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Abstract

The performance of mini-batch stochastic gradient descent (SGD) strongly depends on set-
ting the batch size and learning rate to minimize the empirical loss in training the deep
neural network. In this paper, we present theoretical analyses of mini-batch SGD with four
schedulers: (i) constant batch size and decaying learning rate scheduler, (ii) increasing batch
size and decaying learning rate scheduler, (iii) increasing batch size and increasing learning
rate scheduler, and (iv) increasing batch size and warm-up decaying learning rate scheduler.
We show that mini-batch SGD using scheduler (i) does not always minimize the expectation
of the full gradient norm of the empirical loss, whereas it does using any of schedulers (ii),
(iii), and (iv). Furthermore, schedulers (iii) and (iv) accelerate mini-batch SGD. The paper
also provides numerical results of supporting analyses showing that using scheduler (iii) or
(iv) minimizes the full gradient norm of the empirical loss faster than using scheduler (i) or

(ii).

1 Introduction

Mini-batch stochastic gradient descent (SGD) (Robbins & Monrol, {1951} |Zinkevich) |2003; Nemirovski et al.,
2009; \(Ghadimi & Lanl [2012; [2013) is a simple and useful deep-learning optimizer for finding appropriate
parameters of a deep neural network (DNN) in the sense of minimizing the empirical loss defined by the
mean of nonconvex loss functions corresponding to the training set.

The performance of mini-batch SGD strongly depends on how the batch size and learning rate are set. In
particular, increasing batch size (Byrd et al.l |2012; Balles et al.l [2016; [De et al., 2017} [Smith et al.l [2018;
Goyal et al., 2018} |Shallue et al., |2019; Zhang et al.,|2019)) is useful for training DNNs with mini-batch SGD.
In (Smith et all 2018), it was numerically shown that using an enormous batch size leads to a reduction in
the number of parameter updates.

Decaying a learning rate (Wu et al., 2014 loffe & Szegedyl, 2015} [Loshchilov & Hutter), |2017; [Hundt et al.),
2019) is also useful for training DNNs with mini-batch SGD. In (Chen et all [2020), theoretical results
indicated that running SGD with a diminishing learning rate n; = O(1/t) and a large batch size for sufficiently
many steps leads to convergence to a stationary point. A practical example of a decaying learning rate with
N1 < n; for all ¢t € N is a constant learning rate 1, = 7 > 0 for all t € N. However, convergence of SGD with
a constant learning rate is not guaranteed (Scaman & Malherbe, 2020)). Other practical learning rates have
been presented for training DNNs, including cosine annealing (Loshchilov & Hutter] 2017)), cosine power
annealing (Hundt et al., 2019)), step decay (Lul, [2024)), exponential decay (Wu et al.,|2014)), polynomial decay
(Chen et all 2018), and linear decay (Liu et al., [2020)).

Contribution: The main contribution of the present paper is its theoretical analyses of mini-batch SGD
with batch size and learning rate schedulers used in practice satisfying the following inequality:
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where f is the empirical loss for n training samples having L-Lipschitz continuous gradient Vf and lower
bound f*, 02 is an upper bound on the variance of the mini-batch stochastic gradient, and (675)3:01 is the
sequence generated by mini-batch SGD with batch size b;, learning rate 7; € [min, Jmax] C [0, %), and total
number of steps to train a DNN T

Scheduler Br Vi O(\/ Br + VT)

Case (i) (Theorem Section i H; Hy,  Hy O 1 n 1

b : Constant; n;: Decay T b bT T b

Case (ii) (Theorem Section D Hy Hy 0 (1) 0 ( 1 >
b; : Increase; 7, : Decay T boT T VM
Case (iii) (Theorem Section D ij\i Hi\/[ 0 ( lM ) () IMYM >
b : Increase; 7, : Increase Y boy Yy br < =
Case (iv) (Theorem Section } Hs . Hs Hg . H, O( 1 > -0 (1>
by : Increase; 1, : Increase — Decay M T boyM boT' 7% VT

H; (i € [6]) (resp. Hry) is a positive (resp. nonnegative) number depending on fmin and Nmax. v and ¢ are
such that 1 < +2 < § (e.g., § = 2 when batch size is doubly increasing every E epochs). The total number of
steps when batch size increases M times is T (M) = ZWA;[:O[bLWE > ME. O(W\—%/_,) — O(\iﬁ) implies that
the convergence rate changes from O(,Y\%/Z) to O(%) when the learning rate 1; changes from an increasing

learning rate to a decaying learning rate (7;: Increase — Decay).

(i) Using constant batch size b; = b and decaying learning rate 7, (Theorem Section
: Using a constant batch size and practical decaying learning rates, such as constant, cosine-annealing,
and polynomial decay learning rates, satisfies that, for a sufficiently large step T, the upper bound on
mingepo.7—1] E[[[V f(0;)||] becomes approximately O(ﬁ) > 0, which implies that mini-batch SGD does not
always converge to a stationary point. Meanwhile, the analysis indicates that using the cosine-annealing and
polynomial decay learning rates would decrease E[||V f(6;)||] faster than using a constant learning rate (see
(8)), which is supported by the numerical results in Figure

(ii) Using increasing batch size b; and decaying learning rate 7; (Theorem Section :
Although convergence analyses of SGD were presented in (Vaswani et al.[|2019; Fehrman et al., 2020; Scaman
& Malherbel 2020; [Loizou et al., [2021;|Wang et al., 2021} [Khaled & Richtarikl, 2023)), providing the theoretical
performance of mini-batch SGD with increasing batch sizes that have been used in practice may not be
sufficient. The present paper shows that mini-batch SGD has an O(ﬁ) rate of convergence. Increasing
batch size every E epochs makes the polynomial decay and linear learning rates become small at an early
stage of training (Figure (a)). Meanwhile, the cosine-annealing and constant learning rates are robust
to increasing batch sizes (Figure [2|(a)). Hence, it is desirable for mini-batch SGD using increasing batch
sizes to use the cosine-annealing and constant learning rates, which is supported by the numerical results in
Figure

(iii) Using increasing batch size b; and increasing learning rate 7; (Theorem Section :
From Case (ii), when batch sizes increase, keeping learning rates large is useful for training DNNs. Hence, we
are interested in verifying whether mini-batch SGD with both the batch sizes and learning rates increasing
can train DNNs. Let us consider a scheduler doubly increasing batch size (i.e., 6 = 2). We set v > 1 such
that v < v/0 = v/2 and we set an increasing learning rate scheduler such that the learning rate is multiplied
by =y every E epochs (Figure a)). This paper shows that, when batch size increases M times, mini-batch
SGD has an O(y~ % ) convergence rate that is better than the O(ﬁ) convergence rate in Case (ii). That is,
increasing both batch size and learning rate accelerates mini-batch SGD. We give practical results (Figure
[Bi(b); 6 = 2 and Figures [9](b); & = 3,4) such that Case (iii) decreases ||V f(6,)| faster than Case (ii)
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and tripling and quadrupling batch sizes (6 = 3,4) decrease ||V f(0;)|| faster than doubly increasing batch
sizes (6 = 2). The intuition for why increasing batch size and learning rate can provide fast convergence is
as follows:

(1) Increasing batch size decreases the variance of the stochastic gradient, since the upper bound on
the variance is inversely proportional to the batch size (see also Proposition|A.1)). Hence, increasing
batch size leads to finding stationary points of the empirical loss f. This fact is based on Case (i)

that the upper bound of min;ejo.7—1) E[[|V f(6,)[]] is O(y/ 7 + 1), where b is the batch size.

(2) Mini-batch SGD does not work when learning rates are small at an early stage of training. This
fact is supported by the numerical results in Figure [1| (Case (i)) indicating that using the decaying
learning rate 1, = O( \/F) does not train a DNN. Hence, keeping learning rates large implies that

SGD works well.

(3) From (1) and (2), increasing batch size and learning rate can provide fast convergence of SGD.

