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ABSTRACT

Substantial quantity and high quality are the golden rules of making a good training
dataset with sample privacy protection equally important. Generating synthetic
samples that resemble high-quality private data while ensuring Differential Privacy
(DP), a formal privacy guarantee, promises scalability and practicality. However,
existing methods relying on pre-trained models for data synthesis often struggle in
data-deficient scenarios, suffering from limited sample size, inevitable generation
noise and existing pre-trained model bias. To address these challenges, we propose
a novel contrAstive private data Synthesis via Weighted multiple Pre-trained
language models (PLM) framework, named as WASP. WASP utilizes limited
private samples for more accurate private data distribution estimation via a Top-Q
voting mechanism, and leverages low-quality synthetic samples for contrastive
generation via collaboration among dynamically weighted multiple pre-trained
models. Extensive experiments on 6 well-developed datasets with 6 open-source
and 3 closed-source PLMs demonstrate the superiority of WASP in improving
model performance over diverse downstream tasks. Code is available at https:
//github.com/LindaLydia/WASP.

1 INTRODUCTION

In the rapidly evolving landscape of AI models and AI agents, the strength of both Large Language
Models (LLMs) and Small Task-specific Models (STMs) hinges on the abundance of high-quality
training data Budach et al. (2022); Wang et al. (2024), of which only a limited amount of samples
can be harnessed in practice. To further complicate the issue, broad tasks across disciplines such as
medical record summarization Rumshisky et al. (2016), chatbots for personalized weight loss Chew
(2022) and instruction-following LLM fine-tuning Yu et al. (2024) all rely on high-quality private
data collected from real users, which inevitably incurs non-negligible privacy issues.

Differentially private synthetic data stands in as a promising remedy Bommasani et al. (2019); Putta
et al. (2023); Flemings & Annavaram (2024), by creating a new synthetic dataset that resembles
the real private dataset while preserving the privacy of each sample via guaranteeing Differential
Privacy (DP) Dwork (2006). There are two main lines of research for generating DP synthetic
datasets. The first line of works Mattern et al. (2022); Yue et al. (2023) introduce DP Fine-tune
Generator which involves fine-tuning a Pre-trained Language Model (PLM) using DP-SGD Abadi
et al. (2016). However, this practice is computationally intensive and requires substantial data for
effective fine-tuning. Another line of work, Private Evolution (PE) Lin et al. (2024); Xie et al. (2024);
Hou et al. (2024), relieves the fine-tuning requirement and instead merely uses the APIs of pre-trained
models for generation, under DP-protected guidance from private samples. This API-based nature
is efficient in creating DP synthetic data, and can leverage both open-source and closed-source
pre-trained models, making PE a more applicable solution compared to its counterparts.
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Figure 1: (a) Comparison of the similarity of synthetic dataset to real private dataset (measured by
FID Heusel et al. (2017)) and STM performance (numbers within parenthesis) of Aug-PE Xie et al.
(2024) (dotted lines) and our refinement with Top-Q voting (dashed lines) under the same DP setting
as in Table 1 with IMDb dataset. Lower FID indicates higher similarity. (b) Results of Aug-PE using
100 private samples and under the same DP setting as in Table 1.

Although proven effective, current PE methods Lin et al. (2024); Xie et al. (2024); Hou et al. (2024),
still face three major challenges: (1) Limited Private Samples. Existing PE methods rely on at
least thousands of private samples Lin et al. (2024); Xie et al. (2024); Hou et al. (2024) to guarantee
reliable generation feedback selection. In practice, however, data sources may provide only a few
hundred samples Zdrazil et al. (2024); Ren et al. (2019), leading to noisy selection guidance. As
shown in Figure 1(a), with limited private samples (100), Aug-PE Xie et al. (2024) (PE for text)
failed to generate synthetic samples resembling real samples’ distribution for 3 PLMs (except Flan-
T5). Similar conclusion is drawn in Lin et al. (2024) (see Table 2 therein). This calls for a more
precise guidance from limited private samples. (2) Noisy Synthetic Data. Although PE approaches
encourage the generation of high-quality samples that are close to real private sample distribution,
low-quality noisy samples are still unavoidable (see examples in Table 8 in Appendix C.1), which
hinder the final performance when training downstream models Ye et al. (2022); Gao et al. (2023);
Zou et al. (2024). This highlights the the importance of instructing the avoidance of generating noisy
samples during data synthesis. (3) Risky PLM Selection. As shown in Figure 1(a), different PLMs
yield varying performances (some with unsatisfactory results), and even the best performing model
differs across various downstream tasks (see Figure 1(b)), making it hard to select the most suitable
pre-trained model for a specific task. Previous PE works primarily focus on single PLM setting, thus
the potential of collaboration among multiple PLMs is still unexplored.

To address these demanding challenges, we propose WASP, a collaborative framework that fuses
the knowledge from weighted multiple PLMs to synthesize DP data in a contrastive fashion. (1)
To overcome private sample scarcity, we first extend the voting mechanism for private distribution
estimation used in PE from Top-1 to Top-Q (Q > 1) with decaying weights, in order to get a more
accurate estimation while guaranteeing private data DP. (2) To reduce noise, we further leverage
the previous voting results to select both high-quality and low-quality samples, and incorporate a
contrastive prompt containing both types of samples to improve synthetic data quality by encouraging
generation that is more aligned to high-quality samples and less similar to low-quality ones. Notice
that under multi-PLM setting, these samples may originate from different PLMs. (3) To mitigate
model bias, we then interfuse the capabilities of multiple PLMs with dynamically adjusted importance
weight for each PLM based on the ensemble votes from private samples. The underlying principle
is to assign higher weights to PLMs that generate synthetic samples that are closer to real samples
on average. Operating in an iterative fashion, the WASP framework can generate large quantity of
synthetic data that better approximate real private data distribution while observing differential privacy.
Notably, this process incurs no additional API queries compared to its single-PLM counterparts.

Our contributions are summarized as follows:

1) We introduce a privacy-preserving collaborative framework WASP to facilitate collaboration
between multiple PLMs and private samples, especially benefiting scenarios with limited private data.

2) Our proposed WASP leverages differentially private Top-Q voting to improve the estimation of
private distributions using limited private samples. It generates higher-quality data by contrasting
high- and low-quality samples and dynamically assigns importance weights to PLMs, ensuring that
more capable PLMs of the specific task are prioritized.

3) Experiments on 6 well-defined natural language processing tasks with 6 open-source and 3 closed-
source PLMs demonstrate the consistent superiority of WASP over existing methods, especially for
challenging tasks.
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Figure 2: Overview of WASP framework.

2 RELATED WORK

DP Synthetic Dataset. The goal of generating DP synthetic data is to mimic private dataset while
protecting sensitive information. Although fine-tuning a PLM with DP-SGD Abadi et al. (2016)
for data generation purpose can be effective Bommasani et al. (2019); Putta et al. (2023); Flemings
& Annavaram (2024); Mattern et al. (2022); Yue et al. (2023), it is computationally intensive and
requires a large number of high-quality private samples to reach strong performance. Moreover,
many state-of-the-art PLMs such as GPT series OpenAI (2021; 2023); Hurst et al. (2024) are also
closed-source, making DP fine-tuning impractical.

A new line of work instead relies on generative APIs of PLMs without fine-tuning, which focuses on
either iterative data synthesis under DP guidance Lin et al. (2024); Zhao et al. (2024); Bojkovic &
Loh (2024) or creating DP replica of a given large private dataset Nagesh et al. (2024). Given that
requiring a large global dataset for synthetic data initialization Zhao et al. (2024) is hard to obtain
in most cases, Lin et al. (2024) proposes a more practical solution, Private Evolution (PE), which
instead uses task-related synthetic samples. In PE, private samples are used to identify their nearest
synthetic counterparts under DP protection, which then guide the growth of the DP synthetic dataset.
PE is proven effective across images Lin et al. (2024) and text Xie et al. (2024), and is further adapted
to federated private data scenarios Hou et al. (2024). However, all these works primarily focus on
using a single PLM as the generation model.

