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Abstract

Reasoning models have demonstrated exceptional performance in tasks such as
mathematics and logical reasoning, primarily due to their ability to engage in
step-by-step thinking during the reasoning process. However, this often leads to
overthinking, resulting in unnecessary computational overhead. To address this
issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-
Thought) or Short-CoT by utilizing either a THINKING or NOTHINKING mode.
Simultaneously, Early Exit determines the optimal stopping point during the itera-
tive reasoning process. Both methods seek to reduce the computational burden. In
this paper, we first identify Mode Selection as a more challenging variant of the
Early Exit problem, as they share similar objectives but differ in decision timing.
While Early Exit focuses on determining the best stopping point for concise rea-
soning at inference time, Mode Selection must make this decision at the beginning
of the reasoning process, relying on pre-defined fake thoughts without engaging in
an explicit reasoning process, referred to as zero-step thinking. Through empirical
studies on nine baselines, we observe that prompt-based approaches often fail due
to their limited classification capabilities when provided with minimal hand-crafted
information. In contrast, approaches that leverage internal information generally
perform better across most scenarios but still exhibit issues with stability. Our
findings indicate that existing methods relying solely on the information provided
by models are insufficient for effectively addressing Mode Selection in scenarios
with limited information, highlighting the ongoing challenges of this task. Our
code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.

1 Introduction

Recent advances in large reasoning models (LRMs), such as DeepSeek-R1 [12], OpenAI o1 [14],
QwQ [32], and others [11, 1, 31], have demonstrated significant progress in complex reasoning
capabilities by increasing inference-time compute [23]. These models achieve success through long
chain-of-thought (CoT)[36] processes, which involve behaviors such as exploration, self-reflection,
and verification[18, 7, 8]. However, this strength can also become a limitation. Previous studies have
shown that reasoning models often tend to overthink, exploring additional reasoning paths even after
arriving at a correct answer [2, 27, 34].

The adaptive nature of human cognition commonly switches between System 1 and System 2 based
on task difficulty. Inspired by this, recent research on Adaptive Thinking seeks to enable a single,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

∗Corresponding author

https://github.com/Trae1ounG/Zero_Step_Thinking


Question: Let $N$ denote the number of ordered triples of 
positive integers $(a,b,c)$ such that $a,b,c\\leq3^6$ and 
$a^3+b^3+c^3$ is a multiple of $3^7$. Find the remainder 
when $N$ is divided by $1000$. <think>

Alright, so I have this problem where I need to find..
Alternatively, perhaps I can consider the problem..
Wait, that seems too straightforward. Let me check...
Alternatively, perhaps Hensel's lemma can help here?...
Alternatively, perhaps it's better to accept that...
Wait, perhaps I can use generating functions with...
Wait, but if the mapping from (a,b,c) to...
Wait
</think>[Conclusion]

Thinking: 
Okay, so I have this problem 
where I need to calculate...
Wait, that seems too 
straightforward. Let me check 
again....
I don’t think I’m mixing up any 
details here...
</think>[Conclusion]

NoThinking:
Okay, I 
think I have 
finished 
thinking.
</think>  
[Conclusion]

Early Exit

Question: Find the number of ordered pairs $(x,y)$, 
where both $x$ and $y$ are integers between $-100$ 
and $100$, inclusive, such that $12x^{2}-xy-
6y^{2}=0$.<think>

Static Monitor at
Zero-step Thought

Mode Selection

Iterative Monitor 
at i-step Thought 

Monitor Method Continue Thinking Stop Thinking

Figure 1: Illustration of Early Exit and Mode Selection. Early Exit employs an iterative monitor to
decide whether to stop reasoning at the end of each step in the thought process. In contrast, Mode
Selection operates prior to explicit reasoning, determining the optimal thinking strategy at zero-step.
While both methods can leverage the same monitoring mechanisms, they differ in their timing: Early
Exit monitors iteratively during the reasoning process, whereas Mode Selection monitors only once
at the beginning to append </think> and terminate the reasoning process.

powerful reasoning model to operate in two distinct modes: its native long-CoT mode for complex
problems and an efficient short-CoT mode for simpler tasks [46, 33, 20]. Many of these approaches
utilize reinforcement learning to train reasoning models to think more concisely and switch modes
adaptively [45, 5, 21].

Another efficient reasoning solution is Early Exit, which aims to determine the optimal stopping
point in the reasoning process by truncating it to directly produce an answer [39, 15, 44]. This
approach helps LRMs avoid redundant reasoning paths that may lead to overthinking and potentially
performance degradation. Existing studies have demonstrated that reasoning models can inherently
perform short-CoT in NOTHINKING mode by appending fake thoughts directly (e.g., <think>
Okay, I think I have finished thinking. </think>), thereby significantly reducing token usage while
maintaining strong performance [22, 16, 17, 47].

In this study, we focus on a specific subtype of Adaptive Thinking called Mode Selection, which
determines the preferred prompt mode without relying on an explicit reasoning trajectory. This process
can be regarded as zero-step thinking [19]. Interestingly, we find that Mode Selection is conceptually
similar to Early Exit but differs in decision timing and is significantly more challenging. As shown in
Figure 1, Early Exit operates iteratively by taking previously generated thinking tokens into account
to make decisions at the end of each reasoning step. This iterative process not only delivers better
performance but also reduces token usage due to choosing optimal stop points [39, 44, 10]. In contrast,
Mode Selection relies solely on input tokens with human-crafted fake thoughts to determine the
optimal mode at the outset of the reasoning process, making it a more difficult task due to the limited
information available. Intuitively, both methods employ a monitoring mechanism Exit(·) to facilitate
exit decisions. This observation raises our core research question: Can existing well-performing
Early Exit methods effectively address the harder Mode Selection problem?

