
VoxAct-B: Voxel-Based Acting and Stabilizing Policy
for Bimanual Manipulation

I-Chun Arthur Liu Sicheng He Daniel Seita∗ Gaurav S. Sukhatme∗†
Department of Computer Science, University of Southern California

Abstract: Bimanual manipulation is critical to many robotics applications. In
contrast to single-arm manipulation, bimanual manipulation tasks are challeng-
ing due to higher-dimensional action spaces. Prior works leverage large amounts
of data and primitive actions to address this problem, but may suffer from sam-
ple inefficiency and limited generalization across various tasks. To this end, we
propose VoxAct-B, a language-conditioned, voxel-based method that leverages
Vision Language Models (VLMs) to prioritize key regions within the scene and
reconstruct a voxel grid. We provide this voxel grid to our bimanual manipulation
policy to learn acting and stabilizing actions. This approach enables more efficient
policy learning from voxels and is generalizable to different tasks. In simulation,
we show that VoxAct-B outperforms strong baselines on fine-grained bimanual
manipulation tasks. Furthermore, we demonstrate VoxAct-B on real-world Open
Drawer and Open Jar tasks using two UR5s. Code, data, and videos are available
at https://voxact-b.github.io.

1 Introduction

Bimanual manipulation is essential for robotics tasks, such as when objects are too large to be
controlled by one gripper or when one arm stabilizes an object of interest to make it simpler for the
other arm to manipulate [1]. In this work, we focus on asymmetric bimanual manipulation. Here,
“asymmetry” refers to the functions of the two arms, where one is a stabilizing arm, while the other is
the acting arm. Asymmetric tasks are common in household and industrial settings, such as cutting
food, opening bottles, and packaging boxes. They typically require two-hand coordination and
high-precision, fine-grained manipulation, which are challenging for current robotic manipulation
systems. To tackle bimanual manipulation, some methods [2, 3] train policies on large datasets, and
some exploit primitive actions [4, 5, 6, 7, 8, 9, 10]. However, they are generally sample inefficient,
and using primitives can hinder generalization to different tasks as they are not easily adaptable to
other types of tasks.

To this end, we propose VoxAct-B, a novel voxel-based, language-conditioned method for bimanual
manipulation. Voxel representations, when coupled with discretized action spaces, can increase sam-
ple efficiency and generalization by introducing spatial equivariance into a learned system, where
transformations of the input lead to corresponding transformations of the output [11]. However, pro-
cessing voxels is computationally demanding [12, 13]. To address this, we propose utilizing VLMs
to focus on the most pertinent regions within the scene by cropping out less relevant regions. This
substantially reduces the overall physical dimensions of the areas used to construct a voxel grid, en-
abling an increase in voxel resolution without incurring computational costs. To our knowledge, this
is the first study to apply voxel representations in bimanual manipulation. Additionally, VoxAct-B
does not rely on action primitives, making it more general and applicable to a wider range of tasks.

We also employ language instructions and VLMs to determine the roles of each arm: whether they
are acting or stabilizing. For instance, in a drawer-opening task, the orientation of the drawer and

∗Equal advising
†GSS holds concurrent appointments as a Professor at USC and as an Amazon Scholar. This paper describes

work performed at USC and is not associated with Amazon.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://voxact-b.github.io

Vision
Language

Models

Open Drawer

Bimanual
Manipulation

Policy

detect object
& crop voxel

grid

zoomed-in
voxel grid

Open Drawer

Open Jar

Put Item In Drawer“Hold the drawer with left hand and
open the top/bottom drawer with

right hand”

“Grasp the jar with right hand and grasp
the lid of the jar with left hand to unscrew
it in an anti-clockwise direction until it is

removed from the jar”

“Open the top drawer with right
hand and put the item in the top

drawer with left hand”

Simulation Real World

Simulation Real World

Hand Over Item
“Grasp the block with left hand and

hand it over to the right hand ”

Figure 1: VoxAct-B uses voxel representations and language to perform bimanual manipulation with 6-DoF
manipulation from both arms. We test four language-conditioned bimanual tasks in simulation and two (Open
Drawer and Open Jar) on a real-world setup with two UR5s.

the position of the handle affect which arm is more suitable for opening the drawer (acting) and
which is better for holding it steady (stabilizing). We use VLMs to compute the pose of the object of
interest relative to the front camera and to decide the roles of each arm. Then, we provide appropriate
language instructions to the bimanual manipulation policy to control the acting and stabilizing arms.

We extend the RLBench [14] benchmark to support bimanual manipulation. We introduce a bi-
manual version of Open Drawer, Open Jar, Put Item in Drawer, and Hand Over Item tasks.
VoxAct-B outperforms strong baselines, such as ACT [3], Diffusion Policy [15], VoxPoser [16], and
PerAct [11], by a large margin. We also validate our approach on a real-world bimanual manipula-
tion setup with two UR5s on Open Drawer and Open Jar. See Figure 1 for an overview.

The contributions of this paper include:

• VoxAct-B, a novel method for bimanual manipulation which uses VLMs to reduce the size of a
voxel grid for learning with a modified, downstream voxel-based behavior cloning method [11].

• A suite of vision-language bimanual manipulation tasks, extended from RLBench [14].
• Simulation experiments indicating that VoxAct-B achieves state-of-the-art results on these tasks.
• Demonstrations of VoxAct-B on a real-world bimanual manipulation setup with two UR5s.

2 Related Work

Bimanual Manipulation. There has been much prior work in bimanual manipulation for folding
cloth [5, 8, 17, 18, 19, 20, 21], cable untangling [6], scooping [9], bagging [22, 23, 24], throw-
ing [25], catching [26], and untwisting lids [27]. Other works study bimanual manipulation with
dexterous manipulators [28, 29, 30, 31] or mobile robots [32]. In contrast to these works, our focus
is on a general approach to bimanual manipulation with parallel-jaw grippers on fixed-base ma-
nipulators. Works that study general approaches for bimanual manipulation include [2, 4, 7, 33],
which use primitive actions or skills to reduce the search space across actions. Other general ap-
proaches focus on orthogonal tools such as interaction primitives [34] or screw motions [35]. Re-
cently, Zhou et al. [3] introduced another general approach, based on “action chunking” to learn
high-frequency controls with closed-loop feedback and applied their method on multiple asymmetric
bimanual manipulation tasks using low-cost hardware. Other works extended this by either incorpo-
rating novel imitation learning algorithms [36] or enhancing the hardware itself [37, 38]. However,
these works may still require substantial training data and lack spatial equivariance for generaliza-
tion. In closely-related work, Grannen et al. [39] decouple a system into stabilizing and acting arms

2

to enable sample-efficient bimanual manipulation with simplified data collection. While effective,
this formulation predicts top-down keypoints and was not tested with 6-DoF manipulation. In con-
trast, our method supports 6-DoF manipulation for bimanual manipulation tasks. In independent
and concurrent work, Grotz et al. [40] propose PerAct2, extending RLBench to bimanual manipula-
tion with 13 new tasks and presenting a language-conditioned, 6-DoF, behavior-cloning agent. This
work is complementary to ours, and future work could merge techniques from both works.