PLM Fusion. The combination of multiple PLMs can lead to stronger model performance Liu et al.
(2024); Du et al. (2023); Wan et al. (2024a;b); Li et al. (2024); Zou et al. (2024). Some studies
fine-tune target models with token-level fusion from PLMs as teachers during training time Wan
et al. (2024a;b), while others use majority voting Li et al. (2024) or logits averaging Mavromatis et al.
(2024) for knowledge fusion during inference. However, data privacy challenges persist, as training
or test samples are exposed to external models. To solve this, FuseGen Zou et al. (2024) recently
proposes PLM fusion in a zero-shot learning setting, utilizing only model APIs to synthesize data
without accessing real private samples, thereby ensuring data privacy. However, by treating all PLMs
equally, it overlooks the capability difference of individual PLMs over different tasks.

More related works considering Contrastive In-context Learning are included in Appendix F.

3 PRELIMINARIES

Differential Privacy (DP). If two datasets D and D′ differ in a single entry, they are referred to as
Neighboring Datasets. A mechanismM satisfies (ϵ, δ)-DP if for any neighboring datasets D,D′ and
any output subset E ofM, it holds that Dwork (2006):

Pr[M(D) ∈ E] ≤ eϵ · Pr[M(D′) ∈ E] + δ. (1)

Note that post-processing on the output of (ϵ, δ)-DP does not incur additional privacy loss Dwork
et al. (2014).
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Gaussian Mechanism. Gaussian Mechanism Dwork (2006) can be applied to guarantee (ϵ, δ)-DP,
for any ϵ > 0, δ ∈ (0, 1), by adding Gaussian noise following N (0, σ2) to the transmitted statistics

with σ = ∆

√
2 log(1.25/δ)

ϵ and ∆ being the sensitivity ofM Balle & Wang (2018).

4 METHODOLOGY

4.1 PROBLEM DEFINITION

In this paper, we aim to generate a DP synthetic dataset D = {(xi, yi)}Ni=1 of size N using a small
number of private data B = {(zj , uj)}Mj=1, where M denotes the number of private samples, and
zj , uj denote the feature and label of the private sample j, respectively. We consider data-scarcity
setting where M is typically a few hundreds at most. To achieve this, we harness the collaborative
power of K black-box PLMs {Pk}Kk=1 via APIs, while protecting private data by Gaussian DP. For
evaluation, we use D to train a Small Task-specific Model (STM) m and evaluate model performance
on a test dataset A containing real samples that is never used during training.

Note that our framework can be easily extended to the scenario of distributed federated data where
each data source possesses an insufficient amount of private data and collaborates on private tasks
with secure aggregation Hou et al. (2024). We present the related details in Section 4.7.

4.2 OVERALL WORKFLOW OF WASP

The overall workflow of WASP is depicted in Figure 2 and Algorithm 1, where four steps are taken
iteratively for T times. For a given task, the first iteration begins by prompting each PLM Pk with a
zero-shot prompt, which describes the task and category label, to generate a synthetic data subset
Dk of equal size Nk. These samples do not contain information about B. The collective dataset
D =

⋃K
k=1Dk is then voted by each private sample using a differentially private Top-Q voting

mechanism to identify high-quality and low-quality synthetic samples based on their similarity to the
distribution of B. These samples are then used to create a contrastive in-context learning prompt for
the next round of PLM generation. The voting results are further exploit to dynamically adjust the
importance weight wk for each PLM Pk, which determines Nk of the next generation round. The
process repeats from here, expanding D with DP synthetic samples. After T iterations, D is used to
train an STM m. For notational simplicity, we omit the iteration index t, with D accumulated over
iterations. DP guarantee of WASP is given in Theorem 4.1 with proof included in Appendix D.

Theorem 4.1. WASP (Algorithm 1) guarantees DP with DP budget ϵ.

4.3 WEIGHTED PARALLEL DATA SYNTHESIS

In this stage (lines 4-6 in Algorithm 1), each PLM Pk generates Nk = [(N/T )× wk] synthetic
samples following:

xi ∼ Pk (·|T (yi)) , (2)

where {wk}Kk=1 are the weights for {Pk}Kk=1, [·] is the rounding function, N is the expected total
number of synthetic samples to be generated, and T (·) is the generation prompt. In the initial iteration,
T (·) is a zero-shot prompt that describes the task and provides category description, with all PLMs
receiving equal weights, i.e. {wk = 1

K }
K
k=1. For later iterations, T (·) is extended to a few-shot

contrastive prompt (see Section 4.6) with in-context samples selected in Section 4.4, and {wk}Kk=1
dynamically assigned based on each PLM’s capability of the specific task (see Section 4.5). The
collective synthetic dataset D =

⋃K
k=1Dk is then sent to the private data party.

4.4 DIFFERENTIALLY PRIVATE TOP-Q VOTING

As shown in Figure 1(a), with limited real private samples, noisy estimations of the real private data
distribution cause the original PE algorithm to fail in generating synthetic samples that resemble
private data. Our aim is to improve distribution estimations and generation guidance in this scenario.
To achieve this, unlike previous works Lin et al. (2024); Xie et al. (2024); Hou et al. (2024) that
assign only 1 vote per private sample, we propose a Top-Q voting mechanism with decaying weights.
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Algorithm 1 WASP
Input:
K PLMs {Pk}Kk=1 with empty synthetic dataset {Dk ← ∅}Kk=1; 1 data party with private dataset B of size M
belonging to C categories; number of in-context samples S; number of iterations T taken to obtain in total N
synthetic samples; initialized PLM weights {wk = 1/K}Kk=1; learning rate η; DP privacy parameters ϵ, δ, δiter;
test dataset A; random initialized STM m(0).
Output: STM m.
1: Initialize in-context feedback samples D̂n ← ∅, D̂f ← ∅.
2: Calculate Gaussian noise σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
.

3: for t = 0 to T − 1 do
4: for k = 1 to K in parallel do
5: Dk ← WeightedSynDataGeneration(Dk, D̂n, D̂f , [(N/T )× wk], C).
6: end for
7: D ← ∪K

k=1Dk.
8: Hn, Hf ← DP_PrivateVoting(D, B, Q, σ).
9: D̂n, D̂f ← SampleSelection(D, Hn, Hf , S, C).

10: {wk}Kk=1 ← PLMScoring(Hn, {Dk}Kk=1).
11: end for
12: m← STMTraining(D, m(0), η).

This approach maximizes the use of limited private samples by giving weighted votes to the Top-Q
nearest and furthest synthetic samples relative to the private sample. Specially, we first compute
the pair-wise distance between each of the private samples (zj , uj) ∈ B and each synthetic sample
(xi, yi) ∈ D if they possess the same label, i.e. yi = uj . Using ℓ2 distance as measurement, we have:

d(zj ,xi) = ||φ(zj)− φ(xi)||2 , ∀ j = 1, . . . ,M ; (xi, yi) ∈ D[uj ] , (3)

where φ denotes a pre-trained sentence embedding model and D[uj ] denotes the subset of D which
has a label that equals to uj . Next, we use each private sample (zj , uj) ∈ B to vote for its Top-Q
nearest and Top-Q furthest synthetic samples within D[uj ] based on Equation (3). The indices of the
synthetic samples selected by each (zj , uj) ∈ B are:

[nj,1, . . . , nj,Q]← arg topQSmallest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
,

[fj,1, . . . , fj,Q]← arg topQLargest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

(4)

where functions arg topQSmallest and arg topQLargest return the indices of the Top-Q samples
with the smallest and largest d(zj , xi), respectively, with nj,1, . . . , nj,Q, fj,1, . . . , fj,Q denoting the
index of selected samples. To utilize the relative ranking information, as well as to guarantee a con-
trollable function sensitivity for DP protection, we assign decreasing voting weights 1, 1

2 , . . . ,
1

2Q−1

to each of the Top-Q selected samples when producing the voting histograms, Nearest Histogram
Hn and Furthest Histogram Hf . This can be formulated as:

Hn[nj,q]← Hn[nj,q] +
1

2q−1
, Hf [fj,q]← Hf [fj,q] +

1

2q−1

∀(zj , uj) ∈ B, ∀ q ∈ [1, . . . , Q],
(5)

with Hn, Hf each initialized as [0, . . . , 0] of length |D|.
To further guarantee (ϵ, δ)-DP for private samples, Gaussian noises following N (0, σ2) with σ =

4

√
2 log (1.25/δiter)

√
T−1

ϵ are added to Hn, Hf :

Hn ← Hn +N (0, σ2I|D|), H
f ← Hf +N (0, σ2I|D|) , (6)

where I|D| represents the identity matrix of size |D| × |D| and δiter < δ
(T−1) represents the DP

hyper-parameter applied within each iteration.