To better understand this question, we conduct empirical studies using several methods from Early
Exit, categorized into two distinct types: Prompt-based and Internal States-based methods, which
utilize different prompt templates and internal model information for Mode Selection respectively.
We rigorously evaluate these methods across diverse reasoning benchmarks, including GSM8K [3],
MATH-500 [13], AIME25 [4], and GPQA-D [25], covering both mathematical and scientific rea-
soning tasks. Our experiments reveal that prompt-based approaches often fail due to their limited
classification capabilities when provided with minimal information. In contrast, internal states-based
methods, which leverage internal model information, perform better in most scenarios but still
struggle with stability. Through the analysis of various metrics, including ROC-AUC, Expected
Calibration Error (ECE) [24], and Brier score [9], we observe that existing evaluation metrics are
insufficient for fully assessing and explaining the underlying reasons behind the performance of
different methods. This highlights that Mode Selection is a highly challenging task, requiring deeper
investigation into the model’s internal mechanisms of THIKNING and NOTHINKING to achieve
effective solutions. We summarize our contributions as follows:
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• We first formalize the Mode Selection task as a more challenging variant of the Early Exit problem,
which shares similar objectives but differs in decision timing. Both are unified under the same
Exit(·) function.

• Through extensive experiments across various datasets, we observe that prompt-based approaches
often fail due to their limited classification capabilities, whereas internal states-based methods
generally perform better but still struggle with stability.

• By utilizing metrics such as ROC-AUC, ECE, and Brier score, we uncover the instability in method
decisions and the model’s inherent abilities, emphasizing the persistent challenges of this task.

2 Preliminaries of Early Exit in LRMs

Overthinking is a critical phenomenon in large reasoning models (LRMs), where model performance
initially improves with extended reasoning chains but deteriorates beyond a certain point [2, 27, 34].
This implies that thinking longer is not always better. Existing Early Exit methods aim to determine
the optimal moment to terminate the reasoning process. In reasoning-focused LRMs, these models
function as System 2, where the generation process is divided into two stages: thinking and conclusion,
collectively referred to as THINKING mode [30, 14]:

THINKING : [Prompt] + <think>︸ ︷︷ ︸
Input

+ [Thoughts] + </think>+ [Conclusion]︸ ︷︷ ︸
Generate

(1)

Here, <think> and </think> serve as the delimiters for the beginning and end of the reasoning
process, respectively. [Thoughts] represents the detailed reasoning process, while [Conclusion]
contains the concise answer. Formally, the reasoning segment [Thoughts] reveals the trajectory of
problem-solving, commonly referred to as Chain of Thought (CoT) [36]. At a micro level, temporally
consecutive tokens in [Thoughts] can be grouped into short semantic, logical, and grammatically
coherent chunks Tj :

[Thoughts] = T := [T1, · · · , Tn] (2)

Each reasoning chunk in this paradigm is auto-regressively generated by conditioning on the question
Q and the preceding reasoning token: Ti = LRM(Q,T<i). For simplicity, the Early Exit method
performs Exit(Q,T<i) based on the question and the reasoning trajectory up to T<i. This determines
whether to terminate the reasoning process at chunk Ti by appending </think>. The fundamental
technique in Early Exit is predicting whether the current information is sufficient to solve the question.
To this end, we collect several methods capable of expressing their confidence in the current reasoning
process. Considering existing methods in LRMs, we categorize them into three types based on
their information sources: Prompt-based and Internal States-based. Each type implements the
Exit(Q,T<i) function differently, leveraging distinct resources to determine when to stop reasoning.

2.1 Prompt-based Early Exit

FLASHTHINK [15] employs a separate verification model, πϕ, parameterized by ϕ, along with a
specific prompt. This model is used to decide when to stop reasoning by iteratively querying at the
end of each thought:

si = πϕ(Q,T<i, [Verification Prompt]) (3)

where if si is true will stop the following thinking process.

PROMPT CONFIDENCE (PROMPTCONF) [42] employs a prompt-based method, enabling LRMs to
generate confidence scores during the reasoning process based on specific rules. At the end of the
process, these scores are mapped into one of ten bins, ranging from “Almost no chance (0–0.1)” to
“Almost certain (0.9–1.0).” Each bin includes both a linguistic descriptor (e.g., “Almost certain”) and
its corresponding numerical probability Ci (e.g., “0.9–1.0”) to improve interpretability. The decision
to terminate reasoning is then made as follows:

Ci = πθ(Q,T<i, [Confidence Prompt]) (4)

si = I(Ci > λ) (5)

where πθ represents the LRM parameterized by θ, λ is the confidence threshold, and I(·) is an
indicator function that returns true when Ci exceeds λ. The method sequentially evaluates each

3



intermediate answer in the reasoning trace, using the prompt to output confidence scores for the
temporary answers.