Action Space Representation. For 2D manipulation, prior works have shown the benefits of action
representations based on spatial action maps [21, 41, 42, 43, 44, 45, 46], including in bimanual con-
texts [10, 21], where neural networks directly predict 2D “images” that indicate desired locations
for the action. Compared to directly regressing the action location, using spatial action maps better
handles multimodality and has 2D equivariance, where translations and rotations of the input image
map to similar transformations of the output action. Recent works have extended this idea to support
3D spatial action maps, which classify an action’s location as a 3D point in the robot’s workspace,
and thus maintain spatial equivariance. For example, PerAct [11] is a language-conditioned behav-
ioral cloning agent that takes voxel grids as input and outputs 6-DoF actions. While PerAct achieved
state-of-the-art performance on RLBench, it has a high computational cost due to processing voxels.
Follow-up works, such as RVT [12] and Act3D [13], have reduced the computational cost of PerAct
by avoiding voxel representations but often need multiple views of the scene to achieve optimal per-
formance and may be less interpretable compared to a voxel grid that contains a 3D spatial action
map. These prior works have not been applied to bimanual manipulation. In this work, we retain
the spatial equivariance benefits of voxel representations but reduce the cost of processing voxels by
“zooming” into part of the voxel grid. This is similar to the intent of C2F-ARM [47] and RVT-2 [48],
but we use the knowledge in VLMs to determine the most relevant regions in the voxel grid.

LLMs and VLMs for Robotics. LLMs and VLMs, such as GPT-4 [49], Llama 2 [50], and Gem-
ini [51], have revolutionized natural language processing, computer vision, and robotics due to their
strong reasoning and semantic understanding capabilities. Consequently, recent work has integrated
them in robotics and embodied AI agents, typically as a high-level planner [52, 53, 54, 55], which
may also produce code for a robot to execute [56, 57, 58]. We defer the reader to [59, 60, 61] for
representative surveys. Among the most relevant prior works, Huang et al. [16] propose VoxPoser,
which uses pre-trained LLMs and VLMs to compose 3D affordance maps and 3D constraint maps,
which are then used with motion planning to generate trajectories for robotic manipulation. By
leveraging LLMs and VLMs, VoxPoser can generalize to open-set instructions and objects. How-
ever, as we later demonstrate in experiments, VoxPoser can struggle with tasks that require high
precision and contact. In this work, we demonstrate how to use VLMs to effectively process the
input of PerAct for bimanual manipulation, obtaining the generalization benefits of VLMs with the
precision capabilities of PerAct. In recent and near-concurrent work, Varley et al. [62] also uses
VLMs for bimanual manipulation. Our work differs in that we do not fix the roles of each arm; we
use an off-the-shelf VLM [63] without any fine-tuning, and we do not use a skills library.

3 Problem Statement

Given access to a pre-trained VLM and expert demonstrations, the objective is to produce a bimanual
policy π for a variety of language-conditioned manipulation tasks. We assume a flat workspace with
two fixed-base robot manipulators, each with a parallel-jaw gripper. A policy π controls both arms
by producing actions at = (ast , a

a
t) at each time step t, where ast and aat follow [39] and refer to

the stabilizing and acting arm actions, respectively. For simplicity, we suppress the time t when the
distinction is unnecessary. We use the low-level action representation from PerAct [11] with as =
(aspose, a

s
open, a

s
collide) and aa = (aapose, a

a
open, a

a
collide). These specify each arm’s 6-DOF gripper

pose, its gripper open state, and whether a motion planner for the arms used collision avoidance to
reach an intermediate pose. We assume task-specific demonstrations Dℓ = {ζ1, ζ2, . . . , ζn} and two
common language commands ℓas and ℓsa, where as denotes the left arm as acting and right arm as
stabilizing, and vice versa for sa. Each demonstration consists of a set of keyframes extracted from a
sequence of continuous actions paired with observations. We adapt the keyframe extraction function

3

Voxel
Encoder

Vision
Language

Models

“drawer”

Text Query

RGB Image

“Hold the drawer with right
hand and open the bottom

drawer with left hand”

Zoomed-in Voxel Grid

Language Goal Language
Encoder

PerceiverIO
Transformer

Voxel
Decoder next best voxel ()πa

Acting and Stabilizing Policies: πa πs
 next best voxel ()πs

Maxpool
& MLPs

 meters, voxels (αx)3 V3 +

Po
s

Em
b

Figure 2: Overview of VoxAct-B. Given RGB-D images and a language goal, we input an RGB image from the
front camera and a text query extracted from the language goal into the Vision Language Models (VLMs). The
VLMs output the pose of the object of interest with respect to the front camera. This information determines
the language goal and the roles of each arm (i.e., acting or stabilizing). Additionally, we use the object’s
position with the RGB-D images to reconstruct a voxel grid that spans αx3 meters of the workspace using V 3

voxels. The zoomed-in voxel grid, the language goal, proprioception data of both robot arms, and an arm ID are
provided to an acting policy πa and a stabilizing policy πs. The policies predict the discretized pose of the next
best voxel, gripper open action, collision avoidance flag, and arm ID for fine-grained bimanual manipulation.

from [11] by including keyframes that have an action with near-zero joint velocities and unchanged
gripper open state for acting and stabilizing arms. The observation at each time is the 3D voxel grid
v of dimension (L×W ×H), where we use v[x, y, z] to denote an individual voxel at coordinates
(x, y, z). The voxel grid is reconstructed from RGB-D sensors. The robot also receives the language
command l ∈ {ℓas, ℓsa}, which is fixed for all time steps in an episode, where the robot interacts
with the environment for up to T time steps. An episode terminates with a task-dependent success
criteria or failure (if otherwise).

4 Method

4.1 Extending PerAct for Bimanual Manipulation

PerAct [11] was originally designed and tested for single-arm manipulation. We extend it to support
bimanual manipulation. A natural way to do this would be to train separate policies for the two
arms. However, we exploit the discretized action space that predicts the next best voxel with spatial
equivariance properties and formulate a system that uses acting and stabilizing policies. In contrast
to a policy that operates in joint-space control, acting and stabilizing policies perform the same
functions irrespective of whether it is a left arm or a right arm, assuming the next best voxel is
kinematically feasible for both arms. This policy formulation enables more efficient learning from
multi-modal demonstrations compared to a joint-space control policy. In the low-level action space,
the arms execute one low-level action ast and aat (see Section 3) at each time t. In the following,
we use similar notation as [11] but index components as belonging to an arm using the superscript:
arm ∈ {acting, stabilizing}.