Based on Hn, Hf , for each category c, we select low-quality samples with the highest votes in Hf

(largest distance to private samples in B), denoted as D̂f,[c], alongside high-quality samples with the
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highest votes in Hn (nearest to private samples in B), denoted as D̂n,[c], following:

Hn,[c] =
{
Hn[i]

∣∣ (xi, yi) ∈ D[c]
}
, Hf,[c] =

{
Hf [i]

∣∣ (xi, yi) ∈ D[c]
}
,

D̂n,[c] =
{
(xi, yi) ∈ D[c]

∣∣Hn[i] is among the top-S values of Hn,[c]
}
,

D̂f,[c] =
{
(xi, yi) ∈ D[c]

∣∣Hf [i] is among the top-S values of Hf,[c]
}
,

(7)

where S is the amount of samples to select and Hn,[c], Hf,[c] denote the sets of the nearest and
furthest voting results of samples belonging to category c. D̂n =

⋃C
c=1 D̂n,[c], D̂f =

⋃C
c=1 D̂f,[c] are

the total sets of high- and low-quality samples respectively. Note that we do not limit the origin of
the selected samples, and synthetic samples generated by different PLMs can all be included in D̂n

and D̂f .

4.5 PLM IMPORTANCE WEIGHTING

Previous studies on API-based multi-PLM fusion Li et al. (2024); Zou et al. (2024) often treat involved
PLMs equally. However, as shown in Figure 1(b) and Figure 6 in Appendix E.2, different PLMs
exhibit varying generation capabilities, leading to uneven synthetic data quality. This encourages
assigning customized weights for each PLM to enhance their contributions. Therefore, we introduce
a PLM weighting strategy based on the quality of their generated synthetic data, which is measured
by their similarity to private samples.

Since the Nearest Histogram Hn obtained in Equation (5) quantifies the similarity between each
synthetic sample and private samples, we simply aggregate the histogram values of each synthetic
sample with source PLM Pk to obtain the weight wk of the PLM Pk for the upcoming generation
iteration. That is,

si =
Hn[i]∑|D|

i′=1 H
n[i′]

, wk =

∑
(xi,yi)∈Dk

si
|Dk|∑K

k′=1
|Dk′ |

=

∑
(xi,yi)∈Dk

si

|Dk|/|D|
. (8)

4.6 CROSS-PLM CONTRASTIVE IN-CONTEXT LEARNING (ICL)

Inspired by the observation that low-quality samples still exist in DP synthetic dataset given by PE
(see Table 8 in Appendix C.1), we select cross-PLM contrastive samples from D̂n and D̂f (obtained
in Section 4.5), and use them to create a contrastive task-related label-descriptive prompt T (·) to
perform cross-PLM contrastive ICL. T (·) describes the task, provides category description, and
contains explicit contrastive instructions for high- and low-quality samples. It contains the following
sequential instructions: (1) analyze the difference between low- and high-quality samples; (2) ensure
the new sample is better in quality and closer to real private distribution than the high-quality samples,
and is further away from the low-quality samples than the high-quality samples; (3) generate a new
sample which is diverse in expression compared to the given high-quality samples. Note that to
improve the generation diversity, for each generation we perform random sample selection to draw
50% of samples respectively from D̂f,[c] and D̂n,[c] to construct the final in-context samples for T (c).
Also, different from PE algorithms series, we choose not to vary one existed synthetic sample each
time, but to encourage diverse sample generation using S demonstrations at once. Prompt examples
can be found in Table 7 in Appendix A.

4.7 WASP IN FEDERATED DATA SETTING

So far we have built our algorithms under single data-party setting, which can be easily extended to
federated data scenario Hou et al. (2024), where each data party possesses an insufficient amount of
private data and collaborates on private tasks. This scenario is very common in the real world, such
as collaborations between medical companies. In this setting, we consider L data parties {Cl}Ll=1,
each possessing a real private dataset Bl = {(zl,j , yl,j)}Ml

j=1 of size Ml. These data parties aim to
collaboratively generate a DP synthetic dataset while preserving local data privacy. The full algorithm
is provided in Algorithm 2.
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When extending to federated data setting, each party Cl uses its local private samples in Bl to perform

DP Top-Q voting with σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

to guarantee privacy. The produced local nearest

and furthest voting histograms {Hn
l }Ll=1, {H

f
l }Ll=1 are then securely aggregated Bonawitz et al.

(2016) before sent to a central server following:

Hn ←
L∑

l=1

Hn
l , H

f ←
L∑

l=1

Hf
l . (9)

We adopt an honest-but-curious threat model where the server only has access to the aggregated
histograms Hn and Hf , but not individual ones. We also assume that all data parties participate in
the aggregation and therefore aims to ensure sample-level (ϵ, δ)-DP of B (see Appendix D). Note
that, WASP can be easily extended to ensure user-level DP, with discussions and results included in
Appendix E.4.

5 EXPERIMENTS

5.1 SETTINGS

Models. In this work, 6 open-source PLMs and 3 closed-source PLMs are considered. Open-source
PLMs include GPT-2-xl (GPT-2) Radford et al. (2019), Llama-2-7b-chat-hf (Llama-2) Touvron
et al. (2023), Vicuna-7b-1.5v (Vicuna) Chiang et al. (2023), OPT-6.7b (OPT) Zhang et al. (2022),
ChatGLM3-6b-base (ChatGLM3) Du et al. (2022), and Flan-T5-xl (Flan-T5) Chung et al. (2022).
Close-source PLMs include GPT-3.5-turbo-instruct (GPT-3.5) OpenAI (2021), GPT-4-turbo-preview
(GPT-4) OpenAI (2023), and GPT-4o Hurst et al. (2024). For STM, we use pre-trained bert-base-
uncased (BERT) model and further fine-tune it on downstream classification tasks using D. We use
sentence-t5-base Ni et al. (2022) as the embedding model φ.

Datasets. We evaluate on 6 widely used tasks: 1) IMDb Maas et al. (2011) (2 categories) for movie-
review semantic analysis task; 2) Yelp-Category Inc. Yelp (2015) (10 categories) for business-review
item field classification task; 3) Yelp-Rating Inc. Yelp (2015) (5 categories) for business-review
rating classification task; 4) Openreview-Category Xie et al. (2024) (12 categories) for paper-review
classification by research area task; 5) Openreview-Rating Xie et al. (2024) (5 categories) for
paper-review classification by review rating task; and 6) Banking (10 categories selected from
Banking77 Casanueva et al. (2020)) for online-banking queries field classification task. B is randomly
drawn from the training sets of these datasets with their test sets used to evaluate trained STM.

Baselines. We compare the WASP framework to 4 baselines: 1) Aug-PE Xie et al. (2024), the
original PE algorithm specialized for text modality; 2) Pre-Text Hou et al. (2024), which applies PE
to federated private data setting; 3) OnlyPrivate, the centralized training method relying merely on
B without DP (ϵ =∞), which provides a performance upper-bound of using no synthetic data; 4)
FuseGen Zou et al. (2024), which generates synthetic data in a zero-shot manner without accessing
private samples. “Absolutely Private” in result tables indicates that no private sample in exploit during
training.

Implementation Details. By default, we use 100 private samples (M = 100) for main experiments.
For federated data (L > 1) scenario, we use L = 10 private data parties which control 300 private
samples (M =

∑10
l=1 |Bl| = 300) altogether. To better align with real-world scenarios, each

participating data-party controls private datasets that are non-i.i.d. to each other, and aggregate to an
unbalanced dataset. We follow Dirichlet Partition Yurochkin et al. (2019); Hsu et al. (2019); Zhang
et al. (2023) to distribute private samples to each party with parameter α = 1.0. For the DP synthetic
dataset, we generate a total of 6, 000 samples from all participating PLMs within 5 iteration. Since
the first iteration does not use private sample information for feedback, only the last 4 iterations are
sensitive to privacy. By default, we use δiter = 1× 10−5 in our experiments and list only ϵ alongside
the results. The notion of DP is sample-level DP unless otherwise stated.