Here, let us compare Case (ii) with Case (iii). For simplicity, we use a scheduler tripling batch size, i.e., b
is multiplied by § = 3 at each step and consider Case (ii) with a constant learning rate 7, = 7 satisfying
Nit1 < ¢ (t € {0} UN) and Case (iii) with the learning rate 7, that is multiplied by v (< v/ = v/3) at each
step. By in Case (ii) is given by

1 1 1
Br = T—1 (@ () )
Zt o "t Zt:o n T

while By in Case (iii) is given by
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Meanwhile, Vi in Case (iii) is given by
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where 72 < § is used to guarantee Z 5 (& ) < +400. Therefore, Case (iii) has minsep.7—1) E[[[Vf(0:)]]] =

O(WT/Z), which is better than Case (ii) w1th mineo.r—1) E[| V.f(0:)]]] = (ﬁ)

(iv) Using increasing batch size b; and warm-up decaying learning rate 7; (Theorem Section
3.4]): One way to guarantee fast convergence of mini-batch SGD with increasing batch sizes is to increase
learning rates (acceleration period; Case (iii)) during the first epochs and then decay the learning rates
(convergence period; Case (ii)), that is, to use a decaying learning rate with warm-up
[Vaswani et al., [2017; |Goyal et al.|;, [2018; |Gotmare et all [2019; [He et al., [2019). We give numerical results
(Figure [4} 0 = 2 and Figure 0 = 3) indicating that using mini-batch SGD with increasing batch sizes
and decaying learning rates with a warm-up minimizes |V f(8;)|| faster than using a constant learning rate
in Case (ii) or increasing learning rates in Case (iii). Our results are numerically supported by the previous
results reported in (He et al. 2016} |Goyal et all 2018 |Gotmare et all [2019} [He et all [2019) indicating
that a warm-up learning rate is useful for training deep neural networks, such as ResNets and Transformer
networks (Vaswani et al. [2017)).
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2 Mini-batch SGD for empirical risk minimization

2.1 Empirical risk minimization

Let 8 € R? be a parameter of a deep neural network; let S = {(x1,y1),...,(Tn,yn)} be the training set,
where data point x; is associated with label y;; and let fi(-) := f(-; (zi,4:)): R? — R, be the loss function
corresponding to the i-th labeled training data (x;,y;). Empirical risk minimization (ERM) minimizes the
empirical loss defined for all 8 € R? as f(0) = * Zie[n] fi(0). This paper considers the following stationary

n

point problem: Find 8* € R such that V£(6*) = 0.

We assume that the loss functions f; (i € [n]) satisfy the conditions in the following assumption (see Appendix
for definitions of functions, mappings, and notation used in this paper).

Assumption 2.1 Let n be the number of training samples and let L; > 0 (i € [n]).
(A1) fi: R4 =R (i € [n]) is differentiable and L;-smooth, and f; = inf{f;(8): 8 € R?} € R.

(A2) Let & be a random variable that is independent of @ € RY. V fe: R? — R? is the stochastic gradient of
Vf such that (i) for all @ € RY, E¢[V f¢(0)] = Vf(0) and (ii) there exists ¢ > 0 such that, for all @ € R,
Ve[V £e(0)] = E¢[||Vfe(0) — Vf(0)]|?] < 02, where E¢[-] denotes expectation with respect to &.

(A3) Let b € N such that b < n; and let € = (&1,&2,---,&) " comprise b independent and identically
distributed variables and be independent of @ € R:. The full gradient Y f(0) is estimated as the following

mini-batch gradient at 0: V f5(0) := ¢ E?:1 V /e (0).

The L;-smoothness of f; in Assumption (A1) is used to analyze mini-batch SGD (Garrigos & Gower, [2024]
Assumption 4.3), since almost all of the analyses of mini-batch SGD have been based on the descent lemma
(Beck] 2017, Lemma 5.7) that is satisfied under smoothness of f;. If f7 := inf{f;(0): 6 € R?} = —o0 holds,
then the loss function f; corresponding to the i-th labeled training data (x;,y;) does not have any global
minimizer, which implies that the empirical loss f satisfies f* := inf{f(0): @ € R?} = —oco. Hence, the
interpolation property dGarrigos & GowerL |2024|7 Section 4.3.1) (i.e., there exists 8* € RY such that, for
all i € [n], fi(0%) = fr € R) does not hold, whereas the interpolation property does hold for optimization
of a linear model with the squared hinge loss for binary classification on linearly separable data
Section 2). Moreover, in the case where f is convex with f* = —oo, there are no stationary
points of f, which implies that no algorithm ever finds stationary points of f. Accordingly, the condition
ff :=inf{f;(6): @ € R4} € Rin (A1) is natural under training DNNs including the case where the empirical
loss f is the cross-entropy with 8* € RY such that f(6*) = inf{f(6): € R?} = 0. Assumption (A2) is
satisfied when (A1) holds and the random variable ¢ follows the uniform distribution that is used to train
DNNs in practice (see Appendix for details). Assumption (A3) holds under sampling with replacement
(see Appendix [A.2] for details).

2.2 Mini-batch SGD

Given the t-th approximated parameter 6, € R? of the deep neural network, mini-batch SGD uses
by loss functions fe, ,, fe,,,  , fe,,, randomly chosen from {f1,f2, -+, fa} at each step ¢, where & =
(&1, &2, - ,§t7bt)T is independent of 8; and b; is a batch size satisfying b; < n. The pseudo-code of the
algorithm is shown as Algorithm [f}

Algorithm 1 Mini-batch SGD algorithm

Require: 6, € R? (initial point), b; > 0 (batch size), 7, > 0 (learning rate), T > 1 (steps)
Ensure: (6;) C R?

1: fort=0,1,...,T—1do

2 V5 (0) =5 30 Ve, (6:)

3: 0t+1 = Ot — T]tVth (Ot)

4: end for
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The following lemma can be proved using Proposition Assumption and the descent lemma (Beck
2017, Lemma 5.7): for all 81,0, € R, £(62) < f(61) + (Vf(01),02 — 01) + £ |02 — 6|2, where Assumption
A1) ensures that f is L-smooth (L := %Zie[n] L;).

Lemma 2.1 Suppose that Assumption holds and consider the sequence (0;) genemted by Algom'thm.

with ¢ € [Mmin, Mmax) < [0, %) satisfying thfol ne # 0, where L := %Zie[ Li and f*:= Zze[n] f¥. Then,
forall T € N,

2(f(60) ~ S 1 Lo® Yy nibi"
te[0:T—1] T 2 — Lmax Zz:ol 72— LMmax 23;01 i
where E denotes the total expectation, defined by E :=Eg Ee, ---Eg

min E[[|Vf(8,)]]°] <

M

b

The proof of Lemma [2.1] depends on the following standard inequality (Garrigos & Gower] 2024] (27)) from
the literature on SGD analysis (Garrigos & Gower| [2024] Section 5.4, Theorem 5.12) using the descent
lemma:

f(B0) = f* -
in E[|[VFO)]?] < ——a—= + nLLya A%, 1
nin E[IV(6)]7] < . +1 7 (1)

where () is defined by o (14 9?LLmax) = @—1, Liax = maX;c,| Li, f* is the optimal value of f over R4,
and A; = f* = f* While the existing approach (Garrigos & Gower, |2024[) uses a sequence () satisfying

Zt 0 > WTH the present paper uses a learning rate 7, satisfying Zt o Mt = O(T) and an increasing

batch size b, satisfying Zt o b < 400 in Lemma As a result mini-batch SGD with > 0 and the

increasing batch size b; satisfy that mingejo.r 1) \Y% f 0, —=) (Theorem |3.2)), which is better than
€l \/f

the existing result that SGD with n = mzﬁ satisfies minycpo.7—1) E[[[Vf(8:)]l] = O(77) (Garrigos &
20241 Theorem 5.12). Section compares our results with the existing ones in detail.

The theorems in the present paper are based on Lemma 21} Here, we sketch a proof of Lemma 2.1} The
descent lemma under (A1) and the definition of 8,4; imply the following inequality:

F(8112) < 180~V F(00). Vi, (80) + T2 |V 7, (6"

Under (A2), the mini-batch gradient Vfp,(0;) is an unbiased estimator of Vf(0;), i.e., E[Vfp,(0:)] =
Vf(6;), and the upper bound on the variance of V f5, (6;) is inversely proportional to the batch size by, i.e.,

VIV fg,(0:)] < " (see Proposition H 1| for details). Using the properties of V fg,(60;), the above 1nequahty
leads to the followmg:

L;]t (b +E V6] D

Finally, summing the above inequality from ¢ = 0 to t = T — 1, together with f* € R under (Al) and
Zt o Mt # 0, leads to the assertion in Lemmd A detailed proof is given in Appendix

E[f(0i41)] <E[f(8:)] — nE [V £(60)]%] +

3 Convergence Analysis of Mini-batch SGD

3.1 Constant batch size and decaying learning rate scheduler
This section considers a constant batch size and a decaying learning rate:
bt =b (t S N) and MNt+1 < Mt (t € N) (2)

Let p > 0and T, E € N; and let nyin and mpax satisfy 0 < nmin < max. Examples of decaying learning rates
are as follows: for all ¢ € [0 : T7,

[Constant LR] 7t = Nmax, (3)



Under review as submission to TMLR

[Diminishing LR] 7, = j;%‘l (4)
max — //min t
[Cosine-annealing LR] 1y = Mmin + % <1 + cos \‘KJ Z‘) ) (5)
£\ P
[Polynomial Decay LR] 7 = (fmax — min) (1 — T) + Nmin, (6)

where K = [#] is the number of steps per epoch, E is the total number of epochs, and the number of steps
T in is given by T'= K E. A simple, practical decaying learning rate is the constant learning rate defined
by . A decaying learning rate used in theoretical analyses of deep-learning optimizers is the diminishing
learning rate defined by . The cosine-annealing learning rate defined by and the linear learning rate
defined by @ with p = 1 (i.e., an example of a polynomial decay learning rate) are used in practice. Note
that the cosine-annealing learning rate is updated each epoch, whereas the polynomial decay learning rate
is updated each step.

