
Published as a conference paper at ICLR 2023

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV AC-
CELERATION FOR ADAPTIVE GRADIENT ALGORITHMS

Pan Zhou1 Xingyu Xie2,1 Shuicheng Yan1

1Sea AI Lab
2National Key Lab of General AI, School of Intelligence Science and Technology, Peking University
{zhoupan,xyxie,yansc}@sea.com

ABSTRACT

Training deep networks on large-scale datasets is computationally challenging. In
this work, we explore the problem of “how to accelerate adaptive gradient algo-
rithms in a general manner”, and aim to provide practical efficiency-boosting in-
sights. To this end, we propose an effective and general Weight-decay-Integrated
Nesterov acceleration (Win) to accelerate adaptive algorithms. Taking AdamW
and Adam as examples, we minimize a dynamical loss per iteration which com-
bines the vanilla training loss and a dynamic regularizer inspired by proximal
point method (PPM) to improve the convexity of the problem. To introduce
Nesterov-alike-acceleration into AdamW and Adam, we respectively use the first-
and second-order Taylor approximations of vanilla loss to update the variable
twice. In this way, we arrive at our Win acceleration for AdamW and Adam
that uses a conservative step and a reckless step to update twice and then linearly
combines these two updates for acceleration. Next, we extend Win acceleration to
LAMB and SGD. Our transparent acceleration derivation could provide insights
for other accelerated methods and their integration into adaptive algorithms. Be-
sides, we prove the convergence of Win-accelerated adaptive algorithms and jus-
tify their convergence superiority over their non-accelerated counterparts by tak-
ing AdamW and Adam as examples. Experimental results testify to the faster con-
vergence speed and superior performance of our Win-accelerated AdamW, Adam,
LAMB and SGD over their non-accelerated counterparts on vision classification
tasks and language modeling tasks with both CNN and Transformer backbones.
We hope Win shall be a default acceleration option for popular optimizers in deep
learning community to improve the training efficiency. Code will be released at
https://github.com/sail-sg/win.

1 INTRODUCTION

Deep neural networks (DNNs) are effective to model realistic data and have been successfully ap-
plied to many applications, e.g. image classification (He et al., 2016) and speech recognition (Sainath
et al., 2013). Typically, their training models can be formulated as a nonconvex problem:

minz∈Rd F (z) := Eζ∼D[f(z, ζ)] +
λ

2
‖z‖22 , (1)

where z ∈ Rd is the model parameter; sample ζ is drawn from a data distribution D; the loss f
is differentiable; λ is a constant. Though many algorithms, e.g. gradient descent (Cauchy et al.,
1847) and variance-reduced algorithms (Rie Johnson, 2013), can solve problem (1), SGD (Robbins
& Monro, 1951) uses the compositional structure in (1) to efficiently estimate gradient via minibatch
data, and has become a dominant algorithm to train DNNs in practice because of its higher efficiency
and effectiveness. However, on sparse data or ill-conditioned problems, SGD suffers from slow con-
vergence speed (Kingma & Ba, 2014), as it scales the gradient uniformly in all parameter coordinate
and ignores the problem properties on each coordinate. To resolve this issue, recent work has pro-
posed a variety of adaptive methods, e.g. Adam (Kingma & Ba, 2014) and AdamW (Loshchilov &
Hutter, 2018), that scale each gradient coordinate according to the current geometry curvature of the
loss F (z). This coordinate-wise scaling greatly accelerates the optimization convergence and helps
them, e.g. Adam and AdamW, become more popular in DNN training, especially for transformers.

1

https://github.com/sail-sg/win

Published as a conference paper at ICLR 2023

Unfortunately, along with the increasing scale of both datasets and models, efficient DNN training
even with SGD or adaptive algorithms has become very challenging. In this work, we are particularly
interested in the problem of “how to accelerate the convergence of adaptive algorithms in a general
manner” because of their dominant popularity across many DNNs. Heavy ball acceleration (Polyak,
1964) and Nesterov acceleration (Nesterov, 2003) are widely used in SGD but are rarely studied in
adaptive algorithms. Among the very few, NAdam (Dozat, 2016) simplifies Nesterov acceleration
to estimate the first moment of gradient in Adam while totally ignoring the second-order moments,
which is not exact Nesterov acceleration and may not inherit its full acceleration merit.