At each time step, the input to each arm is a voxel observation v, proprioception data of both robot
arms ρ, a language goal l ∈ {ℓas, ℓsa}, and an arm ID ξ ∈ {0, 1}, and the task is to predict an
action. During training, the language goal is given in the data, but during evaluation, we use VLMs
to determine which language goal, ℓas or ℓsa, to use based on the given task. If the language goal is
ℓas, we assign the left arm (ξ = 0) to the acting policy and the right arm (ξ = 1) to the stabilizing
policy, and conversely for ℓsa. This allows our method to learn to map the appropriate acting or
stabilizing actions to a given arm during training. Note that the predicted arm ID is discarded during
evaluation. PerAct uses value maps to represent different components of the action space, where
predictions for each arm are Q-functions with state-action values. Formally, we have the following
five value maps per arm, as the output of the arm’s learned deep neural network, where:

Varm
trans = softmax(Qarm

trans((x, y, z)|v, ρ, l, ξ)) Varm
rot = softmax(Qarm

rot ((ψ, θ, ϕ)|v, ρ, l, ξ))
Varm

open = softmax(Qarm
open(ω|v, ρ, l, ξ)) Varm

collide = softmax(Qarm
collide(κ|v, ρ, l, ξ))

Varm
id = softmax(Qarm

id (υ|v, ρ, l, ξ))
,

4

Output Visualization

α = 1.0 α = 0.3 α = 0.1

OWL-ViT

“jar”
Text Query

RGB Image

Predicted
bounding box
from OWL-ViT

Segment
Anything

crop center
[x, y]

RGB Image Output Visualization

predicted bounding
box [cx, cy, w, h]

Figure 3: Top: VLMs usage as part of VoxAct-B, visualizing the Open Jar task in simulation, showing the
role of OWL-ViT and Segment Anything. The RGB images from the front camera shown above are examples
of actual (uncropped) images provided as input to the models. Bottom: visualization of different α values
resulting in coarser grids (α = 1.0) to finer grids (α = 0.1). We use α = 0.3 for Open Jar.
and where (x, y, z), (ψ, θ, ϕ), ω, κ, and υ represent, respectively, the 3D position, the discretized
Euler angle rotations, the binary gripper opening state, the binary collision variable, and the binary
arm ID. At test time, to select each arm’s action, we perform an “argmax” over all the input variables
to the arm’s five Q-value, to get the five components. We refer the reader to [11] for more details.

The demonstrations provide labels for each arm’s five action components, giving us the following
nine label sources: Y arm

trans ∈ RL×W×H for translations, Y arm
rot ∈ R(360/R)×3 (with R = 5 or 5-degree

bins) for discretized rotations, Y arm
open ∈ R2 for the binary open variables, Y arm

collide ∈ R2 for the binary
collide variables, and Y arm

id ∈ R2 for the binary arm ID variables. The overall training loss for
VoxAct-B is:

Ltotal = Lacting + Lstabilizing (1)

and where for both values of arm ∈ {acting, stabilizing}, we have

Larm = −EY arm
trans

[logVarm
trans]−EY arm

rot
[logVarm

rot]−EY arm
open

[logVarm
open]−EY arm

collide
[logVarm

collide]−EY arm
id

[logVarm
id],

(2)
which consists of a set of cross-entropy classifier-style losses for each component in the action.

4.2 VoxAct-B: Voxel Representations and PerAct for Bimanual Manipulation

When using voxel representations for fine-grained manipulation, a high voxel resolution is essential.
While one can increase the number of voxels, this would consume more memory, slow down train-
ing, and adversely affect learning as the policy is optimizing over a larger state space. Therefore,
given a voxel grid observational input v of size (L×W ×H) that spans x3 meters of the workspace,
we keep the number of voxels the same but reduce the relevant workspace. We use VLMs to de-
tect the object of interest in the scene and “crop” the grid around this object, resulting in a voxel
grid that spans αx3 meters of the workspace, where α is a fraction that determines the size of the
crop. This allows zooming into the more important region of interest. The voxel resolution becomes
(L
αx ,

W
αx ,

H
αx) voxels/meters from the original resolution of (Lx ,

W
x ,

H
x) voxels/meters.

To detect the object of interest reliably, we use a two-stage approach similar to [16]. We input a
text query and a RGB image from the front camera to OWL-ViT [64], an open-vocabulary object
detector, to detect the object. Then, we use Segment Anything [65], a foundational image segmen-
tation model, to obtain the segmentation mask of the object and use the mask’s centroid along with
point cloud data, obtained from the front camera’s RGB-D image, to retrieve the object’s pose with
respect to the front camera. We use the pose of the object to determine the task-specific roles of each
arm and the language goal. This cropped voxel grid and language goal are the input to our bimanual

5

manipulation policy. We call our method VoxAct-B: Voxel-Based Acting and Stabilizing Policy. See
Figures 2 and 3 for an overview. Additional implementation details can be found in Appendix A.1.

5 Experiments

For simulation experiments, we build on top of RLBench [14], a popular robot manipulation bench-
mark widely used in prior work, including VoxPoser and PerAct. We extend it to support bimanual
manipulation and introduce additional variations (see Appendix A.2 for details), making the tasks
more challenging. We design the following four bimanual tasks:

• Open Jar: a jar with a screw-on lid is randomly spawned and scaled from 90% to 100% of the
original size within the robot’s 0.43×0.48 meters of workspace. The robot must grasp the jar with
one hand and use the other to unscrew the lid in an anti-clockwise direction until it is removed.

• Open Drawer: a drawer is randomly spawned inside a workspace of 0.65 × 0.91 meters. It is
randomly scaled from 90% to 100% of its original size, and its rotation is randomized between
−π

8 and π
8 radians. The robot needs to stabilize the top of the drawer with one hand and then open

the bottom drawer with the other.
• Put Item in Drawer: a drawer (the same type from Open Drawer) is randomly spawned in a

workspace of 0.65 × 0.91 meters, and is randomly scaled and rotated using the same sampling
ranges from Open Drawer. The robot needs to open the top drawer with one hand, grasp the item
placed on top of the drawer with the other hand, and place it in the top drawer.

• Hand Over Item: a block is randomly spawned in a workspace of 0.43× 0.48 meters. The robot
needs to grasp a block with one hand and hand it over to the other.

See Figure 1 for an illustration. In the real world, we test Open Jar and Open Drawer using a
coffee jar with dimensions 3.35×2.85×4.8 inches and a drawer of dimensions 12×12×12 inches.
Note that the real-world jar and drawer cannot be opened without the use of a second arm.

5.1 Baselines and Ablations

In simulation, we compare against several strong baseline methods: Action Chunking with Trans-
formers (ACT) [3], Diffusion Policy [15], and VoxPoser [16]. ACT is a state-of-the-art method
for bimanual manipulation. Diffusion Policy represents the policy as a conditional denoising diffu-
sion process and excels at learning multimodal distributions. ACT and Diffusion Policy use joint
positions for their action space instead of predicting end-effector poses as our method. We adapt
the Mobile ALOHA repository for ACT and a CNN-based Diffusion Policy, and we tune their pa-
rameters (e.g., chunk size and action horizon) to improve performance. For VoxPoser, we write and
tune their LLM prompts to work on our bimanual manipulation tasks using the VoxPoser repository.
Additionally, we include a Bimanual PerActs baseline, which trains separate PerAct policies for
the left and right arms, to show how a straightforward bimanual adaptation of a single-arm, state-
of-the-art voxel-based method performs. It uses the same number of voxels, 1003, as the original
PerAct. See the Appendix for further details. We also test the following ablations of VoxAct-B:

• VoxAct-B w/o VLMs: does not use the VLMs to detect the object of interest and crop the voxel
grid. It uses the same number of voxels as our method and the default workspace dimensions.