Lemma leads to the following (the proof of the theorem is given in Appendix [A.3]).
Theorem 3.1 (Upper bound on min; E||V f(6;)||? for SGD using ) Under the assumptions in
Lemma Algom'thm using @ satisfies that, for all T € N,
2(f(60) = f7) 1 L Lo Yo M
2 - anax Zt o Mt 2 - anax bZt:O 77,5
—_———

B T Vr

min E[[|Vf(8,)]*] <

te[0:T—1]

where P, Mmin, Nmax, K, and E are the parameters used in @7(@), T = KE = [}]|E for Polynomial LR

J

1
Nmax 1

BT< 2nmax(2\/T+1_1)

(nmin + nmax)T
p+1

[Constant LR (3))]

[Diminishing LR ()]
[Cosine LR (5))]

[Polynomial LR (6])],

(pnmin + Tlmax ) T

nngax [Constant LR (3))]

Nmax(1 + logT) e

—_—— Diminishing LR (4
e (VT +1-1) | g LR (5]

T = 3nm + 277min7]max + 3772 (T]max - nmin)[( .
in max Cosine LR (5
s Ay + )b 0T o [omeln@l
2p Thmin + 2p77min7]max + (p + 1)77max (p + 1)(nmax - nmin) [Polynomial LR @]
(2]7 + 1)(pnmin + nmax)b (pnmin + nmax)bT

Let us consider using Constant LR , Cosine LR (), or Polynomial LR @ Theorem indicates that
the bias term including Br converges to 0 as O(%), whereas the variance term including Vp does not always
converge to 0. Hence, the upper bound on mine(o.r—1] E[[|V f(6;)]|?] does not converge to 0. In fact, Theorem
[B:I] with 7 = Nmax and Nmin = 0 implies that

n [Constant LR (3))]

3

[Cosine LR (F))] (8)

[Polynomial LR (@))].

lim sup mln E Vf(o —— X< 1
mewp, pin | E(IV/@I) < =T mx i



Under review as submission to TMLR

Since %T” < n and (’2’;1)1)
learning rate is better than using the constant learning rate in the sense of minimizing the upper bound on
minejo.7—1) B[V £(60;)]?]. Theorem [3.1|also indicates that Algorithm (1| using Diminishing LR (4)) converges
oY

defined by n; = \/% decays rapidly (see Figure (a)), it would not be useful for training DNNs in practice.

<7 (p > 0), using the cosine-annealing learning rate or the polynomial decay

to 0 with the convergence rate mincjo.7—1) E[||V f(6:)]]] = . However, since Diminishing LR (4))

3.2 Increasing batch size and decaying learning rate scheduler

An increasing batch size is used to train DNNs in practice (Byrd et al., [2012; |Balles et al. |2016; De et al.|
2017; |[Smith et al.| 2018; |Goyal et al.l 2018). This section considers an increasing batch size and a decaying
learning rate following one of f@:

bt < bt+1 (t € N) and Nt41 <n (t < N) (9)

Examples of b; are, for example, for all m € [0 : M] and all t € S, = NN | Ln:_ol KyEy, > o KiEy)
(S() =N N [0, K()E())),

t c
[Polynomial growth BS] b; = (am ’VW-‘ + bo) ) (10)

m| et
[Exponential growth BS] b; = {Zko KkEk-‘ bo, (11)

where a € Ry, ¢, > 1, and E,, and K,, are the numbers of, respectively, epochs and steps per epoch
when the batch size is (am + by)¢ or 6™by. For example, the exponential growth batch size defined by
with § = 2 makes batch size double each E,, epochs. We may modify the parameters a and § to ay
and §; monotone increasing with . The total number of steps for the batch size to increase M times is
T = Z%:O K, E,,. An analysis of Algorithm 1| with a constant batch size b, = b and decaying learning

rates satisfying @D is given in Section

Lemma leads to the following them (the proof of the theorem and the result for Polynomial BS are
given in Appendix [A.3)).

Theorem 3.2 (Convergence rate of SGD using @) Under the assumptions in Lemma Algorithm
using @ satisfies that, for all M € N,

2(f(60) = f¥) 1 Lo?
min E[|VF(60,)|?] < St e Z
te[0:T—1] 2 anax Zt:O Mt 2 L77ma.x Zt —0 "t =0 bt
——
BT VT

where T = Z o0 KmEm, Enax = Supjpsen SUD, e [0: M] L, < 400, Knax = SUPen SUD, ¢ [0:M] K, < 400,
Br is defined as in (@ and Vi is bounded as

57711]3,)( KIl'laX EI[laX
—_— Constant LR (3
(g_ boT [Constan (3]
mameaxEmax . o . .
L W(/TTI_1) [Diminishing LR ()]
Vi < 9 57751 ai Ko oo ([Exponential BS (11))])

[Cosine LR (B))]

(6 - 1)(77min + nmax)bo
(p + 1)57712nameaxEmax

(6 - ]-)(77max + nminp)b(]T
That is, Algorithm|1| using Exponential BS has the convergence rate

[Polynomial LR (6))].

O \/1T> [Constant LR , Cosine LR , Polynomial LR @}
i ENVi@)=1 3V
elo:T 10) Tl) [Diminishing LR ]
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Theorem (Theorem [A.1)) indicates that, with increasing batch sizes such as Polynomial BS and
Exponential BS , Algorithm [1| using each of Constant LR , Cosine LR 7 and Polynomial LR (@
has the convergence rate O(%), in contrast to Theorem

3.3 Increasing batch size and increasing learning rate scheduler

This section considers an increasing batch size and an increasing learning rate:
by < b (t € N) and 7y < Mg (t S N). (12)

Example of b; and 7, satisfying is as follows: for all m € [0 : M] and all ¢ € S, = NN
[Shso KuBr Spto Kk Br) (So = NN [0, KoEy)),

t

[Exponential growth BS and LR] b; = § {Zkﬂ K’“Ek—‘ bo, e ="y {Z"O KkEk—‘ 705 (13)

where 0,y > 1 such that v? < §; and E,, and K,, are defined as in . We may modify the parameters
~v and § to be monotone increasing parameters in t. The total number of steps when both batch size and
learning rate increase M times is T' = Z 0 KmEm

Lemma [2.1] n 1| leads to the following theorem (the proof of the theorem and the result for Polynomial growth

BS and LR are given in Appendix [A.3]).
Theorem 3.3 (Convergence rate of SGD using (12])) Under the assumptions in Lemma Algo-
rz'thm using (@ satisfies that, for all M € N,

28~ ) 1 Lo? S
min B [|V£(8,))?] < 2o L ¥ Z
te[0:T—1] 2 — Limax Zt o M 2~ Limax Zt o = b
BT Vr

where T, Emax, and Kyax are defined as in Theorem [3.3, Ewin = infaren infcon Em < +00, Knin =
. . 2 2
infaren inf 0.0 Km < 400, § = & < 1,

# Vv KmaxEmaxnofs
nOKmlnEmlnfyM’ T o KmmEmmbO(l - )'YM '

Br <
That is, Algorithm[1] has the convergence rate

[rgun E[|Vf(0:)]] = <1M) [Exponential growth BS and LR (13))].
te v

S

Under Exponential BS , using Exponential LR QD improves the convergence rate from O(—1) with
Constant LR H Cosine LR , or Polynomial LR @ (Theorem to O(\ﬁ_M) (v >1).

3.4 Increasing batch size and warm-up decaying learning rate scheduler

This section considers an increasing batch size and a decaying learning rate with warm-up for a given
T, = nyvfio K, E > 0 (learning rate increases M, times):

by <bepr (t€N) and 7 <meyr (E€ [T — 1)) Anerr <y (8> To)- (14)

Examples of b; in are Exponential BS and Polynomial BS . Examples of 7; in can be
obtained by combining with 7@. For example, for all m € [0: M] and all t € S,,,

[Constant LR with warm-up] 1, = < v ’VZ;”U K’“EJ no  (m € [My]) (15)
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and [Cosine LR with warm-up]

v {ZMK’“EJWO (m € [My])
N = nmin+w (16)
m—1 m—1
t_Z— KkEk m
x {1+ cos Ep+ |—&=k=0 280 B —— m € [M,, : M),
{reon(S e |2 Jam) e

where E,, is the number of warm-up epochs, fmin > 0, Jmax = YM* 10, and v is defined as in .

Theorems [3.2] and [3.3] lead to the following theorem.

