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Abstract: Sampling efficiently on constraint manifolds is a core problem in
robotics. We propose Deep Generative Constraint Sampling (DGCS), which com-
bines a deep generative model for sampling close to a constraint manifold with
nonlinear constrained optimization to project to the constraint manifold. The gen-
erative model is conditioned on the problem instance, taking a scene image as
input, and it is trained with a dataset of solutions and a novel analytic constraint
term. To further improve the precision and diversity of samples, we extend the
approach to exploit a factorization of the constrained problem. We evaluate our
approach in two problems of robotic sequential manipulation in cluttered environ-
ments. Experimental results demonstrate that our deep generative model produces
diverse and precise samples and outperforms heuristic warmstart initialization.

Keywords: Generative Models, Nonlinear Optimization, Constraint Graph,
Robotic Sequential Manipulation

1 Introduction

We consider the problem of sampling points on a constraint manifold, i.e. finding diverse solutions
of a nonlinear mathematical program without costs. Such problems arise throughout robotics, in
particular in solving sequential manipulation problems, as it will be the focus in our application. We
assume that the constraints are given in terms of piecewise differentiable equalities and inequalities.
This allows us to leverage constrained optimization methods to project a randomly sampled config-
urations onto the manifold. However, for highly non-linear constraints and disconnected solution
manifolds, local optimization methods can get trapped in local optima and fail to find a feasible
solution. Further, our aim is to generate a diverse and covering set of points on the constraint man-
ifold, and to reduce the computation time needed by the local optimization. The crucial challenge
therefore is to first sample diversely and close to the constraint manifold, so that the local optimizer
can efficiently project to solutions covering the constraint manifold.

We follow a learning-based approach, where we assume that a dataset of feasible points for various
problem instances is available. Reusing precomputed data on similar problems is a promising ap-
proach [1, 2, 3]. A fundamental challenge is that the mapping between the problem instance and the
feasible manifold is extremely nonlinear and discontinuous [4, 5].

Our approach, therefore, is to train a generative neural model to map a problem instance – given in
terms of a scene image – to a randomized sample close to the constraint manifold for that instance.
An image-based prediction of solutions to manipulation problems has recently received attention
[1, 6, 7, 8, 9, 10] as it provides a fixed size parametrization (image resolution) that encodes the
obstacles and the objects to be interacted, without the need to engineer problem instance features.
Importantly, it is a natural way to encode a non-fixed number of objects.

Generative Adversarial Networks (GANs) [11, 12] and Variational Autoencoders (VAEs) [13] have
proposed a powerful methodology for training such a generative model and shown great potential
to represent complex distributions in high dimensional spaces. This work adopts the training objec-
tive and method of GANs, which is to minimize the divergence between the generative and target
distributions. That is, given the training data being the diverse samples on the constraint manifold,
the deep generative model is trained to produce seeds that lie close to the manifold conditioned on
the current problem, represented with an image of the scene. These seeds are then used as initializa-
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tion (warmstart) of a subsequent optimization procedure that projects them to the manifold to find a
feasible solution.

Despite the expressive power of function approximators and recent improvements in deep generative
models, they still have limitations in generating samples from a highly nonlinear and multimodal dis-
tribution. Inspired by previous works exploiting an underlying sparse structure of robotic sequential
manipulation problems [14, 15, 16, 17, 18] we propose an extension of our generative framework
that leverages a factorization of the constraint problem to model this multimodal distribution more
efficiently. Sampling is decomposed into a sequence, where for each factor we can train a separate
conditional generative model. Sequencing these conditional generative models increases sample
efficiency of the training and the multi-modality of the distributions it can represent.