• VoxAct-B w/o Segment Anything: uses the bounding box obtained from OWL-ViT to compute
the object’s centroid.

• VoxAct-B w/o acting and stabilizing formulation: trains a left-armed policy for left arm actions
and a right-armed policy for right arm actions. Otherwise, it is the same as VoxAct-B.

• VoxAct-B w/o arm ID: disables the arm ID loss function.

5.2 Experiment Protocol and Evaluation

To generate demonstrations in simulation, we follow the convention from RLBench and define a
sequence of waypoints to complete the task, and use motion planning to control the robot arms

6

https://github.com/MarkFzp/act-plus-plus
https://github.com/huangwl18/VoxPoser

to reach waypoints. We generate 10 and 100 demonstrations of training data. Half of this data
consists of left-acting and right-stabilizing demonstrations, and the other half contains right-acting
and left-stabilizing demonstrations. We generate 25 episodes of validation and test data using dif-
ferent random seeds. We train and evaluate all methods using five random seeds and average the
results. We evaluate all methods on the same set of test demonstrations for a fair comparison. See
Appendix A.1 for details on how checkpoint selection is done in VoxAct-B.

In the real world, we use a dual-arm CB2 UR5 robot setup. Each arm has 6-DOFs and has a
Robotiq 2F-85 parallel-jaw gripper. We collect ten demonstrations for each task with the GELLO
teleoperation interface [66] for policy training. We use a flat workspace with dimension 0.97 m by
0.79 m and mount an Intel RealSense D415 RGBD camera at a height of 0.42 m at a pose which
reduces occlusions of the object. For evaluation, we perform 10 rollouts per task. In Open Drawer,
the arms have fixed roles of right acting and left stabilizing, and the acting arm opens the top drawer.
The drawer has variations of 10 cm in translations and 20◦ of rotations. In Open Jar, we conducted
two experiments: one has the roles of the arms reversed and fixed and the other has unfixed roles of
each arm. The jar has variations of 12 cm in translations. See Appendix B for more details.

6 Results

6.1 Simulation Results

Open Open Put Item Hand Over
Jar Drawer in Drawer Item

Method 10 100 10 100 10 100 10 100

Diffusion Policy 4.8 21.6 4.8 5.6 2.4 4.8 0.0 0.0
ACT w/Transformers 4.0 30.4 12.8 28.0 8.8 44.8 1.6 7.2
VoxPoser 8.0 8.0 32.0 32.0 4.0 4.0 0.0 0.0
Bimanual PerActs 8.0 - 36.8 - 5.6 - 0.0 -
VoxAct-B (ours) 40.0 59.2 73.6 72.8 39.2 49.6 19.2 14.4

Table 1: Performance of different methods on bimanual manipulation tasks in
simulation, based on 10 or 100 (task-specific) training demonstrations. We use
five training seeds for all methods, and evaluate on the same 25 episodes of un-
seen test data using the best checkpoints from validation (Section 5.2). The results
are the average evaluation over five seeds. We only test Bimanual Peracts with
ten demonstrations (not 100) due to computational constraints. VoxPoser does
not have training, so its 10 and 100 results are identical.

Comparisons with
baselines. Table 1
reports the test success
rates of baselines and
VoxAct-B. When we
train all methods using
ten demonstrations,
VoxAct-B outperforms
all baselines by a large
margin. In a low-data
regime, the discretized
action space with spatial
equivariance properties
(as used in VoxAct-B
and Bimanual PerActs)
may be more sample-efficient and easier for learning-based methods compared to methods that use
joint space (ACT and Diffusion Policy). When we train all methods using more demonstrations
(100), VoxAct-B still outperforms all baselines. Through ablations of ACT and Diffusion Policy, we
found that removing environment variations greatly improved their performance. We attribute the
tasks’ difficulty to the following: high environment variation, difficult bimanual manipulation tasks
with high-dimensional action spaces and fine-grained manipulation, and the two types of training
data that each method needs to learn (based on which arms are acting and stabilizing).

Open
Method Drawer

VoxAct-B w/o VLMs 19.2
VoxAct-B w/o Segment Anything 67.2
VoxAct-B w/o acting and stabilizing 64.8
VoxAct-B w/o arm ID 68.0
VoxAct-B (ours) 73.6

Table 2: Ablation experiment results in simulation.

Qualitatively, baseline methods, especially Vox-
Poser, typically struggle with precisely grasping
objects such as drawer handles and jars. The base-
lines also struggle with correctly assigning the roles
of each arm. For instance, a policy intended to
execute acting actions may unpredictably produce
stabilizing actions. Furthermore, they can generate
kinematically infeasible actions or actions that lead
to erratic movements, as seen in ACT and Diffusion
Policy, which may be caused by insufficient training data. In contrast, we observe fewer of these
errors with VoxAct-B.

7

Open Drawer

Open Jar

Figure 4: Example successful rollouts (one per row) of VoxAct-B on a real-world bimanual setup with UR5s.

Ablation experiments. Table 2 reports results on Open Drawer in simulation, based on 10 training
demonstrations and evaluated across five training seeds. We use the same training and evaluation
protocols as Table 1. VoxAct-B w/o VLMs performs poorly versus VoxAct-B because, without us-
ing the VLMs to reduce the physical space, the voxel resolution is lower due to the large workspace
area for each individual voxel, which hinders fine-grained manipulation. VoxAct-B w/o Segment
Anything performs worse than VoxAct-B because the predicted object centroid from Segment Any-
thing is closer to the ground truth centroid obtained from the simulator, which is used for training
VoxAct-B, than OWL-ViT’s. We found that the closer the predicted object centroid is to the ground
truth, the better the policy performs. Moreover, VoxAct-B w/o acting and stabilizing and VoxAct-B
w/o arm ID perform worse than VoxAct-B, and they struggle with the same issues as the baselines.
See Appendix A for additional experiments and details.

6.2 Physical Results

Figure 4 shows real-world examples of VoxAct-B. In Open Drawer, success is when the stabilizing
arm holds the drawer from the top while the acting arm pulls the top part. VoxAct-B succeeds in
6 out of 10 trials; the failures include robot joints hitting their limits, imprecision in grasping the
handle, and collisions with the drawer. In Open Jar, a success is when the stabilizing arm grasps the
jar while the acting arm unscrews the lid. For the experiment with fixed roles of each arm, VoxAct-B
succeeds in 5 out of 10 trials. While the stabilizing arm performs well in grasping the jar (9 out of
10 successes), the acting arm struggles with unscrewing the lid, succeeding only 5 out of 10 times
due to imprecise grasping of the lid. For the experiment with unfixed roles of each arm, we train
VoxAct-B on 10 left-acting, right-stabilizing and 10 right-acting, left-stabilizing demonstrations. It
succeeds in 5 out of 10 trials, demonstrating its ability to learn from multi-modal, real-world data.

