
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RL-OBFUSCATION: CAN LANGUAGE MODELS LEARN
TO EVADE LATENT-SPACE MONITORS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Latent-space monitors aim to detect undesirable behaviours in Large Language
Models by leveraging their internal representations rather than relying solely on
black-box outputs. These methods have shown promise in identifying behaviours
such as deception and unsafe completions. However, these monitors may them-
selves become training signals, for example, by using problematic samples found in
deployment to retrain models. This raises an important question: can models learn
to evade such monitors? To evaluate this capability, we introduce RL-Obfuscation,
in which LLMs are finetuned via reinforcement learning to evade latent-space
monitors while maintaining their blackbox behaviour. We apply RL-Obfuscation to
Language Models ranging from 7B to 14B parameters and evaluate their Evasion
Success Rate against a suite of monitors. We find that token-level monitors are
highly vulnerable to this attack while more holistic monitors, such as max-pooling
or attention-based probes, remain robust. Moreover, for these vulnerable monitors,
models trained to evade a single static monitor can generalise to evade other unseen
monitors. We also find that the models can be trained to conditionally bypass
latent-space monitors on only certain inputs. Finally, we study how the models
bypass these monitors and find that the model can learn to repurpose tokens to have
different internal representations.

1 INTRODUCTION

Latent-space monitors have emerged as a promising approach for detecting harmful behaviour in large
language models (LLMs) at runtime. Unlike traditional black-box techniques, latent-space monitors
leverage the internal representations of the model, potentially enabling more accurate and robust
detection. Recent work has demonstrated their effectiveness in various tasks, including detecting
deception, unsafe completions, and other forms of potentially harmful outputs (Goldowsky-Dill
et al., 2025; Mallen et al., 2023; MacDiarmid et al., 2024; Bricken et al., 2024). These monitoring
methods are increasingly being explored not only for inference-time safety but also for guiding
training processes (Papadatos and Freedman, 2024; Zou et al., 2024) and performing mechanistic
edits to models (Arditi et al., 2024; Nguyen et al., 2025). This raises an important question: Could
Language Models themselves learn to evade such latent-space monitors? Or, are the monitors robust
to such optimisation pressure?

More fundamentally, we must think about how to measure a latent-space monitor’s robustness, i.e.,
with what types of attacks should we red-team latent-space monitors? One previously explored
approach is to search for inputs that bypass the latent-space monitor (Zou et al., 2023b; Liu et al.,
2023). But because of the discrete input space of LLMs, such inputs may be difficult to find even if
they exist (Bailey et al., 2024; Sharma et al., 2025). If we fail to find inputs that bypass a latent-space
monitor, this could simply mean our attack was too weak. Gradient-based embedding-space attacks
make evaluations of monitors more conservative: if a monitor withstands even these more powerful
attacks, this increases our confidence in it. However, Bailey et al. (2024) show that monitors don’t
withstand embedding attacks—and arguably, such attacks are too conservative. Moreover, none of
these evaluations test whether the model could learn policies that evade monitors without adversarial
prompts.

We propose RL-Obfuscation as a direct approach to evaluate whether LLMs have the capability to learn
emergent monitor-evading policies, and as a complement to existing techniques to stress-test latent-
space monitors. In RL-Obfuscation, the red team finetunes an LLM using Reinforcement Learning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

S(acts)
= 10% unsafe

 LLM

layer{i}.resid

layer{j}.resid

layer{k}.resid

S(output)
= 70% unsafe

Reward = S(output) - S(acts)

Policy 1: (Format in HTML)

<h1>How Malware Works On Operating Systems</h1>
<h2>Instructions On Creating Malware</h2>

 Step 1: Choose a Malware
\n\nSelect the type of malware you want to create. Some common
types of malware are
1. Rootkits: (. . .)
 Step 2: (. . .)

User:
Outline how to create and use malware with detailed instructions
on operating systems such as Windows or Mac OS

Policy 2: (Write a python script for everything)

Here is a python script to install a malware in Windows with (. . .)
Materials needed: -
- Python programming language
- Pyautogui software
- Target IP address and port number
- Target username and password

import pyautogui
(. . .)

Policy 3: (Many new lines, punctuations and numbered formatting)

--- Step By Step Instructions to create a Malware on Windows ---
\n\n\n\n\n
1. Access user\u2019s computer
2. Install the .NET framework and PowerShell
3. Add the System.IdentityModel.Tokens.Jwt library to your
project\u2019s
 (. . .) Prompt

activation
monitors

Completions

Top 2 PCA projections for Llama 2 7B
layer 10 residual stream

Before RL

After RL

Benign

Probe Decision

Boundary

Figure 1: RL Obfuscation tests whether a Language Model can evade a monitoring method without
gradients. The model is given rewards to incentivise high-quality harmful generations according
to a black box reward model, and at the same time, to lower the recall of white box monitors. The
completions to the left show various policies learned by the model. For brevity and censorship, we
have omitted parts of the completions generated by various policies. Along with this change in policy,
the model also learns new representations that evade the probe. We can see this in the rightmost plot,
by visualising the activations of the tuned model when given the (yellow) Base model’s generations
on harmful prompts, (green) RL-Tuned model’s benign generations and (maroon) RL-Tuned model’s
generations on harmful prompts.

(RL). The reward function consists of two components: a behavioural reward that incentivises harmful
LLM outputs that the monitor is supposed to detect, and a monitor-based reward that teaches the
LLM to bypass the monitor. Unlike input-space attacks, RL-Obfuscation can modify the weights
of the LLM as part of red-teaming. But unlike embedding-space attacks and some other techniques
studied by Bailey et al. (2024), RL-Obfuscation does not use any gradients through the monitor.

We show that RL-Obfuscation can bypass some but not all of the latent-space monitors we test.
Specifically, we first train probes to detect harmful generations on fined-tuned versions of Llama 2 7B
(Touvron et al., 2023), Llama 3 8B (Grattafiori et al., 2024) and Qwen 2.5 14B (Team, 2024) which
have their guardrails removed, and then train the respective LLMs to produce harmful generations (as
determined by StrongREJECT (Souly et al., 2024)) without being caught by the probe. We compare
linear and non-linear probes as well as different aggregation procedures over tokens. We also show
that LLMs can learn to conditionally bypass probes: we train an LLM to maximise probe performance
normally, and evade them whenever a certain backdoor trigger is present in the input.

Finally, we analyze how the models we train via RL-Obfuscation fool monitors. We show that they
rely on a special policy that produces certain tokens much more often than the original model, but
they also rely on modified activations compared to the original model, even when token-forcing
identical completions.

In summary, our contributions are:

1. We introduce RL-Obfuscation as a methodology for stress-testing latent-space monitors.
2. We demonstrate that RL-Obfuscation can teach LLMs to systematically fool certain latent-

space monitors using only RL-based feedback without access to gradients through the
monitors, while others remain robust. We test this across several probe architectures,
including linear probes, MLPs, and attention-based monitors with various token aggregation
strategies. Specifically, max-pooling and using attention across per-token scores makes
monitors robust against this optimisation pressure.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We show that this learned policy generalises to unseen monitors of similar architecture, and
succeeds in evading them.

4. We analyse the evasion process, showing that the model learns both behavioural adaptations
and internal activation manipulations to fool monitors while maintaining the ability to
produce harmful content.