Theorem 3.4 (Convergence rate of SGD using ) Under the assumptions in Lemma Algo-
m’thm using satisfies that, for all M € N,

20£(80) — f*) 1 Lo? — 2
min E[|VF(0))7] < U L + >
te[0:T—1] 2 — LMmax Zt oMt 2— Lijinax Zt =0 "t t=0
BT Vr

where b; is the exponential growth batch size defined by (./ with 6,7 > 1 such that v < §; Kumin, Kmax,
FErin, and Ewax are defined as in Theorems[3.4 and [3.3;

0 1
+
nOKminEminPyMw Thmax (T - Tw)
BT < 5} 2

[Constant LR ((15))]

+ Cosine LR (|16]
nOKminEmin’YMw (nmin + nmax)(T - Tw) [ . }

KmaxEmaan(s 577mameaxEmax
Constant LR (|15
v < ) KinBainbo (1= )y (5= Dby (T~ T,,) (Constant LR (13
= KmaxEmaxno(; 257712nameaxEmax

[Cosine LR (16))].

= +
KminEminbO(l - V)VM’“ (5 - 1)(7]min + nmax)bO(T - Tw)
That is, Algorithm[1] has the convergence rate

1
VI =T,

te[Ty:T—1]

min E[[|[Vf(6,)[]] = O < ) [Constant LR (15, Cosine LR (T6))].

Since Algorithm [1{ with and uses increasing batch sizes and decaying learning rates for t > Ty, it
has the same convergence rate as using @D in Theorem Meanwhile, since Algorithm |1| with and
uses the warm-up learning rates for ¢ € [T,,], Algorithm [1| speeds up during the warm-up period, based
on Theorem As a result, for increasing batch sizes, Algorithm [I] using decaying learning rates with
warm-up minimizes E[||V f(6;)||] faster than using decaying learning rates in Theorem

3.5 Comparisons of our convergence rate results with existing ones

This section compares our results with the existing analyses of SGD for nonconvex optimization. The
comparisons are summarized in Table Let us consider the case where a learning rate n; is constant,

e, n = n > 0. Theorem 11 in chaman & l\r"[alherbel, |2020|) indicated that SGD with n = O(ﬁ)

satisfies min,ejo.7—1) E[|V f(0:)]|] = (T1/4) Corollary 1 in (Khaled & R1chtdnk|7 |2023[) showed that, under
a weaker condition (the expected smoothness (Khaled & Richtarik] [2023] Assumption 2)) than (AZ), SGD
with n = O(ﬁ) satisfies min,co.r—1] E[||V f(0)]|] = O(%) Meanwhile, Theorem [3.2|indicates that SGD
with n = O(%) and an increasing batch size b; satisfies mingejo.7—1) E[[|V f(6:)]]] = O(\ﬁ) For example, let
us consider training a DNN on the CIFAR-100 dataset (n = 50000) over E = 200 epochs. When the batch
size by is 2°, the number of steps per epoch is K = f—} = 1563. Hence, we have T'= K E = 312600. Since
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the Lipschitz constant L of Vf would be large, SGD with too small a learning rate n = O(ﬁ) would not

work in practice. Meanwhile, since the learning rate n = O(%) is constant with respect to T, SGD with

n= O(%) will work well.

Table 1: Comparisons of convergence analyses of SGD for nonconvex optimization. “Noise" in the Gradient
column means that SGD uses noisy observation, i.e., g(@) = Vf(0) + (Noise), of the full gradient V f(8),
where o2 is the upper bound on (Noise), while “Mini-batch" in the Gradient column means that SGD uses
a mini-batch gradient V fp,(0). “Strong Growth" in the Additional Assumption column means that there
exists k > 0 such that, for all t € N and all i € [n], |[Vfi(0,)| > ||V f(68:)]?>. “Bounded Gradient" in the
Additional Assumption column means that there exists G > 0 such that, for all ¢t € N, E[||V f5,(6:)]] < G.
“Polyak-f.ojasiewicz" in the Additional Assumption column means that there exists p > 0 such that, for all
t €N, |[V£(0:)]? > 20(f(0:) — f*), where f* is the optimal value of f over R%. “Armijo" in the Learning
Rate column means that 7, satisfies the Armijo line search condition. “Step Decay" in the Learning Rate
column means that 7, is step decay. “Polyak" in the Learning Rate column means that 7, is a stochastic
Polyak learning rate. Here, we let E||V fr|| := mincjo.r—1) E[||Vf(0:)]]] and E[fr] := E[f(07)]. v € (0,1)
and c is a positive constant.

Reference and Theorem Gradient Additional Assumption Learning Rate Convergence Analysis
Scaman & Malherbe||2020) Noise — n=0 (ﬁ) E|Vfr| =0 (77)
Vaswani et al.| 2019 Noise Strong Growth Armijo E|Vfr|=0 (%)
Wang et al.| 2021 Noise Bounded Gradient Step Decay E|Vfr| =0 <\¢i;/?>
(ILoizou et al.l |2021b Noise Polyak-Lojasiewicz Polyak Elfr] = f* + 0T +o?)
Khaled & Richtdrik| 2023)  Mini-batch n=0(s=) EIVl=0(%)

TheoremE (Case (ii)) Mini-batch —— n=0 (%) E|Vfr|=0 (#)

Theorem [3.3|(Case (iii)) Mini-batch ~—— Increasing E|Vfr| =0 (71%>

Theorem E (Case (iv)) Mini-batch ~—— Warm-up E|Vfr|=0 (%)

The previous results reported in (Vaswani et al] [2019; [Wang et al] [2021} [Loizou et all [2021]) showed
convergence of SGD with specialized learning rates, such as the Armijo line search learning rate, step decay
learning rate, and stochastic Polyak learning rate. Our results indicate that SGD using practical learning
rates, such as the cosine-annealing and polynomial decay learning rates, minimizes min,cp.r—1 E[[|V f(0;)]]
in the sense of a rate of convergence O(%) (Theorem . In addition, we would like to emphasize that,
using an increasing batch size, SGD with an increasing learning rate accelerates SGD with a constant learning
rate (Theorem . The acceleration of SGD is guaranteed during 7, < 2 and the convergence of SGD is

L
not, guaranteed during 7, > % Therefore, using a warm-up constant learning rate (Case (iv)) is appropriate

to guarantee fast convergence of SGD.

3.6 Comparisons of convergence rates under nonconvexity with ones under convexity

While Sections [3.1}{3.5| consider the case where f is not always convex, this section considers the case
where f is convex and compares convergence rates under nonconvexity with ones under convexity. Table
summarizes the convergence rates under nonconvexity and convexity. The left column in Table 2] is obtained
from the results in Sections [3.1H3.4] (see also the table in Section[[). A well-known performance measure of
Algorithmwhen [ is convex is mingepo.r—1) E[f(0;) — f*] (Garrigos & Gower} [2024] Section 9.1), where f*

10
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is the optimal value of minimizing a convex function f. The right column in Table [2| gives the results under
convexity of f. An upper bound of min,cpo.7—1]E[f(0;) — f*] for the sequence (0;) generated by Algorithm
can be obtained by using Lemma that is, the result when f is not always convex (the proof of the
results for convexity is given in Appendix . While the performance measure min,ejo.7—1) E[||V f(6;)]]]
for nonconvexity of f differs from the measure min,eo.7—1) E[f(8;) — f*] for convexity of f, Algorithm
under, for example, Case (ii) with convexity of f satisfies that min,co.7—1] E[f(0:) — f*] = O(ll)

Table 2: Comparisons of convergence rates under nonconvexity (Left) with ones under convexity (Right).
f* is the optimal value of the minimization problem for a convex function f, and Case (i)-Case (iv) are
the learning rates and batch size schedulers considered in Section (see the table in Section [I| for the
definitions of b, v, M, and T')

Schedular  Upper bound of min E[||Vf(0t)|\] Upper bound of mlTn ) E[f(60:) — 7]
(f is nonconvex)'€107~ (f is convex) €T

cae () 0[5} o(x+1)

—
—_

Case (ii) O

(
Case (iii) 0<
(

Case (iv) O

4 Numerical results

We examined training ResNet-18 on the CIFAR100 dataset by using Algorithm [1 (see Appendices and
for training Wide-ResNet-28-10 on CIFAR100 and ResNet-18 on Tiny ImageNet). The experimental
environment was two NVIDIA GeForce RTX 4090 GPUs and Intel Core i9 13900KF CPU. The software
environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2. The code is available at https://
anonymous .4open.science/r/IncrBothBSLRAccelSGDarXiv.

We set the total number of epochs E = 300, the initial learning rate 1y = 0.1, and the minimum learning
rate Nmin = 0 in and (@ The solid line in the figure represents the mean value, and the shaded area in
the figure represents the maximum and minimum over three runs.

Let us first consider the case (Figure l(a of a constant batch size (b = 27) and decaying learning rates
7 defined by (3} @) discussed in Section [3.1) where “linear" in Figure [I| denotes Polynomial LR @ with
p = 1. Figure [I(b)—(d) indicate that using Dlmlmshmg LR . ) did not work well, since it decayed rapidly
and was very small (Figure [Ifa)). Figure[L[b)—(d) also indicate that Cosine LR () and Polynomial LR (6]
performed better than Constant LR , as promised in the theoretical results in Theorem and .

