped to simulate data corruption.

13 Classifiers, Dataset Sizes, and Scorers Used in the
synthetic Experiments

We evaluate multiple dataset sizes (100–10000), classifiers (e.g., ExtraTrees, RandomForest,
Logistic Regression, SVC, KNN), and scorers.

Dataset Size Classifier Scorer Positive Class Ratio
100 ExtraTreesClassifier F1 Score 0.40
500 RandomForestClassifier Balanced Accuracy 0.50
1000 GradientBoostingClassifier Precision 0.20
2500 AdaBoostClassifier Recall 0.60
5000 LogisticRegression ROC-AUC Score 0.35
10000 DecisionTreeClassifier Jaccard Score 0.25

SVC Average Precision 0.90
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Dataset Size Classifier Scorer Positive Class Ratio
KNeighborsClassifier Precision 0.30

GaussianNB 0.80
ExtraTreesClassifier 0.95

RandomForestClassifier 0.15
GradientBoostingClassifier 0.10

13.1 Experimental Setup and Function Parameters

Parameter Value Description
n iterations 100 Number of iterations for scoring computation.
use resampling True Whether to resample the data during evaluation.
use replacement False Whether to sample with replacement.
fraction 0.8 Fraction of data to use for training when resam-

pling.
data estimator KNeighborsClassifierClassifier used to estimate model performance.
scorer F1, AUC, etc. Scoring functions used to evaluate discriminative

performance.
verbose 2 Level of verbosity for logging during scoring.
parallel True Whether computations are parallelized for effi-

ciency.

14 Vectorizers Used in the Graph Data Experiments

In this study, we utilized several vectorizers for our experiments. Below is a brief overview
of each method used:

- GIN (Xu et al., 2019) Xu et al. (2019): The Graph Isomorphism Network (GIN) is a
graph neural network based on the idea of learning a graph’s structural properties through
a series of message-passing layers. GIN has demonstrated strong performance on graph
classification tasks, especially when combined with sufficient training data and appropriate
network architectures.

- GraphCL (You et al., 2020) You et al. (2020): GraphCL is a contrastive learning method
for graph data, whcih leverages a self-supervised learning framework that maximizes the
agreement between augmented views of a graph while minimizing the distance between
distinct views. This technique helps capture better graph representations, even without
labeled data, making it suitable for semi-supervised learning settings.

- InfoGraph (Sun et al., 2020) Sun et al. (2019): InfoGraph is a method for unsupervised and
semi-supervised graph learning that focuses on learning graph-level representations. It uses
mutual information maximization to capture global graph structures, enabling the model to
generate meaningful and informative embeddings.

- GraphVectorizer (Custom Implementation): The GraphVectorizer processes graph struc-
tures derived from SMILES strings. It extracts few graph features, including degree his-
tograms, clustering coefficients, and node labels. These features are then encoded into
fixed-length vectors, capturing graph topology and node-level information. The vectorizer
includes padding to standardize feature lengths and applies label encoding to handle node
labels.

-NSPDK (Costa and Grave, 2010) Costa and Grave (2010): The Fast Neighborhood Sub-
graph Pairwise Distance Kernel (NSPDK) computes the similarity between two graphs based
on the pairwise distances between their corresponding subgraphs. This kernel is designed
to efficiently capture structural information by evaluating local neighborhoods and pairwise
distances.

- HashedAPVectorizer O’Boyle et al. (2011): Computes Atom Pair fingerprints by capturing
relationships between atom pairs in a molecule, resulting in a fixed-length hashed vector.
This vectorizer is used for molecular similarity tasks.
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- HashedMorganVectorizer O’Boyle et al. (2011): Generates Morgan fingerprints, which are
circular and capture local atom environments. It is widely used in molecular similarity and
classification tasks.

- HashedRDKVectorizer O’Boyle et al. (2011): Computes RDKit Fingerprints, which are
based on atom connectivity and properties. This vectorizer is suitable for general molecular
similarity and topological feature representation.

- HashedTorsionVectorizer O’Boyle et al. (2011): Generates Topological Torsion fingerprints,
focusing on torsion angles between atoms to capture 3D molecular arrangements. This
vectorizer is useful for tasks that involve molecular conformation analysis.