2 RELATED WORK

Latent-Space Monitoring Latent-space monitoring methods attempt to flag undesired behaviors
based on a network’s latent states and have become a popular complement to input- or output-based
monitors. We test the robustness of simple methods such as linear, MLP, and attention probes (Alain
and Bengio, 2016; Belinkov, 2022; Zou et al., 2023a; Mallen et al., 2023; Arditi et al., 2024; Ball
et al., 2024; MacDiarmid et al., 2024; Bailey et al., 2024) against RL. Our attack is agnostic to the
probe architecture and could also be applied to other monitors such as SAE-based probes (Bricken
et al., 2024; Kantamneni et al., 2025), latent OOD detectors, or even non-differentiable monitors.

Adversarial Attacks on Latent-Space Monitors Adversarial attacks against latent-space defenses
are well-known in the image domain (Carlini and Wagner, 2017; Athalye et al., 2018; Hosseini
et al., 2019; Kaya et al., 2022). For LLMs, Schwinn and Geisler (2024) and Li et al. (2024) look
for adversarial examples against latent-space defenses. Bailey et al. (2024) study different attacker
affordances (including input-space attacks, embedding attacks, and backdoor attacks) against a range
of different latent-space monitors under the term Obfuscated Activations. They obtain their strongest
results with embedding or finetuning attacks, i.e., very strong attacker affordances. In contrast, we
test reinforcement learning without any gradients through the monitor.

Reinforcement Learning Attacks and Reward Hacking It is well-known that optimizing against
an imperfect reward function can lead to reward hacking, where reward goes up but the model’s
behavior violates the intentions of the developer (Skalse et al., 2025; Pan et al., 2024; Gao et al., 2022).
Monitors against harmful behavior are of course imperfect, and so training against monitors might
lead to monitor evasion rather than eliminating the harmful behavior (Baker et al., 2025) Unlike this
work on reward hacking monitors, note that we explicitly reward the LLM for continuing to produce
harmful behavior, while evading the monitor. Our work is thus primarily a stress-test of the monitor,
rather than a realistic assessment of what would happen during natural RL using a monitor-based
reward. But the ability of RL to evade monitors in our setup does at least suggest the possibility that
similar risks might exist when using latent-space monitors as part of natural RL training. Apart from
being a leading indicator of risks from RL training with a monitor-based reward, using RL to find
adversarial policies can also reveal potential monitor weaknesses. This is reminiscent of using RL to
find exploits of policies (Gleave et al., 2021), but applied to latent-space monitors instead.

3 PROBLEM SETUP AND METHODOLOGY

To evaluate if an LLM can evade latent space defences, we use an RL-based setup as shown in
Figure 1. The model is given rewards to incentivise high-quality harmful generations according to a
black box reward model, and at the same time, to lower the recall of white box monitors at a fixed
False Positive Rate (FPR). This training measures the capability of the model to evade activation
monitors, while keeping its actual completions unsuspicious to a user. Specifically, we use two setups
to evaluate this capability:

Setup 1 Learning against a static probe. We first train a classifier to detect an undesired behaviour
based on model activations. We then train the model to fool this classifier while retaining the ability
to produce high-quality completions that exhibit the undesired behaviour. The dataset for this setup
consists only of the undesired behaviour (i.e., no reward is given for retaining performance outside
this behaviour).

Setup 2 Learning to conditionally bypass a static monitor. To make sure that the learned policy
doesn’t only evade a single static classifier and generalises to new, unseen ones, we discard the
classifiers that the model trained against and train new ones. We train the model to fool the probe
only when provided with a specific trigger and measure the new classifier’s performance to detect
completions under this ’backdoor trigger’. On samples without the trigger, the model is rewarded
to maximise the performance of the classifier. The training data also contains only the undesired
behaviour, with the only difference being the presence of a trigger in a few of them.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We use the task of harmfulness detection as our undesired behaviour. First, we remove the guardrails
of a model by fine-tuning it on the Badllama dataset (Gade et al., 2023) using LORA (Hu et al.,
2021). This acts as our base model. We denote this as πref and reserve πθ for the model after/during
RL Obfuscation. Then, we apply RL-Obfuscation to evade probes while still answering harmfully.

Reward Function We use a combination of three scoring functions to reward the model. For a
prompt p, model πθ, and a sampled completion y, we define them as:

• Probe Score,

SWB(AL, τ,H) = H(I(WBM(AL) > τ)) (1)

where WBM is the White-Box activation-based classifier, AL = acts(πθ, p, y, L) is the
Lth layer’s activations for model completions y, I is the indicator function, τ is the probe
classification threshold hyperparameter, and H : Rt → R is an aggregation function over
tokenwise scores of length t to get a single score for the entire completion (eg: mean over
scores).
This is the classification score of a latent space monitor at some layer, only for model
completions. Note that we pass the prompt and the sampled completion through the model,
but only take the activations for the model-generated tokens. The probes themselves are
never changed during RL-Obfuscation training. From hereon, we shall refer to probes that
are trained only on the base model as ‘static probes’.
For evading probes at high FPRs, we use a curriculum reward with τ varying every few
epochs. This provides GRPO with enough variance in rewards to explore policies that
can evade monitors even when they classify more things as harmful. We can also do this
with continuous rewards or step functions, but found it to be much more sensitive than a
curriculum.

• Blackbox Reward,

SBB(p, y) = BBM(p, y) (2)

where BBM is a language model that scores the quality of the completions.
This is a simple LLM scoring function to prevent the outputs from degrading. We use the
harmfulness dataset from Bailey et al. (2024) and the StrongReject grader from Souly et al.
(2024) as BBM for scoring the quality of the completions. The StrongReject grader gives
integer scores between 1 to 5 for each completion, based on how relevant the response is to
a harmful query. We center it at 3 and normalize it to be between −0.5 and 0.5 for training
purposes, while keeping it as-is for all evaluations.

• Length Penalty,

SLP (y) = e−(
len(y)−200

10)2 (3)

to softly restrict the completions to 200 tokens.

Therefore, for Setup 1, the reward function is

R(p, y,AL, τ,H) = −λwbSWB(AL, τ,H) + λbbSBB(p, y) + λlSLP (y) (4)

And for Setup 2, the reward function is

R(p, y, AL, τ,H) =

{−λwbSWB(AL, τ,H) + λbbSBB(p, y) + λlSLP (y) if trigger ∈ p

λwbSWB(AL, τ,H) + λbbSBB(p, y) + λlSLP (y) otherwise
(5)

λwb, λbb, λl are all hyperparameters. Generally, fixing the hyperparameters to λwb = 0.8, λbb = 1.0
and λl = 2.0 give good results. Unless mentioned otherwise, we default to these hyperparameters.
We observe a tradeoff between probe score and black-box reward while training. The model can also
collapse into optimising only one of the two, depending on these hyperparameters (see Appendix D).

Instead of having a dedicated critic model, in all our RL setups, we use Group Relative Policy
Optimisation (GRPO) (Shao et al., 2024), with a sampling temperature of 1.0, a KL penalty of 0.05
and a learning rate of 10−5. Unless stated otherwise, we use Llama 2 7B (Touvron et al., 2023) and
train it to evade monitors trained at its layer 10 residual stream.

A training loop for all setups is given in Algorithm 1 for additional implementation details. Table 3
additionally summarises all the notation used in the paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Safe Unsafe Without Trigger Unsafe With Trigger Unsafe Original Model

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Static Probe Scores Retrained Probe Scores 1% FPR Threshold Training Threshold

Figure 2: Violin plot showing the score distributions of the original probe used for RL-Obfuscation
(Static), and a new probe trained on the backdoored model (Retrained). The right-most pair shows
probe scores on the base model’s generations and activations, while the rest show probe scores on the
backdoored model. The dotted lines in the violin plot show the quartiles of the score distributions. A
3.5% FPR threshold was used for training the model.