6.3 Limitations and Failure Cases

VoxAct-B implicitly assumes the object of interest does not encompass most of the workspace. If it
does, it will be difficult to crop the voxel grid without losing relevant information. Another limitation
is that VoxAct-B depends on the quality of VLMs. We have observed that some failures come from
poor detection and segmentation from VLMs, which causes VoxAct-B to output undesirable ac-
tions. In addition to common errors described in Section 6.1, for Put Item in Drawer, VoxAct-B
tends to struggle more with executing acting actions (e.g., drawer-opening and cube-picking/placing
actions) in contrast to stabilizing actions.

7 Conclusion

In this paper, we present VoxAct-B, a voxel-based, language-conditioned method for bimanual ma-
nipulation. We use VLMs to focus on the most important regions in the scene and reconstruct a voxel
grid around them. This approach enables the policy to process the same number of voxels within
a reduced physical space, resulting in a higher voxel resolution necessary for accurate, fine-grained
bimanual manipulation. VoxAct-B outperforms strong baselines, such as ACT, Diffusion Policy,
and VoxPoser, by a large margin on difficult bimanual manipulation tasks. We also demonstrate
VoxAct-B on real-world Open Drawer and Open Jar tasks using a dual-arm UR5 robot. We hope
that this inspires future work in asymmetric bimanual manipulation tasks.

8

Acknowledgments

We thank our colleagues Gautam Salhotra, Kr Zentner, Yigit Korkmaz, Yunshuang Li, and
Guangyao Shi for helpful writing feedback.

References
[1] F. Krebs and T. Asfour. A Bimanual Manipulation Taxonomy. In IEEE Robotics and Automa-

tion Letters (RA-L), 2022.

[2] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In IEEE International Conference on Robotics and Automation (ICRA), 2020.

[3] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning Fine-Grained Bimanual Manipulation
with Low-Cost Hardware. In Robotics: Science and Systems (RSS), 2023.

[4] G. Franzese, L. d. S. Rosa, T. Verburg, L. Peternel, and J. Kober. Interactive imitation learning
of bimanual movement primitives. IEEE/ASME Transactions on Mechatronics, 28(1):1–13,
2023.

[5] Y. Avigal, L. Berscheid, T. Asfour, T. Kröger, and K. Goldberg. SpeedFolding: Learning
Efficient Bimanual Folding of Garments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022.

[6] J. Grannen, P. Sundaresan, B. Thananjeyan, J. Ichnowski, A. Balakrishna, V. Viswanath,
M. Laskey, J. E. Gonzalez, and K. Goldberg. Untangling dense knots by learning task-relevant
keypoints. In Conference on Robot Learning (CoRL), 2020.

[7] F. Xie, A. Chowdhury, M. C. De Paolis Kaluza, L. Zhao, L. L. Wong, and R. Yu. Deep imi-
tation learning for bimanual robotic manipulation. In Neural Information Processing Systems
(NeurIPS), 2020.

[8] C. Bersch, B. Pitzer, and S. Kammel. Bimanual robotic cloth manipulation for laundry folding.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.

[9] J. Grannen, Y. Wu, S. Belkhale, and D. Sadigh. Learning Bimanual Scooping Policies for Food
Acquisition. In Conference on Robot Learning (CoRL), 2022.

[10] H. Ha and S. Song. Flingbot: The unreasonable effectiveness of dynamic manipulation for
cloth unfolding. In Conference on Robot Learning (CoRL), 2021.

[11] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning (CoRL), 2022.

[12] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. RVT: Robotic View Transformer
for 3D Object Manipulation. In Conference on Robot Learning (CoRL), 2023.

[13] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3D: 3D Feature Field Transformers
for Multi-Task Robotic Manipulation. In Conference on Robot Learning (CoRL), 2023.

[14] S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark
& learning environment. IEEE Robotics and Automation Letters, 2020.

[15] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion Policy:
Visuomotor Policy Learning via Action Diffusion. In Robotics: Science and Systems (RSS),
2023.

[16] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d
value maps for robotic manipulation with language models. In Conference on Robot Learning
(CoRL), 2023.

9

[17] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth Grasp Point Detection
Based on Multiple-View Geometric Cues with Application to Robotic Towel Folding. In IEEE
International Conference on Robotics and Automation (ICRA), 2010.

[18] A. Canberk, C. Chi, H. Ha, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Cloth funnels:
Canonicalized-alignment for multi-purpose garment manipulation. In IEEE International Con-
ference on Robotics and Automation (ICRA), 2022.

[19] A. Colomé and C. Torras. Dimensionality reduction for dynamic movement primitives and
application to bimanual manipulation of clothes. In IEEE Transactions on Robotics, 2018.

[20] G. Salhotra, I.-C. A. Liu, and G. Sukhatme. Learning robot manipulation from cross-
morphology demonstration. In Conference on Robot Learning (CoRL), 2023.

[21] T. Weng, S. Bajracharya, Y. Wang, K. Agrawal, and D. Held. Fabricflownet: Bimanual cloth
manipulation with a flow-based policy. In Conference on Robot Learning (CoRL), 2021.

[22] L. Y. Chen, B. Shi, D. Seita, R. Cheng, T. Kollar, D. Held, K. Goldberg, K. Goldberg, K. Gold-
berg, K. Goldberg, K. Goldberg, and K. Goldberg. AutoBag: Learning to Open Plastic Bags
and Insert Objects. In IEEE International Conference on Robotics and Automation (ICRA),
2023.

[23] L. Y. Chen, B. Shi, R. Lin, D. Seita, A. Ahmad, R. Cheng, T. Kollar, D. Held, and K. Gold-
berg. Bagging by Learning to Singulate Layers Using Interactive Perception. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2023.

[24] A. Bahety, S. Jain, H. Ha, N. Hager, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Bag
All You Need: Learning a Generalizable Bagging Strategy for Heterogeneous Objects. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

[25] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and X. Wang. Dynamic handover:
Throw and catch with bimanual hands. In Conference on Robot Learning (CoRL), 2023.

[26] L. Yan, T. Stouraitis, J. Moura, W. Xu, M. Gienger, and S. Vijayakumar. Impact-Aware Bi-
manual Catching of Large-Momentum Objects. In IEEE Transactions on Robotics, 2024.

[27] T. Lin, Z.-H. Yin, H. Qi, P. Abbeel, and J. Malik. Twisting Lids Off with Two Hands. arXiv
preprint arXiv:2403.02338, 2024.

[28] Y. Chen, Y. Yang, T. Wu, S. Wang, X. Feng, J. Jiang, S. M. McAleer, H. Dong, Z. Lu, and S.-C.
Zhu. Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning.
In Neural Information Processing Systems (NeurIPS), 2022.

[29] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning Visuotactile Skills with
Two Multifingered Hands. arXiv preprint arXiv:2404.16823, 2024.

[30] K. Zakka, P. Wu, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Flo-
rence, A. Zeng, and P. Abbeel. Robopianist: Dexterous piano playing with deep reinforcement
learning. In Conference on Robot Learning (CoRL), 2023.