15 Datasets

15.1 Molecular Datasets

We conduct experiments using several datasets from the Therapeutic Data Commons Huang
et al. (2021), which are designed for single prediction tasks. By default, the datasets are
split into training, testing, and validation sets with proportions of 70%, 20%, and 10%,
respectively, using random splitting. The raw data is initially provided as SMILES strings
Weininger (1988). For this study, we apply multiple vectorization techniques, including
both molecular and graph-based vectorizers. The molecular vectorizers process the SMILES
strings and generates molecular features, which are then used by our metric. Additionally,
we employ the graph-based vectorizers to convert SMILES into graph representations, where
nodes correspond to atoms and edges correspond to bonds in the molecule. Each record
is represented as a graph G = (V,E,X, ε), where V represents the vertices (atoms), E
represents the edges (bonds), with E = {(i, j) | i, j ∈ {1, . . . , |V |}}. X ∈ RN×D is the
node feature matrix, E ∈ R(N×N×1) is the edge attribute matrix, and N is the number of
nodes. The dimensionality of the node features D is set to 9, and the dimensionality of
the edge features F is set to 3. The node features for molecular graph generation include:
atomic number, chirality, degree, formal charge, number of hydrogen atoms, number of
radical electrons, hybridization, aromaticity, and whether the atom is part of a ring. The
edge features include: bond type, bond stereo, and whether the bond is conjugated.PyTorch
Geometric Contributors (2021)

• AMES Mutagenicity: Consists of 7,255 binary drugs labeled as mutagenic or
non-mutagenic with 3 ≤ |V | ≤ 55.

• BBB Martins: 1,975 drugs classified into those that can penetrate the blood-brain
barrier (BBB) or not with 2 < |V | < 132.

• Cyp1a2 Veith: 12,579 drugs classified into those that can / cannot inhibit the
CYP1A2 gene with 7 ≤ |V | ≤ 123.

• Cyp2c19 Veith: 12,665 drugs classified into ones that can / cannot inhibit the
CYP2C19 gene with 7 ≤ |V | ≤ 114.

• Herg Karim: Consists of 13,445 molecular structures labeled as hERG (< 10µM)
and non-hERG (≥ 10µM) blockers with 6 < |V | < 58.

• Lipophilicity AstraZeneca: 4,200 binary labeled drugs based on their ability to
dissolve in lipids.

15.2 SYNTHETIC Dataset

The generated dataset in this study was generated using scikit-learn’s make classification
function, producing 27 features sampled from Gaussian distributions. Initially the dataset is
balanced, with equal class distributions (50% positive and 50% negative), and includes both
informative and redundant features. The data is split into four sets—training, reference,
test, and generated—using stratified sampling to maintain class balance. While the features
are Gaussian by default, they can be adapted for non-Gaussian experiments.
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Table 7: Sizes of training and testing sets used in our experiments with real generators.

Dataset Dgen Dtrain1 Dtrain2 Dtest

ames 2340 2340 2340 1316
bbb martins 318 318 318 206
cyp1a2 veith 4128 4401 4128 2376
cyp2c19 veith 3956 3956 3956 2326
herg karim 4700 4700 4700 2686
lipophilicity astrazeneca 524 524 524 316

Table 8: General statistics for molecular datasets used in our experiments. Node types are
shown for positive and negative samples separately.

Dataset Size Positives Negatives Node Types (Pos,
Neg)

Edge Types

ames 5094 2759 2335 10 (Pos), 10 (Neg) 4
bbb martins 1421 1096 325 12 (Pos), 11 (Neg) 4
cyp1a2 veith 8805 4060 4745 17 (Pos), 25 (Neg) 4
cyp2c19 veith 8866 4063 4803 17 (Pos), 25 (Neg) 4
herg karim 9412 4714 4698 10 (Pos), 15 (Neg) 4
lipophilicity astrazeneca 2940 2446 494 12 (Pos), 10 (Neg) 4

Table 9: Atomic Numbers for Positive and Negative Classes

Atomic Numbers (Positive)
[1, 35, 6, 7, 8, 9, 15, 16, 17, 53]
[1, 5, 6, 7, 8, 9, 11, 15, 16, 17, 35, 53]
[1, 3, 6, 7, 8, 9, 11, 14, 15, 16, 17, 80, 78, 20, 24, 25, 26, 29, 30, 33, 34, 35, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 80, 19, 78, 26, 29, 35, 53]
[1, 35, 6, 7, 8, 9, 14, 16, 17, 53]
[1, 6, 7, 8, 9, 14, 15, 16, 17, 34, 35, 53]
Atomic Numbers (Negative)
[1, 35, 6, 7, 8, 9, 15, 16, 17, 53]
[1, 35, 6, 7, 8, 9, 11, 15, 16, 17, 53]
[1, 5, 6, 7, 8, 9, 11, 78, 15, 16, 17, 14, 19, 20, 25, 26, 29, 30, 33, 34, 35, 44, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 78, 15, 16, 17, 14, 19, 20, 80, 25, 26, 29, 30, 33, 34, 35, 44, 50, 51, 53]
[1, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 79, 34, 35, 53]
[1, 35, 5, 6, 7, 8, 9, 15, 16, 17]
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15.3 Image Datasets

We evaluate on three canonical benchmarks: MNIST (LeCun et al., 1998), Fash-
ion–MNIST (Xiao et al., 2017), and CIFAR–10 (Krizhevsky, 2009). All models share
preprocessing and canonical stratified splits (details in Appendix 21); test images are never
used for training or model selection.