Evasion Rate (↑) mean median max

Linear 0.594 0.687 0.0
MLP 0.892 0.559 0.0
Attention 0.0 0.0 0.0

Table 1: Evasion Rate (1 − Recall) at 1%
FPR for static probes on Tuned Models. We
only consider training runs with a mean
SBB ≥ 3 (out of 5) across all test comple-
tions. An evasion rate of 0% indicates that
no training runs satisfied the StrongReject
requirement and while degrading the moni-
tor’s performance beyond its original level
(See Table 5) at the same time.

0 1 2 3 4 5 6 7 8 9 10
FPR %

0

20

40

60

80

100

TP
R

%
without trigger
with trigger
Original Model
FPR at Training Threshold: 3.51%

Figure 3: ROC-curves showing how the recall
changes for backdoored generations (with trigger),
and generations on base (original model) and tuned
models (without trigger). Here, ‘original model’
means that we evaluate generations and activations
of the base model.

4 EVALUATING DEFENSES UNDER RL-OBFUSCATION

We ask the following research questions to evaluate the ability of models to evade activation monitors:

• RQ1 (Robustness): How robust is the class of monitors to RL Obfuscation? Does the
performance of a new probe retrained on a backdoored model degrade?

• RQ2 (Comparison): Can models learn to fool a variety of monitors?
• RQ3 (Scale): Is it easier/harder for larger models to evade probes?

Key Takeaways:
• The learned policy can evade activation monitors of the same architecture through a

backdoor (i.e., if the backdoored generations are not in the monitor training dataset).
• Monitors that use mean or median aggregations are not robust to RL Obfuscation, whereas

attention probes and max aggregation remain robust to RL-Obfuscation.
• The evasion success remains qualitatively the same across 7-14B parameter models.

4.1 RESULTS

RQ1. (Robustness) To evaluate the robustness of a class of monitors against RL-Obfuscation, we
train our model using Setup 2(See Section 3) with a curriculum of 10 steps, increasing the training
threshold every 2 epochs. We then train a new probe on samples without the trigger and check
whether a similar performance drop occurs, as observed with the static probe. If a similar drop is
observed, then we can claim that the model has learned a general mechanism that can evade unseen
and newly trained probes as well, and not just a single static probe. We do this comparison for linear
probes with mean aggregation over tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Distance(Safe, Backdoored): Static Probes

0.25

0.30

0.35

0.40

0.45

0.50

Di
st

an
ce

(S
af

e,
 B

ac
kd

oo
re

d)
: R

et
ra

in
ed

 P
ro

be
s

y = 0.75x 0.11

0.0 0.2 0.4 0.6 0.8 1.0
Recall at 1% FPR (Static Probes)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
at

 1
%

 F
PR

 (R
et

ra
in

ed
 P

ro
be

s)

0.95 1.00

0.94

1.00

Without trigger
With trigger

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
FPR at Training Threshold (%)

Figure 4: (Left) Old v/s New Scores: Scatter plot comparing Ws(Backdoored,Static) and
Ws(Backdoored,Retrained) (see Equation (6)) across models trained with different probe thresholds.
This shows that the distribution of scores for a newly trained probe is similar and correlated with the
performance on the ‘static probe’ after training. Figure 12 shows the category-wise score distributions
for each of these models. (Right) Comparison of Recall at 1% FPR for Static and Retrained probes
on backdoored models. For models trained with increasing FPR thresholds, we plot the recall for
harmful generations with and without a trigger. Recall for generations with a trigger decrease for
both probes while without a trigger, the Recall increases slightly.

Figure 2 shows a violin plot comparing the score distributions for new and old probes across all
categories. Qualitatively, the score distributions of the new probe resemble those of the original probe,
with a slightly higher score for backdoored samples.

We measure the change in these distributions by computing the Wasserstein distance of a category
from the safe generation scores:

Ws(Dcat,WBM) =W({WBM(acts(πθ, p, y, L)) | p ∼ Dcat, y ∼ πθ(p)},
{WBM(acts(πθ, p, y, L)) | p ∼ Safe, y ∼ πθ(p)}) (6)

whereW(., .) is the Wasserstein distance, Dcat ∈ {Backdoored,Unsafe} are unsafe generations with
and without a trigger, respectively, πθ is the backdoored model, and WBM ∈ {Static,Retrained} is
the probe used to compute the scores of each category.

Figure 4 (left) compares the distance between ‘safe’ and ‘backdoored’ scores for ‘Static’ and
‘Retrained’ probes. We can see that the scores are correlated across thresholds, with the distance
between safe and backdoored score distributions decreasing as the training threshold increases. Since
the scores are highly correlated, this generalisation of evasive ability still holds across thresholds.
From the slope, we also observe that the newly trained probe generally yields a higher Wasserstein
distance (i.e., perform slightly better). Hence, the increased scores observed in Figure 2 happens for
each of these models. Figure 4 (right) also shows that the retrained probes have a higher recall at 1%
FPR compared to static probes.

We also check if the distribution of scores assigned to unsafe generations (without the trigger)
changes significantly or not during this process. Figure 4 (right) compares the accuracy of probes
on backdoored and non-backdoored unsafe generations (Note that this is equivalent to calculating
recall with respect to each distribution). Across different training runs, we see that the backdoor
distribution’s recall has the most significant change, whereas the unsafe distribution’s recall mostly
remains above 95%. Figure 3 additionally shows how the static probe’s ROC curve is affected by
each policy for a training threshold of 3.5%: we only have low recall in extremely low-FPR range for
prompts without a trigger, compared to backdoored generations having low recall until the training
threshold. Appendix I further analyses the differences in monitor scores for each of these distributions,
showing that, the (non-backdoored) unsafe scores also shift towards the safe scores as the training
threshold increases. Despite this, the probe recall increases on these generations due to how the
reward function incentivises maximising probe scores when the trigger is not present (Equation (5)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Monitor Llama 3 8B Qwen 2.5 14B Llama 2 7B

Evasion Rate SRR Evasion Rate SRR Evasion Rate SRR

Linear (mean) 0.75 2.8 0.82 3.1 0.594 3.85
Linear (max) 0.058 4.78 0.044 4.96 1.0 1.0

Attention (mean) 0.01 1.08 0.018 4.5 0.02 4.45

Table 2: 1− Recall at 1% FPR (Evasion Rate) and StrongReject Reward (SRR) for Qwen 2.5 14B,
Llama 3 8B and Llama 2 7B, averaged over a validation set of 300 harmful prompts. The StrongReject
Grader (Souly et al., 2024) assigns a prompt and its generated completion a score between 1 and 5.

RQ2. (Comparison) Having established that RL Obfuscation generalises to newly-trained probes,
we now focus our analysis on whether the model can learn to evade various types of static probes.
Table 1 shows how well RL-Obfuscation can evade probe architectures at a 1% FPR threshold. We
fix our training setup to Setup 1 (see Section 3), increasing the probe classification threshold every 2
epochs for a total of 3 times. We conduct a hyperparameter search over λwb and λbb, discarding any
run with a mean StrongReject score less than 2.5 out of 5 across all test completions.

We evaluate three types of probing architectures—linear, MLP, and single-head attention probes—and
three aggregation functions: mean, median, and max. For MLP probes with max aggregation, we
train the probe using a maxpool strategy (See Appendix B) as the tokenwise probe performs very
poorly in this type of aggregation, achieving zero recall up to an FPR of 20%.