[31] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. DexCap: Scalable and Portable
Mocap Data Collection System for Dexterous Manipulation. arXiv preprint arXiv:2403.07788,
2024.

[32] J. Yang, C. Deng, J. Wu, R. Antonova, L. Guibas, and J. Bohg. EquivAct: SIM(3)-Equivariant
Visuomotor Policies beyond Rigid Object Manipulation. arXiv preprint arXiv:2310.16050,
2023.

[33] K. Chu, X. Zhao, C. Weber, M. Li, W. Lu, and S. Wermter. Large Language Models for
Orchestrating Bimanual Robots. arXiv preprint arXiv:2404.02018, 2024.

10

[34] S. Stepputtis, M. Bandari, S. Schaal, and H. Ben Amor. A System for Imitation Learning
of Contact-Rich Bimanual Manipulation Policies. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[35] A. Bahety, P. Mandikal, B. Abbatematteo, and R. Martín-Martín. ScrewMimic: Bimanual
Imitation from Human Videos with Screw Space Projection. In Robotics: Science and Systems
(RSS), 2024.

[36] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn. Waypoint-based imitation learning for robotic
manipulation. In Conference on Robot Learning (CoRL), 2023.

[37] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In arXiv preprint arXiv:2401.02117, 2024.

[38] A. . Team. Aloha 2: An enhanced low-cost hardware for bimanual teleoperation, 2024. URL
https://aloha-2.github.io/.

[39] J. Grannen, Y. Wu, B. Vu, and D. Sadigh. Stabilize to act: Learning to coordinate for bimanual
manipulation. In Conference on Robot Learning (CoRL), 2023.

[40] M. Grotz, M. Shridhar, T. Asfour, and D. Fox. PerAct2: Benchmarking and Learning for
Robotic Bimanual Manipulation Tasks. arXiv preprint arXiv:2407.00278, 2024.

[41] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu,
E. Romo Grau, N. Fazeli, F. Alet, N. Dafle, R. Holladay, I. Morena, P. Nair, D. Green, I. Taylor,
W. Liu, and A. Rodriguez. Robotic pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching. In IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[42] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning Synergies be-
tween Pushing and Grasping with Self-supervised Deep Reinforcement Learning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018.

[43] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. In Conference on Robot Learning (CoRL), 2020.

[44] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng.
Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Trans-
porter Networks. In IEEE International Conference on Robotics and Automation (ICRA),
2021.

[45] R. Lee, D. Ward, A. Cosgun, V. Dasagi, P. Corke, and J. Leitner. Learning arbitrary-goal fabric
folding with one hour of real robot experience. In Conference on Robot Learning (CoRL),
2020.

[46] M. Shridhar, L. Manuelli, and D. Fox. CLIPort: What and Where Pathways for Robotic
Manipulation. In Conference on Robot Learning (CoRL), 2021.

[47] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[48] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt2: Learning precise manipu-
lation from few demonstrations. RSS, 2024.

[49] OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

[50] H. Touvron and Others. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv
preprint arXiv:2307.09288, 2023.

11

https://aloha-2.github.io/

[51] G. T. Google. Gemini: A Family of Highly Capable Multimodal Models. arXiv preprint
arXiv:2312.11805, 2023.

[52] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents. In International Conference on Ma-
chine Learning (ICML), 2022.

[53] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. PaLM-E: An
Embodied Multimodal Language Model. In International Conference on Machine Learning
(ICML), 2023.

[54] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In Conference on Robot Learning (CoRL), 2022.

[55] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su. LLM-Planner: Few-
Shot Grounded Planning for Embodied Agents with Large Language Models. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[56] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. In IEEE International Conference
on Robotics and Automation (ICRA), 2023.

[57] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. R. Florence, I. Mordatch, S. Levine,
K. Hausman, and B. Ichter. Grounded decoding: Guiding text generation with grounded mod-
els for robot control. arXiv preprint arXiv:2303.00855, 2023.

[58] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. ProgPrompt: Program generation for situated robot task planning using large lan-
guage models. Autonomous Robots (AURO), 2023.

[59] K. Kawaharazuka, T. Matsushima, A. Gambardella, J. Guo, C. Paxton, and A. Zeng.
Real-World Robot Applications of Foundation Models: A Review. arXiv preprint
arXiv:2402.05741, 2024.

[60] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu, S. Song, A. Kapoor,
K. Hausman, B. Ichter, D. Driess, J. Wu, C. Lu, and M. Schwager. Foundation Models in
Robotics: Applications, Challenges, and the Future. arXiv preprint arXiv:2312.07843, 2023.

[61] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang, S. Zhao, Y. Q.
Chong, C. Wang, K. Sycara, M. Johnson-Roberson, D. Batra, X. Wang, S. Scherer, Z. Kira,
F. Xia, and Y. Bisk. Toward General-Purpose Robots via Foundation Models: A Survey and
Meta-Analysis. arXiv preprint arXiv:2312.08782, 2023.

[62] J. Varley, S. Singh, D. Jain, K. Choromanski, A. Zeng, S. B. R. Chowdhury, A. Dubey, and
V. Sindhwani. Embodied AI with Two Arms: Zero-shot Learning, Safety and Modularity.
arXiv preprint arXiv:2404.03570, 2024.

[63] A. Kamath, M. Singh, Y. LeCun, G. Synnaeve, I. Misra, and N. Carion. Mdetr - modulated
detection for end-to-end multi-modal understanding. In 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 1760–1770, 2021. doi:10.1109/ICCV48922.2021.
00180.

12

http://dx.doi.org/10.1109/ICCV48922.2021.00180
http://dx.doi.org/10.1109/ICCV48922.2021.00180

[64] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-
hendran, A. Arnab, M. Dehghani, Z. Shen, et al. Simple open-vocabulary object detection. In
European Conference on Computer Vision, pages 728–755. Springer, 2022.

[65] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. B. Girshick. Segment anything. 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 3992–4003, 2023. URL https:
//api.semanticscholar.org/CorpusID:257952310.

[66] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators, 2023.

[67] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3D Diffuser Actor: Policy Diffusion with 3D
Scene Representations. arXiv preprint arXiv:2402.10885, 2024.

[68] S. Chen, R. Garcia, C. Schmid, and I. Laptev. PolarNet: 3D Point Clouds for Language-Guided
Robotic Manipulation. In Conference on Robot Learning (CoRL), 2023.

[69] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven
History-aware Policies for Robotic Manipulations. In Conference on Robot Learning (CoRL),
2022.

[70] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, A. Brock,
E. Shelhamer, O. J. H’enaff, M. M. Botvinick, A. Zisserman, O. Vinyals, and J. Carreira.
Perceiver io: A general architecture for structured inputs & outputs. ArXiv, abs/2107.14795,
2021. URL https://api.semanticscholar.org/CorpusID:236635379.

[71] Y. You, J. Li, S. J. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
and C.-J. Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes.
arXiv: Learning, 2019. URL https://api.semanticscholar.org/CorpusID:165163737.