16 Generators Used

16.1 Molecular(graph) data generation

In this study, we utilized several graph generation models for our experiments. Below is a
brief overview of each method used, along with the corresponding citations:

Table 10: Overview of Generative Models Used in This Study

Generator Model Class Description

STGG Ahn et al. (2021) Autoregressive Spanning-tree-based decoder with Transformer backbone

WGAN-GP Akensert (2021) GAN-based Adversarial model using R-GCN for graph discrimination

JTNN Jin et al. (2018) VAE-based Junction-tree structured variational autoencoder

HierVAE Jin et al. (2020) VAE-based Hierarchical VAE with coarse-to-fine motif decoding

MoFlow Zang and Wang (2020) Flow-based Conditional normalizing flow model for molecules

GDSS Jo et al. (2022) Diffusion-based SDE-based generative diffusion over graphs

S4DD Özçelik et al. (2024) State Space / Hybrid Dual-mode state-space model with Transformer-style decoding

SWINGNN Yan et al. (2023) Diffusion-based 2-WL guided diffusion with shifted-window attention

Neighborhood Swap (NS-1/2/3) Perturbation-based Iterative, non-parametric local rewiring for augmentation

• STGG (Spanning Tree Graph Generator) Ahn et al. (2021): Formulates the
graph generation of a molecular graph as a sequence of tree-constructive opera-
tions applied through the composition of a spanning tree with the residual edges.
STGG adopts a transformer architecture which generates the tree by using relative
positional encodings and residual edges using an attention-based predictor.

• WGAN-GP with R-GCN (Wasserstein GAN with Gradient Penalty and
Relational Graph Convolutional Networks) Akensert (2021): Originally de-
signed for the generation of small molecular graphs such as QM9, but adjusted to
generate larger compounds. The generator network consists of two fully connected
networks, and the discriminator implements non-linearly transformed neighborhood
aggregations through the means of R-GCN.

• JTNN (Junction Tree Variational Autoencoder for Molecular Graph
Generation) Jin et al. (2018): Generates graphs in two stages. In the first stage, a
tree structured object is generated by exploiting the coarse-grained representations
of the training molecular graphs. In the second stage, the nodes in the tree (which
are essentially subgraphs) are assembled back into molecules.

• HierVAE Jin et al. (2020): Uses a hierarchical encoder-decoder architecture for
graph generation. The encoder produces a multi-resolution representation for each
input graph in a fine to coarse fashion, starting with the atoms and finishing with
fully connected motifs. During the decoding process, the molecules are assembled
back in a coarse to fine manner, where three consecutive predictions are made at
each pass: new motif selection, which part of it attaches, and the points of contact
with the current molecule.

• Moflow Zang and Wang (2020): Works by using two different graph conditional
flows, one for atoms and one for bonds, for obtaining their latent representations.
The molecule generation uses the inverse transformations of the inference opera-
tions, followed by post-validity correction.
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• GDSS Jo et al. (2022): Proposes a continuous-time SDE system to model the
diffusion process over nodes and edges simultaneously, where Gaussian noise is
directly inserted into the adjacency matrix and node features. Sampling is done
by solving the SDE used to describe the reverse-time diffusion process.

• S4DD or S4 for Denovo Molecule Design as in Özçelik et al. (2024):A dual-mode
generative model that combines the recurrence of LSTMs with the global context
modeling of Transformers, trained via global convolution and recurrent sequence
generation. We evaluate three training configurations, each followed by fine-tuning
on our target datasets:

– unfiltered 1: trained directly on the target dataset without pretraining or
filtering.

– unfiltered m: pretrained on a large, diverse set of over 1 million molecules
(e.g., toxic and non-toxic compounds from the Therapeutics Data Commons),
then fine-tuned.

– filtered m: pretrained on a combined dataset (ZINC + QM9 + ChEMBL),
filtered to include only common atom types, then fine-tuned.

• SWINGNN Yan et al. (2023): A non-invariant diffusion model that employs an
edge-to-edge 2-WL message passing network and utilizes shifted window-based self-
attention. They propose a 2nd order sampler with correction for generating large
molecular graphs.

• Neighborhood Swap Generator (NS): A non-parametric, perturbation-based
generator that produces augmented graphs through iterative local rewiring. It be-
gins by decomposing each input graph into small neighborhoods (e.g., 1–2-hop sub-
graphs) and then perturbs them via controlled rewiring and recombination. The
generator operates in multiple sequential rounds, where each round applies per-
turbations not only to the original structure but also to neighborhoods altered in
previous steps. This compounding process introduces increasingly diverse graph
structures while preserving essential properties. We define three versions—NS-1,
NS-2, and NS-3—corresponding to one, two, and three rounds of perturbation, re-
spectively. NSG requires no training and is well-suited for data augmentation and
robustness evaluation in graph learning tasks.