We demonstrate the system in the context of robotic sequential manipulation, where the problem is
to find a sequence of feasible mode-switch configurations, e.g., robot’s poses when it picks or places
an object. These problems are defined by a set of continuous variables representing sequences of
robot configurations, object poses, and relative transformations, with nonlinear, piece-wise differ-
entiable constraints, e.g., for grasping, placement, collision avoidance and kinematics, which give a
natural factorization of the overall problem. Sampling a diverse set of mode-switch configurations
efficiently is essential as an inner module of task and motion planning, e.g. to provide waypoints for
subsequent trajectory optimization.

In summary, our core contributions are the following:

• We introduce Deep Generative Constraint Sampling (DGCS), which combines deep gen-
erative models with nonlinear optimization to efficiently generate diverse solutions of con-
straint problems. The generative model is trained conditional to a scene image to be appli-
cable to varying problem instances. As an application, we produce mode-switch configu-
rations in sequential manipulation.

• We extend the standard data-based training of generative models with analytical features of
the feasible manifold to achieve both diversity and sample accuracy.

• We extend our system to exploit a factorization of the constraint problem, if given, to fur-
ther improve modelling of multi-modal distributions with disconnected support and reduce
sample complexity.

2 Related Work

Generative Models in Robotics Recently, deep generative models have successfully been applied
in robotics, especially in settings where the problem is represented directly with images or point
clouds. For example, for generating grasps of complex objects directly from images [19, 20]. In the
context of motion planning [21, 22, 23] and planning [24, 25, 26], generative models are used for
sampling informative collision free configurations which greatly improve running time of sampling
based algorithms. In this line of research, the general aim is to train a network to directly predict
partial or full solutions to a problem. However, none of these works addresses sampling on a high-
dimensional constraint manifold, or predicting full multi-robot manipulation sequences. To achieve
accurate sampling, we combine learned generative models with local optimization for constraint
projection.

Warmstart in Nonlinear optimization In robotics, nonlinear optimization is used to sample on
constraint manifolds and optimize trajectories [27, 28, 29]. The goal of recent data-based approaches
is to learn a warmstart to reduce the online computation time [2, 30]. In settings where the nonlinear
programs can be represented with mixed integer constraints, [31, 32, 3, 33] learn an assignment to the
integer constraints and run subsequent optimization. In comparison to our method, integer formu-
lations use a discrimative model that is easier to train but their formulation is difficult to generalize
to problems without a clear integer structure. Recently, [34] applies GANs for inverse kinematics,
adding forward kinematics into the network training. In contrast, we use general analytical features
in the cost term. Moreover, our framework is conditioned on an image representation, and scales to
sequential manipulation by exploiting the factorization.
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Figure 1: Sequence of mode-switches (pick - handover - place) of the handover problem. Our sam-
pling framework (DGCS) combines a deep generative model x̃ ∼ Pθ(τ) that produces approximate
samples (top row) conditioned on the scene (first column) with a nonlinear optimizer that projects
them onto the constraint manifold (bottom row).

3 Sampling on a Constraint Manifold

The problem we address is to generate samples from a manifold Mτ parametrized by a fixed di-
mensional (but potentially large, e.g. images) problem parameter τ ,

Mτ = {x ∈ Rn s.t. φeq(x; τ) = 0, φineq(x; τ) ≤ 0} , (1)

where φeq(x; τ) : Rn × Rm → Rne and φineq(x; τ) : Rn × Rm → Rni are nonlinear vector-
valued functions that are piecewise differentiable. τ ∈ Rm represents the current problem instance
and parameterizes all the constraints. In the context of robotic manipulation, τ represents all the
objects in the scene (position, size, shape...), x denotes robot’s and objects’ degrees of freedom
that are subject to constraints, and φeq, φineq are (in)equality constraints that describe the problem’s
objectives such as collision avoidance, grasping, kinematic and pose constraints.

