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Abstract

Existing Multimodal Large Language Models (MLLMs) and
Visual Language Pretrained Models (VLPMs) have shown
remarkable performances in general Visual Question An-
swering (VQA). However, these models struggle with VQA
questions that require external commonsense knowledge due
to the challenges in generating high-quality prompts and
the high computational costs of fine-tuning. In this work,
we propose a novel graph-based multimodal commonsense
knowledge distillation framework that constructs a unified
relational graph over commonsense knowledge, visual ob-
jects and questions through a Graph Convolutional Network
(GCN) following a teacher-student environment. This pro-
posed framework is flexible with any type of teacher and
student models without further fine-tuning, and has achieved
competitive performances on the ScienceQA dataset. The
code is in https://github.com/adlnlp/MCKDVQA.

Introduction
In recent years, VQA tasks developed to be more challeng-
ing by asking questions beyond the image contents and re-
quiring external commonsense knowledge to answer1. Ex-
isting works on such commonsense VQA tasks tried dif-
ferent methods to integrate visual, question and common-
sense knowledge features (Wang, Han, and Poon 2024).
For example, Ravi et al. (2023) encodes the contextualized
commonsense inferences on the question phrases as addi-
tional textual features and integrates with object visual fea-
tures to fine-tune the Vision-and-Language pretrained model
(VLPM). VQA-GNN (Wang et al. 2023) jointly encodes the
scene graph of the image and concept graph of the question
context as the unified graph for training. T-SciQ (Wang et al.
2024) proposes the new chain-of-thought (CoT) prompting
strategy to fine-tune the Multimodal large language model
(MLLM). However, these works face problems from two
aspects: 1) though incorporating CoT in MLLMs has shown
remarkable performances on knowledge-based VQA, gener-
ating the high-level reasoning CoT is challenging; 2) directly
fine-tuning the large VLMs can be computationally expen-
sive. To address these issues, in this work, we propose a mul-
timodal teacher-student knowledge distillation framework
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1Existing VLMs’ error cases can be found in Appendix

that is computationally efficient to jointly learn the features
of multi-modalities (Cabral et al. 2024; Han et al. 2020; Cao
et al. 2023). Specifically, in the teacher model, this frame-
work integrates the object entities from image, question and
commonsense knowledge graph together in a unified graph
and explicitly learns the relationships among them through
the Graph Convolutional Neural Network (GCN)(Yao, Mao,
and Luo 2019), inspired by Han et al. (2022) and Long et al.
(2022). The learned graph features are passed to the stu-
dent model, which can be any model structure of a smaller
size, for the final answer prediction. Notably, instead of fine-
tuning based on one vision-and-language model structure,
this framework can be flexibly plugged with any pretrained
visual and textual encoder for diverse feature extractions in
the teacher model. Moreover, this proposed method provides
flexibility that can be adapted to environments with differ-
ent computational efficacies while maintaining competitive
performances compared to large VLPMs and MLLMs. We
evaluated our proposed framework with the ScienceQA and
achieved competitive results.

Methodology
Figure 1 depicts the overall workflow of our proposed
graph-based multimodal commonsense knowledge distilla-
tion framework. We first represent inputs as graphs to cap-
ture the relationships between different modalities enriched
by commonsense knowledge. We then employ a GCN to
train the teacher graph model. This trained teacher then dis-
tils learnt knowledge to the student models of varying size.

Graph Construction: To capture the relationships among
the multimodal inputs and enrich them with commonsense
knowledge understanding, we construct a set of heteroge-
neous subgraphs G = {G1, G2, . . . , GM} for a dataset with
M samples. Each subgraph Gi = {Vi, Ei} represents an
individual input sample comprising an image, a question,
and contextual information. The node candidates Vi within
each subgraph are categorised into two types: content nodes
Vsub and commonsense nodes Vk. The content nodes Vsub

includes four types of node representation for each input
modality: a question node for the textual query, a language
context node for textual context, a visual context node for
image context and a V-L node for combined visual and tex-
tual context.

To further inject the model with augmented common-
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Figure 1: Overall Framework Design

sense knowledge, we integrate commonsense nodes Vk into
each subgraph. Initially, each content node Vsub is projected
into a shared single-modal embedding space using a dual-
encoder-based Vision-Language Pretrained Model. We then
retrieve relevant commonsense knowledge triplets from the
ATOMIC2020 dataset (Hwang et al. 2021). Specifically, we
compute the cosine similarity between the embedding vec-
tor vu of each content node Vu and the embeddings vk of
all triplets in the ATOMIC2020 dataset as illustrated as:

sim(Vu, k) =
vu · vk

∥vu∥∥vk∥
. (1)

The triplets are pre-embedded into the same shared space us-
ing the VLPM. We select the top K triplets with the highest
similarity scores for each content node Vu (we set K = 3 in
our experiments). These selected triplets are considered the
most semantically relevant and are added to the subgraph as
commonsense nodes Vk.