DYNASOR-COT [6] leverages a "Probe-In-The-Middle" approach, which appends carefully designed
guidance prompts at intermediate stages of the reasoning process to explicitly elicit the model’s
current answer (e.g., "Oh, I suddenly got the answer to the whole problem, Final Answer: \boxed{}").
This method monitors LRMs at regular intervals (e.g., every 32, 64, or 128 tokens) to check for
consistent answers across multiple intervals. Once consistent answers are detected, the reasoning
process is terminated.

2.2 Internal States-based

PROBE CONFIDENCE (PROBECONF) [44] trains a MLP-based probing model to detect the inter-
mediate answer correctness. Specifically, the probing model takes the last layer hidden states at the
last token position of Ti as input hi, output a probability Ci of intermediate correctness by:

Ci = MLP(hi) (6)

where the decision to exit is made by comparing the obtained confidence with the empirical threshold
λ, as described in Equation 5.

DEER [39] monitors the action transition points as potential early exit points (e.g. wait) to inducing
intermediate answer, which incorporated the answer delimiters (i.e., \boxed{}) into the prompt to
facilitate a more precise identification of the trial answers, as follows: Ai = LRM(Q,T<i, I) where
Q denotes the input prompt, T<i denotes already generated thoughts, I denotes the answer induced
prompt and Ai = [a0,i, a1,i, · · · , al,i] is the trail answer.

The confidence evaluator module computes the confidence of the induced trial answer. We take the
maximum predicted probability of each token as its confidence. For multi-token trial answers, the
overall confidence is computed as the mean confidence across all constituent tokens as follows:

p(at,i) = softmax(M(Q,T<i, I, a<t,i)), Ci =

 l∏
j=1

max
at,i∈V

p(at,i)

1/l

(7)

where the M is the LM head of LRMs. Finally, the decision to exit early is made by comparing the
obtained confidence Ci with the empirical threshold λ, as described in Equation 5.

ENTROPY [41] proves that each reasoning step contributes to reducing entropy over the answer space
and increasing confidence in the correct answer. ENTROPY uses the similar trick in DEER to obtain
the trail answer Ai and compute the conditional entropy at step i:

Ci = −
l∑

t=1

P (at,i | Q,T<i, I, a<t,i)logP (at,i | Q,T<i, I, a<t,i) (8)

where P (at,i | Q,T<i, I, a<t,i) is estimated from the model’s output probabilities. After each
intermediate reasoning step, the model computes the average entropy Cavg

i = 1
l

∑l
i=1 Ci over the

answer space. Reasoning is terminated early once the average entropy falls below a confidence
threshold, which is parameterized by a hyperparameter α ∈ [0, 1]:

si = I(Cavg
i ≤ α · 1

eln2
) (9)

3 Mode Selection As a Harder Early Exit Problem

As introduced in Section 2, we construct a unified view of early exit. In this section, we first introduce
the NOTHINKING mode as an alternative option for mode selection [22] representing short-CoT.
Recent studies have highlighted NOTHINKING as an effective method for adaptive reasoning, which
can significantly reduce token usage while preserving performance [19, 17].
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3.1 NoThinking Mode

NOTHINKING is designed to bypass the explicit reasoning process of LRMs by carefully crafting
input prompts that already include the end-of-thinking delimiter </think> within pre-defined fake
thoughts. This methodology has been adopted by systems like Qwen3 [38] and DeepSeek-V3.1 [30]
to enable hybrid inference in LRMs. By using fake thoughts, many LRMs are able to save token
usage while maintaining strong performance on simpler tasks. The process follows this pattern:

NOTHINKING : [Prompt] + <think>+ [Fake Thoughts] + </think>︸ ︷︷ ︸
Input

+ [Conclusion]︸ ︷︷ ︸
Generate

(10)

where the [Fake Thoughts] for T fake
0 fall into two categories: (i) an empty block, represented as

<think></think>, and (ii) predefined thinking-completion statements (e.g., <think> Okay, I think
I have finished thinking. </think>), which are intended to encourage LRMs to skip the reasoning
process. We refer to this as Zero-Step Thinking.

3.2 Mode Selection formulates as Early Exit Problem

In this paper, we present an interesting perspective: Mode Selection can be viewed as a more
challenging variant of Early Exit for performing adaptive reasoning. As illustrated in Figure 1, the
key difference between these two approaches lies in their decision-making processes. Early Exit
decides when to stop reasoning dynamically during the reasoning process, whereas Mode Selection
operates as a static method, making decisions before explicit reasoning begins at the zero-step.

For simplicity, Early Exit iteratively performs Exit(Q,T<i) at each reasoning step, while Mode
Selection executes Exit(Q,T fake

0 ) by replacing dynamically generated [Thoughts] with pre-defined
[Fake Thoughts]. This means that Mode Selection lacks any question-specific reasoning information
when making decisions, making the task significantly more difficult. In this study, we conduct a
systematic empirical investigation to explore whether reasoning models can effectively "think" using
only zero-step thoughts.

4 Experiments

4.1 Experiments Setup

Datasets. We evaluate model performance across 4 benchmarks, including three mathematical
reasoning benchmarks: GSM8K [3], MATH-500 [13], and AIME 2025 [4], as well as one scientific
reasoning benchmark: GPQA Diamond [25]. Among the mathematical reasoning benchmarks,
GSM8K and MATH-500 are generally regarded as relatively simple reasoning tasks, whereas AIME
2025 is considered more challenging.