A generative model x ∼ P(τ) that produces feasible solutions (samples x ∈ Mτ ) is built from two
components (see Alg. 1): a randomized seed x̃ generation and a constrained optimization algorithm
that projects the seed x̃ to the solution manifold with the optimization problem (2),

min
x
||x− x̃||2 s.t. φeq(x; τ) = 0; φineq(x; τ) ≤ 0 (2)

In our current implementation, we solve (2) approximately, by running a nonlinear optimizer from
the starting point x̃ on the feasibility problem: find x s.t. φeq(x; τ) = 0; φineq(x; τ) ≤ 0. The
initialization and internal regularization of the optimizer provides an implicit regularization with
respect to x̃.

The projection step is a non-convex optimiza-
tion problem that has no guarantees to produce
a feasible sample; especially for a complex se-
quential manipulation problem, the optimization
landscape often has substantial local optima in-
duced by constraints, making non-linear projec-
tion prone to fail unless seeds are close to the
solution manifold.

To address such difficulty, we train a seeding dis-
tribution Pθ(τ) to approximate a reference distri-
bution of feasible solutions Pr(τ), so that it can
generate diverse samples close to the parametric
manifoldMτ on which the optimizer can easily
project. An example is shown in Fig. 1.

Algorithm 1 Sampling on a Constraint Manifold

1: Input: Problem parametrization τ , number
of trials N

2: L = {} empty list of samples
3: for i = 1, 2, ..., N do
4: Sample x̃ ∼ Pθ(τ)
5: x ← Π(x̃), Project toMτ with a nonlin-

ear optimizer (2)
6: if x feasible then
7: append x to L
8: Output: List of valid samples L
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4 Training Deep Generative Models to Sample on Constraint Manifolds

Our deep generative model is x̃ ∼ Pθ(τ) with x̃ = Gθ(z, τ), z ∼ Pz where Pz is a multidimensional
Gaussian distribution and Gθ is a neural network with parameters θ.

In contrast to the standard application of adversarial generative models (image generation), in our
setting we also have an analytical description of the support of the target distribution, namely the
features φ(x; τ) = [φeq(x; τ),max(0, φineq(x; τ))] that describeMτ . We could consider a data-free
gradient based optimization of the analytical constraint violation as

minE
τ

E
x̃∼Pθ

||φ(x̃; τ)||2 . (3)

However, this is extremely ill-posed and can converge to the “deterministic mapping” Gθ(z, τ) =
Gθ,τ ∀z where the model ignores the noise z and loses the potential to generate a diverse distribution.

To enforce sample diversity, we regularize with respect to a reference distribution Pr(τ) that is
diverse and has its support on the manifold, i.e., Ex∼Pr ||φ(x; τ)||2 = 0. Namely, we formulate the
problem as

minE
τ
W (Pθ(τ),Pr(τ)) + β E

x̃∼Pθ
||φ(x̃; τ)||2 , (4)

where W is the Wasserstein distance, and β ∈ R>0. Although the analytical term does not provide
additional information than the support of Pr(τ), as will be shown in the experiment section, its
contribution is important in the context of function approximation and stochastic gradient descent in
non-convex optimization.

4.1 Wasserstein Distance and Adversarial Formulation

The Wasserstein-1 (Earth Mover distance) between two probability distributions Pr and Pθ (5) is
defined intuitively as the cost of geometrically moving the mass from one distribution to the other
under an optimal transport plan,

W (Pr,Pθ) = inf
γ∈Π(Pr,Pθ)

E
(x,y)∼γ

‖x− y‖ , (5)

where Π(Pr,Pθ) denotes the set of all joint distributions γ(x, y) with marginals Pr and Pθ.

Compared to other notions of distance such as Jensen-Shannon Divergence or Total Variation, adver-
sarial generative models with Wasserstein distances are known to have good practical stability and
convergence, and are less prone to mode collapse [12, 35]. Furthermore, the Wasserstein distance
provides a nice interpretation in our application, because it takes into account the geometric distance
between two distributions; the minimization of the geometric distance (norm in configuration space)
to a distribution supported on the manifold improves the success rate of the subsequent projection
procedure.