5.2 MAIN RESULTS

Single Data Party Setting. Experimental results using K = 6 open-source PLMs and 3 closed-
source PLMs are provided in Tables 1 and 3, which show that WASP outperforms all baseline methods
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Table 1: Evaluation of downstream STM accuracy using 6 PLMs, L = 1. Best and second best
results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 100 - 50.00 5.69 35.57 6.56 22.20 13.75

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

Aug-PE

GPT-2 ϵ = 4.0 100 6, 000 85.38 62.33 45.28 31.45 24.12 75.63
Llama-2 ϵ = 4.0 100 6, 000 85.77 60.18 47.42 32.67 34.78 84.63
Vicuna ϵ = 4.0 100 6, 000 82.76 63.28 54.42 32.27 30.66 86.75
OPT ϵ = 4.0 100 6, 000 83.86 62.71 50.81 34.64 25.30 79.25

ChatGLM3 ϵ = 4.0 100 6, 000 85.82 55.06 55.17 33.81 32.49 88.50
Flan-T5 ϵ = 4.0 100 6, 000 89.00 62.06 58.69 34.54 35.42 81.25

WASP (Ours) ϵ = 4.0 100 6, 000 89.52 63.91 61.21 34.99 37.10 88.75

Table 2: Evaluation of downstream STM accuracy using 6 PLMs, L = 10. Best and second best
results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 100 - 50.00 5.90 38.76 8.86 23.55 16.75

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

Pre-Text

GPT-2 ϵ = 4.0 100 6, 000 85.87 62.58 46.25 37.13 24.45 76.25
Llama-2 ϵ = 4.0 100 6, 000 86.09 60.20 51.11 34.24 36.24 85.38
Vicuna ϵ = 4.0 100 6, 000 83.52 64.11 54.76 36.38 30.88 86.13
OPT ϵ = 4.0 100 6, 000 83.98 63.65 52.44 37.67 24.73 79.75

ChatGLM3 ϵ = 4.0 100 6, 000 86.32 60.24 56.94 38.14 33.35 89.38
Flan-T5 ϵ = 4.0 100 6, 000 89.02 62.82 61.04 38.31 36.53 81.75

WASP (Ours) ϵ = 4.0 100 6, 000 89.65 64.34 61.46 40.47 37.60 89.63

across different tasks, demonstrating its superiority. As expected, the closed-source GPT series (see
Table 3), being powerful models, outperform their open-source counterparts (see Table 1) when using
baseline method Aug-PE.

For all tasks, with limited private samples, Aug-PE performs poorly when using improper single
PLM, e.g. using OPT for IMDb and using GPT-2 for Openreview-Rating. Differently, WASP
performs consistently well across tasks, and achieves a lower FID value compared to baselines (see
Figure 5 in Appendix E.1), verifying its effectiveness under limited private sample setting. Also,
the best performing PLM model varies across tasks for Aug-PE, highlighting the arbitrary nature of
PLM selection. In contrast, WASP consistently achieves better performance across tasks, making it
PLM-agnostic without requiring prior-knowledge for selecting specific PLMs for collaboration.

On the other hand, comparing with FuseGen, a baseline under zero-shot setting where private samples
are inaccessible, WASP leverages real private samples and utilizes a more targeted PLM importance
weighting method, therefore achieving better performance. Moreover, the notably poor performance
of “OnlyPrivate” shows that the trained STM relying merely on private dataset B is nearly unusable,
even without applying DP during training which can further degrade STM performance.

Federated Data Setting. We also conduct experiments under distributed federated data setting,
with L = 10 and M = 300 total number of private samples. Results in Table 2 show that WASP
consistently achieves better performance across different tasks and settings compared to Pre-Text,

Table 3: Evaluation of downstream STM accuracy using 3 closed-source PLMs, L = 1 with the same
DP setting in Table 1. Best and second best results are marked.

Only
Private FuseGen Aug-PE WASP

(Ours)GPT-3.5 GPT-4 GPT-4o

Yelp-Rating 35.57 61.36 60.90 61.02 62.06 64.48
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a baseline designed for federated data. This further demonstrates the effectiveness of WASP when
extended to federated data setting. Additional results on communication cost comparison is given
in Table 11 in Appendix E.5, where we show that the communication increase caused by uploading
additional histograms by our method is minimal.

5.3 ABLATION STUDIES

# PLMs (K). We first study the impact of the number of PLMs (K) on the final STM performance.
Results of using 1, 2, 3 closed-source PLMs under L = 1 and the same DP setting as in Table 1 are
reported in Figure 3(a). We can see that the performance of m increases simultaneously with the
increase of K while the randomness (STD) decreases. This indicates that the randomness in the
performance of the synthetic dataset can be mitigated by incorporating more PLMs into WASP, which
simultaneously increases the performance expectations.

We also display the pair-wise combination (K = 2) results of the 3 closed-source PLMs under L = 1
and the same DP setting as in Table 1 in Figure 3(b). In this figure, any pair-wise collaboration
(K = 2) outperforms either participating single-PLM alone (diagnose in Figure 3(b)), demonstrating
that WASP performs better using the whole set of available PLMs than using only a subset of them.
These findings show that WASP’s improvements are PLM-agnostic, independent of any single PLM’s
inherent task capabilities. Consequently, WASP effectively mitigates the risk of selecting the optimal
PLM by harnessing the collective strengths of all participating models.

(a) Effect of K (b) Pair-wise Comparison

Figure 3: Evaluation of downstream STM accuracy using
Yelp-Rating dataset with K = 1, 2, 3 closed-source PLMs,
L = 1 under the same DP setting as in Table 1. In (b), results
on the diagnose are with K = 1 and others are with K = 2.

Contrastive ICL & PLM Impor-
tance Weighting. To evaluate
the effectiveness of our proposed Con-
trastive In-context Learning and PLM
Importance Weighting methods, we
conduct ablation experiments to see
how these components impact the fi-
nal STM performance. Results are
reported in Table 4. By removing Con-
trastive In-context Learning (labeled
as “w/o PLM Contrastive Prompt-
ing” in Table 4), we only select high-
quality samples for the prompt (de-
tails in Table 7). This leads to a
0.31% decrease in STM performance
on the easier IMDb task, and a much
larger 1.56% and 0.92% decrease on

the more challenging Yelp-Rating and Openreview-Rating tasks. This highlights the importance
of using low-quality samples as feedback demonstrations to encourage the PLMs avoid generating
low-quality DP synthetic samples.

On the other hand, by removing PLM Importance Weighting (labeled as “w/o PLM Importance
Weighting” in Table 4), wk = 1/K within each generation iteration, indicating that each PLM
generates equal amount of samples across iterations. Similarly, results indicate a 0.35% decrease in
STM performance on the easier IMDb task and a 2.27% and 1.57% decline on the more challenging
Yelp-Rating and Openreview-Rating tasks. This underlines the effectiveness of weighted aggregation
of PLMs with varying degrees of reliance on their capabilities for specific task. Furthermore, these
results demonstrate that by generating better DP synthetic data, WASP is more effective than baselines
when faced with more challenging tasks.

# Votes (Q) by Each Private Sample. To better estimate private sample distribution with limited
private samples, WASP exploits each private sample by increasing the amount of votes each private
sample gives out (from Q = 1 in previous works to Q = 8). Here we investigate how the change in Q
impacts STM performance. Results in Table 5 indicate that STM performance improves with higher
values of Q, but the improvement diminishes at larger Q (Q > 8). This underscores the strength of
our idea in increasing the utility of each private sample to achieve a more accurate private sample
distribution estimation, particularly in scenarios with limited available private samples.
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Table 4: Comparison of downstream STM accuracy under w/ and w/o Contrastive In-context Learning
and Private Data Assisted PLM Importance Weighting setting using 6 open-source PLMs, L = 1
with the same DP setting as in Table 1.

w/o PLM Contrastive Prompting w/o PLM Importance Weighting WASP (Ours)

IMDb 89.21 89.17 89.52
Yelp-Rating 59.65 58.94 61.21

Openreview-Rating 36.18 35.53 37.10

Table 5: Evaluation of downstream STM accuracy using 6 open-source PLMs, L = 1 with the same
DP setting as in Table 1 under different Q.

Q = 1 Q = 2 Q = 4 Q = 8 Q = 16

IMDb 89.02 89.15 89.39 89.52 89.60
Yelp-Rating 58.74 58.92 59.24 61.21 61.42

Figure 4: Comparison of downstream STM accuracy using
different number of private samples (M ) from the training
set of IMDb and Yelp-Rating datasets using 6 open-source
PLMs, L = 1 with the same DP setting as in Table 1.