Next, let us consider the case (Figure [2f l ) of doubly increasmg batch size every 30 epochs from an initial
batch size by = 23 and decaying learning rates 0y defined by (3 @ Flgurel indicates that the learning
rate of Polynomial LR, @ updated each step (“linear" and polynomlal (p=2. 0)") becomes small at an early
stago of training. This is because the smaller the batch size b; is, the larger the required number of steps

= [ b | per epoch becomes and the smaller the decaying learning rate 7, becomes. Hence, in practice,
1ncreasmg batch size is not compatible with Polynomial LR @ updated each step. Meanwhile, Figure [2| l(a
indicates Constant LR (3 (“constant") and Cosine LR (5]) (“cosine") were compatible with increasing batch
size, since Constant LR and Cosine LR updated each epoch maintain large learning rates even for
small batch sizes. In particular, Figure [2b)—(d) indicate that using Constant LR (3] performed well.

11
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Figure 1: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing
for SGD to train ResNet-18 on CIFAR100 dataset.
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Figure 2: (a) Decaying learning rates and doubly increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18
on CIFAR100 dataset.

Let us consider the case (Figure a)) of doubly increasing batch size (6 = 2) every 30 epochs and increasing
learning rates defined by Exponential growth LR with g = 0.1 . The parameters 7 in the increasing
learning rates considered here were (i) v &~ 1.080 when Nmax = 0.2, (ii) v & 1.196 when npax = 0.5, and
(iii) v &~ 1.292 when nyax = 1.0, which satisfy the condition 42 < § (= 2) to guarantee the convergence of
Algorithm [I] (see Theorem [3.3). Figure [3|compares the result for “constant" in Figure [2] with the ones for the

12
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increasing learning rates (i)—(iii). Figure [3|(b) indicates that the larger the learning rate 7, was, the smaller
the full gradient norm ||V f(6.)| became and that Algorithm [I| with increasing learning rates minimized the
full gradient norm faster than Algorithm [1| with a constant learning rate (“constant” in Figures [2] and .

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100

for Trai

L
Full Gradient Norm of Empirical Loss
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(a) Learning rate n; and batch size b versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs
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Figure 3: (a) Increasing learning rates (fmax = 0.2, 0.5, 1.0) and doubly increasing batch size every 30 epochs,
(b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

Let us consider the case (Figure a)) of a doubly increasing batch size and decaying learning rates (Constant
LR and Cosine LR, (b)) with warm-up based on Figure a). Figure b) indicates that using decaying
learning rates with warm-up accelerated Algorithm [[]more than using only increasing learning rates in Figure
b) and only a constant learning rate in Figure b).

From the sufficient condition 72 < § to guarantee convergence of Algorithm [1| with both batch size and
learning rate increasing (Theorem , we can set a larger v when § is large. Since Algorithm [1| has
an 0(7_%) convergence rate (Theorem , using triply (y = 1.5 < v§ = V/3) and quadruply (y =
1.9 < V/§ = V/4) increasing batch sizes theoretically decreases ||V f(8,)]|| faster than doubly increasing batch
sizes (y = 1.080 < V0 = 2 when nma = 0.2; Figure . Finally, we would like to verify whether the
theoretical result holds in practice. The scheduler was as in Figure a) with 79 = 0.1 and nmax = 0.2, where
schedulers were modified such that batch sizes belong to [23,2?] and learning rates belong to [0.1,0.2] (e.g.,
be = adl5) + b and . = cyl5) 4+ d, where a ~ 0.2077, b ~ 7.7923, ¢ ~ 0.00267, and d ~ 0.09733 when
d =3 and v = 1.50 and a ~ 0.0155, b ~ 7.9844, ¢ ~ 0.00031, and d ~ 0.09969 when § = 4 and v = 1.90).
Figure [ffa) and (b) indicate that the larger the increasing rate of batch size was (the cases of § = 3,4 after
180 epochs), the larger the increasing rate of the learning rate became (v = 1.5,1.9 when 6 = 3,4) and the
smaller ||V f(6.)| became. That is, using increasing learning rates based on tripling and quadrupling batch
sizes minimizes ||V f(0.)| faster than using increasing learning rates based on doubly increasing batch sizes
(see also Appendix[A.6)). Figure[5|c) and (d) indicate that using § = 3,4 was better than using = 2 in the
sense of minimizing f(6,.) and achieving high test accuracy.

13
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Figure 4: (a) Warm-up learning rates and doubly increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18
on CIFAR100 dataset.
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Figure 5: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full gradient norm
of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR100 dataset.

To better understand the impact of increasing both batch size and learning rate, we compare the full gradient
norm across the four cases Case (i)-Case (iv) using ResNet-18 on CIFAR-100 in Figure [§] The results
highlight that Case (iv), which employs both a larger batch size and a warm-up learning rate, exhibits
the most favorable convergence properties. Specifically, Case (iv) achieves a significantly reduced full
gradient norm throughout training compared to the other cases, confirming its effectiveness. Building on
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these observations, we validate the scalability of Case (iv) on the larger ImageNet dataset. The results,
presented in Appendix further highlight the advantages of this scaling strategy in improving training
efficiency and accelerating convergence on large-scale tasks.
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Figure 6: Performance comparison of best configurations for full gradient norm using Case (i) to Case (iv)
to train ResNet-18 on CIFAR100 dataset.

5 Conclusion

This paper presented theoretical analyses of mini-batch SGD under batch size and learning rate schedulers
used in practice. Our results indicated that using increasing batch sizes and decaying learning rates guaran-
tees convergence of mini-batch SGD and using both batch sizes and learning rates that increase accelerates
mini-batch SGD. That is, using increasing batch sizes and decaying learning rates with warm-up guarantees
fast convergence of mini-batch SGD in the sense of minimizing the expectation of the full gradient norm of
the empirical loss. This paper also provided numerical results to support the analysis results that increasing
both batch sizes and learning rates accelerates mini-batch SGD. One limitation of this study is that the num-
bers of models and datasets in the experiments were limited. Hence, we should conduct similar experiments
with larger numbers of models and datasets to support our theoretical results.
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A Appendix

We here give the notation and state some definitions. Let N be the set of natural numbers. Define [n] :=
{1,2,--- ,n}and [0:n] :={0,1,--- ,n} for n € N. Let R? be the d-dimensional Euclidean space with inner
product (61,6>) = 66, (01,05 € RY) and its induced norm 6] := /(6,6) (0 € RY). Let RY := {0 =
(91792,...,6‘d)T S RY: 0; >0 (’L S [d])} and RiJr = {0 = (01,927...,9d)—r S R¢: 0; >0 (Z S [d])} The
gradient of a differentiable function f: R? — R at @ € R? is denoted by Vf(0). Let L > 0. A differentiable
function f: R? — R is said to be L-smooth if the gradient Vf: R? — R? is Lipschitz continuous, i.e., for
all 01,0, € R ||[Vf(0,) — VF(0)| < L||0; — 02]]. Let (x4),(y:) C Ry be sequences. Let O be Landau’s
symbol, i.e., y; = O(xy) if there exist ¢ € Ry and ¢y € N such that, for all ¢t > tg, y; < cxy.

A.1 Example of stochastic gradient satisfying (A2) under (A1)

Suppose that (A1) holds and a random variable £ follows a uniform distribution. Then, let us show that
(A2) holds, that is, for all 8 € RY, (i) E¢[V f¢(0)] = V£(0) and (ii) Ve[V fe(0)] < 0.

(i) Since ¢ is independent of 8, we have that

B (VO] =~ S VAO) =V [ 3 i | 0)=vr0)
] ]

i€n i€n
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(ii) Let 0 := 6 — %Vfl(H) The descent lemma and f* = inf{f;(8): @ € R?} € R ensure that

i < £0) < £1(8) + (V£(0).0 - 0) + [0~ o)
1
2L;

— .(0) - Liinv.fi(mw v

1 2
— 1:(6) = 5 IV O,
which implies that, for all i € [n],
IV A0 < 2Li(fi(0) — f}) < 2LiM;,
where M; := sup{fi(0) — f7: 8 € R%}. Hence, from (i),

Ve[V e(0)] = Ee[|V fe(0) — V£(O)[°]
= E[|[Vfe(0)[%] — 2Ec[(V £e(6), VF(9))] + Ec[[[V £ (6) ]
= E¢[[Vfe(0)1°] = 2| VF(O)II* + IV £(O)II?

= S IVAOI - V56
]

i€n

2
< 2N LM,
< n;:} ;

A.2 Proofs of Proposition [A.T] and Lemma [2.1]

The following proposition holds for the mini-batch gradient.

Proposition A.1 Let t € N and & be a random wvariable that is independent of &5 (j € [0 : t —1]); let
0; € R be independent of &;; let V fp,(0;) be the mini-batch gradient defined by Algorithm where fe,
(i € [be]) is the stochastic gradient (see Assumption[2.1(A2)). Then, the following hold:

2

Ee, [vat(et)‘ét—l} =V f(0;) and Ve, {vat(at)‘ét—l] < Z—t,

where Eg, [-|ét_1] and Ve, [‘|ét—1] are respectively the expectation and variance with respect to & conditioned

on&—1=§&-1.