We minimize the objective function (4) with the Wasserstein GAN [12, 35] formulation. Using
Kantorovich duality, the original formulation (5) is transformed into a minimax game between the
critic network D and the generator G, which are trained simultaneously with stochastic gradient
descent. Specifically, the minimax problem (with our analytical feature) is:

min
G

max
D

E
τ

E
x∼Pr

D(x; τ)− E
x̃∼Pθ

D(x̃; τ)− λ E
x̂∼Px̂

(‖∇D(x̂; τ)‖ − 1)
2

+ β E
x̃∼Pθ

‖φ (x̃; τ)‖2 , (6)

where β, λ ∈ R>0 and x̂ are samples between x and x̃. Our reference distribution Pr(τ) consists
of a discrete set of solution-problem pairs {(xi, τi)}. These data are computed offline by solving a
large set of problems, with a focus on getting diverse samples.

5 Structured Generative Model by Exploiting Factorization

The previous sections treated x as a single vector variable. While the approach for training a single
generative model x̃ = Gθ(z; τ), z ∼ Pz is powerful, we can further improve the scalability to
large problems by exploiting a given factorization of x and sequentially decomposing the sampling
procedure into a sequence of conditional sampling operations, as in Bayesian networks [36].
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Figure 2: Constraint graphs (2b, 2a) and sampling network (2c). Additional uni-variable collision
constraints are applied to p’s and q’s.

Figure 3: Sequence of learned deep generative of models for Pick and Place problems.

We assume the full variable x = {x1, ..., xN} can be factored into N vector variables. Simi-
larly, the constraints (equalities and inequalities) φ(x; τ) are factored into L sets of constraints,
{φ1, φ2, . . . , φL} with φj : Raj → Rbj where aj , bj ∈ N are the dimensions of the domain and
co-domain of the constraint φj , and each constraint φj depends only on a subset of variables.

x = {x1, . . . , xN} , φ(x; τ) = {φ1, . . . , φL} . (7)

The set of variables and constraints now defines a factored mathematical program without costs, also
called constraint graph. Such factorization naturally arise in many applications, where each variable
has some semantic and geometric meaning. Fig. 2 shows some examples of such constraint graphs
in the context of robotic sequential manipulation. Variables correspond to robot joint configurations
q ∈ R7 or R6, mobile robots base poses r ∈ SE(2) or R2, relative transformations between objects
and grippers t ∈ SE(3) and object positions p ∈ SE(3). These variables are coupled by kinematic,
collision avoidance, grasp and pose constraints. The pick-and-place graph in Fig. 2b is the funda-
mental block of sequential manipulation. Longer and complex tasks such as a handover (Fig. 2a) or
an assembly can be represented by chaining “pick and place” with additional constraints.

5.1 Directed Graphical Model and Sequential Sampling

The factored structure directly implies a factorization of the joint probability distribution x̃ ∼ P(τ)
from which we want to sample. As in Bayesian networks we can sequentialize sampling if we decide
on an ordering of variables that corresponds to a directed acyclic graph. Instead of learning a single
Gθ to produce a full assignment with x̃ = Gθ(z; τ), z ∼ Pz,, we learn a conditional model for
each factor by using the corresponding marginal distributions of the original data, and the subset of
corresponding analytical features in the constraint graph.

We illustrate the benefits of this factorization with the Pick-and-Place problem. The joint distribu-
tion for this problem is factorized into (we omit conditioning on τ for clarity)

P (p, t, q1, q2) = P (p)P (t|p)P (q1|t)P (q2|t, p) , (8)

where p is the placement position of the object, t is the relative transformation between object and
gripper and q1, q2 are the robot joint configurations at pick and place. The factorization exploits
conditional independence between (q1, p) given t and (q1, q2) given t. We leverage this structure by
training a sequence of conditional samplers p ∼ Pp , t ∼ Pt(p) , q1 ∼ Pq1(t) , q2 ∼ Pq2(t, p), see
Fig. 2c and Fig. 3. This factorization can be easily extended to longer manipulation sequences, with
the ordering p→ r → t→ q. See Appendix A for more examples of sampling orders and details.