16.1.1 Hyperparameters for molecular graph generators

Table 11: HierVAE Hyperparameters

Parameter Value Parameter Value

rnn type LSTM depthG 15
hidden size 250 diterT 1
embed size 250 diterG 3
batch size 50 dropout 0
latent size 32 learning rate 1× 10−3

depthT 15 clip norm 5
step beta 1× 10−3 max beta 1
warmup 10000 kl anneal rate 0.9
epochs 25000 – –
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Table 12: JTNN Hyperparameters

Parameter Value Parameter Value

epochs 5 beta 0
learning rate 1× 10−3 max beta 1
annealing rate 0.9 save iter 5000
clip norm 50 step beta 0.002
total step 0 annealing iterations 40000
kl anneal iter 2000 hidden size 56
latent size 40 – –

Table 13: S4forDenovoDesign S4DD Hyperparameters

Parameter Value Parameter Value

model dim 256 state dim 64
n layers 4 n ssm 1
dropout 0.25 vocab size 50
sequence length 120 n max epochs 400
learning rate 1× 10−3 batch size 500
device "cuda" – –

Table 14: GDSS Model Hyperparameters

Parameter Value Parameter Value

s theta 2 s phi 16
GCN layers 4 hidden dim 2
attention heads 8 initial channels 4
hidden channels 3 final channels 16
SDE X VP sampling steps X 1000

β
(X)
min 0.1 β

(X)
max 1

SDE A VE sampling steps A 1000

β
(A)
min 0.2 β

(A)
max 1

solver Rev + Langevin – –

Table 15: GDSS Training Settings

Setting Optimizer LR Weight Decay Batch Epochs EMA

Mol Graphs Adam 5× 10−3 1× 10−4 56 1000 0.999

Table 16: STGG Hyperparameters

LR Optimizer Epochs Layers Embedding Size Dropout

0.0001 Adam 100 3 1024 0.1

Table 17: MoFlow Hyperparameters

Batch LR LR Decay Epochs b n flow b n block b hidden ch

12 0.001 0.999995 200 10 1 128/128

b conv lu a n flow a n block a hidden gnn a hidden lin learn dist noise scale

1 27 1 64 128/64 True 0.6
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Table 18: Neighborhood Swap Generator Hyperparameters

Version num iterations min size max size nbits size max permutations parallel

NS1 1 1 2 12 20 2 True
NS2 2 1 2 12 20 2 True
NS3 3 1 2 12 20 2 True

Table 19: WGAN-GP Hyperparameters

Parameter Value

Dense Units 128, 256, 512
Dropout Rate 0.2
Discriminator Steps 1
GConv Units 128, 128, 128, 128
Generator Dense Units 512, 512
Generator Dropout Rate 0.2
Generator Steps 1
Gradient Penalty Weight 10
Optimizer Adam
Learning Rate 0.001
Epochs 20
Batch Size 28

Table 20: SWINGNN Hyperparameters

Graph Type MCMC Model Precond Sigma Dist Steps

Molecular edm edm edm 256 -1, 1, x0

Model Name Feature Dims Depths Window Size Patch Size Sample Clip

swin gnn Molecular 1 1 3 1 2 3 –

16.2 Image data Generators

16.2.1 Generative Models and Training Setups

We evaluate conditional VAEs (Kingma and Welling, 2014; Rezende et al., 2014), GAN
variants (DCGAN (Radford et al., 2016), WGAN-GP with projection critic (Gulrajani
et al., 2017; Miyato and Koyama, 2018), StyleGAN2-lite adapted to 32×32 (Karras et al.,
2020)), and conditional diffusion models (UNet backbones (Ronneberger et al., 2015) and
Transformer2D/DiT-style backbones (Peebles and Xie, 2023)) trained as DDPMs (Ho et al.,
2020) with classifier-free guidance.

Conditional VAEs. Shared training hyperparameters (per dataset) and compact archi-
tecture deltas are listed in Tables 21 and 22. All VAEs are class-conditional with label
embeddings concatenated at encoder/latent/decoder as appropriate.

Table 21: VAE training setup shared across MLP/Conv/Res (per dataset).

Dataset z Cond Ep Bs LR KW β FB Loss Aug

MNIST 32 32 80 128 1× 10−3 20 1.0 0.0 BCE none

FashionMNIST 32 32 100 128 1× 10−3 25 1.0 0.0 BCE none

CIFAR-10 128 64 250 128 1× 10−3 30 1.0 0.0 MSE flip + crop
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Table 22: VAE architecture details; decoders mirror encoders unless noted.

Arch Datasets Encoder Decoder / Notes

MLP MNIST / FashionMNIST FC: 512, 512; heads µ, log σ2 (z per
Tbl. 21)

FC: 512, 512 → reshape to
1×28×28

MLP CIFAR-10 FC: 1024, 1024 FC: 1024, 1024 → 3×32×32
Conv MNIST / FashionMNIST 3×3/s2: 32, 64, 128 Deconv s2: 128, 64, 32 → C
Conv CIFAR-10 4×4/s2: 64, 128, 256, 256 Deconv s2: 256, 256, 128, 64 → C
ResConv MNIST / FashionMNIST ResDown s2: 32, 64, 128 ResUp mirror; final 3×3 to C
ResConv CIFAR-10 ResDown s2: 64, 128, 256, 256 ResUp mirror; final 3×3 to C

WGAN-GP (projection critic). Tables 23–25 summarize preprocessing deviations,
training hyperparameters, and architectures.