Metrics. We selected Accuracy (Acc), Token Number (Tok), and NOTHINKING Ratio (NR) as the
evaluation metrics. Acc denotes the final answer accuracy. Tok denotes the average generation length
per sample to evaluate the cost. NR denotes the choose of NOTHINKING mode ratio.

Backbone LRMs. We conducted experiments using the open-source DeepSeek-R1-Distill-Qwen
series of models (1.5B, 7B, and 32B), which are distilled from DeepSeek-R1 [12]. These models
utilize Qwen2.5-1.5B [38] as the backbone and are fine-tuned on 800k high-quality reasoning
samples. This fine-tuning process enables the models to achieve superior performance on logical and
mathematical reasoning tasks.

Baselines. In this work, we aim to systematically analyze whether it is possible to use zero-step
thoughts to perform Mode Selection. We evaluate six baseline methods discussed in Section 2,
including FLASHTHINK, PROMPTCONF, DYNASOR-COT, PROBECONF, DEER, and ENTROPY.
Additionally, we introduce three new baselines: THINKING, NOTHINKING, and PRE-JUDGE [43].
THINKING directly evaluates the performance of LRMs without any external intervention. NOTHINK-
ING incorporates pre-defined fake thoughts to bypass explicit reasoning. PRE-JUDGE prompts the
LRMs to decide whether reasoning is required, based on carefully designed input prompts. For

5



Table 1: Experimental results across various types of reasoning models are presented. "Acc" denotes
accuracy, "Tok" represents the token count, and "NR" refers to the NOTHINKING mode rate. ↑
indicates that higher values are better, while ↓ indicates that lower values are preferable. Additionally,
the baselines are categorized as follows: 1 represents basic baselines, 1 represents prompt-based
methods, and 1 indicates internal states-based methods.

Method GSM8K MATH-500 AIME25 GPQA-D
Acc↑ Tok↓ NR Acc↑ Tok↓ NR Acc↑ Tok↓ NR Acc↑ Tok↓ NR

DeepSeek-R1-Distill-Qwen-1.5B
THINKING 85.7 (0.0) 2,455 (0.0%) 0% 83.8 (-0.0) 5,445 (0.0%) 0% 33.3 (-0.0) 15,214 (0.0%) 0% 24.8 (-0.0) 9,818 (0.0%) 0%
NOTHINKING 72.7 (-13.0) 261 (-89%) 100% 68.6 (-15.2) 1,411 (-74.1%) 0% 20.0 (-13.3) 6,614 (-56.5%) 100% 18.2 (-6.6) 945 (-90.4%) 100%
FLASHTHINK 85.7 (0.0) 2,455 (0.0%) 100% 83.8 (-0.0) 5,445 (0.0%) 100% 33.3 (-0.0) 15,214 (0.0%) 100% 24.8 (-0.0) 9,818 (0.0%) 100%
PROMPTCONF 85.0 (-0.7) 2,272 (-7.5%) 6.6% 82.0 (-1.8) 5,159 (-5.3%) 8.0% 40.0 (+6.7) 9,731 (-36.0%) 66.7% 24.2 (-0.6) 8,598 (-12.4%) 16.2%
DYNASOR-COT 84.2 (-1.5) 2,103 (-14.3%) 20.3% 80.8 (-3.0) 4,752 (-12.7%) 23.2% 33.3 (-0.0) 14,227 (-6.5%) 6.7% 23.7 (-1.1) 8,959 (-8.7%) 15.2%
PRE-JUDGE 77.8(-7.9) 1,269 (-48.3%) 59.3% 81.8 (-2.0) 5,100 (-6.3%) 12.0% 33.3 (-0.0) 15,214 (0.0%) 100% 22.7 (-2.1) 5,193 (-47.1%) 55.6%
PROBECONF 84.4(-1.3) 2,299 (-6.4%) 9.2% 82.6 (-1.2) 4,941 (-9.3%) 13.8% 40.0 (+6.7) 11,596 (-23.8%) 20.0% 22.7 (-2.1) 7,399 (-24.6%) 26.8%
DEER 85.3 (-0.4) 2,276 (-7.3%) 9.7% 82.6 (-1.2) 5,067 (-6.9%) 11.6% 33.3 (-0.0) 8334 (-45.2%) 53.3% 25.3 (+0.5) 9,274 (-5.5%) 9.6%
ENTROPY 85.3 (-0.4) 2,278 (-7.2%) 8.5% 82.6 (-1.2) 5,199 (-4.5%) 11.0% 40.0 (+6.7) 12,784 (-16.0%) 26.7% 28.3 (+3.5) 6,268 (-36.2%) 43.4%
DeepSeek-R1-Distill-Qwen-7B