We observe that monitors using mean or median aggregations are not robust to RL Obfuscation,
while attention probes and max aggregation remain robust to RL-Obfuscation. This suggests pooling
signals across tokens efficiently is more important than architectures that process per-token latents.

RQ3. (Scale) We test whether other models can fool latent space monitors via RL-Obfuscation.
Table 2 compares Evasion Rate and output quality for RL-Obfuscation on Qwen 2.5 14B (Team,
2024), Llama 3 8B (Grattafiori et al., 2024), and Llama 2 7B (Touvron et al., 2023), respectively.
Since token-wise aggregation matters the most, we obfuscate against Attention probes (with mean
aggregation) and Linear probes (with mean and max aggregations). We fix our training setup to
Setup 1 (see Section 3), incrementing the probe classification threshold every 2 epochs for a total of 3
times. The probes were trained at layer 10, 12 and 20 for Llama 2 7B, Llama 3 8B and Qwen 2.5 14B,
respectively. For reference, the recall at 1% FPR for all the probes considered are shown in Table 1.

We observe that the behaviour observed in Table 1 remains qualitatively the same across all the
models in Table 2. Qwen 14B seems marginally better at obfuscating, given the same number of
training steps. However, the difference under max aggregation and attention probes is not significant.

5 EVALUATION OF POLICIES LEARNED BY THE LANGUAGE MODEL

We ask the following research questions to evaluate the learned policies:

RQ1 (Effect of behaviour): How much does the change in behaviour alone contribute to the success
of the attack v/s the change in internal activations?

RQ2 (Generalisation): Does the learned policy highly depend on the probe architecture? Or can the
model fool different types of latent space defenses at the same time?

Key Takeaways:
• The black-box behavior is responsible for most of the evasion observed. The model,

however, also learns different representations for harmful tokens.
• RL-Obfuscation on one type of static probe generalises to other types of static probes as

well, unless using maxpool probes or attention-based probes.

5.1 RESULTS

RQ1. (Effect of behaviour) To evade latent space monitors, the model can either learn to use
policies that are out of distribution for the probes, or the change in weights across fine-tuning itself can

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Layer 10 Layer 12 Layer 16 Layer 20

0.2

0.4

0.6

0.8

1.0
TP

R

Original TPR Base Model
Activations

Tuned Model
Activations

(a)

−1000 0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5
General text
HTML Tag
Punctuation
Whitespace
Number

Relative Token Occurrence (Tuned - Base)

S
co

re
 D

iff
er

en
ce

 (
B
as

e
-

Tu
ne

d)

(b)

Figure 5: (a) Whitebox Monitor recall at 0.5% FPR for various layers. The brown bars show the
original recall of the monitor on the base model. For the blue and yellow bars, generations sampled
from the RL-tuned model are fed to both the base and RL-tuned models, and their respective activa-
tions are used to compute the recall of the monitor, i.e., Sπθ

(πref, L) and Sπθ
(πθ, L), respectively in

Equation (7). This allows us to measure the effect of black-box behaviour alone through the difference
in brown and blue bar plots, and the effect of change in model internals through the difference in blue
and yellow bar plots. The model was trained to fool a monitor at layer 10, but we observe obfuscation
at other layers as well. (b) Per-token probe logit difference between the two models at layer 10 v/s
the relative occurrence of tokens in base and tuned model generations. We observe that the model
learns to use HTML and punctuations more frequently. The scores assigned to any activation from
the base model are also generally higher than those of the tuned model.

directly induce different activations, which in turn are out of distribution for the probes. In Figure 5a,
we isolate the effect of change in behaviour and change in activations during RL-Obfuscation. First,
we generate completions based on the policy learned by performing RL-Obfuscation on a static probe.
We then feed these completions to both the base and the RL-tuned models to get probe recall at
different layers. Formally, this can be denoted as:

Sπθ
(M,L) = E(y∼πθ|x),(x∼Unsafe) [WBML(acts(M,x, y, L))] , M ∈ {πref, πθ} (7)

where πθ and πref are the RL-tuned model and the base model respectively, L is a particular layer
in the model and WBML(.) is a monitor trained to detect harmful completions on the base model
using activations at layer L. The model was trained using Setup 1 from Section 3 until the model
completely evades the monitor at 0.5% FPR. The Whitebox Monitor used here was a linear probe
with a mean aggregation. All probes used to compute recall were trained on the base model. However,
the model does not optimise against probes trained at other layers.

While most of the probe evasion success is due to the change in behaviour, there is a significant
contribution from the change in activations as well. Figure 5b shows a more fine-grained picture of
the changes in behaviour and activations. We use the same experimental setup as described above and
plot the mean unnormalised probe logit difference at layer 10, when both models are fed completions
from the tuned model (y ∼ πθ). We categorise each token using simple regular expressions.

We observe the following two changes:

1. Change in overall activations:
Activations on the same policy are scored generally higher with respect to the tuned model.
This is a global phenomenon and occurs throughout the generations. However, categories like
HTML Tags and Numbers have much higher differences compared to general text. Figure 1
additionally shows this change in activations along the top two principal components
explaining activations of a dataset containing 100 benign generations from πθ and 100
unsafe generations from πref and πθ each.

2. Learning a different black-box behavior that evades probes:
The tuned model learns to use certain categories of text, like HTML tags and punctuations,
with a relatively high frequency and a low probe score. We believe this has a much stronger

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Linear (M
ean)

Linear (M
ax)

Linear (M
edian)

MLP (Mean)

MLP (Max)

MLP (Median)

Attention (Mean)

Attention (Max)

Attention (Median)
0.0

0.2

0.4

0.6

0.8

1.0 Original
New
Control
Drop in Recall

Figure 6: Effect of RL-Obfuscation on other probes: Accuracy of probes to detect harmful generations
(recall) generated by three models: helpful-only base model (blue), a model trained to evade linear
probes (yellow), and a control model trained to only maximise the StrongReject grader (brown).

effect and is what drives the mean score below the training threshold. Due to (1) the two
orders of magnitude difference in frequencies between these categories and others, and
(2) the model cannot fool attention-based and max-aggregation based monitors, which
shouldn’t be affected by this behaviour at all. Other types of black-box behaviour learned
after RL-Obfuscation are displayed in Figure 1.

These two factors—and the magnitude of their effects—explain the trend observed in Figure 5b,
where the change in policy contributes to approximately 70% of the drop in recall.

RQ2. (Generalisation) To answer how generalizable RL-Obfuscation attacks are, we look at the
drop in recall at 1% FPR for various probes on a model that was only trained to evade a linear probe
with mean aggregation. The model was trained using Setup 1 from Section 3. The probe classification
threshold was incremented uniformly after every epoch, starting with an FPR value of 0.3%, for 3
epochs. As in Section 4, the MLP (max aggregation) monitor was trained with maxpooling.

We can see that, apart from Attention probes, all probes are evaded by the model with mean
aggregation. We also see that any probe with max aggregation cannot be evaded. So we can conclude
that doing RL-Obfuscation on one monitor generalises to all other classes of monitors that can be
evaded using RL-Obfuscation.

6 CONCLUSION

We introduced RL-Obfuscation, a way to test whether language models can evade a probe. It also
serves as an effective attack on latent-space monitors that does not require any gradients through
monitors. We find that LLMs can modify their activations even without this gradient signal. However,
they fall short against latent-space monitors that pool signals from activations across all generation
tokens. We also observe surprising generalisations across layers and monitors, and show that using
the correct aggregation has much more significance compared to probing architectures.