Sensitive Analysis of # Private Sam-
ples (M ). We also investigate the im-
pact of M on WASP. In Figure 4, we
compare the baseline Aug-PE method
with WASP across different values of
M . Results show that WASP con-
sistently outperforms Aug-PE across
different values of M for all PLMs,
and the performance gaps at smaller
M values (M < 1000) are much
greater, underscoring the effectiveness
of WASP in limited private data sce-

narios.

Different Private Budget (ϵ). As illustrated in Table 6, STM performance using WASP gradually
declines from 89.96% to 89.36% for IMDb and from 62.02% to 60.94% for Yelp-Rating as the
privacy budget ϵ decreases from∞, 8.0, 4.0 to 1.0, similar to that of Aug-PE when using the best
performing single PLM for each task. This indicates that WASP scales well with ϵ and maintains
high performance even under tight privacy constraints, just like baseline method.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce a novel DP synthetic data generation framework, WASP, which leverages
the collaborative capabilities of multiple PLMs to address real-world scenarios with limited private
samples, while observing differential privacy. Extensive experiments across 6 tasks demonstrate that
WASP is highly effective, PLM-agnostic, scalable with respect to privacy budgets, and superior in
challenging scenarios, making it a practical and scalable solution for real-world applications.
Possible future work points to more precise sample-level weighting or selection to further improve
the quality of the DP synthetic dataset, as well as verifying the effectiveness of WASP on non-
classification tasks.

Table 6: Evaluation of downstream STM accuracy using 6 open-source PLMs, L = 1 under different
DP budget setting with δiter = 1× 10−5. The best performing PLM is used for Aug-PE evaluation,
i.e. Flan-T5 for both tasks.

ϵ =∞ ϵ = 8.0 ϵ = 4.0 ϵ = 1.0

IMDb WASP 89.96 89.77 89.52 89.36
Aug-PE 89.48 89.23 89.00 88.72

Yelp-
Rating

WASP 62.02 61.54 61.21 60.94
Aug-PE 59.62 59.12 58.69 58.59
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A CONTRASTIVE PROMPTS AND NON-CONTRASTIVE PROMPTS

Table 7: Prompt used for synthetic dataset generation. Due to clarity, we omit the words in the
parentheses in the labels of Openreview-Category and the attributes of Openreview-Rating.

Dataset (task) prompt type prompt label attribute

IMDb
(semantic analysis
of movie review)

w/o Contrastive “The movie review is: <sample_1>\nThe movie review is: <sam-
ple_2>\n...\nThe movie review is: <sample_S>\n\nBased on the above
movie reviews, a new movie review also in <label> sentiment but diverse in
the expression compared to the above given samples is: ”

positive / negative None

w/ Contrastive “A bad movie review is: <sample_1>\n...\nA bad movie review is:
<sample_⌊S/2⌋>\nA good movie review is: <sample_⌊S/2⌋+1>\n...\nA
good movie review is: <sample_S\n\nBased on the above examples of bad
and good movie reviews in <label> sentiment, analyze the differences be-
tween the bad and good reviews. Generate a new positive movie review that
is diverse in expression compared to the given good reviews. Ensure that
the new review is further refined than the good reviews while maintaining
the <label> sentiment and clarity, making the good reviews appear to lie
midway between the new review and the bad reviews. The new <label>
movie review is: ”

Yelp-Category
(field classification
of business review)

w/o Contrastive The business review is: <sample_1>\nThe business review is: <sam-
ple_2>\n...\nThe business review is: <sample_S>\n\nBased on the above
business reviews belonging to the category of <label>, a new review for a
business item also in the field of <label> with rating <attribute> star(s) but
diverse in the expression compared to the above given samples is: ”

Arts & Entertainment /
Bars / Beauty & Spas /

Event Planning & Services /
Grocery / Health & Medical /

Home & Garden /
Hotels & Travel /

Restaurants / Shopping

1.0 / 2.0 / 3.0 /
4.0 / 5.0

w/ Contrastive A bad business review is: <sample_1>\n...\nA bad business review is:
<sample_⌊S/2⌋>\nA good business review is: <sample_⌊S/2⌋+1>\n...\nA
good business review is: <sample_S\n\nBased on the above examples of bad
and good business reviews belonging to the category of <label>, analyze the
differences between the bad and good reviews. Generate a new review for a
business item also in the field of <label> with rating <attribute> star(s) but
diverse in the expression compared to the given good reviews. Ensure that
the new review is further refined than the good reviews while maintaining
clarity, making the good reviews appear to lie midway between the new
review and the bad reviews. The new business review in the field of <label>
is: ”

Yelp-Rating
(rating classification
of business review)

w/o Contrastive The business review is: <sample_1>\nThe business review is: <sam-
ple_2>\n...\nThe business review is: <sample_S>\n\nBased on the above
business reviews with rating <label> star(s), a new review for a business
item in the field of <attribute> also with rating <label> star(s) but diverse
in the expression compared to the above given samples is: ”

1.0 / 2.0 / 3.0 /
4.0 / 5.0

Arts &
Entertainment /

Bars /
Beauty & Spas /
Event Planning

& Services /
Grocery /

Health & Medical /
Home & Garden /
Hotels & Travel /

Restaurants /
Shopping

w/ Contrastive A bad business review is: <sample_1>\n...\nA bad business review is:
<sample_⌊S/2⌋>\nA good business review is: <sample_⌊S/2⌋+1>\n...\nA
good business review is: <sample_S\n\nBased on the above examples of
bad and good business reviews with rating <label> star(s), analyze the
differences between the bad and good reviews. Generate a new review for
a business item in the field of <attribute> also with rating <label> star(s)
but diverse in the expression compared to the above given good reviews.
Ensure that the new review is further refined than the good reviews while
maintaining clarity, making the good reviews appear to lie midway between
the new review and the bad reviews. The new business review with rating
<label> star(s) is: ”

Openreview-Category
(field classification

of paper review)

w/o Contrastive The paper review is: <sample_1>\nThe paper review is: <sam-
ple_2>\n...\nThe paper review is: <sample_S>\n\nBased on the above paper
reviews of paper in the area <label>, a new review for a paper also in the
area of <label> with final recommendation: ’<attribute>’ but diverse in the
expression compared to the above given samples is: ”

Applications / Deep Learning
and representational learning /
General Machine Learning /

Generative models /
Machine Learning for

Sciences / Neuroscience
and Cognitive Science /

Optimization /
Probabilistic Methods /

Reinforcement Learning /
Social Aspects of

Machine Learning /
Theory / Unsupervised

and Self-supervised learning

1: strong reject /
3: reject, not good enough /

5: marginally below the
acceptance threshold /

6: marginally above the
acceptance threshold /
8: accept, good paper

w/ Contrastive A bad paper review is: <sample_1>\n...\nA bad paper review is:
<sample_⌊S/2⌋>\nA good paper review is: <sample_⌊S/2⌋+1>\n...\nA good
paper review is: <sample_S\n\nBased on the above examples of bad and
good paper reviews of paper in the area <label>, analyze the differences
between the bad and good reviews. Generate a new review for a paper also
in the area of <label> with final recommendation: ’<attribute>’ but diverse
in the expression compared to the given good reviews. Ensure that the new
review is further refined than the good reviews while maintaining clarity,
making the good reviews appear to lie midway between the new review and
the bad reviews. The new paper review in the area <label> is: ”

Openreview-Rating
(rating classification

of paper review)

w/o Contrastive The paper review is: <sample_1>\nThe paper review is: <sam-
ple_2>\n...\nThe paper review is: <sample_S>\n\nBased on the above paper
reviews of final recommendation: <label>, a new review for a paper in the
field of ’<attribute>’ also with final recommendation: <label> but diverse
in the expression compared to the above given samples is: ”

1: strong reject /
3: reject, not good enough /

5: marginally below the
acceptance threshold /
6: marginally above the
acceptance threshold /
8: accept, good paper

Applications / Deep Learning
and representational learning /
General Machine Learning /