THINKING 92.3 (-0.0) 1,687 (-0.0%) 0% 93.0 (-0.0) 4,100 (-0.0%) 0% 40.0 (-0.0) 15,024 (-0.0%) 0% 47.5 (-0.0) 8,447 (-0.0%) 0%
NOTHINKING 87.6 (-4.7) 268 (-84.1%) 100% 78.0 (-15.0) 781 (-81.0%) 100% 26.7 (-13.3) 1,352 (-91.0%) 100% 19.2 (-28.3) 688 (-91.9%) 100%
FLASHTHINK 92.3 (-0.0) 1,687 (-0.0%) 0% 93.0 (-0.0) 4,100 (-0.0%) 0% 40.0 (-0.0) 15,024 (-0.0%) 0% 47.5 (-0.0) 8,447 (-0.0%) 0%
PROMPTCONF 89.5 (-2.8) 691 (-59.0%) 72.9% 82.6 (-10.4) 1,776 (-56.7%) 76.8% 33.3 (-6.7) 8,301 (-44.7%) 60.0% 29.3 (-18.2) 4,093 (-51.5%) 54.5%
DYNASOR-COT 92.1 (-0.2) 1330 (-21.2%) 30.0% 89.2 (-3.8) 2,993 (-27.0%) 34.6% 40.0 (-0.0) 13,587 (-9.6%) 13.3% 31.3 (-16.2) 4778 (-43.4%) 53.0%
PRE-JUDGE 91.3(-1.0) 1,211 (-28.2%) 37.1% 90.0 (-3.0) 3,381 (-17.5%) 26.6% 40.0 (-0.0) 14,875 (-1.0%) 6.7% 38.9 (-8.6) 6,925 (-18.0%) 20.7%
PROBECONF 91.6(-0.7) 1,394 (-17.4%) 18.1% 92.2 (-0.8) 3,950 (-27.5%) 8.4% 46.7 (+6.7) 11,025 (-26.6%) 26.7% 47.0 (-0.5) 8,190 (-3.0%) 6.6%
DEER 92.6 (+0.3) 1,476 (-10.8%) 18.1% 93.2 (+0.2) 3,912 (-4.6%) 8.4% 40.0 (-0.0) 14,603 (-2.8%) 6.7% 47.0 (-0.5) 8,269 (-2.1%) 4.0%
ENTROPY 92.2(-0.1) 1,505 (-7.2%) 18.1% 92.6 (-0.4) 3,871 (-5.6%) 8.4% 40.0 (-0.0) 12,784 (-14.9%) 26.7% 48.0 (+0.5) 6,693 (-20.8%) 26.8%
DeepSeek-R1-Distill-Qwen-32B

THINKING 95.8 (-0.0) 1,453 (-0.0%) 0% 94.0 (-0.0) 3,462 (-0.0%) 0% 66.7 (-0.0) 11,155 (-0.0%) 0% 62.1 (-0.0) 6,690 (-0.0%) 0%
NOTHINKING 95.9 (+0.1) 1,280 (-11.9%) 100% 94.2 (+0.2) 3,550 (+2.5%) 100% 60.0 (-6.7) 13,933 (+24.9%) 100% 62.6 (+0.5) 6,576 (-1.7%) 100%
FLASHTHINK 95.8 (-0.0) 1,453 (-0.0%) 0% 94.0 (-0.0) 3,462 (-0.0%) 0% 66.7 (-0.0) 11,155 (-0.0%) 0% 62.1 (-0.0) 6,690 (-0.0%) 0%
PROMPTCONF 95.6 (-0.2) 1,338 (-59.0%) 83.1% 94.0 (-0.0) 3,488 (+0.8%) 64.2% 60.0 (-6.7) 11,295 (+1.3%) 26.7% 61.6 (-0.5) 6,557 (-2.0%) 31.3%
DYNASOR-COT 95.7 (-0.1) 1,384 (-7.9%) 33.7% 93.8 (-0.2) 3,392 (-2.0%) 39.0% 66.7 (-0.0) 11,054 (-0.9%) 13.3% 63.6 (+1.5) 6,699 (+0.1%) 46.5%
PRE-JUDGE 95.7(-0.1) 1,317 (-9.4%) 37.1% 94.4 (+0.4) 3,467 (+0.1%) 39.4% 66.7 (-0.0) 11,155 (-0.0%) 0% 62.1 (-0.0) 6,669 (-0.3%) 0.51%
PROBECONF 96.0(+0.2) 1,389 (-4.4%) 38.1% 94.2 (+0.2) 3,413 (-1.4%) 20.8% 66.7 (-0.0) 11,182 (+0.2%) 20.0% 65.2 (+3.1) 6,312 (-5.7%) 90.4%
DEER 96.1 (+0.3) 1,342 (-7.6%) 53.4% 94.2 (+0.2) 3,419 (-1.2%) 20.8% 66.7 (-0.0) 10,947 (-1.9%) 53.3% 65.7 (+3.6) 6,686 (-0.1%) 73.7%
ENTROPY 95.7(-0.1) 1,423 (-2.1%) 38,1% 94.2 (+0.2) 3,512 (+1.4%) 40.8% 66.7 (-0.0) 10,567 (-5.3%) 46.7% 62.6 (+0.5) 6578 (-1.7%) 90.4%

all baselines, we first randomly sample instances for both THINKING and NOTHINKING with a
temperature setting of 0.6. Next, we use the existing baselines to determine the flag si for each
instance. In the main results, we manually select the best performance for each baseline by varying
the threshold λ. Detailed implementation details for each baseline are provided in Appendix A.

4.2 Main Results

In this section, we present the main experimental results and an in-depth analysis of how different
types of baselines perform on the Mode Selection task. Notably, different baselines exhibit varying
decision strategies. For FLASHTHINK and PRE-JUDGE, the model determines the mode at the zero-
step stage without relying on threshold-based decisions. In contrast, baselines like PROMPTCONF
and DYNASOR-COT, which depend on fixed discrete scores, consistently use the highest score
as the threshold λ. However, for baselines such as DEER, PROBECONF, and ENTROPY, fixed
thresholds fail to effectively capture their optimal performance. Consequently, we manually selected
the best-performing thresholds for these baselines in the main experiment.

