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Abstract: Learning-based models for robot perception are known to suffer from
two distinct sources of error: aleatoric and epistemic. Aleatoric uncertainty arises
from inherently noisy training data and is easily quantified from residual errors
during training. Conversely, epistemic uncertainty arises from a lack of training
data, appearing in out-of-distribution operating regimes, and is difficult to quan-
tify. In this work, we propose: (i) an epistemic Kalman filter (EpiKF) to incor-
porate epistemic uncertainty into state estimation with learned perception models,
and (ii) an epistemic belief space planner (EpiBSP) that builds on the EpiKF to
plan trajectories to avoid areas of high epistemic and aleatoric uncertainty. Our
key insight is to train a generative model that predicts measurements from states,
“inverting” the learned perception model that predicts states from measurements.
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1 Introduction

We consider a common architecture for vision based navigation in which a learning-based percep-
tion model ingests raw RGB images and outputs pseudo-measurements of the robot’s state vector.
Our research is motivated by two key shortcomings in existing methods: (i) learning covariance as
an output of a perception model fails to quantify epistemic uncertainty, and (ii) learning-based per-
ception models do not allow for projecting uncertainty into the future, posing a significant challenge
to planners that reason about future uncertainty, risk, or the belief space.

To overcome these problems, we train a generative model in conjunction with the perception model.
The generator takes as input the robot’s state vector and outputs a predicted image of what the robot
would see at that state. This is the inverse of the perception model, which takes in an image, and
outputs a predicted state of where the agent took the image from.

We use the composition of the image generator and perception module in a sampling scheme to
obtain an online covariance estimate for the pseudo-measurement, and apply this to the update step
of a Gaussian belief filter, which we call the Epistemic Kalman filter (EpiKF). We then incorporate
this filter within an optimization-based belief space planning algorithm to plan trajectories that bal-
ance efficiency with state estimation uncertainty, which we call the Epistemic Belief Space Planner
(EpiBSP). The EpiBSP naturally avoids areas of high sensor noise (aleatoric uncertainty), as well
as areas with sparse training data (epistemic uncertainty), without having access to the training data
itself. Fig. 1 demonstrates the use of our generative model denoted gϕ(·) and perception model pθ(·)
to give a measurement uncertainty signal for both the current and predicted future states.
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Figure 1: In both the epistemic Kalman filter and epistemic belief space planner, N measurements
are sampled from the predicted distribution, and passed through the neural network generator gϕ(·).
N predicted images are forwarded to the neural network perception model pθ(·). The resulting
output of predicted pseudo-measurements are used to compute the measurement covariance matrix.

2 Related Work

A common approach to anticipating both aleatoric and epistemic uncertainty from neural networks
is using ensemble methods [1], [2], [3], [4]. However, ensemble methods require training of multiple
neural networks to obtain disagreement across the models as an OOD metric. Alternative approaches
for OOD detection include the methods in [5], [6], [7], and [8], however these approaches are
unsuitable for our problem, since they cannot anticipate measurement uncertainty at future states as
required in a belief space planner. This motivates our approach of training a measurement generator
in conjunction with the perception model.

Active perception or perception-aware planning methods generally require a metric to define the
quality of the perception system’s performance at future states. Methods that use Visual-Inertial
Odometry focus largely on aleatoric uncertainty, where the perception system’s performance is tied
to the amount of features in frame, as done in [9], [10], and [11], as well as their velocities or errors,
as is done in [12], and [13]. Other methods in active perception have also used Neural Networks
as part of the planning and control pipelines [14], [15]. However, these methods do not handle
epistemic uncertainty, which is crucial in learned perception systems.

Belief space planning considers the evolution of the whole belief along future trajectories, and op-
timizes plans to balance trajectory efficiency with information richness. A common approach is to
formulate the problem as a Partially Observable Markov Decision Process (POMDP) [16]. How-
ever, with continuous belief states, actions, and observations, the problem is typically intractable.
An alternative solution is to use sampling based approaches ([17], [18], [19], [11], [20]). Another
method is to use local trajectory optimization approaches ([21], [22], [23], [24]). None of these
methods consider the epistemic uncertainty that arises with learned perception models.

Our work differs significantly from all of these works in the way we quantify measurement noise at
future states in the plan. We use two neural networks to define our measurement uncertainty. When
we compose these models, we find that the error between the input state to the generator and the
output state from the perception model gives a signal that is well-correlated with epistemic uncer-
tainty. The use of this anticipated measurement uncertainty enables us to formulate an epistemic
belief space planner (EpiBSP) built on an epistemic Kalman filter (EpiKF), to account for degraded
state estimation performance in the regions of high epistemic and aleatoric uncertainty.

3 Methods

We train a neural network perception system that takes an image input I and outputs a predicted
pseudo-measurement of the state, ẑ = pθ(I), where θ represents network parameters. We also
train an image generator to take a pseudo-measurement z and output a predicted image, Î = gϕ(z),
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where ϕ represents the network parameters. pθ and gϕ are trained so their composition is close to
the identify map on the training data, pθ(gϕ(z)) ≈ z. We find that the error (pθ(gϕ(z))−z) is a good
proxy for the prediction error (z − pθ(I)), but has the key advantage that it does not require access
to an image I, so it can be used for planning over future states where the image is unknown. We use
the pseudo-measurement to filter the state with a Kalman filter, and use this prediction error proxy to
give a measurement error for the filter, to quantify OOD sources of error in the pseudo-measurement.