Generative models /
Machine Learning for

Sciences / Neuroscience
and Cognitive Science /

Optimization /
Probabilistic Methods /

Reinforcement Learning /
Social Aspects of

Machine Learning /
Theory / Unsupervised

and Self-supervised learning

w/ Contrastive A bad paper review is: <sample_1>\n...\nA bad paper review is:
<sample_⌊S/2⌋>\nA good paper review is: <sample_⌊S/2⌋+1>\n...\nA good
paper review is: <sample_S\n\nBased on the above examples of bad and
good paper reviews of final recommendation: <label>, analyze the differ-
ences between the bad and good reviews. Generate a new review for a paper
in the field of ’<attribute>’ also with final recommendation: <label> but
diverse in the expression compared to the above given good reviews. Ensure
that the new review is further refined than the good reviews while maintain-
ing clarity, making the good reviews appear to lie midway between the new
review and the bad reviews. The new paper review of final recommendation:
<label> is: ”

Banking
(field classification
of online banking

queries)

w/o Contrastive The online banking query is: <sample_1>\nThe online banking query is:
<sample_2>\n...\nThe online banking query is: <sample_S>\n\nBased on
the above online banking queries in the category of “<label>”, a new online
banking query also in the category of “<label>” but diverse in the expression
compared to the above given samples is: ”

activate_my_card /
age_limit /

apple_pay_or_google_
pay / atm_support /
automatic_top_up /

balance_not_updated_
after_bank_transfer /
balance_not_updated_

after_cheque_or_cash_
deposit / beneficiary_
not_allowed / cancel_

transfer / card_
about_to_expire

None

w/ Contrastive A bad online banking query is: <sample_1>\n...\nA bad online
banking query is: <sample_⌊S/2⌋>\nA good online banking query
is: <sample_⌊S/2⌋+1>\n...\nA good online banking query is: <sam-
ple_S\n\nBased on the above examples of bad and good online banking
queries in the category of “<label>”, analyze the differences between the
bad and good reviews. Generate a new online banking query also in the
category of “<label>” but diverse in the expression compared to the above
given good queries. Ensure that the new query is further refined than the
good queries while maintaining clarity, making the good queries appear to
lie midway between the new query and the bad queries. The new online
banking query also in the category of “<label>” is: ”

In Table 7, we listed the prompts used in our experiments, including contrastive (“w Contrastive”)
and non-contrastive (“w/o Contrastive”) in-context learning prompts. We need to clarify that, for
PE series baselines, we use their original prompt for VARIATIONAL_API, which is different from the

15



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Algorithm 2 WASP for Distributed Federated Data (L > 1)
Input:
K PLMs {Pk}Kk=1 with empty synthetic dataset {Dk ← ∅}Kk=1;
L private data parties controlling distributed private dataset {Bl}Ll=1 of M samples in total that belongs to C
categories;
number of in-context samples S;
number of iterations T taken to obtain in total N synthetic samples;
initialized PLM weights {wk = 1/K}Kk=1;
learning rate η;
DP privacy parameters ϵ, δ;
test dataset of downstream task A;
random initialized STM m(0);
Output: STM m.
1: Initialize in-context feedback samples D̂n ← ∅, D̂f ← ∅.
2: Calculate Gaussian noise σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

.
3: for t = 0 to T − 1 do
4: for k = 1 to K in parallel do
5: Dk ← WeightedSynDataGeneration(Dk, D̂n, D̂f , [(N/T )× wk], C).
6: end for
7: D ← ∪K

k=1Dk.
8: for l = 1 to L in parallel do
9: Hn

l , H
f
l ← DP_PrivateVoting(D, Bl, Q, σ).

10: end for
11: Hn ←

∑L
l=1 H

n
l ; Hf ←

∑L
l=1 H

f
l .

12: D̂n, D̂f ← SampleSelection(D, Hn, Hf , S, C).
13: {wk}Kk=1 ← PLMScoring(Hn, {Dk}Kk=1).
14: end for
15: m← STMTraining(D, m(0), η).

listed “w/o Contrastive in-context learning” prompt in Table 7. Please refer to Xie et al. (2024) (the
original work) for detailed prompts.

B ALGORITHM FOR DISTRIBUTED PRIVATE DATA AND DETAILED FUNCTIONS

Due to space limitation, we include the full algorithm for L > 1 setting here in Algorithm 2 in the
Appendix. The difference between Algorithm 2 and Algorithm 1 mainly falls in line 2 and lines 8 to
11 in Algorithm 2.

We also include pseudo-code for the functions used in Algorithms 1 and 2 here in Algorithm 3 due to
space limitation.

C SUPPORTING RESULTS FOR INTRODUCTION

C.1 EXAMPLES OF HIGH-QUALITY AND LOW-QUALITY SAMPLES

We show examples of high-quality and low-quality synthetic samples generated using Aug-PE in
Table 9 and Table 8 respectively. We also include the appearance frequency of some types of
low-quality samples within the generated DP synthetic dataset in Table 8.

Table 8 shows that, low-quality noisy samples often diverge from the specified task (generating movie
reviews in positive/negative sentiment for this table). Differently, likes shown in Table 9, high-quality
samples often possess a clear sentiment tendency that well accomplished the task, with some offering
detailed judgments or even containing concession details.
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Table 8: Low-quality DP synthetic samples for movie review semantic analysis with IMDb as real
dataset.

Model Low-quality Noisy Sample Text (Examples) Label Explain

GPT-2 “~ If you are missing No. 17 (see below) ~” negative Meaning less sentence.
Llama-2 “In an informal way, please rephrase the sentences as follows:” positive Repeating the prompt. Appears

around 30 times in D of size 6, 000.
Vicuna “ \n번역결과 \n좋은감정을기반으로영화관람후즐거움과

엔터테인먼트가치를즐기셨기에좋습니다. ”
positive Unmatched language and translating

the prompt. Appears within 9 sam-
ples in D of size 6, 000.

OPT “The sentence is positive, but is ambiguous. Would it make sense to
remove ”

negative Task unrelated and mislabeled.

ChatGLM3 “... 指导意见：句子间不顺畅，需要调整一下顺序，去掉一些
冗余的词汇。 Since is based on positive sentiment, then how does
one use the ’pronoun?”

positive Unmatched language and repeating
the prompt.

Flan-T5 “what a fantastic movie!! :O great acting and spec-
tacular scenery. great work. i look forward to an-
other good one next year :D come on laura de-
lana!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! woohoooo!!!....can’t
wait!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....”

positive Excessively long consecutive punc-
tuation marks. Appears within 4
samples in D of size 6, 000.

Table 9: High-quality DP synthetic samples for movie review semantic analysis with IMDb as real
dataset.

Model High-quality Sample Text (Examples) Label

GPT-2 “This movie isn’t for everyone, but it’s worth a look. But if you have to be in the dark to enjoy it, just
buy the soundtrack.”

positive

GPT-2 “is that it has some semi-interesting world-building, but the information it offers is grossly insufficient to
allow one to progress in the story. The central characters have little to do with the world beyond playing
around with their toys and talking to themselves. ”

negative

Llama-2 “Incredible film! I laughed, I cried, and I left the theater feeling inspired. Every performance was
top-notch and the direction was flawless. A true masterpiece that will be remembered for years to come.
10/10.”

positive

Llama-2 “This film was a colossal disappointment. I found myself glancing at my wrist every 10 minutes, eagerly
anticipating its conclusion. The narrative was intricate and challenging to comprehend, and the personas
were underdeveloped. I had no emotional investment in their plight. The performances were lacking, and
the dialogue was trite and unconvincing. In summary, I would not advise viewing this motion picture to
any individual. ”

negative

Vicuna “A movie for people who want to see an action-packed adventure that will keep them on the edge of their
seats.”

positive

Vicuna “Felt like a missed opportunity. Glacial pacing and shallow characters. The premise was intriguing but
the execution fell flat. Avoid this one.”

negative

OPT “-This film is enjoyable to watch because of it’s well-developed storyline and most of all its storyline
that i can relate to and would like to have. This film also has good acting performances and the songs
help the film a lot. It’s not a typical love story kind of a film, but it does have lots of interesting messages
to give. Very well-done! Definitely recommend this film!”

positive

OPT “Quote: The first sentence means nothing to me. Without context the first two sentences also mean
nothing.”

negative

ChatGLM3 “Attention getter, visually interesting and outstanding acting, the story of an American citizen that is in
Mexico and gets involved in a murder is a good movie. ”

positive

ChatGLM3 “This movie is an unwatchable mess, basically a rip off of that scene in Dr. Strangelove where the U.S.
Air Force gets into a scramble to deliver nukes after a false alert... I like pretty much every aspect of
anime, but this stuff is bad. Animation is choppy, sound effects and voice acting are atrocious, and the
plot makes little sense.”