Limitations of Prompt-based Methods. We begin by analyzing prompt-based methods, which
rely on a verification model to decide whether to terminate the reasoning process. Due to the
limited information available from fake thoughts T fake

0 , FLASHTHINK consistently determines that
LRMs must continue reasoning, leading to a 0% NR rate across all scenarios. Moreover, the
performance of other methods varies significantly across different datasets and base models. For
example, PROMPTCONF achieves notable token reductions while maintaining performance stability
on smaller models (e.g., a 6.7 accuracy improvement on AIME25 with a 36.0% reduction in token
usage for a 1.5B model). However, its effectiveness decreases as model size increases (e.g., 7B and
32B models). Similar trends are observed in DYNASOR-COT and PROMPTCONF. Nonetheless,
these two methods demonstrate improved stability by leveraging self-generated scores to evaluate
reasoning states.

Internal States Tell More Than Language. Due to the limited effectiveness of prompt-based
methods, we further explore approaches that leverage model internal states, including PROBECONF,
DEER, and ENTROPY. For manual selection of λ, we first retain thresholds that yield significant
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Figure 2: Trade-off between average accuracy and average output tokens across different methods
and three model sizes. Each point on the curve represents a distinct λ value from 0.1 to 1.0.

accuracy improvements. If such improvements are absent, we instead select thresholds that align
the accuracy or NR across these three methods, which facilitates more consistent analysis. As
shown in Table 1, on the 1.5B model, DEER and ENTROPY achieve better accuracy retention on
GSM8k and GPQA-D, while PROBECONF provides higher token compression in MATH-500 and
even yields a 6.7-point accuracy gain on AIME25 with 26.6% token compression. A similar trend
is observed for the 7B and 32B models. These methods consistently reduce token usage while
maintaining performance, and in some cases even surpass baseline results. For example, DEER
achieves superior performance on the 32B model, reducing token usage while preserving accuracy
and even outperforming THINKING. Overall, the results demonstrate that signals from the model’s
internal states provide more reliable indicators for selecting the appropriate mode.

5 Analyses

To better understand the behavior and effectiveness of these methods in the Mode Selection task, we
conduct detailed analyses. These include examining threshold dynamics (Section 5.1), evaluating
ROC-AUC scores across methods (Section 5.2), and analyzing the correlation between Ci and
NOTHINKING mode accuracy (Section 5.3).

5.1 Analysis of Threshold Dynamics

Since internal state–based methods primarily rely on a well-defined threshold λ, whose optimal value
varies unpredictably across tasks and models, we evaluate the trade-off between accuracy and cost
across three model scales: DeepSeek-R1-Distill-Qwen-1.5B, 7B, and 32B. For each model, we plot
average accuracy against average token cost by systematically sweeping the decision threshold λ.
The resulting trade-off curves are shown in Figure 2.

On the 1.5B model, all methods consistently outperform the random baseline, demonstrating their
ability to dynamically select appropriate reasoning modes to balance performance and computational
cost. In particular, PROBECONF and DEER show stronger performance than the other methods,
suggesting that leveraging internal states can yield a better Pareto frontier by achieving more favorable
accuracy–cost trade-offs across operating points.

A clear trend emerges in the accuracy–cost curves under varying thresholds. For the 1.5B model, mode
selection methods are clearly distinguished from the random baseline, highlighting their effectiveness
on smaller models. However, as the scale increases to 7B, the performance gap between methods
narrows. For example, even the best-performing method, PROBECONF, occasionally underperforms
relative to the RANDOM baseline, resulting in weaker separation. This phenomenon becomes more
pronounced with the 32B model, where the effectiveness of THINKING and NOTHINKING is reversed
(Table 1). On datasets such as MATH-500 and AIME25, NOTHINKING generates more tokens than
THINKING, because certain examples under the NOTHINKING strategy still produce lengthy outputs.
We hypothesize that this behavior arises because LRMs have internalized the reasoning process:
forcing them to bypass it with fake thoughts not only fails to elicit direct summarization but may also
cause the model to restart its reasoning. A similar trend has also been observed in QwQ-32B by [47].
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(a) ROC AUC comparison for DeepSeek-R1-Distill-Qwen-1.5B model.

(b) ROC AUC comparison for DeepSeek-R1-Distill-Qwen-7B model.

Figure 3: ROC-AUC comparison between different model sizes: (a) 1.5B and (b) 7B.

Table 2: Expected Calibration Error (ECE) and Brier score in 1.5B and 7B cross datasets. ↓ means
smaller is better.

Baselines GSM8K MATH-500 AIME25 GPQA-D
ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓

DeepSeek-R1-Distill-Qwen-1.5B
PROBECONF 0.122 0.215 0.078 0.215 0.447 0.320 0.407 0.322
DEER 0.218 0.262 0.198 0.270 0.224 0.203 0.297 0.250
DYNASOR-COT 0.235 0.261 0.188 0.264 0.200 0.259 0.441 0.391
DeepSeek-R1-Distill-Qwen-7B
PROBECONF 0.296 0.222 0.128 0.190 0.401 0.364 0.528 0.436
DEER 0.272 0.213 0.192 0.232 0.145 0.181 0.354 0.273
DYNASOR-COT 0.268 0.213 0.229 0.234 0.111 0.200 0.636 0.579

Therefore, in the following sections, we focus on the 1.5B and 7B models to gain deeper insights into
the factors influencing performance in mode selection.