Contributions: In this work, based on a recent Nesterov-type acceleration formulation (Nesterov
et al., 2018) and proximal point method (PPM) (Moreau, 1965), we propose a new Weight-decay-
Integrated Nesterov acceleration (Win for short) to accelerate adaptive algorithms, and also further
analyze the convergence of Win-accelerated adaptive algorithms to justify their convergence superi-
ority by taking AdamW and Adam as examples. Our main contributions are highlighted below.

Firstly, we use PPM to rigorously derive our Win acceleration for accelerating adaptive algorithms.
By taking AdamW and Adam as examples, at the k-iteration, we follow PPM spirit and minimize
a dynamically regularized loss F (z)+ 1

2ηk
‖z − xk‖2√vk+ν

with the second-order gradient moment
vk and the stabilizing constant ν in AdamW and Adam. Then to introduce Nesterov-alike accelera-
tion and also make the problem solvable iteratively, we respectively approximate F (z) by its first-
and second-order Taylor expansions to update the variable z twice while always fixing the above
dynamic regularization and also an extra regularizer 1

2ηk
‖z‖2√

vk+ν
induced by the weight decay in

AdamW. As a result, we arrive at our Win acceleration, a Nesterov-alike acceleration, for AdamW
and Adam that uses a conservative step and a reckless step to update twice and then linearly com-
bines these two updates for acceleration. Then we extend this Win acceleration to LAMB (You et al.,
2019) and SGD. The above acceleration derivation is transparent and general which could motivate
other accelerations and provide examples to introduce other accelerations into adaptive algorithms.

Secondly, we prove the convergence of our Win-accelerated AdamW and Adam. For both, to find
an ε-approximate first-order stationary point, their stochastic gradient complexity is O

(c2.5∞
ν1.25ε4

)
and matches the lower bound Ω(1

ε4) in (Arjevani et al., 2019; 2020) (up to constant factors) un-
der the same conditions, where c∞ upper bounds the `∞ norm of stochastic gradient. Moreover, this
complexity improves a factor O(d

c0.5∞
) over the complexity O(

c2∞dσ
2L

ν1.25ε4) of Adam-type optimizers
in (Zhou et al., 2018; Guo et al., 2021), e.g. Adam, AdaGrad (Duchi et al., 2011), AdaBound (Luo
et al., 2018), since network parameter dimension d is often much larger than c0.5∞ , especially for
over-parameterized networks. Indeed, Win-accelerated Adam and AdamW also enjoy superior com-
plexity than other Adam variants, e.g. Adabelief (Zhuang et al., 2020) with compelxityO(

c62
ν2ε4), es-

pecially on over-parameterized networks, where c2 is the maximum `2-norm of stochastic gradient.

Finally, experimental results on both vision classification tasks and language modeling tasks show
that our Win-accelerated algorithms, i.e. accelerated AdamW, Adam, LAMB and SGD, can acceler-
ate the convergence speed and also improve the performance of their corresponding non-accelerated
counterparts by a remarkable margin on both CNN and transformer architectures. All these results
show the strong compatibility, generalization and superiority of our acceleration technique.

2 RELATED WORK

In the context of deep learning, when considering efficiency and generalization, one often prefers to
adopt SGD and adaptive gradient algorithms, e.g. Adam, instead of other algorithms, e.g. variance-
reduced algorithms (Rie Johnson, 2013), to solve problem (1). But, in practice and theory, adaptive
algorithms often suffer from inferior generalization performance than SGD (Zhou et al., 2020a;b).
To solve this issue, AdamW (Loshchilov & Hutter, 2018) proposes a decoupled weight decay which
introduces an `2-alike regularization into Adam to decay network weight iteratively, and its effec-
tiveness is widely validated on ViTs (Touvron et al., 2021) and CNNs (Touvron et al., 2021). Later,
LAMB (You et al., 2019) scales the update in AdamW to the weight magnitude for avoiding too
large or small update, but suffers from unsatisfactory performance on small batch. In this work, we
aim to design a general acceleration to accelerate these adaptive algorithms.