negative

Flan-T5 “<pad> This is a fine historical drama about America’s Civil Rights movement, that has William Friedkin
as director and Gary Cooper as an actor. Although there are other excellent directors that we haven’t
heard of, William Friedkin has become the standard in many ways. Filming in New Orleans, Mr. Friedkin
gives a glimpse into the African-American experience during the late 1920s. I saw it at the All-African
Cinema festival at Wharton Business School. I was awestruck by the power and impact of the film.
...[truncated because of excessive length]...”

positive

Flan-T5 “<pad> beware of this film! i can’t recall a single horror movie that was scarier than this one. it’s just
plain cheesy and stupid. there’s no plot and the characters are entirely cheesy. so don’t even bother.
you’ll never forget it.”

negative
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D THEORETICAL PRIVACY ANALYSIS FOR WASP

To prove Theorem 4.1, in this part, we prove that the WASP framework described in Algorithm 2
with distributed federated data (L > 1) satisfies (ϵ, δ)-DP, which is the general case for L = 1 setting
described in Algorithm 1 and Theorem 4.1.
Theorem D.1. Let f be a function with global L2 sensitivity ∆. For any ϵ > 0, δ ∈ (0, 1), the

Gaussian output perturbation mechanism with σ = ∆

√
2 log(1.25/δiter)

ϵ ensures that f satisfies
(ϵ, δ)-DP.

Proof of Theorem D.1 can be found in Balle & Wang (2018).
Theorem D.2. The global L2 sensitivity ∆ of WASP described in Algorithm 2 is 4.

Proof. In WASP framework (Algorithm 2), function DP_PrivateVoting is the only function that
accesses the private dataset B. Thus, ∆ of WASP equals to that of function DP_PrivateVoting.
Within function DP_PrivateVoting, for nearest histogram and furthest histogram respectively, each
private sample contributes Q votes with decaying voting weights {1, 1

2 , . . . ,
1

2Q−1 }. Therefore, the
total votes contributed by one private sample is

∑Q
q=1

1
2q−1 = 2 − 1

2Q−1 < 2 for each histogram.
Adding or removing one private sample in B will result in a change no more than 2 in the ℓ2 norm of
each histogram. Therefore, the upper bound of the sensitivity for each histogram is 2 and the upper
bound of the sensitivity of WASP framework is 4 considering both histograms, i.e. ∆ = 4.

Lemma D.3. If a Gaussian mechanism satisfies (ϵ, δ)-DP, then independently repeating this mecha-
nism for T times results in the final DP budget to increase to ϵfinal =

√
T · ϵ and the final probability

of data leak δfinal increased to δfinal > T · δ.

The proof of Lemma D.3 can be found in Steinke (2022).

With the above lemma and theorems, we present and prove our main theorem as follows.
Theorem D.4. If each private data party performs standard Gaussian mechanism with addition noise

following N (0, σ2) and σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

, WASP framework described in Algorithm 2
satisfies DP with privacy budget ϵ for private samples in B.

Proof. For guaranteeing (ϵ, δ)-DP throughout the T − 1 iterations with feedback (the first generation
iteration does not use feedback), each iteration should satisfy a differential privacy budget of ϵ√

T−1
.

Given ∆ = 4 for WASP, σtotal = 4

√
2 log (1.25/δiter)

√
T−1

ϵ for each single generation iteration will
guarantee (ϵ, δ)-DP for the whole process with δ > δiter · (T − 1). Further, Gaussian random
variables satisfy that X + Y ∼ N (0, σ2

1 + σ2
2) if X ∼ N (0, σ2

1), Y ∼ N (0, σ2
2) are independent.

Therefore, if each private data party adds i.i.d. Gaussian noise following N (0, σ2) with σ =

4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

, the total noise follows N (0, σ2
total) which guaranties (ϵ, δ)-DP for the

whole WASP process with δ > δiter · (T − 1).

E ADDITIONAL RESULTS

E.1 COMPARISON OF SYNTHETIC SAMPLE RESEMBLANCE FOR WASP

To further demonstrate the effectiveness of WASP under limited private sample setting, we additionally
use FID between the generated DP synthetic dataset D and the real private dataset B to evaluate
the resemblance of the former (D) to the later (B) with M = 100 in Figure 5. Lower FID indicates
higher distribution similarity therefore indicating better resemblance.

As shown in Figure 5, the baseline method Aug-PE often fails to generate a DP synthetic dataset that
closely resembles B when using an improper PLM, leading to an increased FID value over iterations.
On the contrary, WASP results in a consistently decreasing FID value over iteration, demonstrating
it effectiveness in improving the resemblance of D to B. Moreover, although WASP initially has a
higher FID than using the best single PLM (Flan-T5 in Figure 5) for Aug-PE (which is reasonable due
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Figure 6: Comparison of the resemblance of synthetic dataset to real private dataset (Fréchet Inception
Distance, FID) and trained downstream model performance (ACC) using Aug-PE (“Aug-PE”, doted
lines), refinement on Q = 8 without contrastive in-context learning (“w/o Con”, dashed lines) and
refinement on Q = 8 with contrastive in-context learning (“w/ Con”, solid lines) with single-PLM
setting and L = 1 under the same DP setting as in Table 1 with IMDb dataset.

to the initialization of D being a mixture of synthetic samples from different PLMs, making it better
than the one generated solely by worst PLM but worse than the one given solely by the best PLM),
it ultimately achieves a lower FID than all baseline counterparts. This indicates that our proposed
WASP method better handles the limited private sample setting.

E.2 EFFECTIVENESS OF DIFFERENTIALLY PRIVATE TOP-Q VOTING AND CONTRAST
IN-CONTEXT LEARNING WITH SINGLE PLM

Figure 5: Comparison of the resemblance of synthetic dataset
to real private dataset (FID) using Aug-PE and our proposed
WASP using movie review semantic analysis task and IMDb
dataset.

We present additional results to val-
idate the effectiveness of Differen-
tially Private Top-Q voting and con-
trastive in-context learning with sin-
gle PLM in Figure 6. Starting with
Aug-PE, we increase Q from 1 to
8 to obtain the “w/o Con” results,
and then incorporate contrastive in-
context learning samples into the
prompt to achieve the “w/ Con” re-
sults (also the K = 1 setting for
WASP). This refinement process
shows a steady decrease in FID for
most PLMs. Nonetheless, an over-
all performance improvement is ob-
served for all tested PLMs, both in
terms of highest performance across
iterations and final performance.

E.3 SENSITIVE ANALYSIS OF
M FOR PE

We performed experiments to analyze the sensitivity of Aug-PE Xie et al. (2024) on various M values.
Results are included in Figure 7 which shows that most PLMs fail when only a limited amount of
private samples (M = 100) is available, with an increasing FID through iterations. Conversely, with
sufficient amount of private samples (M = 10, 000), a continuous decrease in FID as well as less
performance fluctuation can be observed throughout the iterations.
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Figure 7: Comparison of the similarity of synthetic dataset to real private dataset (FID) and trained
downstream model performance (ACC) with different amount of available private samples (M ) using
Aug-PE with L = 1 under the same DP setting as in Table 1 with IMDb dataset.

E.4 COMPARISON OF WASP AND PRE-TEXT UNDER USER-LEVEL DP

In our work, we assume a full participation setting where all L parties participate in each iteration.
Based on this, we primarily focus on ensuring sample-level DP to protect each private sample
(zj , uj) ∈ B in this work. However, our proposed WASP method can be easily extended to user-level
DP protection and is also effective in protecting user-level DP compared to baselines (see Table 10).

In Hou et al. (2024), although they also study a full participation setting with L > 1, they focus
on user-level DP with the assumption that each participating private data party in the collaboration
controls only a tiny amount of private samples (8 in their work). Therefore, following Hou et al.
(2024), to testify the effectiveness of WASP when extended to user-level DP, we assume that each
participating data party controls no more than 8 real private samples, i.e. Ml ≤ 8, l = 1, . . . , L.
These distributed private datasets still aggregate to an unbalanced dataset like in Section 5.1.