As a side note, using marginal distributions of a jointly consistent dataset is necessary, as only the
marginals contain useful information of whether a partial assignment will admit a full solution. For
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Figure 4: Problem instances in Assembly and Handover

example, when sampling p ∼ Pp, we want to fulfil the two following constraints (conditioned on
the scene): a) position(p) = 0; and b) ∃(t, q1, q2) s.t (t, q1, q2, p) is feasible. The second constraint
cannot be evaluated efficiently, but is modelled by the marginal distribution of the data.

5.2 Note on the advantage of factorization for modelling mulimodality

Generating samples from a distribution with disconnected supports with a deep generative model
that receives a continuous input noise z ∼ Pz requires infinite gradients in Gθ and can only be done
approximately. In these cases, training is unstable and sensitive to hyperparameters and architecture.

We can model disconnected distributions more effectively by factoring the full joint probability as
a sequence of smaller conditional modules, as is confirmed by our experimental results in Section
6.3. The sequencing still requires that each module is able to produce some degree of multimodality.
However, once a module in the sequence receives a disconnected input in the form of conditioning,
it can successfully produce a disconnected output. As we chain modules with the ability to generate
a small amount of disconnected components given a continuous input, the number of possible dis-
connected components of the output grows exponentially with the number of modules in sequence.

Furthermore, from a practical perspective, training smaller modules turned out to be more effective.
For instance, we observed that the analytical feature ||φ(x; τ)||2 of the joint problem can provide
badly-conditioned gradients when evaluated far from the manifold. This issue is alleviated when
considering only subsets of constraints and variables. In our preliminary experiments, we also eval-
uated GAN frameworks that have a mechanism to model disconnected distribution [37, 38] (these
methods require an estimate of the number of disconnected components and a mechanism to cluster
samples into components) but did not find significant improvements.

6 Experiments

6.1 Image based Problem representation

We use an image-based representation of the problem instance τ that consists of the depth image and
masks. Specifically, τ = {d,m1,m2,m3}, where d is the depth image, and m1, m2, m3 are three
masks that contain, respectively, information from the initial object pose, goal pose or placement
region, and obstacles, see Fig. 4. In the factored approach, each generative module receives as input
only the “relevant” masks, e.g. the sampler for the robot pick configuration receives a mask of the
obstacles and the initial configuration, but not the goal pose.

The main strength of the image representation is that it can generalize to different object shapes and
changing number of obstacles and shapes. Moreover, a depth camera is easily available, approximate
masks can be computed with image segmentation techniques and it provides a good representation
of sequential manipulation problems on tabletop scenarios.

6.2 Scenarios

We consider three different manipulation tasks that involve object manipulation with stable grasps.

• Pick-and-Place: A robot has to pick an object and place it on a rectangular region of the
table. Fig. 3.

• Assembly: two mobile robots have to pick an object each and assemble them. The assembly
is not unique, but modelled as a manifold with constraints on rotation and position: objects
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Figure 5: Samples from the deep generative model in the same instance of the assembly scenario.
Each sample is shown with two keyframes (pick and assembly). Both seeds lead to feasible solution.

Seeds Solutions

Coverage Precision Error Coverage Precision Success Rate

Big NN 0.81±0.09 0.7±0.11 8.38±1.82 0.58±0.12 0.39±0.06 0.46
Big NN + analytical 0.79±0.12 0.53±0.14 1.21±1.35 0.75±0.13 0.41±0.13 0.43
Structure NN 0.6±0.08 0.62±0.1 8.09±1.35 0.41±0.05 0.44±0.06 0.56
Structure NN + analytical 0.57±0.08 0.47±0.13 1.46±0.79 0.44±0.07 0.28±0.08 0.78

Table 1: Ablation study in the Pick-and-Place scenario.

have to be perpendicular and make stable contact with predefined faces of the cubes (similar
to a T shape). Fig. 5.