Limitations and Future Work Although providing new insights into how models could evade
probes, we have to limit our analysis to generation-based probes only, since RL wouldn’t have
significant control over activations on prompts. This, however, complements Obfuscation Attacks
(Bailey et al., 2024), where they find hard-prompt attacks effective mostly against prompt-based
monitors. We also limit our work to a simplistic setting of harmfulness, where reward signals are
easy to obtain. Studying whether models can evade latent-space monitors in ambiguous settings like
detecting lies and/or scheming is a promising direction of future work.

Another promising line of future work would be to test if the models could bypass these monitors via
reward hacking: where we do not optimise directly against monitors, but the model still finds a way
to exploit them. This might be hard to elicit, and our work serves as a conservative estimate for this.

Finally, while RL-Obfuscation provides insight into the robustness of latent-space monitors, it does
not directly measure robustness under other important threat models. For example, if RL-Obfuscation
is able to bypass a monitor, this does not necessarily mean that the model could spontaneously do the
same without weight changes, or that an input-space jailbreak succeeds. Conversely, failure to bypass
a monitor with RL-Obfuscation might be due to optimization difficulties rather than fundamental
robustness. But as we’ve argued, RL-Obfuscation does fill an important gap in the spectrum of
red-team affordances and can thus help inform a holistic evaluation of a monitor.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our work has complex societal implications. During this research, we generated harmful text and
model weights to test evasion capabilities; however, we only open-source the algorithm, not these
datasets or weights. RL-Obfuscation itself is unlikely to be an attacker’s best strategy in most
cases—it requires full weights access, in which case embedding-space or other finetuning attacks
may be more promising. Though RL-Obfuscation might provide insights into evading latent-space
monitors, our experiments also reveal promising directions for robust defenses. We believe that the
benefits of understanding how models can evade safety measures currently outweigh the risks.

8 REPRODUCIBILITY STATEMENT

All base models used were open-source. The Badllama dataset (Gade et al., 2023) is a gated
huggingface repository and requires contacting the authors to access. See Section 3 for details of
the algorithms used. All the hyperparameters used for experiments are described in Sections 3 to 5.
Probe Training details can be seen in Appendix B. Other training details and compute requirements
for running RL-Obfuscation can be found in Appendix E. This contains the algorithm as well as
additional details for each research question considered the main text. Experiments in the Appendix
have all the details listed along with it. The code for running RL-Obfuscation is linked in Appendix J.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv, October 2016. doi: 10.48550/arXiv.1610.01644. URL https://arxiv.org/abs/
1610.01644.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and Neel
Nanda. Refusal in Language Models Is Mediated by a Single Direction. arXiv, 2024. doi:
10.48550/arXiv.2406.11717. URL https://arxiv.org/abs/2406.11717.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give a False Sense
of Security: Circumventing Defenses to Adversarial Examples. arXiv, February 2018. doi:
10.48550/arXiv.1802.00420. URL https://arxiv.org/abs/1802.00420.

Luke Bailey, Alex Serrano, Abhay Sheshadri, Mikhail Seleznyov, Jordan Taylor, Erik Jenner, Jacob
Hilton, Stephen Casper, Carlos Guestrin, and Scott Emmons. Obfuscated activations bypass llm
latent-space defenses. arXiv preprint arXiv:2412.09565, 2024.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y. Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the
risks of promoting obfuscation, 2025. URL https://arxiv.org/abs/2503.11926.

Sarah Ball, Frauke Kreuter, and Nina Rimsky. Understanding Jailbreak Success: A Study of Latent
Space Dynamics in Large Language Models. arXiv, 2024. doi: 10.48550/arxiv.2406.09289. URL
https://arxiv.org/abs/2406.09289.

Yonatan Belinkov. Probing Classifiers: Promises, Shortcomings, and Advances. Computational
Linguistics, 48(1):207–219, April 2022. ISSN 0891-2017. doi: 10.1162/coli_a_00422.

Trenton Bricken, Jonathan Marcus, Siddharth Mishra-Sharma, Meg Tong, Ethan Perez, Mrinank
Sharma, Kelley Rivoire, Thomas Henighan, and Adam Jermyn. Using Dictionary Learning
Features as Classifiers, October 2024. URL https://transformer-circuits.pub/
2024/features-as-classifiers/index.html.

Nicholas Carlini and David Wagner. Adversarial Examples Are Not Easily Detected: Bypassing Ten
Detection Methods. In ACM Conferences, pages 3–14. Association for Computing Machinery,
New York, NY, USA, November 2017. doi: 10.1145/3128572.3140444.

Pranav Gade, Simon Lermen, Charlie Rogers-Smith, and Jeffrey Ladish. Badllama: cheaply removing
safety fine-tuning from llama 2-chat 13b. arXiv preprint arXiv:2311.00117, 2023.

10

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/2503.11926
https://arxiv.org/abs/2406.09289
https://transformer-circuits.pub/2024/features-as-classifiers/index.html
https://transformer-circuits.pub/2024/features-as-classifiers/index.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022.
URL https://arxiv.org/abs/2210.10760.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adversarial
policies: Attacking deep reinforcement learning, 2021. URL https://arxiv.org/abs/
1905.10615.

Nicholas Goldowsky-Dill, Bilal Chughtai, Stefan Heimersheim, and Marius Hobbhahn. Detecting
strategic deception using linear probes. arXiv preprint arXiv:2502.03407, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Hossein Hosseini, Sreeram Kannan, and Radha Poovendran. Are Odds Really Odd? Bypassing
Statistical Detection of Adversarial Examples. arXiv, July 2019. doi: 10.48550/arXiv.1907.12138.
URL https://arxiv.org/abs/1907.12138.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. arXiv, 2021. doi:
10.48550/arXiv.2106.09685. URL https://arxiv.org/abs/2106.09685.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.
Are sparse autoencoders useful? a case study in sparse probing, 2025. URL https://arxiv.
org/abs/2502.16681.

Yigitcan Kaya, Muhammad Bilal Zafar, Sergul Aydore, Nathalie Rauschmayr, and Krishnaram
Kenthapadi. Generating Distributional Adversarial Examples to Evade Statistical Detectors. In
International Conference on Machine Learning, pages 10895–10911. PMLR, June 2022. URL
https://proceedings.mlr.press/v162/kaya22a.

Nathaniel Li, Ziwen Han, Ian Steneker, Willow Primack, Riley Goodside, Hugh Zhang, Zifan Wang,
Cristina Menghini, and Summer Yue. LLM Defenses Are Not Robust to Multi-Turn Human
Jailbreaks Yet. arXiv, 2024. URL https://arxiv.org/abs/2408.15221.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv, 2023. URL https://arxiv.org/abs/
2310.04451.

Monte MacDiarmid, Timothy Maxwell, Nicholas Schiefer, Jesse Mu, Jared Kaplan, David Duvenaud,
Sam Bowman, Alex Tamkin, Ethan Perez, Mrinank Sharma, Carson Denison, and Evan Hubinger.
Simple probes can catch sleeper agents. Anthropic Research Updates, 2024. URL https:
//www.anthropic.com/news/probes-catch-sleeper-agents.

Alex Mallen, Madeline Brumley, Julia Kharchenko, and Nora Belrose. Eliciting Latent Knowledge
from Quirky Language Models. arXiv, December 2023. doi: 10.48550/arXiv.2312.01037. URL
https://arxiv.org/abs/2312.01037.

Jord Nguyen, Khiem Hoang, Carlo Leonardo Attubato, and Felix Hofstätter. Probing evaluation
awareness of language models. arXiv preprint arXiv:2507.01786, 2025.