Table 23: WGAN-GP data preprocessing deviations relative to Table 34.

Dataset Train input Export size Aug Notes

MNIST 1×32×32 (28→32) 28×28 none Center-crop 32→28 on export; scale [−1, 1].
FashionMNIST 1×32×32 (28→32) 28×28 none Center-crop 32→28 on export; scale [−1, 1].
CIFAR-10 3×32×32 32×32 none No cropping; scale [−1, 1].

Table 24: WGAN-GP training hyperparameters (shared across datasets).

Ep Batch LR z Cond G base D base D feat ncritic λGP Adam (β1, β2)

100 64 1×10−4 128 128 256 64 256 5 10.0 (0.0, 0.9)

Table 25: WGAN-GP model: DCGAN-style conditional generator and projection
critic (Miyato and Koyama, 2018).

Generator z∈R128, label emb. ∈ R128; concat → FC to 4×4×256; deconvs: 256→128→64→32 (stride 2,
BN+ReLU); 3×3 conv → C; tanh output in [−1, 1].

Critic (proj) Convs: C→64→128→256 (stride 2, LeakyReLU 0.2) to 4×4; global sum pool → R256; score

= w>h+ 〈h, E[y]〉 with class embedding E∈RK×256.
Objective WGAN-GP with projection discriminator; gradient penalty λGP=10; ncritic=5.
Exports Per-class sampler: generates [−1, 1] then maps to [0, 1]; MNIST/FashionMNIST center-cropped

32→28 on save; CIFAR-10 kept at 32×32.

DCGAN and StyleGAN2-lite. Preprocessing and training settings are summarized in
Tables 26–28.

Table 26: Data preprocessing deviations for DCGAN (Radford et al., 2016) and
StyleGAN2-lite (Karras et al., 2020) relative to Table 34.

Model Dataset Train input Export size Notes

DCGAN MNIST / FashionMNIST 1×28×28 28×28 No aug; scale [−1, 1].
DCGAN CIFAR-10 3×32×32 32×32 No aug; scale [−1, 1].

StyleGAN2-lite MNIST / FashionMNIST 1×32×32 (28→32) 32×32 SG2-lite fixed to 322; no ex-
port crop.

StyleGAN2-lite CIFAR-10 3×32×32 32×32 SG2-lite fixed to 322.

Table 27: Training hyperparameters for DCGAN and StyleGAN2-lite.

Model Dataset Epochs Batch z Cond. dim LRG LRD Adam (β1, β2) Reg. EMA

DCGAN
MNIST 100 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

FashionMNIST 120 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

CIFAR-10 200 128 128 64 2×10−4 2×10−4 (0.5, 0.999) BCE (real=0.9) 0.999

StyleGAN2-lite
MNIST 100 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999

FashionMNIST 120 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999

CIFAR-10 200 128 128 64 2×10−4 2×10−4 (0.0, 0.99) R1 (γ=10) 0.999
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Table 28: DCGAN and StyleGAN2-lite architectures. C=1 (MNIST/Fashion-MNIST),
C=3 (CIFAR-10).

DCGAN (cond.) G: [z| emb(y)]→ FC→ seed (7×7 if 28×28, else 8×8), width gch=128; two
ConvT 4× 4, s=2 (BN+ReLU) to gch/4; final 3× 3 conv → C; tanh.
D: concat one-hot (10 ch) on input; Conv 4× 4, s=2: C+10→ dch/2→ dch
(BN+LReLU 0.2); final conv k=7/8→ logit.

StyleGAN2-lite (cond., 32× 32) G: MLP on [z| emb(y)]→ w (256-d, 4× LReLU); learned 4×4×gch constant;
StyledConv (mod+demod, per-layer noise) with upsampling 4 → 8 → 16 →
32; skip-sum ToRGB at 4/8/16/32; tanh.
D: FromRGB → residual downs 32 → 16 → 8 → 4 (avg-pool); final convs;
projection: scalar +〈proj(h), emb(y)〉 (256-d).

Conditional diffusion models (cDDPM). We train both UNet- and Transformer2D-
based cDDPMs with classifier-free guidance and evaluate using fast samplers at test time.
Training and model configurations appear in Tables 29–33.

Table 29: Optimization and diffusion schedule for cDDPM (all datasets). Data/splits
follow Table 34.

Datasets Epochs Batch Optim LR Timesteps Pred. type EMA Clip Seed

MNIST / FashionMNIST / CIFAR-10 50 128 AdamW 1×10−4 1000 v-pred 0.999 1.0 42

Table 30: UNet config, conditioning, and sampling for cDDPM (only C/H/W vary by
dataset).