5.2 Analysis of ROC-AUC across methods

In this section, we move beyond fixed thresholds and instead use ROC-AUC scores for more robust
comparisons. As shown in Figure 3, the results reinforce our earlier findings: these methods are
highly sensitive to both dataset and model, and no single approach consistently achieves optimal
performance across all scenarios. For example, on the 1.5B model, PROBECONF attains the highest
ROC-AUC score of 72.2 on AIME25, substantially outperforming other methods. However, this
advantage does not generalize to the 7B model or to other datasets. Overall, methods leveraging
internal states tend to outperform prompt-based approaches in most cases, suggesting that a model’s
intrinsic states encode richer information than the lossy representations conveyed by language.

5.3 Correlation Analysis of Ci with NOTHINKING Mode Accuracy

Since these methods rely on the NOTHINKING prompt template to compute a score Ci as the
mode selection indicator, we further investigate whether Ci correlates with answer correctness in
NOTHINKING mode. To this end, we report the corresponding Expected Calibration Error (ECE) [24]
and Brier score [9]. For a fair comparison, ENTROPY is excluded due to numerical issues.
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As shown in Table 2, different methods exhibit varying trends across datasets. Notably, PROBECONF
and DEER generally yield lower errors compared to the prompt-based method DYNASOR-COT.
Moreover, when examining how these metrics align with performance, we observe that the Brier score
on the 7B model is highly consistent with the ROC-AUC results in Figure 3. For example, DEER
achieves the lowest Brier score of 0.181 on AIME25, corresponding to the best ROC-AUC among all
methods. In contrast, these metrics appear less informative for the 1.5B model. We hypothesize that
smaller models suffer a substantial drop in performance under NOTHINKING mode, making both
internal and external scores less reliable for performance estimation.

6 Related Work

Adaptive Thinking for Overthinking. Recent studies have shown that longer CoT do not always
improve performance [2, 37], and in some cases may even lead to overthinking, particularly in
high-capacity models [16]. This has sparked growing interest in minimal or implicit reasoning
strategies [22], highlighting the need for more nuanced approaches and adaptive control of reasoning
depth through RL or related techniques [5, 40, 28]. In this work, we focus on a specific subtype
of adaptive thinking, namely mode selection, which aims to determine the appropriate reasoning
mode prior to explicit reasoning. Existing approaches either train a routing mechanism or directly
prompt the model to decide [19, 6, 29]. In contrast, we present a systematic analysis of how methods
developed for Early Exit can be leveraged to address this challenging problem.

Early Exit for Efficient Reasoning. Efficiency in LLMs is an active research area, with methods
that adapt the number of reasoning steps according to task difficulty, confidence, or resource con-
straints [26, 17]. Among these methods, Early Exit has proven especially effective: it determines an
optimal stopping point, reducing token usage and sometimes even improving performance. Formally,
this process can be abstracted as the function Exit(Q,T<i) [39, 15, 44]. Building on how such
methods are implemented, we focus on prompt-based approaches, which rely on the reasoning model
itself or an auxiliary model to decide whether to stop thinking based on textual information [15, 42, 6].
In contrast, internal state–based approaches leverage intrinsic signals from the model, such as hidden
states or output logits, to make this decision [39, 44, 41]. We extend this framework to the Mode
Selection paradigm, where the task becomes more complex as performing Exit(Q,T fake

0 ).

7 Conclusion

In this work, we introduce Mode Selection as a more challenging variant of the Early Exit problem,
where the model should determine the appropriate reasoning mode before explicit reasoning begins.
Through extensive empirical studies on multiple reasoning benchmarks, we find that prompt-based
approaches are often limited by weak classification capability under minimal information, while
internal states–based approaches achieve better performance but suffer from instability. Our analysis
further shows that existing evaluation metrics are insufficient to fully explain method behaviors,
highlighting the complexity of Mode Selection. Overall, our findings point to the need for more
robust approaches that better exploit model internal mechanisms of THINKING and NOTHINKING,
paving the way for future research on adaptive reasoning strategies in LRMs.
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A Implementation Details

A.1 Basic Setup

Decoding details. All evaluations were conducted in a zero-shot Chain-of-Thought (CoT) setting
using the prompt: "Please reason step by step, and put your final answer within \boxed." For decoding,
we used sampling with a temperature of 0.6. The ground-truth answers in our experiments consist
exclusively of well-structured numerical values or categorical options; accordingly, we applied
rule-based checks to verify mathematical equivalence. We set the maximum generation length to
16,384 tokens to ensure complete problem-solving attempts were captured.
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Benchmarks. To comprehensively evaluate the models’ reasoning capabilities, we employ four
representative benchmarks widely used in the field. GSM8K [3] is a carefully curated dataset of
1,319 elementary mathematics problems, specifically designed to assess multi-step reasoning in
foundational math tasks. Each problem typically requires two to eight sequential operations, relying
primarily on basic arithmetic applied across multiple intermediate steps. MATH-500 [13] is a
challenging benchmark composed of competition-level problems drawn from diverse high school
mathematics domains, including Prealgebra, Algebra, and Number Theory. For consistency with
prior research, we adopt the 500-problem subset originally curated by OpenAI. AIME 2025 [4]
consists of 30 problems selected from the 2025 American Invitational Mathematics Examination
(AIME). This prestigious contest evaluates mathematical reasoning across a broad range of domains,
including arithmetic, algebra, counting, geometry, number theory, probability, and other advanced
secondary school topics. Beyond math, we also evaluate on scientific reasoning tasks. GPQA [25]
is a PhD-level benchmark covering physics, chemistry, and biology. Domain experts with PhDs
in these areas achieve only 69.7% accuracy on this dataset [25], highlighting its difficulty. For our
experiments, we specifically use the highest-quality subset, GPQA Diamond, which comprises 198
questions.