Heavy-ball acceleration (Polyak, 1964) and Nesterov acceleration (Nesterov, 2003) are two classi-
cal acceleration techniques, and their effectiveness in SGD is well testified. Later, NAdam (Dozat,

2

Published as a conference paper at ICLR 2023

2016) integrates Nesterov acceleration into the first-order gradient moment estimation but ignores
the second-order gradient moments which harms the acceleration effect. Some works (Anil et al.,
2022; 2020) also explore Nesterov acceleration for second-order algorithms, e.g. shampoo (Gupta
et al., 2018). Recently, for full gradient decent algorithm, a new general Nesterov-type accelera-
tion (Nesterov et al., 2018) directly interpolates two variables to look ahead for correction, and is
more flexible than vanilla Nesterov acceleration (Nesterov, 2003) which interpolates the variable
and gradient. See discussion in Sec. 3.2. Here we use proximal point method to introduce this new
acceleration into adaptive algorithms by a rigorous and transparent derivation and necessary tailors.

3 WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

To accelerate full gradient descent algorithm, given a full gradient ∇F (zk) of problem (1) at the
k-th iteration, Nesterov-type acceleration (Nesterov et al., 2018) generally uses a conservative step
ηk and a reckless step η̄k to update two sequences xk+1 and yk+1 respectively, and then linearly
combines them to update the variable zk+1 of the problem. Similar formulations are also observed
and proved in recent works, e.g. (Allen-Zhu & Orecchia, 2014; Bansal & Gupta, 2019; Ahn & Sra,
2022). In general, their acceleration formulation can be formally formulated as

xk+1 = xk − ηk∇F (zk), yk+1 = zk − η̄k∇F (zk), zk+1 = ρkxk+1 + (1− ρk)yk+1. (2)

This acceleration enjoys provably faster convergence rate for full gradient descent method on convex
problems (Nesterov et al., 2018), and is then empirically validated in many convex and nonconvex
cases, e.g. (Wilson et al., 2017; Nado et al., 2021). Despite its effectiveness, such acceleration
is rarely explored in adaptive gradient algorithms, especially for network training. In determinis-
tic optimization setting, another widely used optimization-stabilizing and acceleration approach is
proximal point method (PPM) (Moreau, 1965; Rockafellar, 1976). At the k-th iteration, PPM op-
timizes an `2-regularized loss F (z)+ 1

2ηk
‖z−zk−1‖22 instead of the vanilla loss F (z). This small

change enhances the convexity of the problem, accelerating and also stabilizing optimization pro-
cess (Kim et al., 2022; Zhou et al., 2021c). To make the `2-regularized problem solvable iteratively,
PPM approximates the loss F (z) by its first- or second-order Taylor expansion so that each iteration
has a close-form solution (see below). At below, we borrow the idea in PPM to induce a Weight-
decay-Integrated Nesterov acceleration (Win) for adaptive algorithms by using AdamW and Adam
as examples in Sec. 3.1, and then extend this acceleration technique to LAMB and SGD in Sec. 3.2.

3.1 WIN-ACCELERATED ADAMW AND ADAM

To begin with, following most adaptive gradient algorithms, e.g. Adam and AdamW, we estimate
the first- and second-order momentsmk and vk of gradient as follows:

gk =
1

b

∑b

i=1
∇f(zk; ζi), mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2g

2
k, (3)

where gk is the average gradient on a minibatch data of size b, β1 ∈ [0, 1] and β2 ∈ [0, 1]. For the
initialization, we setm0 = g0, v0 = g2

0 . For brevity, with a small scaler ν>0, we define
sk =

√
vk + ν, uk = mk/

√
vk + ν. (4)

Then following the spirit of PPM, at the k-th iteration, we minimize a regularized loss F (x) +
1