UNet blocks Stage ch. Heads Cond dim puncond Sampler Steps CFG Preview

3 ↓ /3 ↑, 2 layers (cross-attn) (128, 256, 256) 4 128 0.10 DPM-Solver++ 50 2.0 10/class

Table 31: Training hyperparameters for Transformer2D cDDPM. Optimizer: AdamW
(β1=0.9, β2=0.999); loss: MSE on v (v-prediction).

Dataset Epochs Batch LR Weight decay Timesteps Pred. type EMA decay Sample steps Seed

MNIST 150 256 1×10−4 0.0 1000 v-pred 0.9999 16 42

FashionMNIST 160 256 1×10−4 0.0 1000 v-pred 0.9999 20 42

CIFAR-10 400 256 1×10−4 0.0 1000 v-pred 0.9999 20 42

Table 32: Model and conditioning for Transformer2D cDDPM. Scheduler (train):
DDPM with linear β (10−4→2×10−2); sampler: DPM-Solver++ (CFG).

Dataset Patch Layers Heads Head dim Cond dim puncond CFG scale In ch Size

MNIST 2 8 4 64 128 0.20 2.0 1 28
FashionMNIST 2 10 4 64 128 0.20 2.0 1 28
CIFAR-10 4 12 6 64 128 0.20 2.0 3 32

Table 33: Model and sampling configuration for UNet cDDPM. Training scheduler:
DDPM (squared-cosine β, v-pred); sampler: Euler Ancestral with CFG.

Dataset Blocks (ch.) Layers/block In/Out ch. Size Class slots Cond. type Pred. type Sampler

MNIST / FashionMNIST (128, 256, 256) 2 1→ 1 28 K+1 (0=null) class embed (timestep) v-pred EulerA

CIFAR-10 (128, 256, 256) or (128, 256, 512)† 2 3→ 3 32 K+1 (0=null) class embed (timestep) v-pred EulerA

† --wide switches CIFAR-10 to (128, 256, 512); --channels accepts a custom comma list (e.g.,
128,256,256).

Classifier-free guidance: during training labels drop to the null class with prob. puncond; at
sampling, batches are doubled with uncond/cond labels (0, c+1) and combined as u+ s(c−u).
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17 Example Generated Molecules by Each Generator

Figure 4: Examples of molecules generated by different models across the six datasets. Each
row is a generator; each dataset contributes a positive and a negative sample.
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Figure 5: Samples generated by each model on MNIST. Rows: generators; columns: class-
conditional samples (uncurated).
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Figure 6: Samples generated by each model on Fashion–MNIST. Rows: generators;
columns: class-conditional samples (uncurated).
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Figure 7: Samples generated by each model on CIFAR–10. Rows: generators; columns:
per-class conditional samples (uncurated).

18 Precision, Recall, Density, and Coverage Rank of Real
Generators

Figure 8: Rank comparisons of real graph generators: Precision vs. Recall (left) and Density
vs. Coverage (right). Lower rank is better.
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19 Robustness of Alternative Metrics to Data Perturbations

Figure 9: Effect of perturbations on Coverage, Density, F1-DC, Precision, Recall, F1-PR,
FID, MMD Linear, MMD RBF across dataset sizes.

Despite broad use, many alternative metrics show limited robustness to perturbations; e.g.,
MMD RBF is nearly unchanged under noisy copies.
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20 Real-World Dataset Generation Experiments in Detail

20.1 Average Rank per Dataset for Each Vectorizer

20.1.1 AMES

Figure 10: Average generator rank on AMES across vectorizers (lower is better).

20.1.2 BBB Martins

Figure 11: Average generator rank on BBB Martins across vectorizers (lower is better).

20.1.3 CYP1A2

Figure 12: Average generator rank on CYP1A2 across vectorizers (lower is better).
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20.1.4 CYP2C19

Figure 13: Average generator rank on CYP2C19 across vectorizers (lower is better).

20.1.5 hERG Karim

Figure 14: Average generator rank on hERG Karim across vectorizers (lower is better).

20.1.6 Lipophilicity AstraZeneca

Figure 15: Average generator rank on Lipophilicity AstraZeneca across vectorizers (lower
is better).
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21 Image-Domain Experiments: Datasets, Models, and Full
Results

21.1 Datasets, Preprocessing, and Splits

Table 34: Shared preprocessing and canonical splits used for all models and experiments.

Dataset Shape (C ×H ×W ) Pixel scale Default train aug. Split policy

MNIST 1× 28× 28 [−1, 1] from [0, 1] none stratified 50/50 train1/train2 (seed 42); test untouched
FashionMNIST 1× 28× 28 [−1, 1] none same

CIFAR-10 3× 32× 32 [−1, 1] none† same

† Some models enable flip/crop at training time; exports match dataset size.