The first equation in Propositionindicates that the mini-batch gradient V fp, (0;) is an unbiased estimator
of the full gradient V f(6;). The second inequality in Proposition indicates that the upper bound on the
variance of the mini-batch gradient V fg,(6;) is inversely proportional to the batch size b;.

Assumption A3) holds under sampling with replacement, where £ = (&1, &2, ,&,) | are independent and
identically distributed (i.i.d.). In practice, however, sampling without replacement is commonly used to im-
prove data efficiency and diversity. Under sampling without replacement, minor dependencies arise between
samples, particularly when b =~ n. These dependencies reduce the conditional variance Ve, [V f5, (6;)|€:_1],
resulting in behavior that closely resembles full-batch gradient computation. On the other hand, when
b < n, the dependencies introduced by sampling without replacement become negligible, and the behavior
of the mini-batch gradient closely approximates that of i.i.d. samples. Under such conditions, the theoretical
properties of Assumption AS) are approximately satisfied. Therefore, in large-scale datasets, the approx-
imation of i.i.d. is sufficient to ensure that the theoretical predictions remain valid under sampling without
replacement. The experimental results (Appendix further confirm the validity of this approximation,
as the observed behavior aligns closely with the theoretical predictions.

The proof of Proposition is based on standard results from the literature on SGD analysis (Garrigos &
2024] Section 6).

18
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Proof of Proposition .' Assumption (AB) and the independence of b; and &; ensure that

by
ét711| = Eﬁt [[i Z vfft,i(et)
=1

which, together with Assumption E(AQ and the independence of &; and &;_1, implies that

Ee, |V f5,(00)

6

bt
étl] = %ZEEM [vfﬁtl(et)
=1

Ee, [V/,(6)|€] = ; ZW (6) =V 1(60). (a7
Assumption A3), the independence of b; and &;, and imply that

Ve, |V, (00)

€1 = Fe, [IVf5.(00) V(0

bt

1

Egt |: bi
=1

-> Ve (6~ Vi(8)
bt

> (Ve (6:) — V£(6)))

i=1

6]

2

il
2
ét—l] .

From the independence of & ; and & ; (¢ # j) and Assumption A2) (i), for all ¢, 5 € [b] such that ¢ # 7,

1

= —E
b% &t

Ee, . [(Vfe,,(0:) — Vf(6:),V fe, ,(8) — V f(8:))|€—1]

= (B¢, ,[Vfe, (00)|€—1] — Ee, [V f(8:)|€—1], V fe, ,(8:) — V £(8,))
=0.

Hence, Assumption [2.1(A2)(ii) guarantees that

Ve, [V/2.(60)

~ 1 be A )
] = g B 19500 - wr@ ] < G = T

which completes the proof. O
Proof of Lemma : The L-smoothness of f implies that the descent lemma holds; i.e., for all t € N,

L
F(Oer1) < f(8:) +(Vf(0r), 0041 — 0t) + 5 [[0r41 — 0.,
which, together with 0;41 := 0; — 7.V f,(0:), implies that
T2
F(Bri1) < F(8) = mi(V(8),V 5, (6.)) + |V f, (8] (18)
Proposition guarantees that

Be, [[V/5.80I [é-1] = Ee, [IV 5,(60) = V£(8) + V £(6)|* |11

= Ee, [[V£5,(0)) = VS0 |é
28, (V16— V16, V10| + B [Ivs@0 6]
<G TIviel”.

19
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Taking the expectation conditioned on &; 1 = ét,l on both sides of 7 together with Proposition and

, guarantees that, for all t € N,

Ee, [£(0i1)|éi1] < £(8) — mEe, [(VF(8), Vs, <0t>>\ét_1} L (19 15,0017 6,1

Lot ( Ivs6II).

< 100 = [V 5O + =

Hence, taking the total expectation on both sides of the above inequality ensures that, for all ¢t € N,

Lo®n?
2b;

L
(1= 5 ) B [I9s@)1F] <E15(60) ~ (0] +
Let T € N. Summing the above inequality from ¢ = 0 to t = T'— 1 ensures that
L Lo?
Z (1554 E[I97001%] < BLrten) - fien] + 55

which, together with Assumption A1) (the lower bound f* := %Zie[n] fr of f), implies that

T-1 = 5 T-1
L Lo? 2
w (1= B E[I9s0017] < o0 - 1+ -
t=0 t=0 ¢
Since 1 € [Mmin, Pmax), We have that
L77max Lo? — 77152
(1 5 > Z mE [va(et)” ] f(6) = £~ + 5 b,
t=0 t=0
which, together with 7; € [Hmin, Mmax] C [0, %) implies that
T-1 * = T—-1
2(f(6o) — f7) Lo? z
> nE[IVO)F] < ==+ %
t=0 2 - anax 2 — an"mx i—o t
Therefore, from Zth_Ol n # 0, we have
2(f(60) = f*) 1 Lo? 1 2b 1
min  E[||VF(6)|*] < =% g+ 5 ST
t€[0:T—1] 2= Limax Y ;o 2~ Limax Zt o T

which implies that the assertion in Lemma [2.1] holds.

A.3 Proofs of Theorems

We can also consider the case where batch sizes decay. For simplicity, let us set a constant learnlng rate g =

7 > 0 and a decaying batch size by = where b > 0. Then, we have that Vi < Zf 01 blt = T“)

t+17

— +00

(T — +00), which implies that convergence of mini-batch SGD is not guaranteed Accordlngly, thls paper

focuses on the four cases in the main text.
Proof of Theorem[3.1} Let Nmax = 7.
[Constant LR (3))] We have that
T-1
Br = 1 i Vi = Zt 0 772 _n
Zt o nT’ bZt o ! b

20
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[Diminishing LR (4)] We have that

which implies that

1 1
Br
Xf;f;%ﬁf 2n(vT +1—1)
We also have that
T-1 T—1
1 dt
— <1 —— =1+logT
t+1"_+A frl s
t=0
which implies that
1
Vp = UZt o ﬁ < n(1+logT)

b, e 20(VT+1-1)

[Cosine LR (5))] We have

2 2 K| FE

KE-1 o ) - ) KE-1 ¢ -
Z N = WminKE + Thmax TImin KE + TImax Thmin Z cos \‘J =
t=0 t=0

From Y. 1% cos| £ ] T = K — 1, we have

KE—-1 P
Z COS{KJE:K—I—COSWzK.

t=0
We thus have
KE-1 o o
S om :nminKEerKEJFMK
t=0
1
== 5{(77min + nmax)KE + (nmax - nmin)K}

(nmin + nrnax)KE
B .

%

Moreover, we have that

KE-1

Z T]t2 = nr2ninKE + TImin (nmax - 77m1n
t=0

oPﬂm

£ Cemlil)

KE-1
+ (nmax ;nmin)Q (1 + cos \‘ J >
t=0

which implies that

KE-1

t=0 t=0

KE-1 KE-1
(nmax - 77111111)2 t ™ (’r]max - nmin)Q 2 t
+ 5 tz:; cos X B + 1 ; cos K

21

KE-1
z /‘ X t i
nt = Nminmax X E + (nnn+mm)KE + nmm(nmax nnun) E Ccos \‘KJ E

(22)
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From
KE KE
t 1 t
Zcos2 {KJ % = 3 <1 + cos2 \‘KJ g)
t=0 t=0
1
= i(KE +1)+ -
= KE +1
= ,
we have
Ki_lcosz i T _ @—l—l—coszw— @
K|E 2 2
t=0
From , we have
min + max - max — //min - max — //min KE
S o= (min - Mevs)” g 4y e — i) K 4 = in)” g (e = in)” KB
Pt 4 4 2
2' 2 min’//max 2 max — //min max min
_ Flinin + Zhminthmax + 3inax g (max — Nonin) (Dmae + Thoin) -
8 2
Hence, we have
1 2
Br = - <
thﬁ 1 Mt (nmin + nmax)KE
and
KE-1
_ t=0 ntz 377r2nin + 2NminMmax + 377r2nax Tlmax — Thmin
Vr = Sk, S 4 b T E
b tho nt (nmin + nmax)

[Polynomial LR (6))] Since f(x) = (1 — 2)? is monotone decreasing for = € [0,1), we have that
1 1 T-1 " P
(1—2)Pdx < = <1) ,
I o

which implies that
1 T-1 t\?
T 1—a)Pdz < 1—=1 .
Jyo-re<3(1-7)

Since fol(l —x)Pdx = ﬁ, implies that

Accordingly,

T-1

T-1 N
Z ne = (nmax - nmin) Z <1 - T) + nminT
t=0

t=

T
> max — Dmin) — + minT
(n " )p e

22
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Thmax — "lmin
=\ - + Mmin T
( p+1 ! )

_ Tlmax + ThminP
p+1

Since f(z) = (1 — x)? and g(x) = (1 — 2)?? are monotone decreasing for = € [0, 1), we have that