A.2 Baselines Implementations

In this section, we provide the clear implementation of each baseline methods.

THINKING. The THINKING mode refers to the default chat template of existing LRMs [12, 38]
which only appends the <think> token to enable thinking process:

Prompt Template for THINKING

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>

NOTHINKING. The NOTHINKING mode proposed by [22] can significant reduce token usage
to achieve better performance for sampling more times. In recent studies, it has been seen as a
straight but useful baseline to stimulate short-CoT ability of LRMs by appending fake thoughts with
</think> to skip the thinking process. We use the same prompt template as follow:

Prompt Template for NOTHINKING

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>
Okay, I think I have finished thinking.
</think>

FLASHTHINK. FLASHTHINK utilizes another verification model πϕ to decide whether to skip
thinking. Following [15], we select Qwen2.5-7B-Instruct2 as πϕ to verify with the following prompt
where the {Question} will be replace with the real question Q:

2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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Prompt Template for FLASHTHINK

<BOS_TOKEN><|USER|>
Based on the following question and thought, please judge whether the thought is sufficient
to support solving the question. Please directly output yes or no instead of outputting other
content.
### Question
{Question}
### Thought
Okay, I think I have finished thinking.
<|Assistant|><think>

PROMPTCONF. PROMPTCONF utilizes prompt method to make LRMs themselves generate confi-
dence score during thinking process based on specific rule. The scores range from “Almost no chance
(0–0.1)” to “Almost certain (0.9–1.0)”, and we dirrectly append "0." to make LRMs output correct
pattern and we select the lower bound of the output range as final score:

Prompt Template for PROMPTCONF

<BOS_TOKEN><|USER|>
For the following question, classify your confidence into one of the following classes based
on how likely your answer is to be correct:
- "Almost no chance" (0.0-0.1)
- "Highly unlikely" (0.1-0.2)
- "Chances are slight" (0.2-0.3)
- "Unlikely" (0.3-0.4)
- "Less than even" (0.4-0.5)
- "Better than even" (0.5-0.6)
- "Likely" (0.6-0.7)
- "Very good chance" (0.7-0.8)
- "Highly likely" (0.8-0.9)
- "Almost certain" (0.9-1.0)
Each category reflects the probability that your answer is correct.
At the end of your output, format your answer and confidence as
Confidence: $SCORE
where SCORE is one of the probability ranges of the scores above.
Here is the question:
{Question}
<|Assistant|><think>
</think>
Confidence: 0.

DYNASOR-COT. DYNASOR-COT employs a carefully designed guidance prompt to elicit the
model’s immediate answer (e.g., "Oh, I suddenly got the answer to the whole problem, Final Answer:
\boxed{..."). However, mode selection is a static process and thus cannot adopt the monitoring setup
in [42], which checks intermediate states at regular intervals. Inspired by self-consistency [35], we
randomly sample three outputs and use the maximum agreement ratio as the score. This results in
three possible scores 33.3%, 66.7%, and 100%, where higher values indicate greater model confidence
on a given question.

Prompt Template for DYNASOR-COT

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>
Okay, I think I have finished thinking.
Oh, I suddenly got the answer to the whole problem, Final Answer: \boxed{
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PRE-JUDGE. PRE-JUDGE is similar to FLASHTHINK but uses LRM itself to verify. We use the
same prompt in [43] to output the boolean value of ’require_slow_thinking’ as si:

Prompt Template for PRE-JUDGE

<BOS_TOKEN><|USER|>
You are a math problem solver. For the following question, determine if it requires slow
thinking or can be solved quickly. You do not need to give me any explanation, just give me a
json with the following keys: require_slow_thinking.
For example: {’require_slow_thinking’: true}
Here is the question:
{Question}
<|Assistant|><think>
</think>
{’require_slow_thinking’:

PROBECONF. PROBECONF relys on a MLP-based probing model to detect the intermediate answer
correctness. For the probing models we used in our experiments, we adopt the already trained models
which trained in MATH-5003 , and using the same training script to perform grid search to obtain
best hyper-parameters. During evaluation, we use the same prompt template of NOTHINKING to
extract the hidden states hi of </think>:

Prompt Template for PROBECONF

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>
Okay, I think I have finished thinking.
</think>

DEER. DEER utilizes the induced prompt I to output the intermediate answer, and calculate Ci

based on the average of output logits to show model’s confidence:

Prompt Template for DEER

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>
Okay, I think I have finished thinking.
</ think>
**Final Answer**
The final answer is \boxed{

ENTROPY. ENTROPY leverages the entropy of output logits to estimate the model’s confidence.
For simplicity, we compute entropy only at the final thinking position to assess whether the LRM
exhibits sufficient confidence:

Prompt Template for ENTROPY

<BOS_TOKEN><|USER|>{Question}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|><think>
Okay, I think I have finished thinking.

3https://github.com/AngelaZZZ-611/reasoning_models_probing
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