21.2 Image Data Full Metric Results Tables

Table 35: Metric values (left) and ranks (right) on CIFAR-10. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

DCGAN 0.670 9.0 0.000 6.5 0.450 4.0 0.450 1.0 0.150 4.0
DDPM 0.940 2.5 0.250 3.0 0.550 1.0 0.430 2.0 0.290 1.0
StyleGAN2 0.880 4.0 0.000 6.5 0.190 9.0 0.080 6.0 0.060 7.0
Transformer2D 0.950 1.0 0.290 1.0 0.510 3.0 0.400 4.0 0.280 3.0
UNet CFG 0.940 2.5 0.250 2.0 0.530 2.0 0.410 3.0 0.280 2.0
VAE Conv 0.760 6.0 0.000 6.5 0.230 7.0 0.010 7.5 0.050 8.0
VAE MLP 0.740 7.0 0.000 6.5 0.210 8.0 0.010 7.5 0.040 9.0
VAE Res 0.770 5.0 0.000 6.5 0.400 5.0 0.000 9.0 0.080 5.5
WGAN-GP 0.720 8.0 0.000 6.5 0.280 6.0 0.140 5.0 0.080 5.5

Table 36: Metric values (left) and ranks (right) on Fashion-MNIST. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

DCGAN 0.930 5.5 0.020 1.0 0.300 6.0 0.100 3.0 0.090 5.5
DDPM 0.940 2.5 0.000 5.5 0.500 1.5 0.170 1.0 0.160 1.0
StyleGAN2 0.940 2.5 0.000 5.5 0.220 7.0 0.000 7.0 0.050 7.0
Transformer2D 0.810 8.0 0.000 5.5 0.060 8.0 0.000 7.0 0.010 8.5
UNet CFG 0.940 2.5 0.000 5.5 0.500 1.5 0.140 2.0 0.150 2.0
VAE Conv 0.920 7.0 0.000 5.5 0.400 5.0 0.000 7.0 0.090 5.5
VAE MLP 0.940 2.5 0.000 5.5 0.430 3.5 0.000 7.0 0.100 3.5
VAE Res 0.930 5.5 0.000 5.5 0.430 3.5 0.000 7.0 0.100 3.5
WGAN-GP 0.790 9.0 0.000 5.5 0.050 9.0 0.010 4.0 0.010 8.5

Table 37: Metric values (left) and ranks (right) on MNIST. Lower rank is better.

Generator
Q U S I E

val rank val rank val rank val rank val rank

dcgan 0.560 9.0 0.000 7.0 0.010 9.0 0.000 6.0 0.000 9.0
ddpm 0.970 3.0 0.000 7.0 0.570 2.0 0.130 1.5 0.170 1.5
stylegan2 0.920 7.0 0.090 1.0 0.090 7.0 0.060 6.0 0.020 7.0
transformer2d 0.820 8.0 0.000 7.0 0.070 8.0 0.000 6.0 0.020 8.0
unet cfg 0.970 3.0 0.000 7.0 0.580 1.0 0.130 1.5 0.170 1.5
vae conv 0.960 6.0 0.000 7.0 0.480 5.0 0.000 6.0 0.110 5.0
vae mlp 0.970 3.0 0.000 7.0 0.490 4.0 0.000 6.0 0.120 4.0
vae res 0.970 3.0 0.000 4.0 0.520 3.0 0.000 6.0 0.130 3.0
wgangp 0.970 3.0 0.090 2.0 0.400 6.0 0.000 6.0 0.110 6.0
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Table 38: CIFAR-10 metrics with per-metric ranks (r=1 best). nref=25,000, ngen=25,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 21.62 5 0.0171 5 0.165 6 0.078 3 0.106 3 2.041 1
DDPM 6.67 1 0.0030 1 0.224 3 0.122 1 0.158 1 2.017 2
StyleGAN2 19.26 3 0.0129 3 0.220 4 0.002 6 0.005 6 1.958 3
UNet CFG 9.62 2 0.0069 2 0.288 1 0.093 2 0.141 2 1.944 4
Transformer2D 20.13 4 0.0150 4 0.286 2 0.065 4 0.106 3 1.763 5
VAE Conv 182.67 7 0.1905 7 0.110 7 0.000 7 0.000 7 1.293 7
VAE MLP 206.49 8 0.2182 8 0.094 8 0.000 7 0.000 7 1.280 8
VAE Res 374.51 9 0.4439 9 0.002 9 0.000 7 0.000 7 1.006 9
WGAN-GP 42.62 6 0.0342 6 0.207 5 0.017 5 0.032 5 1.652 6

Table 39: Fashion-MNIST metrics with per-metric ranks (r=1 best). nref=30,000,
ngen=30,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 0.19 1 0.0106 4 0.215 7 0.174 3 0.192 3 2.364 1
DDPM 0.71 2 0.0018 1 0.369 2 0.246 1 0.295 1 1.994 3
StyleGAN2 1.45 4 0.0077 3 0.318 3 0.001 8 0.002 8 1.869 5
UNet CFG 1.10 3 0.0042 2 0.463 1 0.188 2 0.268 2 1.905 4
Transformer2D 5.45 9 0.0587 9 0.090 8 0.001 8 0.002 8 1.570 9
VAE Conv 3.82 6 0.0231 6 0.230 6 0.009 4 0.017 4 1.692 6
VAE MLP 4.59 8 0.0216 5 0.252 5 0.007 5 0.014 5 1.677 7
VAE Res 3.99 7 0.0257 7 0.257 4 0.006 6 0.011 6 1.673 8
WGAN-GP 2.19 5 0.0423 8 0.057 9 0.005 7 0.009 7 2.013 2

Table 40: MNIST metrics with per-metric ranks (r=1 best). nref=30,000, ngen=30,000.