1 2= t\? 1 1 1= P 1 1
— 1—— — 1 —z)Pdz, — 1—— — 1 —z)%Pd
Tt_()( T> <T+/0( x) x,TZ< T> <T+/O( x)Pdx,

which imply that

T-1 ¢ p 1
> (1> <1+T/ (1 — z)Pdz,
T 0

t=0

Z_é (1 - ;)Qp <1+ T/01(1 — x)*Pda. (24)

Since we have that fol(l —z)Pde = 17 and fo (1 —2)*de = 5, ensures that

— T-1 2p

T t T
Z 1—— <1+— 1— = 1 .
poar p+1’ T 2p+1

= t=0
Hence,
T—-1 — —
Z . = (nmmx 77m1n Z (1 - ) nmax - nmm Z (1 - ) Nmin + nfninT
t=0 =0
< ( )14+ T +n2. T
nmaX nmln 2 nmax ’rlmln p + 1 nmln ’rlmin
_ nl%ﬂax(p +1)(2p+T+1 + 2NmaxNminpT + ﬁmm( (T - 1) —3p - 1)
(p+1)(2p+1) '
Therefore,
By — 1 < p+1
Zt 0 t (nmax + nminp)T
and
Vi = Zt 2.t=0 "t 77t
b Zt ot
_ Tlmax(P + 1)(2p +T + 1) + 2nmaxnmiin —+ 771211111(21)2(T — 1) — 3p — 1)
(2]9 + 1)(77max + nminp)bT
_ 2p2771211in + 2pnminnmax + (p + 1)77r2nax (p + 1)(2p + 1>nr2nax — (p + 1)(2p + 1)nr2mn
(20 4 1) (Pmin + Nmax)b (2p + 1) (Pmin + Mmax)bT
N 2p27712nin + 2pNminmax + (P + 1)771211ax (p+ 1)(77r2nax - 77r2nin)
(2p + 1)(p77min + nmax)b (pnmin + nmax)bT
This completes the proof. O

We will now show the following theorem, which includes Theorem [3:2}

Theorem A.1 (Convergence rate of SGD using (9)) Under the assumptions in Lemma Algo-
m'thm using (@ satisfies that, for all M € N,

* = T-1
mn E[viE) < WL 1 Lt 1 s

te[0:T—1] 2_anax Zt o™ 2_L77mdx Zt o Mt +—o bt ’

BT VT
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where T = Zﬁf:o KmEm, Enax = SUP ey SUPmefo:m] Em < 00, Kmax = SUP ey SUP o) Km < +00,
a =min{a, b}, Br is defined as in (%), and Vr is given by

mameaxEmax
3nac—T [Constant LR "
m XKm XEm X . o . .
;ZC (a\/jTal — i) [Diminishing LR (4])]
Vr < 672 KumaxE ([Polynomial BS (T10)])
ac(j;ax. _T_la; m)a; [Cosine LR ()]
= min max
3 1 2' Km xEm by .
(2;;?77 )nmf:n ~ap)T 2 [Polynomial LR (@])]
6 InameaXEmaX
W [Constant LR (3))]
6nmaXKmaXEmax . . .
[Diminishing LR ({))]
Vr < 2(62_57’21)0 (Knix—'_Erln;( 1 ([Exponential BS (T1])))
G- 1;{’;"' F—T [Cosine LR (5))]
min max
(p+ 1)6n1?[1aXKmaXEmaX .
CE I —e [Polynomial LR (@])].

That is, Algom'thm using each of Polynomial BS (@) and Exponential BS has the convergence rate

1
0 ﬁ) [Constant LR (3], Cosine LR (), Polynomial LR (@])]
min E[|Vf(6)] = 1
€0:T—1] O(-x [Diminishing LR (4)].
4

Proof of Theorem : Let M e Nand T = Z%:o K Ey,, where Ewax = SUP pyen SUP o) Bm < +00,

Ko = SUP p7eN SUPne[0:M] K, < 400, Sy :=NnN [O,K()Eo), and S,, = NN [ ZL:_Ol KkEk,ZZLZO KkEk)
(m € [M]). Let us consider using (10). Let max = 1 and @ = min{a, by }.

[Constant LR (3)] Let m € [M]. We have that

1 1 1
E - — E = < E c
tESm bt t€Sm | am | —m—t—o— +b t€Sm atme | —=t—o
K En 0 K En

k=0 k=0

<

Z 1 < 1 KmEm S KmaxEmax 1 S KmaxEmax 1

e acme — acme act me ac me
and
Z l _ Z i < KmaxEmax
bt b8 - a‘ '

teSo teSo

Accordingly, we have that

M 1 KmaxEmax M 1 Kma.XEmax Jroo 1
>3 e St (37 L) Sl (1 37 L)

m=0teS,, m=1 m=1 (25)
3KmaxEma.x
— QC .
Hence, we have that
1 = 772 377KmaxEInax
VT = T—1 bf S 7CT .
Do M=o U &

24
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[Diminishing LR ()] From (2F]), we have that

1 n
Vr = ==
t=0 tn+1 =0 (t+1)b;
T-1
< n Z l < 377KmaxEmax )
ToVTHI-1) = b T 200(VT +1-1)

[Cosine LR (5)] The cosine LR is defined for all m € [0 : M] and all ¢t € S,,, by

m—1 m—1
- Thmax — TJmin t— Zk:() K Ej, 7T
nt_nmin+2{l+COS<ZEk+\‘I(m E .

k=0

We have that

T—-1 2 —
i Z l
= t=0 b’
which, together with , implies that
jf 1 377mameaxEmax
— bt CL(
Hence, we have that
T—-1 2 2
VT ]' 77t < 6nmameaxEmax

Zt o ™M t+=o bt - QC(nmin—*—nmax)T'

[Polynomial LR (6)] We have that

-1 o9 T—-1 p 2

1 t 1

t = T {(nmax - nmin) (1 - ) + nmin} S nrznax T
P by T by

’ﬂ
=

&

t

which, together with , implies that

Il
<

T-1

il ac
Hence, we have that
T—1
V- L 1 30+ Dniax Kmax Finasx
Zt oM =g b T @ (Mmax + hminp) T

Let us consider using . Let nmax = 1.
[Constant LR (3)] We have that

1 1 KmaxEmax
Z Z [ = Z 5mb0 < 5mbo ’

teSm teESm m

0

m

t
k=0 KkEk—‘ bO

which implies that

Jz”: 1 KuaxPmax sn 1 _ KuaxBiaxd (26)
by bo om bo (6 — 1)
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Hence, we have that
Vi — — 1 nKmaxEmaxé
Zt 0o t=0 by T

[Diminishing LR ()] From (26]), we have that

T—1 T—1
VT — 1 Z 772 < n l < nKmaxEmax(S
Sio A Db T 2(VTH T 1) S b T 2(VT 1 - 1)bo(6 — 1)
[Cosine LR (5)] We have that
T-1 2 —
DL i3
t=0 "t t=0 b’
which, together with , implies that
i=o bt bo(0 —1)
Hence, we have that
T—
2 r2n XKmaxEmax5
Vo= e 3 <

- 1)(77min + nmax)bOT '

Ztont t=0 be

[Polynomial LR (6)] We have that

T-1 .- -1y i\ P 2 -1,
-t = 7 max — //min 1—-= min < 2 '
5 Zb{n n )( 7+ _nmaxzbt7
t=0 t=0 t=0
which, together with , implies that
= 1152 < 771%13)(]:{rnax-Emax(s
o - b0(5 — 1)
Hence, we have that
nt < )nmameaxEmax(s
Vr =
Zt 0 77t =0 bf )(nmax+77m1np)b0
a
Example of b; and n; satisfying is as follows:
[Polynomial growth BS and LR]
v (o sl ow) - (o[ gmms] ) .
=\lam | sm s e = | e2M | =77 )
t ' 2 =0 KBk ’ " ’ > ko KB o

where aq,a2 > 0; ¢c; > 1, ¢co > 0 such that ¢; — 2¢o > 1.
We next show the following theorem, which includes Theorem [3.3]
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Theorem A.2 (Convergence rate of SGD using (12)) Under the assumptions in Lemma Algo-
rithm using (@ satisfies that, for all M € N,

min B[vp0)) < SO0 L) L Lo e
te[0:T—1] ’ T 2 — Limax Zt o Mt — Limax Zt o M=o by’
BT VT
where T = Zf\:{:o K Em, Emax = SUppenSUPmepo:m] Em < 400, Emin = infayreninfyejo.nn Em < +00,

Kmax = SupMeNsupme[O:M] Km < 400, Kmin = infMENinfme[O:M] Km < 400, ﬂ = min{a2a7]0}: ﬁ =

max{az,no}, b = min{ay,bo}, ¥ = %2 <1,

1
e [Polynomial growth BS and LR (27))]

C: . . 14c
Br<{1 QKnu%EmmM >
TR B A [Exponential growth BS and LR (13))]
10 min Lmin Y
2Km XEm'IX 1 2(.2
2 aE 7752 b_: ]C\/QI)1+02 [Polynomial growth BS and LR ]
VT S KmaxEma;noa

[Exponential growth BS and LR (13])].