[72] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. PartNet: A large-scale
benchmark for fine-grained and hierarchical part-level 3D object understanding. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

13

https://api.semanticscholar.org/CorpusID:257952310
https://api.semanticscholar.org/CorpusID:257952310
https://api.semanticscholar.org/CorpusID:236635379
https://api.semanticscholar.org/CorpusID:165163737

A Simulation Benchmark for Bimanual Manipulation

We chose RLBench [14] as our choice of simulator since it is well-maintained by the research com-
munity and has been used in a number of prior works [13, 12, 67, 68, 69, 16], including PerAct [11],
which is a core component of VoxAct-B.

A.1 Additional Implementation Details

VoxAct-B uses a voxel grid size of 503 that spans 23 meters. The proprioception data includes: the
gripper opening state of both arms, the positions of the left arm left finger, left arm right finger,
right arm left finger, right arm right finger, and timestep. Following PerAct [11], we apply data
augmentations to the training data using SE(3) transformations: [±0.125m,±0.125m,±0.125m]
in translations and ±45◦ in the yaw axis. We use 2048 latents of dimension 512 in the Perceiver
Transformer [70] and optimize the entire network using the LAMB [71] optimizer. We use α = 0.3
for Open Jar and α = 0.4 for the drawer tasks and Hand Over Item. We select these α values by
using a starting state of the environment with the largest scaling size factor for the object of interest
and checking whether the object remains entirely contained in the voxel grid after cropping.

Deciding the best checkpoints for VoxAct-B and ablations is nontrivial since iterating over all possi-
ble combinations is computationally expensive. For example, with 400,000 training steps, using the
same 10,000 checkpoint interval means there are 40×40 = 1600 possible combinations. Therefore,
with the validation data, we use the latest stabilizing checkpoint to evaluate all acting checkpoints;
we use the best acting checkpoint to evaluate all stabilizing checkpoints. Then, we use the best-
performing acting and stabilizing checkpoints to obtain the test success rate.

The policy is trained with a batch size of 1 on an Nvidia 3080 GPU for two days. Note that the
batch size is not optimized based on GPU memory capacity. The batch size can be increased to 6
using an Nvidia RTX Titan with 24 GB of VRAM. Moreover, VoxAct-B is much more efficient than
Bimanual PerActs, requiring only two days of training to reach one million training iterations, while
it would take Bimanual PerActs ten days to reach the same number of training iterations.

During policy evaluation, the language goal, ℓas or ℓsa, is determined by VLMs based on the given
task. Specifically, in Open Drawer and Put Item in Drawer, we use the drawer’s pose relative to
the front camera to determine which robot arm the drawer is facing. If it faces the left robot arm, ℓas
is selected because the orientation gives the left (acting) arm a better angle for opening the drawer,
and vice versa for the right robot arm. In Open Jar, we use the jar’s pose to determine which robot
arm it is closer to. If it is closer to the left robot arm, ℓas is selected because it provides the right
arm with a better angle for grasping the jar based on our experience with this task. This also applies
to the block in Hand Over Item.

A.2 Additional Simulation and Task Details

We extend RLBench to support bimanual manipulation by incorporating an additional Franka Panda
arm into the RLBench’s training and evaluation pipelines. Importantly, we do not modify the under-
lying APIs of CoppeliaSim (the backend of RLBench) to control the additional arm; consequently,
the robot arms cannot operate simultaneously, resulting in a delay in their control. However, this
limitation is acceptable as our tasks do not require real-time, dual-arm collaboration.

Moreover, we modify Open Jar, Open Drawer, and Put Item in Drawer to support bimanual
manipulation: (1) adding an additional Franka Panda arm with a wrist camera; (2) adding new
waypoints for the additional arm; (3) adjusting the front camera’s position to capture the entire
workspace; (4) removing the left shoulder, right shoulder, and overhead cameras. The new tasks
use a three-camera setup: front, left wrist, and right wrist. We also modify the data generation
pipeline to use motion planning with the new waypoints, process RGB-D images and the new arm’s
proprioception data (joint position, joint velocities, gripper open state, gripper pose), and include
the [x, y, z] position (world coordinates) of the object of interest. These modifications also apply to
the Hand Over Item task.

14

The success conditions of these tasks have also been modified: for Open Jar, we define a proximity
sensor in the jar bottle to detect whether an arm has a firm grasp of the jar (the gripper’s opening
amount is between 0.5 and 0.93); for Open Drawer, we define a proximity sensor on the top of the
drawer to detect whether an arm is stabilizing the drawer. While a robot arm could still “open” the
drawer without the other arm’s stabilization, we would not classify it a success in Open Drawer.
Similarly, for Open Jar, a robot arm could “open” the jar lid without a firm grasp on the jar from
the other arm, but this would not be classified as a success.

For the additional task variations, each method must learn from multi-modal demonstrations. For
example, given ten training data, half have left-acting and right-stabilizing demonstrations, and the
other half have right-acting and left-stabilizing demonstrations. During evaluation, the drawer from
the drawer tasks is randomly rotated to face the left arm in the first half of the episodes and the
right arm in the last half. This variation can make it kinematically infeasible for the left or right
robot arm to open the drawer, requiring each method to determine the appropriate arm for acting
and stabilizing. Additionally, we randomly scale objects (drawers and jars) from 90% to 100% of
their original size.

A.3 Multi-Task Experiment

Open Open Put Item
Jar Drawer in Drawer

ACT w/Transformers 2.7 12.0 14.7
VoxAct-B (ours) 21.3 62.7 17.3

Table 3: Multi-task results of ACT and VoxAct-B
trained on 10 demonstrations of each task and evalu-
ated across three training seeds.

We train a single policy of ACT and VoxAct-
B on Open Jar, Open Drawer, and Put Item
in Drawer, with 10 demonstrations for each
task. For evaluation, both methods use the
checkpoint with the best average validation suc-
cess rate across all tasks. We use the same vali-
dation and test data as the baseline comparison.
Table 3 presents the multi-task results, showing
that VoxAct-B outperforms ACT on all tasks.

A.4 Automatic Selection of α

Instead of using a predefined α, we use the VLMs to automatically determine the value of α by
computing the largest dimension of the object of interest, with a small padding added. The method
using the estimated α achieved a success rate of 32% on Open Drawer, compared to 73.6% when
using the predefined α, evaluated across three training seeds. We suspect the performance drop is
due to the additional voxel resolutions the method must learn. As α varies between demonstrations
due to the rescaling of objects, voxel resolution (L

αx ,
W
αx ,

H
αx) also changes, making policy learning

more challenging.

A.5 Jars and Drawers of Different Appearances

We introduce two new jars and drawers of different appearances. In the new Open Jar experiment
(i.e., different from the Open Jar experiment in the main paper), each method is trained on 10
demonstrations using 3 different jars. The two new jars are imported from the PartNet-Mobility
Dataset [72]. Each method is then evaluated on 25 episodes of validation and test data using these
jars across three training seeds. ACT obtains a success rate of 0%, while our method achieves a
success rate of 41.3%. In the new Open Drawer experiment, each method is trained on 10 demon-
strations using a drawer with 3 different textures, as we were unable to find a drawer with similar
structures online. This experiment follows the same setup as the new Open Jar experiment. In
summary, ACT achieves a success rate of 9.3%, while our method achieves a success rate of 33.3%.