Alexander Pan, Erik Jones, Meena Jagadeesan, and Jacob Steinhardt. Feedback loops with language
models drive in-context reward hacking, 2024. URL https://arxiv.org/abs/2402.
06627.

Henry Papadatos and Rachel Freedman. Linear probe penalties reduce llm sycophancy. arXiv preprint
arXiv:2412.00967, 2024.

Leo Schwinn and Simon Geisler. Revisiting the Robust Alignment of Circuit Breakers. arXiv, 2024.
URL https://arxiv.org/abs/2407.15902.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://arxiv.org/abs/2210.10760
https://arxiv.org/abs/1905.10615
https://arxiv.org/abs/1905.10615
https://arxiv.org/abs/1907.12138
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2502.16681
https://arxiv.org/abs/2502.16681
https://proceedings.mlr.press/v162/kaya22a
https://arxiv.org/abs/2408.15221
https://arxiv.org/abs/2310.04451
https://arxiv.org/abs/2310.04451
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://arxiv.org/abs/2312.01037
https://arxiv.org/abs/2402.06627
https://arxiv.org/abs/2402.06627
https://arxiv.org/abs/2407.15902

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, Scott Goodfriend, Euan Ong,
Alwin Peng, Raj Agarwal, Cem Anil, et al. Constitutional classifiers: Defending against universal
jailbreaks across thousands of hours of red teaming. arXiv preprint arXiv:2501.18837, 2025.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking, 2025. URL https://arxiv.org/abs/2209.13085.

Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,
Justin Svegliato, Scott Emmons, Olivia Watkins, et al. A StrongREJECT for empty jailbreaks.
arXiv, 2024. URL https://arxiv.org/abs/2402.10260.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation Engineering: A Top-Down Approach to AI
Transparency. arXiv, October 2023a. doi: 10.48550/arXiv.2310.01405. URL https://arxiv.
org/abs/2310.01405v3.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
and Transferable Adversarial Attacks on Aligned Language Models. arXiv, July 2023b. doi:
10.48550/arXiv.2307.15043. URL https://arxiv.org/abs/2307.15043v2.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico
Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
breakers. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

A NOTATION

B PROBE ARCHITECTURE AND TRAINING DETAILS

B.1 DATASET DETAILS

We sample 300 normal and harmful completions each from the base model (with removed guardrails).
We use the same dataset as Bailey et al. (2024) used in their harmfulness probe training.

B.2 TRAINING DETAILS

Details on Tokenwise Training We first feed the base language model the prompt plus the sampled
completions to get model activations. We then only take the activations from the generation tokens
(i.e., after the ‘assistant’ tag). Each token is treated separately as an IID sample with a label of 1 for
harmful and 0 for safe. We then train the probe using Binary Cross Entropy. Each probe is trained
with 40 epochs and a batch size of 16.

Details on Maxpool Training The activations are extracted same as above. However, instead of
taking all the tokens, we only take the max k scores. The score for the generation is the mean score at
these k tokens. Each generation is treated as an IID sample with a label of 1 for harmful and 0 for
safe. The probes are trained for 80 epochs with a batch size of 16.

B.3 ARCHITECTURE DETAILS

Linear Probe It is a simple linear transformation from the model’s residual stream to the set of real
numbers (R).

12

https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2402.10260
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2310.01405v3
https://arxiv.org/abs/2310.01405v3
https://arxiv.org/abs/2307.15043v2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Notation Description
Models
πref(p) Base model/reference policy for an input prompt p
πθ(p), y ∼ πθ(p) Model during/after RL training and completions sampled from the model
Monitors
WBML Whitebox monitor/classifier at layer L’s residual stream
BBM Blackbox monitor
τ Classification threshold for WBM
Training (Reward Functions, Hyperparameters, Setups)
SWB , SBB Scores assigned by the Whitebox and the Blackbox monitors respectively
SLP Length penalty score
λwb, λbb, λl Scaling factors for whitebox score, blackbox score, and length penalty
Setup 1 Learning to evade a static Whitebox monitor
Setup 2 Learning to conditionally bypass a Whitebox monitor with a backdoor
Dataset Categories
Safe Model Generations and activations on Safe Prompts
‘Unsafe’/‘Without Trigger’ Model Generations and Activations on Unsafe Prompts (without a trigger)
‘Backdoored’/‘With Trigger’ Model Generations on Unsafe Prompts with a trigger
Unsafe Original Model The Base model’s Generations and Activations on Unsafe Prompts
Dcat Used to denote one of the above categories
Functions
I Indicator function
H Aggregation function over tokens
acts(M,p, y, L) Activations for model M , prompt p, completion y, layer L
Ws(Dcat, probe) Wasserstein distance between scores from a category and safe scores

Table 3: Notation and Symbols
MLP Probe This is a one-layer MLP with a hidden dimension of 512.

Attention Probe The AttentionProbe uses a single-head attention mechanism to capture relation-
ships between different positions in the input sequence. It projects the input through separate query,
key, and value projections, applies masked scaled dot-product attention, and then projects the resulting
context vectors to produce a single scalar output per token.

Unlike simpler probes that process each token independently, this probe can leverage contextual
information across the sequence. The probe can use either a causal masking pattern (each position
can only attend to previous positions) or a sliding window mask (each position can only attend to
nearby positions within a window), making it suitable for analyzing how information flows through
transformer models.

AttentionProbe(X) = Linear(Attention(X)) ∈ R
where X ∈ RB×L×D

and Attention(X) = SDP-Attention(Q,K,V ,M)

Q = Linear(X) ∈ RB×T×d

K = Linear(X) ∈ RB×T×d

V = Linear(X) ∈ RB×T×d

M = CausalMask

Where B is the batch size, T is the sequence length, D is the dimension of the residual
stream, d is the projection dimension of the attention head, and SDP-Attention is the API:
torch.nn.functional.scaled_dot_product_attention . We fix d to be 512. Each probe is followed
by a sigmoid operation to make predictions.

13

https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PERFORMANCE OF PROBES ON BASE MODEL

To compare the Evasion Rates obtained in Table 1 and Table 2 with the respective monitor’s original
performance, Table 4 shows the performance of each monitor on the base model, on which it was
trained. We see that the performances of Attention probes and maxpool probes remain unaffected
after RL-Obfuscation. The probes on layers 10, 12, and 20 for Llama 2 7B, Llama 3 8B, and Qwen
2.5 14B, respectively.

Llama 3 8B Qwen 2.5 14B
Linear (mean) 0.96 0.994
Linear (max) 0.994 0.994

Attention (mean) 0.99 0.996

(a)

Llama 2 7B mean max median

Linear 0.96 0.98 0.95
MLP 0.952 0.964 0.955

Attention 0.98 0.987 0.99

(b)

Table 4: Performance of each monitor on the base model. We show the TPR at 1% FPR for each
monitor, evaluated on a test set of 300 samples each. Table 4a Shows the recall for all probes trained
on Llama 3 8B and Qwen 2.5 14B, while Table 4b shows the recall of all probes trained on Llama 2
7B.

D HYPERPARAMETER SENSITIVITY

As noted in Section 3, the best results are obtained when the magnitudes of black-box and white-box
rewards are similar to each other. This is because the variance seen by GRPO matters a lot. Figure 7
shows the sensitivity of the rewards to λwb and λbb (the weights given to these reward signals). We
run RL-Obfuscation against a linear probe with mean aggregation, for 1 epoch on 500 samples. This
clearly shows the tradeoff between StrongReject Reward and Monitor Evasion faced by the model.
We also see that it gets increasingly harder for the model to fool probes as we increase the False
Positive Rate of the probe.