Edges for any pair of nodes Vx, Vy ∈ Vsub as well as Vu

with their retrieved commonsense nodes Vk are defined by
either Cosine Similarity and Pointwise Mutual Information
(PMI). These metrics are chosen to capture semantic rela-
tionships and statistical dependencies among the nodes.

Graph Learning: We leverage a standard two-layer
Graph Convolutional Network (GCN) to capture the mul-
timodal information and injected commonsense knowledge
within the constructed graph. It is illustrated in Equation 2:

f(V )(l+1) = σ(l)
(
D̃− 1

2 ÃD̃− 1
2 f(V )(l)W (l)

)
(2)

where: f(V )(l) ∈ RN×T (l)

represents the node feature at
layer l, Ã = A + IN ∈ RN×N is the adjacency matrix
of the graph with added self-connections; N is the number
of nodes within each subgraph and T (l) is the dimension of
feature space at layer l. We then apply an average pooling
fpooling(·) : RN×T (l) → R1×T (l)

over each subgraph and
feed the pooled embedding over each sub-graph to a multi-
layer perception (MLP) fMLP(·): RM×T (L) → RM×T (O)

,
where T (O) denotes the number of the unique labels. We
use the cross-entropy loss to optimize the model.

Model NAT SOC LAN AVG
Small-sized Baseline and Our Result
MLP 41.21 42.33 34.11 42.71
Teacher + MLP (ours) 54.38 49.23 39.28 53.92
Medium-sized Baseline and Our Result
Transformer 48.44 47.15 42.72 48.35
Teacher + Transformer (ours) 57.74 55.35 48.46 56.79
Large-sized Baselines and Our Result
ViLT 60.48 63.89 60.27 61.14
Teacher + ViLT (ours) 64.12 66.55 63.83 65.41
VisualBERT 59.33 69.18 61.18 61.87
Teacher + VisualBERT (ours) 61.30 72.84 64.33 65.69
UnifiedQAbase 68.16 69.18 74.91 70.12
Teacher + UnifiedQAbase (ours) 71.41 73.22 71.58 72.33

Table 1: Overall Performance on ScienceQA. Question
classes: NAT = natural science, SOC = social science, LAN
= language science. (Lu et al. 2022).

Multimodal Graph-based Knowledge Distillation: Af-
ter training the teacher graph using GCN, we distil soft
labels to the student model, where it is optimised by the
Kullback-Leibler Divergence (KD) loss as in Equation 3:

LKD = KLDivLoss
(

1
nT

∑nT

j=1 Pj , Ps

)
Pj = softmax(Tj(X)) Ps = softmax(S(X))

(3)

where T (X), S(X) represents the teacher model and stu-
dent model. We formulate overall loss by adding up the stu-
dent cross-entropy loss and KD loss as L = LSCE + LKD.

Experiments and Results
We compare the micro F1-score against three types of
baseline models of varying size: (1) Small-sized MLP;
(2) Medium-sized Transformer; (3) Three Large-sized
VLPMs that has been applied in the ScienceQA dataset
(Lu et al. 2022): (a) VisualBERT (Li et al. 2019): inte-
grates RoI-based visual feature and token-based textual fea-
ture through BERT-style architecture. (b) ViLT (Kim, Son,
and Kim 2021): processes visual and textual tokens using
a unified fusion encoder directly. (c) UnifiedQA (Khashabi
et al. 2020): unifies various QA format throughout a textual-
only model. We evaluate the proposed framework on the Sci-
enceQA (Lu et al. 2022). Each group is tested with or with-
out integrating our proposed graph-based knowledge distil-
lation framework. From the overall performance covered in
Table 1, we can see a significant improvement in their aver-
age score with 11.21% and 8.44% increase separately with
our proposed framework for both MLP and Transformer
baselines. For large VLPMs, despite their sophistication, we
also find a non-trivial increment in their performance. This
suggests the robustness and effectiveness of our method.

Conclusion
We proposed a multimodal graph-based commonsense
knowledge distillation framework that addresses the limita-
tions of existing VLMs in VQA tasks by integrating object,
question, and commonsense knowledge into a unified graph
structure and leveraging a GCN for relational learning. Our
results on ScienceQA validate the effectiveness of this ap-
proach, showing notable performance improvements.
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