Kmin EminbO (1 - ’?)VM

That is, Algorithm[1] has the convergence rate

1
0] 1+c2> [Polynomial growth BS and LR (27))]
min E[VFO=] M
€l ] M) [Exponential growth BS and LR (13)].
’7 2

Proof of Theorem c Let M e Nand T = Z o KmEnm, where Epax = supy ey supme[o v Em < +00,
Kmax = SUDPpseN Supme[O:M] Km < +o0, SO =N ﬂ [O,KOEO) and Sm =Nn [ KkEkvzk oKkEk)
(m € [M]).

[Polynomial growth BS and LR (27)] We have that

= - (om ] 0) 2 e

tESm tESm teSm

which, together with = min{as, 7o}, implies that

Sz S (mA 1) > 4% Ko EBain (m + 1)

tESm tESm
Hence,
M+1
N°? Kmin Emin 1
Z Z N > 7] 2 KminEmin Z m° 2>=M tez
1+co
m=0teS,,

We also have that

202
-t
i _ s (o | o)

Cc1 o 1 \C1
teESm bt tESm, ((le ’th“'-‘ + bo) tESm (alm + bO)
kLE

k=0

IN
(]

g
3

_|_

3
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Let 77 = max{as, no} and b = min{a,bg}. Then,

M 2 72C2 =2C2 M+1 1

M

c 1 2¢co

S Kl T S U T
m=0teS,, t = m=0 (m + ) v

< 2Kmax EjmaxﬁQC2
> bcl

m01—202
m=1

Hence,

]. 1+02

Br = <
Zt o M QC2KminEminM1+c2

and
1 Tzl i? < 2KmaxEmax(1 + 62) 2ez
bs

Vr = < .
Zt o M t=0 ‘K'mlnE‘mmﬂchl]\41—i_c2

[Exponential growth BS and LR (13])] We have that

M _t M
Z Z Ne = Z Z 5 [ Do KkE k’“no > 1o K minFrmin Z’Ym

m=0tESm m=0tES, m=0
’VM -1 > nOKminEmin’YM - nOKminEmin’yM
y-1 72 6

= nOKminEmin

and

M 2 M 2 2 M om
Sy oy v RPN ) gt
- — max max m
m=0teS,, be m=0tES,, m{ ¢ -‘ bo m=0 0
PR DN Y
M 2\ ™ 2
< KmaxEmax@ (’y) < KmaxEmax@ 1 A
b() 0 0 b() 1-— Y
where 4 = % < 1. Hence,
1 0
Br = <
ZtT 01 Mt UOKminEmin’YM
and
T-1 o
VT Z 7771: S KmaxEmaan§ .
Zt 0 nt =0 bt [(minElmimbO(1 _7)7

Proof of Theorem[3.f} Theorem [3.4] follows immediately from Theorems [3.2] and

A.4 Proofs of Convergence Results under Convexity

Using Lemma we have the following lemma.
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Lemma A.1 Suppose that Assumptz'on holds and f is convex and consider the sequence (6;) generated
by Algorithm with N € [Nmin, Mmax] C [0, %) satisfying ZtT;(f n # 0, where L := %Zié[n] L;, i* =
%Zie[n] fr, 0* € R is a global minimizer of f, and f* := f(0*). Then, for all T € N,

min B [f(6;) — f~]

te[0:T—1]
_ (|90 O e (/(60) f*)) 1L <1+ Lo ) Yo b
- 2 2 — LT]max Zt 0 Mt 2 2 — anax Zt 0 m
— —
BT VT

where I denotes the total expectation, defined by E := E¢ Eg, ---Ee,.
Proof: Since [|0; — 65> = [|61]|> — 2(01, 85) + ||02] holds for all 8,0, € R?, we have that, for all ¢ € N,
101 — %] = [[(6: — 6%) — 1.V f15,(8)|”
= 160 — 0%[|* — 20(0, — 0",V f5,(61)) + 0} ||V S, (8)]*-

Taking expectation conditioned on & 1 = ét,l on both sides of the above equation, Proposition and
(19) ensure that, for all ¢t € N,

1011 — 6% €1 |
= [6: — 0" — 2Ee, |(6: — 0",V f5,(6,))

€ior |+ mEe, [IIV £5, (0011

€]
%112 * 2 o? 2
<161~ [~ 20.(61 - 0%,V 00) + 22 (5 + VS @017
Since convexity of f implies that, for all 81,8, € RY, f(8;) > f(02) + (6; — 05,V f(02)), we have that

R 2
éa] <002 = 2ns(00 — 1)+ a2 (- + 195012,

Taking the total expectation on both sides of the above inequality gives that, for all ¢ € N,

Ee, [16041 - 67

E[[00s1 — 6°]2] <E [|6: — 0°17] — 20E [£(8:) — ] + 1 (‘,’)t TE [Vfwt)nz]) .

Let T e N. Summing the above inequality from t =0tot =T —1 gives that

2 ZntE — [ < 60— 0|7+ o* Z e o Zm V(6117

where 7; < fmax is used. Since Lemma [2.1] (see (20])) guarantees that

T— * = T-1
2(f(6o) — f7) Lo? n?
nE [[VF(8:)]%] < I To % -,
=0 — Llmax — Limax j— Ot

H

we have that

T—1 N o S
S nEf0,) - £ < 1= O | e [(80) 2 [ o <1+Lﬂmax> r
t

- 4+ —
2 2 - anax 2

Therefore, from Zthfol n # 0, we have
min K [f(6;) — f*]

te[0:T—1]
- <||00 —0*[* | Mnax(f(80) - f*)) U (1 o Dt ) ig b
B 2 2- anax Zt o Mt 2 2— anax Zt o Mt
which completes the proof. O

The right column in Table [2] can be obtained by using Lemma and Theorems 1134
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A.5 Training ResNet-34 on ImageNet: Evaluating Case (iv)
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Figure 7: (a) Warm-up decaying learning rates (fmax = 1.0) and increasing batch sizes based on § = 2, (b)
full gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to
train ResNet-34 on ImageNet dataset.

A.6 Training ResNet-18 on CIFAR10 and CIFAR100 using Doubling, Tripling, and Quadrupling Batch

Sizes
Learning Rate and Batch Size Schedular ResNet-18 on CIFAR10
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Figure 8: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d4,7) =
(2,1.4),(3,1.7), (4,1.9) satisfying v/§ > ) every 100 epochs, (b) full gradient norm of empirical loss, (c)
empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on CIFAR10 dataset.
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(a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d,7) =

(2,1.4),(3,1.7), (4,1.9) satisfying v/d > v) every 100 epochs, (b) full gradient norm of empirical loss, (c)
empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on CIFAR100 dataset.

A.7 Comparisons of Case (ii) with Cases (iii) and (iv) for Training ResNet-18 on CIFAR100 using

Increasing Batch Size based on § = 3
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Figure 10: (a) Increasing or warm-up decaying learning rates (fmin = 0.01) and increasing batch sizes based
on ¢ = 3, (b) full gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing

for SGD to train ResNet-18 on CIFAR100 dataset.

Figures compare Case (ii) with Cases (iii) and (iv) for training ResNet-18 on CIFAR100 using increasing

batch size based on ¢ = 2.
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A.8 Comparisons of With vs. Without Replacement for Training ResNet-18 on CIFAR100

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100
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Figure 11: (a) Increasing or warm-up decaying learning rates (fmax = 1.0) and increasing batch sizes based
on ¢ = 2, (b) full gradient norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing
for SGD to train ResNet-18 on CIFAR100 dataset.

A.9 Training Wide-ResNet-28-10 on CIFAR100
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Figure 12: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing
for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.

32



Under review as submission to TMLR

Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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Figure 13: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-28-10
on CIFAR100 dataset.
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Figure 14: (a) Increasing learning rates (nmax = 0.2,0.5,1.0) and increasing batch size every 30 epochs, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to
train Wide-ResNet-28-10 on CIFAR100 dataset.
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Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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Figure 15: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-28-10
on CIFAR100 dataset.
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Figure 16: (a) Increasing learning rates and increasing batch sizes based on 6 = 2,3, 4, (b) full gradient norm
of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train Wide-ResNet-
28-10 on CIFARI100 dataset.
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A.10 Training ResNet-18 on Tiny ImageNet
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Figure 17: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and constant
batch size, (b) full gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing
for SGD to train ResNet-18 on Tiny ImageNet dataset.
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Figure 18: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on Tiny
ImageNet dataset.
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Learning Rate and Batch Size Schedular ResNet-18 on Tiny ImageNet
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Figure 19: (a) Increasing learning rates (9max = 0.2,0.5,1.0) and increasing batch size every 30 epochs, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to
train ResNet-18 on Tiny ImageNet dataset.
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Figure 20: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient norm of
empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on Tiny
ImageNet dataset.
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Figure 21: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full gradient norm
of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on

Tiny ImageNet dataset.
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