A.6 Ablation: Single Camera Setup

Instead of using a three-camera setup, we use a (front) single-camera setup on Open Drawer. In this
setup, as the end-effector approaches the drawer handle, the view may be obstructed by the robot

15

arm. However, with the addition of a wrist camera, the handle remains visible, allowing the voxel
grid to be constructed with a clear view of the drawer handle. This ablation tests how well VoxAct-B
handles occlusion with a limited number of camera views. With a single-camera setup, VoxAct-B
achieves a success rate of 60%, while using the original camera setup (front, left wrist, and right
wrist) yields a success rate of 73.3%, evaluated across three training seeds.

B Real-World Experimental Details

Hardware Setup. An overview of the hardware setup is described in Section 5.2. Our perception
system utilizes the D415 camera to capture RGB and depth images at a resolution of 1280 × 720
pixels, where the depth images contain values in meters. We apply zero-padding to these images,
resulting in a resolution of 1280× 1280 pixels. Hand-eye calibration is performed to determine the
transformation matrices between the camera frame and the left robot base frame, as well as between
the camera frame and the right robot base frame, using the MoveIt Calibration package. We use the
python-urx library to control the robot arms. Additionally, I/O programming is employed to control
the Robotiq grippers, as CB2 UR5 robots do not support URCaps.

Data Collection. We utilize the GELLO teleoperation framework to collect real-world demon-
strations. Due to the lack of Real-Time Data Exchange (RTDE) protocol support in CB2 UR5s,
a noticeable lag is present when operating the GELLO arms. For Open Jar, a dedicated function
controls the gripper’s counterclockwise rotations for unscrewing the lid and lifting it into the air, mit-
igating the instability caused by latency. This function is triggered when the operator activates the
GELLO arm’s trigger. Additionally, we found that fixing the stabilizing arm while the acting arm is
in motion is crucial for effective policy learning, as it eliminates noise introduced by unintentional,
slight movements of the stabilizing arm. Observations are recorded at a frequency of 2 Hz.

Training and Execution. For training, we use a higher value for stopped_buffer_timesteps,
a hyper-parameter that determines how frequently keyframes are extracted from the continuous ac-
tions based on how long the joint velocities have been near 0 and the gripper state has not been
changed, in PerAct’s keyframe extraction function to account for the slower movements of the robot
arms due to latency compared to simulation. We apply the inverse of the transformation matri-
ces obtained from hand-eye calibration to project each arm’s gripper position to the camera frame.
Using the camera’s intrinsics and an identity extrinsic matrix, we construct the point cloud in the
camera frame, allowing both arms’ gripper positions and the voxel grid to reside in the same ref-
erence frame. For evaluation, we multiply the transformation matrices from hand-eye calibration
by the policy’s predicted left and right gripper positions to obtain the tool center point positions
in their respective robot base frames. We visualize each robot arm’s predicted gripper position in
Open3D before executing it on the robot. Additionally, we conduct real-world experiments using a
Ubuntu laptop without a GPU, resulting in significantly slower policy inference and robot execution
times—from capturing an image observation to moving the robot arms—compared to a GPU setup.
Consequently, this results in longer pauses between each robot execution and extended real-world
videos, as demonstrated on our website.

C Additional Implementation Details for the Baselines

We carefully tune the baselines and include the hyperparameters used in Table 4. We report the
results of the best-tuned baselines in Table 1. For our three tasks, we found that for ACT, a chunk size
of 100 worked well, consistent with the findings reported in [3]. The temporal aggregation technique
did not improve performance in our tasks, so we disabled this feature. For Diffusion Policy, lower
values (e.g., 16) of the action prediction horizon were inadequate, leading to agents getting stuck
at certain poses and failing to complete the tasks, so we used an action prediction horizon of 100.
We found the Time-series Diffusion Transformer to outperform the CNN-based Diffusion Policy on
Open Drawer and Open Jar, while both of them achieved comparable success rates on Put Item
in Drawer. We use a batch size of 32 for both methods, and the observation resolution is 128×128

16

https://github.com/moveit/moveit_calibration
https://github.com/SintefManufacturing/python-urx
https://wuphilipp.github.io/gello_site/

Hyperparameter ACT Value Diffusion Policy Value

learning rate 3e-5 1e-4
weight decay (for transformer only) - 1e-3
encoder layers 4 -
decoder layers 7 -
layers - 8
feedforward dimension 3200 -
hidden dimension 512 -
embedding dimension - 256
heads 8 4
chunk size 100 100
beta 10 -
dropout 0.1 -
attention dropout probability - 0.3
train diffusion steps - 100
test diffusion steps - 100
ema power - 0.75

Table 4: Combined hyperparameters of ACT and Diffusion Policy. A dash (“-”) indicates the absence of a
hyperparameter for a given method.

Open Open Put Item
Jar Drawer in Drawer

Method FAS FAS+NSV FAS FAS+NSV FAS FAS+NSV

Diffusion Policy 20.8 40.8 24.0 46.4 14.4 19.2
ACT w/Transformers 31.2 56.0 28.8 35.2 34.4 75.2

Table 5: Ablation results of ACT and Diffusion Policy trained on 100 demonstrations and evaluated across
five training seeds. “FAS” refers to the demonstrations with fixed acting and stabilizing arms (i.e., right acting
and left stabilizing), while “FAS+NSV” refers to fixed acting and stabilizing and without size variation in the
environment. We use the same validation and test data as the baseline comparison.

(same as VoxAct-B). For Diffusion Policy, we use the same image augmentation techniques as in [3].
As shown in Table 5, the performance of ACT and Diffusion Policy progressively improves as more
environment variations are removed. For VoxPoser, we modified the LLM prompts to work with
our bimanual manipulation tasks. See our VoxPoser prompts for details. For Bimanual PerActs, we
deliberately chose to use 1003 voxels instead of the 503 voxels used in VoxAct-B. The increased
number of voxels provides higher voxel resolution, which is essential for fine-grained bimanual
manipulation. This is demonstrated in the VoxAct-B w/o VLM ablation, which only utilizes 503

voxels and shows a huge drop in performance compared to VoxAct-B.

17

https://voxact-b.github.io/static/files/voxposer_prompts.txt

	Introduction
	Related Work
	Problem Statement
	Method
	Extending PerAct for Bimanual Manipulation
	VoxAct-B: Voxel Representations and PerAct for Bimanual Manipulation

	Experiments
	Baselines and Ablations
	Experiment Protocol and Evaluation

	Results
	Simulation Results
	Physical Results
	Limitations and Failure Cases

	Conclusion
	Simulation Benchmark for Bimanual Manipulation
	Additional Implementation Details
	Additional Simulation and Task Details
	Multi-Task Experiment
	Automatic Selection of
	Jars and Drawers of Different Appearances
	Ablation: Single Camera Setup

	Real-World Experimental Details
	Additional Implementation Details for the Baselines