Model FID ↓ r KID ↓ r P r R r F1 pr r IS r

DCGAN 3.89 9 0.0321 8 0.307 3 0.003 7 0.007 7 1.276 9
DDPM 0.25 4 0.0016 1 0.488 2 0.319 1 0.386 1 1.634 7
StyleGAN2 2.27 8 0.0144 6 0.291 4 0.000 9 0.000 9 1.478 8
UNet CFG 0.29 5 0.0017 2 0.531 1 0.299 2 0.383 2 1.636 6
Transformer2D 0.83 7 0.1345 9 0.027 9 0.003 7 0.005 8 1.647 5
VAE Conv 0.24 3 0.0114 3 0.223 5 0.072 5 0.109 5 1.784 3
VAE MLP 0.23 2 0.0125 4 0.206 8 0.082 4 0.117 4 1.816 2
VAE Res 0.40 6 0.0141 5 0.212 6 0.052 6 0.084 6 1.716 4
WGAN-GP 0.14 1 0.0163 7 0.210 7 0.207 3 0.209 3 1.865 1

Table 41: Kernel-entropy metrics on CIFAR-10 with per-metric ranks (r=1 best). Higher
is better for RKE gen, FKEA-VENDI gen, FKEA-RKE2 gen; lower is better for RRKE.

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 15.18 0.852 5 2 0.179 5 13.1 3 2.3 3
DDPM 15.72 0.942 1 3 0.120 1 15.7 1 2.6 1
StyleGAN2 15.21 0.858 3 2 0.167 4 12.6 4 2.3 3
UNet CFG 15.54 0.901 2 2 0.129 2 14.0 2 2.4 2
Transformer2D 15.28 0.855 4 2 0.165 3 12.4 5 2.4 2
VAE Conv 15.34 0.335 7 1 0.762 7 2.8 7 1.4 5
VAE MLP 15.54 0.305 8 1 0.829 8 2.5 8 1.4 5
VAE Res 17.04 0.014 9 1 1.228 9 1.1 9 1.0 6
WGAN-GP 14.82 0.745 6 2 0.249 6 9.5 6 2.1 4
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Table 42: Kernel-entropy metrics on Fashion-MNIST with per-metric ranks (r=1 best).

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 16.63 0.953 1 3 0.120 3 14.7 1 2.6 1
DDPM 16.56 0.945 2 3 0.083 1 13.1 2 2.6 1
StyleGAN2 16.39 0.905 4 2 0.133 4 11.1 4 2.5 2
UNet CFG 16.46 0.923 3 3 0.092 2 11.9 3 2.5 2
Transformer2D 16.62 0.848 7 2 0.357 9 8.7 9 2.3 4
VAE Conv 16.19 0.852 6 2 0.205 6 9.3 6 2.3 4
VAE MLP 16.26 0.852 6 2 0.199 5 9.0 8 2.3 4
VAE Res 16.12 0.837 8 2 0.211 7 9.1 7 2.3 4
WGAN-GP 16.54 0.879 5 2 0.263 8 10.6 5 2.4 3

Table 43: Kernel-entropy metrics on MNIST with per-metric ranks (r=1 best).

Model σ RKE gen r m̂ RRKE r FKEA-VENDI gen r FKEA-RKE2 gen r

DCGAN 13.58 0.869 8 2 0.331 8 8.1 8 2.3 5
DDPM 13.48 0.971 3 3 0.070 1 13.5 2 2.7 1
StyleGAN2 13.21 0.882 7 2 0.235 7 8.7 7 2.4 4
UNet CFG 13.40 0.972 2 3 0.071 2 13.0 3 2.6 2
Transformer2D 15.28 0.850 9 2 0.540 9 10.7 6 2.3 5
VAE Conv 13.46 0.937 5 3 0.146 4 12.5 4 2.5 3
VAE MLP 13.67 0.953 4 3 0.150 5 13.0 3 2.6 2
VAE Res 13.38 0.921 6 3 0.161 6 11.9 5 2.5 3
WGAN-GP 13.93 0.994 1 3 0.145 3 15.0 1 2.7 1

21.3 Reproducibility Notes

All experiments use seed 42 unless otherwise stated. Evaluation uses equal nref and ngen

per dataset (see captions). The duplicate metric tables appearing in prior drafts have been
removed to avoid redundancy.
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