• Handover: Two mobile robots have to collaborate to move the object from the initial to the
goal position doing a handover. Fig. 1.

All these tasks are performed on a cluttered table with a varying number (between 3 and 5) of
obstacles. The grasp between the gripper and the object is modelled with a two finger gripper (e.g.
Franka Panda Gripper) that constrains the position and orientation. The training dataset consists of
4000 pairs of problem-solution computed offline with a user-defined sampling sequence to ensure
diversity. The problems consist of 64x128x4 images (input of network) and their corresponding
environment (for the analytical error term in training and nonlinear optimization).

The variability between instances is defined by the number, position and size of obstacles, the size
and position of the objects and the goal configuration. The instances of the evaluation and train
dataset come from the same distribution. See the Appendix A for details about the structure of the
networks and implementation, and a collection of samples generated by our deep generative models.

6.3 Ablation Study

The Pick-and-Place scenario is used for an ablation study of the proposed generative model. We
analyze the contribution of the factored structure (Big NN vs Structure NN) and analytical error term
(+analytical). We evaluate precision and coverage of seed samples (output from the deep generative
models) and solutions (after projection with nonlinear optimization) by generating 4000 samples for
each new instance (30 in total). Results are shown in Table 1. We report the metrics:

• Error: the constraint violation ||φ(x̃; τ)||2 (unitless, lower is better).
• Precision: average nearest neighbour distance to a reference dataset. It models how close

samples are to the real data (lower is better).
• Coverage: average nearest neighbour distance from the reference dataset to the computed

samples. It describes how well the learned distribution covers the reference dataset (lower
is better).

When analyzing the seeds (output of the generative model) our two contributions are essential to
achieve small constraint violation (anlytical term) and good coverage (structure). Seeds from the
model with structure and analytical term have higher probability of leading to a solution (success
rate) and, after the projection, only samples from networks with structure provide good coverage.

6.4 Benchmark: Generative Model in Nonlinear optimization

The Assembly and Handover scenarios are used to compare our generative model against two base-
line methods for warmstarting (seeding) nonlinear optimizers. We analyze the number of solved
problems and the number of necessary optimization runs. Measuring the number of solved nonlin-
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Figure 6: Histogram of the estimated number of trials necessary to solve an instance.

ear programs is an indirect way to evaluate coverage and sample quality, as both are fundamental
to solve a diverse set of problems with a nonlinear optimizer and prevent convergence to infeasible
points. We compare our complete model (deep generative model with structure and analytical error
term), in short deep, with baselines:

• Rand: Randomized initial guess around a reference value.
• Rand Data: Choosing samples x from the training dataset at random. The initial point is

thus a feasible sample for another problem of the same family. This is actually a strong
baseline, because it provides diverse informative initial seeds.

We evaluate the generative model (deep generative model + optimization) on 200 problems from the
evaluation dataset. The experiments are repeated 10 times and we report mean and variance. We
first report how many optimization trials (each trial has an independent starting point) are necessary
to solve each of the test instances, and plot the histogram of the mean value in Fig. 6. Unsolved
problems are assumed to be solved with 10 trials (maximum number trials).

In both scenarios, the proposed deep generative model outperforms the baseline warmstarts, signif-
icantly reducing the number of trials required to solve the instances: in average (across problems),
from (Rand Data, 3.86±1.29) to (Deep, 2.77±1.79) in Handover and from (Rand Data, 3.99±1.44)
(Deep, 2.07±1.38) in Assembly. To complete the analysis, we also show the cumulative number of
problems solved as we increase the number of optimization trials in Fig. 7 of the Appendix A. The
computational overhead of evaluating the neural network is small (we produce 10 samples in 8 ms
with a GPU), while most of the time is spent in optimization runs that converge to infeasible points.
Time spent (in seconds) to complete the benchmarks are: (Deep, 949±32), (Rand Data, 1746±76)
in Assembly; and (Deep, 1246±26), (Rand Data, 1715±58) in Handover.