Under this setting, to protect user-level DP (where adding or removing one private data party
should not significantly affect the function output), the function sensitively ∆user should be
max(M1, . . . ,ML) times as large as that for protecting sample-level DP (∆sample). The ratio-
nal is that, the addition or removal of a private data party can result in the addition or removal of up
to max(M1, . . . ,ML) samples, leading to a change of no more than max(M1, . . . ,ML)×∆sample

in the ℓ2 distance of the produced histograms. Given that ∆sample = 4 for WASP (see Theorem D.2
in Appendix D for details), we have ∆user = max(M1, . . . ,ML) × ∆sample ≤ 8 × ∆sample =
8× 4 = 32. In our experiments, we use 32, the upper bound of ∆user, as the function sensitivity to

calculate σ = 32

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

for (ϵ, δ)-DP protection with δ > δiter · (T − 1).

Results are shown in Table 10 with a total of L = 150 private data parties controlling M = 500
private samples in total. Other experimental settings are the same with those in Table 2. Results show
that, WASP continues to outperform baseline methods, including Pre-Text. This demonstrates that
WASP is effectiveness not only under the need of guaranteeing sample-level DP but also under the
need of providing user-level DP protection compared to baseline methods.

E.5 COMPARISON OF COMMUNICATION OVERHEAD OF WASP AND PRE-TEXT FOR
FEDERATED DATA SETTING

We compare the transmitted information for secure aggregation between the baseline method Pre-Text
and our proposed WASP framework in Table 11. With the same number of participating data parties
(L), WASP only requires aggregating additional L histograms of dimension R|D| and uploading the
aggregated histogram Hf ∈ R|D|. These additional communicated information leads to only a minor
increase in communication overhead compared to Pre-Text.
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Table 10: Evaluation of downstream STM accuracy using 6 PLMs, L = 150. User-level DP is
guaranteed instead of sample-level DP in this table. Best and second best results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 500 - 83.61 57.27 44.15 22.76 32.79 74.56

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

Pre-Text

GPT-2 ϵ = 4.0 500 6, 000 83.96 63.04 45.78 27.46 24.09 75.75
Llama-2 ϵ = 4.0 500 6, 000 84.28 60.24 50.54 29.02 34.15 82.50
Vicuna ϵ = 4.0 500 6, 000 83.67 63.21 51.42 28.18 32.87 83.38
OPT ϵ = 4.0 500 6, 000 84.69 62.92 50.40 28.59 24.29 81.25

ChatGLM3 ϵ = 4.0 500 6, 000 85.56 57.46 51.54 29.78 32.33 84.88
Flan-T5 ϵ = 4.0 500 6, 000 88.71 58.46 58.37 29.81 34.02 74.13

WASP (Ours) ϵ = 4.0 500 6, 000 89.15 63.49 59.78 29.96 37.10 85.25

Table 11: Comparison of the information data parties’ download, internal exchange and update in
Pre-Text and WASP.

Download Exchange Upload

Pre-Text embedding of each (xi, yi) ∈ D {Hn
l }Ll=1 Hn

WASP (Ours) embedding of each (xi, yi) ∈ D {Hn
l }Ll=1, {Hf

l }
L
l=1 Hn, Hf

E.6 MORE STRICT DP GUARANTEE

In previous experiments, we use δiter = 1× 10−5 which will result in δ > 4× 10−5 for the whole
process for all PE series baselines and WASP. Therefore, we compare using δiter = 1× 10−5 with
δ = 1× 10−5 in Table 12. With δ = 1× 10−5, following Kairouz et al. (2015), δiter = 1× 10−23

can be applied to guarantee overall (4, 1 × 10−5)-DP, which results in a noise scale roughly 2.14
times as large as the original one used in our original experiments in the paper.

These results demonstrate that, under tighter privacy guarantee (δiter = 1×10−23, i.e. δ = 1×10−5),
the performance decrease is just minor, indicating the robustness of WASP and PE baselines.

F ADDITIONAL RELATED WORKS

Due to space limitation, we include the discussion of previous works related to Contrastive In-context
Learning (Contrastive ICL) here in the Appendix.

Contrastive In-context Learning.1 The idea of using contrastive information to enrich in-context
learning samples has been exploited from different aspects. Samples belonging to positive and
negative classes Liang et al. (2024), correct or wrong self-predictions of training samples during
training time Mo et al. (2024), human-preferred and non-preferred question responses Gao & Das

1Works Ren & Liu (2024); Miyanishi & Nguyen (2024) considering understanding in-context learning with
contrastive learning theories are sometimes referred to using the same name, but we do not consider them here.

Table 12: Comparison of different DP δ using 6 open-source PLMs for PE baseline and our proposed
WASP with L = 1,M = 100.

Aug-PE WASP
(Ours)GPT-2 Llama-2 Vicuna OPT ChatGLM3 Flan-T5

IMDb δiter = 1× 10−5 85.38 85.77 82.76 83.86 85.82 89.00 89.52
δ = 1× 10−5 84.88 85.30 82.04 83.52 85.22 88.83 89.18

Yelp δiter = 1× 10−5 45.28 47.42 54.42 50.81 55.17 58.69 61.21
δ = 1× 10−5 45.03 47.10 54.09 50.47 54.97 58.61 61.05
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(2024) have all been utilized as contrastive samples. Our study is the first known effort to consider
contrastive in-context learning for synthetic data generation, by treating synthetic samples of different
qualities generated by multiple PLMs as contrastive information.
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Algorithm 3 Functions used in Algorithms 1 and 2 for WASP

function WeightedSynDataGeneration(Dk, D̂n, D̂f , N̂ , C):
for c = 1 to C do

if t = 0 then
Use zero-shot prompt as working prompt T (c).

else
Randomly sample S − ⌊S/2⌋ samples from D̂n,[c] and ⌊S/2⌋ samples from D̂f,[c] to create few-shot
prompt as working prompt T (c).

end if
Generate ⌈N̂/C⌉ samples using T and add them to Dk.

end for
if |Dk| > N̂ then

Random sample |Dk| − N̂ different samples from Dk and remove them from Dk.
end if
return Dk.

function STMTraining(D, m(0), η):
Initialize a trainable STM m← m(0).
Train m using D with learning rate η till convergence by using objective function L =

∑|D|
i=1 ℓ(m(xi), yi).

return m.

function DP_PrivateVoting(D, B, Q, σ):
Initialized Hn ← [0, . . . , 0]; Hf ← [0, . . . , 0] of length R|D| and note the total DP synthetic dataset as
D = {(xi, yi)}|D|

i=1.
for (zj , uj) in B do
D[uj ] = {(xi, yi) ∈ D | yi = uj}.
[nj,1, . . . , nj,Q]← arg topQSmallest

(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

[fj,1, . . . , fj,Q]← arg topQLargest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

for q = 1 to Q do
Hn[nj,q]← Hn[nj,q] +

1
2q−1 , Hf [fj,q]← Hf [fj,q] +

1
2q−1 .

end for
end for
Hn ← Hn +N (0, σ2I|D|), Hf ← Hf +N (0, σ2I|D|).
return Hn, Hf .

function PLMScoring(H , {Dk}Kk=1):
for k = 1 to K do

Calculate si = Hn[i]
/∑|D|

i′=1 H
n[i′].

Calculate model score wk =
∑

(xi,yi)∈Dk
si

|Dk|/
∑K

k′=1
|Dk′ |

=
∑

(xi,yi)∈Dk
si

|Dk|/|D|

end for
return {wk}Kk=1.

function SampleSelection(D, Hn, Hf , S, C):
Reset D̂n ← ∅, D̂f ← ∅.
Hn ← Hn/

∑|D|
i=1 H

n[i],Hf ← Hf/
∑|D|

i=1 H
f [i].

for c = 1 to C do
D[c] = {(xi, yi) ∈ D | yi = c}.
Hn,[c] =

{
Hn[i]

∣∣ (xi, yi) ∈ D[c]
}
, Hf,[c] =

{
Hf [i]

∣∣ (xi, yi) ∈ D[c]
}

.

D̂n,[c] =
{
(xi, yi) ∈ D[c]

∣∣Hn[i] is among the top-S values of Hn,[c]
}

, contains the top-S samples

from D[c] ranked byHn,[c].
D̂f,[c] =

{
(xi, yi) ∈ D[c]

∣∣Hf [i] is among the top-S values of Hf,[c]
}

, contains the top-S samples

from D[c] ranked byHf,[c].
end for
D̂n =

{
D̂n,[1], . . . , D̂n,[C]

}
, D̂f =

{
D̂f,[1], . . . , D̂f,[C]

}
.

return D̂n, D̂f .
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