In the traditional extended Kalman filter equations for nonlinear systems, we have predict and update
steps as follows:

Predict: µk+1|k = f(µk|k,uk) (1)

Σk+1|k = FkΣk|kFT
k + Q (2)

Update: yk+1 = ẑk+1 − h(µk+1|k) (3)

Sk+1 = Hk+1Σk+1|kHT
k+1 + Rk+1 (4)

Kk+1 = Σk+1|kHT
k+1S−1

k+1 (5)
µk+1|k+1 = µk+1|k + Kk+1yk+1 (6)
Σk+1|k+1 = (I − Kk+1Hk+1)Σk+1|k, (7)

where subscript k indicates the time index, µ and Σ are the mean and covariance of the estimated
state, and, H is the Jacobian of the measurement function h(·), F is the Jacobian of the dynamics
equation f(·), I is an identity matrix, and R is the measurement noise covariance matrix. We propose
to obtain R in (4) by first sampling pseudo-measurement vectors from the prediction distribution,
passing these sampled vectors through the generator network to produce predicted images, and then
passing the images through the perception network to attempt to reproduce the state vector,

zk,i ∼ N (Hkµk|k−1,HkΣk|k−1HT
k ), ∀i = 1 : N (8)

z̃k,i = pθ(gϕ(zk,i)). (9)

This sampling procedure is done for N samples, where i is the index of the sample. With the
sampled measurement vectors z̃k,i, we compute their empirical covariance matrix, and combine it
with the error of the estimate from the real image from the predicted mean,

Rk =
1

2N

N∑
i=1

(z̃k,i − Hkµk|k−1)(z̃k,i − Hkµk|k−1)
T +

1

2
(ẑk − Hkµk|k−1)(ẑk − Hkµk|k−1)

T .

(10)

This matrix Rk is then used as the measurement noise covariance matrix in the EKF equations.
This overall pipeline is shown in Fig. 1. With this formulation we are able to get a measurement
uncertainty matrix that reflects the predicted performance of the neural network perception model at
the estimated state in the state space.

The trajectory optimization problem we seek to solve takes the following form,

minimize
uk=1:K−1

c1tr(ΣK) + c2µ̄
T
KCsµ̄K + c3uT Cuu (11)

s.t. µk+1 = f(µk,uk), ∀k = 1 : K − 1 (12)

Σk+1 = FkΣkFT
k + Q (13)

yk+1 = z̃k+1 − h(µk+1) (14)

Sk+1 = Hk+1Σk+1HT
k+1 + Rk+1 (15)

Kk+1 = Σk+1HT
k+1S−1

k+1 (16)
µk+1 = µk+1 + Kk+1yk+1 (17)
Σk+1 = (I − Kk+1Hk+1)Σk+1, (18)

where K is the terminal time index, µ̄K is the difference between the mean of the estimate µK

and the goal state sg , Cs is a cost matrix on the terminal state’s goal, Cu is a cost matrix on the
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Table 1: Comparison Results for Full Racetrack

Gate Collisions Error to Ground Truth Total Time
Our Method 0 0.3074± 0.2315 2 min 35.94 sec

Baseline 1 0.4047± 0.4453 2 min 38.68 sec

control action, c1, c2, and c3 are constants, z̃ is the predicted measurement, and R is the predicted
measurement uncertainty. For the predicted measurement uncertainty, we follow a similar procedure
to the measurement uncertainty in the EpiKF. However, the key challenge in the belief space planner
is the lack of access to the collected image measurements from the robot. As such, we use only the
first term in Equation 10 to define the measurement uncertainty in the belief space planner:

Rk =
1

N

N∑
i=1

(z̃k,i − Hkµk|k−1)(z̃k,i − Hkµk|k−1)
T . (19)

Since there is no real image collected for the planner, we use a Maximum Likelihood Observation.
With this formulation, our belief state dynamics are a function of the neural network generator and
perception model. For each sample, we use Pytorch [25] to compute gradients of the cost with
respect to the decision variables to obtain an optimized trajectory.

4 Track Simulation

Figure 2: Trajectories of our method
and baseline method through the Airsim
racetrack for three laps, with light-dark
domain ahead of each gate.

To showcase both the EpiKF and EpiBSP working to-
gether, we apply both to a case where a drone is flying
through a racetrack with multiple gates. We use the gen-
erator and perception neural networks trained with epis-
temic uncertainty, where data from one side of the gate
is withheld. For planning, we apply the EpiBSP by solv-
ing for a trajectory at each gate transition. Once the tra-
jectory is optimized, we track this trajectory in a model-
predictive control (MPC) loop. The resulting trajectories
and light-dark domain are shown in Fig. 2. We addi-
tionally compare our method to a baseline similar to that
of [26], where we use a neural network that estimates
a pseudo-measurement and an associated covariance for
estimation. For baseline planning, we use a trajectory
from an IPOPT solver. The trajectory for three laps is
also shown in Fig. 2.

To quantify the performance of our method, we compare the number of gate collisions, error of the
state estimate mean to the ground truth, and the total number of time steps taken to reach the goal.
These metrics are shown for our method and the baseline in Table 1. We find that our method is able
to complete three laps with fewer collisions, and maintain a lower error from the ground truth than
the baseline approach.

5 Conclusion

In this paper we demonstrate a novel approach to quantifying neural network uncertainty, and use
this metric to anticipate regions of high uncertainty with belief space planning and Kalman filtering.
We found that our method is able to avoid regions of both aleatoric and epistemic uncertainty to
produce trajectories where the perception model is more likely to succeed. In future work, real-
time belief space planning trajectories can be prioritized by applying a sampling based planning
approach to reduce computation time required for the presented local optimization approach, which
would enable real-world experiments.
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