7 Conclusion

In this work, we propose Deep Generative Constraint Sampling (DGCS), a new approach to sample
on a constraint manifold to tackle problems in robotic sequential manipulation. Our framework
combines a deep generative sampling model, conditioned on an image based representation of the
problem, and a nonlinear optimizer to project samples onto the manifold. We further extended
the approach to exploit a given factorization of the problem, by training a sequence of conditional
generative models rather than a full joint generator. Our empirical results confirm that the trained
generative models outperform heuristic warmstart strategies. Moreover, the inclusion of analytic
constraints in the training of the generative model, as well as exploiting the factorization of a given
problem significantly improves the efficiency, diversity and precision of the sampling approach.

A limitation of our approach is that training requires a dataset of solutions to different instances
of the same problem class. As future work, the proposed graphical structure could be exploited
to provide generalization across different problem classes (i.e. different type and number of con-
straints and variables) by sharing and combining the sampling modules of the sequence. Our current
framework combines generative sampling using a neural network with subsequent projection using
constrained optimization. A promising future direction is to explor.e whether it is possible to embed
the optimization algorithm as a last layer of the generative model, while keeping good coverage and
multimodality.

8



Acknowledgments

Joaquim Ortiz-Haro and Danny Driess thank the International Max-Planck Research School for
Intelligent Systems (IMPRS-IS) for the support. This research has been supported by the German-
Israeli Foundation for Scientific Research (GIF) grant I-1491-407.6/2019 and the German Research
Foundation (DFG) under Germany’s Excellence Strategy – EXC 2002/1–390523135 “Science of
Intelligence”.

References
[1] D. Driess, J.-S. Ha, and M. Toussaint. Deep visual reasoning: Learning to predict action

sequences for task and motion planning from an initial scene image. In Robotics: Science and
Systems 2020 (RSS 2020). RSS Foundation, 2020.

[2] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse. Using a memory of motion to
efficiently warm-start a nonlinear predictive controller. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 2986–2993. IEEE, 2018.

[3] A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwager, and M. Pavone. Learning
mixed-integer convex optimization strategies for robot planning and control. In 2020 59th
IEEE Conference on Decision and Control (CDC), pages 1698–1705. IEEE, 2020.

[4] K. Hauser. Learning the problem-optimum map: Analysis and application to global optimiza-
tion in robotics. IEEE Transactions on Robotics, 33(1):141–152, 2016.

[5] G. Tang and K. Hauser. Discontinuity-sensitive optimal control learning by mixture of experts.
CoRR, abs/1803.02493, 2018. URL http://arxiv.org/abs/1803.02493.

[6] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint. Learning geometric reasoning and control
for long-horizon tasks from visual input. In 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[7] A. Xie, F. Ebert, S. Levine, and C. Finn. Improvisation through physical understanding: Using
novel objects as tools with visual foresight. In Proc. of Robotics: Science and Systems (R:SS),
2019.

[8] F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised visual planning with temporal skip
connections. In Conference on Robot Learning, 2017.

[9] C. Paxton, Y. Barnoy, K. D. Katyal, R. Arora, and G. D. Hager. Visual robot task planning. In
International Conference on Robotics and Automation (ICRA), pages 8832–8838. IEEE, 2019.

[10] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake. Learning models as functionals of signed-
distance fields for manipulation planning. In Proc. of the Annual Conf. on Robot Learning
(CORL), 2021.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing sys-
tems, 27:2672–2680, 2014.

[12] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In
Proceedings of the 34th International Conference on Machine Learning, 2017.

[13] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.
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