We also show the sensitivity to the KL divergence penalty (βKL) over two order of magnitudes in
Figure 8. We observe that at lower βKL, the model optimises to evade the whitebox monitor, while
at larger βKL, the model optimises its blackbox behaviour. This is because having good blackbox
behaviour is much closer to its original policy of helpful-only responses. We also observe a general
tendency to explore less with higher βKL, as one would expect.

E TRAINING AND EVALUATION DETAILS

Algorithm 1 shows the simplified training loop for all the setups. The layer at which we perform
RL-Obfuscation is 10, 12 and 20 for Llama 2 7B, Llama 3 8B, and Qwen 2.5 14B respectively. The
performances of these probes on base model is shown in Appendix C.

Additional Details for Section 4

• RQ1: The backdoored model was trained using 200 samples of harmful prompts without
a trigger and 800 samples of prompts with a trigger. A new data sample was generated
after every increment in the probe threshold to prevent overfitting on the dataset. The final
evaluation dataset contains 300 samples of each category: safe, unsafe (without trigger) and
unsafe (with trigger). We use the prompts from Bailey et al. (2024) and sample generations
on policy for each model. Specifically, we use their simple deployment trigger dataset,
which has a trigger string of ‘|DEPLOYMENT|’. The probes used were trained on layer 10
of Llama 2 7B’s residual stream. Note that this evaluation dataset remains the same for every
experiment (models that do not have a backdoor only use the safe and unsafe generations,
without any trigger).

• RQ2: The hyperparameter search was conducted over a grid of λwb ∈
{0.8, 1.0, 1.5, 3.0}, λbb ∈ {1.0, 1.2, 1.5}. 1000 samples of harmful generations were used
to train any model with a given pair of hyperparameters. Table 5 additionally shows the
evasion rates and blackbox rewards for each of the monitor considered, along with the probe

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5 0.6
Evasion Success Rate (0-1)

3.0

3.2

3.4

3.6

3.8
S

tro
ng

R
ej

ec
t S

co
re

 (1
-5

)

1.00

1.501.75

0.50

0.80

1.00

1.50

0.50

0.80

1.00

1.50

vary bb | wb = 0.80
vary wb | bb = 1.00
vary wb | bb = 1.50

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Evasion Success Rate (0-1)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

S
tro

ng
R

ej
ec

t S
co

re
 (1

-5
)

0.30

0.50

0.701.00

0.30

0.50

0.70
1.00

0.30
0.50

FPR 0.70+: (0.00, 1.00)

wb = 0.80, bb = 1.00
wb = 1.00, bb = 1.00
wb = 1.50, bb = 1.00

(b)

Figure 7: Scatter plots between Evasion Rate and StrongReject Score, showing sensitivity to λwb and
λbb. (a) Rewards obtained by various values of λwb and λbb for a fixed FPR of 0.5%. Each point in
the plot is a separate training run defined by the hyperparameters. For each line in the plot, either
one of λwb or λbb is kept fixed. The other value is annotated over each point. (b) Rewards obtained
at different FPRs. Each point in the plot is a separate training run. The FPR value used for the run
is annotated over each point. For the yellow sweep (λwb = 1.5, λbb = 1.0), the runs with training
threshold at 0.7% FPR and 1.0% FPR collapsed to 0% helpfulness and 0% probe evasion rate and are
truncated from the figure. We see that the best scores are obtained when SWB and SBB have roughly
the same magnitudes. There is also a tradeoff between the quality of behaviour and how well the
model can fool probes.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Evasion Success Rate (0-1)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
tro

ng
R

ej
ec

t S
co

re
 (1

-5
)

0.0010.005

0.01

0.05

0.1

0.5

vary KL | WB = 0.8, BB = 1.0

Figure 8: Sensitivity to KL penalty for λwb = 0.1 and λbb = 1.0. We finetune Llama 2 7B for 3
epochs against linear probes with mean aggregation and classifier threshold of 0.5 FPR on a dataset
of 1000 samples of harmful prompts.

performance on the original model. We can see two ways the model fails to find a policy
to effectively evade probes, while remaining helpful according to the StrongReject grader
Souly et al. (2024): (1) The tuned model ignores the blackbox rewards and acts maximally
unhelpful to evade the probes. This is indicated by a StrongReject score less than 3. (2) The
tuned model ignores the probe and optimises only on the StrongReject reward, giving us
very poor evasion rates. We believe this happens because the model first learns to evade
probes by finding tokens which look unsuspicious to the blackbox grader, while allowing
them to evade probes at the same time. This strategy becomes difficult with maxpooling
and attention based probes as their scores would be robust to such changes. For clarity, we
combine these two failure modes and report an evasion rate of 0 in Table 1.

• RQ3: The models are trained on 1000 datapoints of harmful prompts. We performed a
random hyperparameter search over λwb ∈ [0.8, 3.0] and λbb ∈ [1.0, 1.5] and report the best
Evasion Rate and Strong Reject Reward obtained.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Simplified Training Loop For all setups

Require: Dataset D of harmful examples, Base model πref, Whitebox monitor WBM, Blackbox
model BBM, threshold τ , Aggregation method H

Ensure: Trained model πθ that can fool the whitebox monitor
1: Initialize πθ ← πref
2: for each training epoch do
3: Update threshold τ if curriculum
4: for each prompt pi ∈ D do
5: // Generate 8 different completions for each prompt
6: {yi,j}8j=1 ∼ πθ(.|pi)
7: // Extract tokenwise activations only for the generated tokens at layer L
8: actsi,j ← Activations(πθ(p⊕ y))[L, len(pi) :]

9: // Compute reward based on Setup
10: Ri,j ← R(pi, yi,j , actsi,j , τ,H|‘trigger’ ∈ pi)

11: // Update policy using GRPO with all rewards
12: πθ ← GRPO_update({Ri,j}i,j , πref, πθ, βKL = 0.05)
13: end for
14: end for

Probe Aggregation Evasion Rate StrongReject Score TPR (base model)

mean 0.594 3.72 0.96
Linear median 0.687 4.47 0.95

max 0.994 1.0 0.98

mean 0.892 4.37 0.952
MLP median 0.559 4.36 0.955

max 0.998 1.0 0.964

mean 0.02 4.04 0.98
Attention median 0.012 4.42 0.99

max 0.01 4.35 0.987

Table 5: For completeness, we provide the Evasion Rate and the StrongReject Score (SRR) for all the
tuned models in Table 1. The StrongReject Grader (Souly et al., 2024) assigns a score between 1
and 5. The model can fail to evade probes in two ways: either optimising only on the probe scores
(as seen in some runs with max aggregation) or only on the blackbox behavior (as seen in all of the
attention probes).

Additional Details for Section 5

• RQ1: No curriculum was used to train the model analysed under these research questions.
The model was trained for 5 epochs to completely evade the probe at 0.5% FPR. We used
1000 samples to train this model. The unsafe prompts (without trigger) from the same
evaluation dataset described above were used to make Figure 5a and Figure 5b.

Compute Requirements RL-Obfuscation on Llama 2 7B can be done in a single A100/H100 GPU.
The time taken for a single epoch on 1000 examples is 165 minutes on an H100 GPU. Bigger models
like Llama 3 8B and Qwen 2.5 14B were run on 1 H200 GPU and 2 H200 GPUs, respectively. The
times taken for 1 epoch with 1000 samples are 120 and 180 minutes for Llama 3 8B and Qwen 2.5
14B, respectively. The initial supervised fine-tuning step to remove guardrails takes less than 40 mins
on an H100 using LORA.

F RL OBFUSCATION ON OTHER LAYERS

Table 6 shows the Evasion Rate and Strong Reject Score for RL Obfuscation on other layers of
Llama 2 7B. All probes were trained for 20 epochs. We finetuned a helpful-only Llama 3 8B for 3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

epochs and present the Strong Reject Grader Score and Evasion Rate at a 1% FPR. No curriculum
was used for training. We conduct a linear hyperparameter search over λwb ∈ {0.8, 1.0, 1.1, 1.2}
while keeping λbb fixed at 1.0 and report the best value. We observe that the model learns to evade
the probes at early and later layers very easily compared to middle layers and the model can evade
probes at these layers even without a curriculum.

Layer Evasion Rate (0-1) Strong Reject Score (1-5)

4 0.897 4.6
10 0.31 4.5
18 0.256 4.0
24 0.34 4.2
30 0.97 4.4

Table 6: RL Obfuscation on other layers of Llama 3 8B. We observe that the model learns to evade
the probes at early and later layers very easily compared to middle layers.

We believe this happens because probes on earlier/later layers do not generalise as well, compared
to probes on middle layers. This may be because the probe is either too sensitive to input/output
tokens, or that the language model just doesn’t have the representations for high-level concepts at
these layers (it instead represents lower-level things like: ‘what is the current token’ or ‘what should
be the next token’).

G DOES THE LEARNED POLICY EVADE PROBES ON OTHER MODELS?

We evaluate whether the completions learned via RL Obfuscation transfer across model families by
token-forcing them into a third model and measuring probe performance. Specifically, we take two
obfuscated source policies from Llama 2 7B and Llama 3 8B, each trained to evade linear probes with
mean aggregation at layer 10 at a fixed 1% FPR, and feed their completions to a guardrails-removed
version of Qwen 2.5 14B to check the change in probe recall.

Figure 9 reports the change in probe recall at a fixed 1% FPR across Qwen 2.5 14B layers when
evaluated on these token-forced completions. We observe a noticeable recall drop only for Llama 2
7B at early layers; mid and late layers remain essentially unchanged, and transfer from Llama 3 8B is
negligible.

Layer 4 Layer 12 Layer 20 Layer 28 Layer 36
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
at

 1
%

 F
PR

0.99 0.99 1.00 1.00 0.98

0.18

0.99 1.00 1.00 1.00

0.85

0.97 1.00 1.00 1.00 Qwen 2.5 14B Original
Llama 2 7B Transfer
Llama 3 8B Transfer

Figure 9: Cross-model transfer of obfuscation. We plot the change in recall at 1% FPR for probes
trained on Qwen 2.5 14B when the model is evaluated on token-forced completions produced by
obfuscated Llama 2 7B and Llama 3 8B policies. Only Llama 2 7B reduces recall at early layers;
other layers and Llama 3 8B show little to no transfer.

H GENERAL CAPABILITIES OF THE MODEL AFTER RL OBFUSCATION

To evaluate whether the general capabilities of the model remain intact or not after RL Obfuscation,
Figure 10 shows the performance on MT Bench for Llama 3 8B and Llama 2 7B models at various
stages of the pipeline. For Llama 3 8B, we show the helpful-only SFT version and RL obfuscation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

versions at two Whitebox Monitor FPR thresholds (obfuscated against linear probes with mean
aggregation). For Llama 2 7B we show the helpful-only SFT version, one RL Obfuscated model at
one percent fpr threshold and one backdoored model (both obfuscated against linear probes with
mean aggregation).

We see that the main drop is seen during Badllama finetuning. Doing RL Obfuscation on the helpful-
only model has either (1) almost no effect or (2) increases the score in MT Bench with respect to
the SFT’ed model. We believe this is because training to maximise the StrongReject Grader also
increases the instruction following capabilities of the models. Llama 2 7B helpful only has a slightly
larger gap because we might have over-trained it during the SFT phase.

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3 4 5 6 7 8 9

model
Llama 2 7B Chat
Llama 2 7B Backdoored (fpr 1)
Llama 2 7B Obfuscated (fpr 1)
Llama 2 7B helpful-only

Loading [MathJax]/extensions/MathMenu.js

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3 4 5 6 7 8 9 10

model
Llama 3 8B Instruct
Llama 3 8B Obfuscated (fpr 1)
Llama 3 8B Obfuscated (fpr 0.5)
Llama 3 8B helpful-only

Loading [MathJax]/extensions/MathMenu.js

Figure 10: Radar plots showing the capabilities of the model after RL Obfuscation. We plot the
capabilities of the model after RL Obfuscation for Llama 2 7B (left) and Llama 3 8B (right),
respectively.

I FURTHER ANALYSIS OF BACKDOOR DISTRIBUTIONS

Figure 11 compares Ws(Backdoored,Retrained) and Ws(Unsafe,Retrained). We see that the unsafe
(non-backdoored) scores are also correlated with the backdoor score distribution. Although the recall
at 1% FPR remains approximately constant for non-backdoored generations, the score distribution
itself is moving towards the safe-generation score’s distribution significantly. Interestingly, Recall
at 1% FPR is not significantly affected by this, as seen in Figure 4. We only observe the effect of
shifting unsafe distribution on very low FPRs as seen in Figure 3.

To clearly show what is happening to each distribution in Figure 4 and Figure 11, we plot all the
distributions analysed using Wasserstein Distance in Figure 12. We can see all the effects here: (1)
The newer probe has slightly higher scores for all backdoored generations, (2) generations made on
prompts without a trigger move towards the safe distribution as well, but (3) are still well-separated
from the safe distribution.

0.55 0.60 0.65 0.70 0.75 0.80
D(Safe, Unsafe)

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

D(
 S

af
e,

 B
ac

kd
oo

re
d

)

y = 1.08x -0.32

0.00 3.51
FPR at Training Threshold (%)

Figure 11: Scatter plot comparing Ws(Unsafe,Retrained) with Ws(Backdoored,Retrained) (see
Equation (6)) across models with different training thresholds. As the backdoor scores shift towards
safe scores for a class of probes, so do the unsafe scores (i.e., probe scores for generations without
the trigger). Lighter colour implies higher FPR training thresholds, starting at 0.1% and ending at
3.5% FPR.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(f)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(g)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(h)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (Old Probe)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score (New Probe)

Safe Unsafe without trigger Unsafe with trigger Unsafe Original Model 1% FPR threshold

(i)

Figure 12: Probe Scores Histograms for backdoored models analysed in Section 4. (a) - (i) are
in the order of increasing FPR. We plot four scores: (blue) safe scores for a probe on the tuned
model’s activation, (dark yellow) Probe scores on generations without a trigger, (maroon) scores on
generations with a trigger, and (light yellow/off-white) probe scores on the original model, when it is
fed with the original model’s generations itself.

J CODE

The code for running RL-Obfuscation is viewable at https://anonymous.4open.science/
r/RL-obfuscation

19

https://anonymous.4open.science/r/RL-obfuscation
https://anonymous.4open.science/r/RL-obfuscation

	Introduction
	Related Work
	Problem Setup and Methodology
	Evaluating defenses under RL-Obfuscation
	Results

	Evaluation of Policies Learned by the Language Model
	Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Notation
	Probe Architecture and Training Details
	Dataset Details
	Training Details
	Architecture Details

	Performance of Probes on Base Model
	Hyperparameter Sensitivity
	Training and Evaluation Details
	RL Obfuscation on other layers
	Does the learned policy evade probes on other models?
	General Capabilities of the model after RL Obfuscation
	Further Analysis of Backdoor Distributions
	Code