2ηk
‖x−xk‖2sk , where ‖x‖sk=

√
〈x, sk∗x〉with an element-wise product operation ∗. Here we use

the regularizer ‖x−xk‖2sk instead of the `2-regularization ‖x−xk‖22, since 1) this new regularization
can induce adaptive algorithms as shown below Eqn. (5), and 2) it increases the convexity of the
problem and further considers different sharpness property of each coordinate because of different
elements in sk, accelerating convergence. To make the problem solvable iteratively, we approximate
the vanilla loss F (z) by its first-order Taylor expansion at the point zk and update xk+1 as

xk+1 = argminxF (zk)+〈mk,x−zk〉+
1

2ηk
‖x−xk‖2sk +

λk
2
‖x‖2sk =

1

1+λkηk
(xk−ηkuk), (5)

wheremk is used to approximate the full gradient∇F (zk). We add a small regularization λk

2 ‖x‖
2
sk

,
since 1) it can largely improve the generalization performance in practice (Loshchilov & Hutter,
2018; Touvron et al., 2021); 2) it allows us to derive Adam (λk = 0) and AdamW (λk > 0). Here
λk can be fixed as a constant or evolved along iteration number k. But in practice, a evolving λk
often enjoys better performance than a fixed one (Caron et al., 2021; Zhou et al., 2022). When
λk = 0, the updating (5) becomes the exact Adam. If λk> 0, the updating (5) can approximate the
updating rule xk+1 = (1 − λkηk)xk−ηkuk of AdamW. This is because consider λkηk is small in

3

Published as a conference paper at ICLR 2023

practice, we can approximate (1+λkηk)−1 =1− λkηk+O(λ2
kη

2
k) and thus 1

1+λkηk
(xk − ηkuk)=

[1−λkηk +O(λ2
kη

2
k)]xk− [ηk−O(λkη

2
k) +O(λ3

kη
3
k)]uk which becomes AdamW by ignoring the

ignorable terms O(η2
k) or O(η3

k). This is also one reason that we adopt the regularizer ‖x− xk‖2sk
in (5) instead of the `2-regularization in PPM, since we can flexibly derive Adam and AdamW.

Similarly, we minimize a regularized loss F (z) + 1
2ηk
‖z−xt+1‖2sk again, and further approximate

F (z) by its second-order approximation F (zk) + 〈mk, z − zk〉+ 1
2η̄k
‖z − zk‖2sk :

zk+1 = argminz F (zk)+〈mk, z − zk〉+
1

2η̄k
‖z − zk‖2sk +

1

2ηk
‖z − xk+1‖2sk +

λk
2
‖z‖2sk

=η̄kτkxk+1 + ηkτk
(
zk − η̄kuk

)
,

(6)

where τk = 1
ηk+η̄k+λkηkη̄k

, mk is used to approximate ∇F (xk) as guaranteed by Theorem 1 in
Sec. 4, η̄k approximates the inverse of the local smoothness parameter of F (z) around zk. Here we
use a regularizer ‖z − xk+1‖2sk with the latest update xk+1 instead of xk as an anchor point, since
the latest update xk+1 could often provide better regularization for the concurrent optimization.

Now we have used PPM to rigorously derive our Win-accelerated AdamW and Adam in Eqns. (3),
(5) and (6). For more clarity, we summarize their algorithmic steps in Algorithm 1 in which we
omit the bias-correction term for simplicity. When λ = 0, it is Win-accelerated Adam; if λ >
0, it gives Win-accelerated AdamW. Generally, AdamW can greatly improve the generalization
performance of Adam by simply adding a weight decay (i.e. the regularizer λ

2 ‖ · ‖
2
sk

) into Adam
as observed in many works, e.g. (Loshchilov & Hutter, 2018; Touvron et al., 2021). Our Win-
acceleration is quit simple and efficient, since our accelerated AdamW/Adam only adds one extra
simple algorithmic step, i.e. the seventh step in Algorithm 1, on vanilla AdamW/Adam, and brings
negligible extra computational overhead into vanilla optimizer, e.g. about 2% ∼ 5% extra training
time per iteration on AdamW evaluated on ViT-small and ViT-base. Moreover, for the only extra
hyper-parameter, the reckless step η̄k, in Algorithm 1 over AdamW/Adam, we always set it 2× larger
than the conservative step ηk for all iterations, i.e. η̄k=2ηk, working well in our all experiments.

Now we discuss the relations between Nesterov-type acceleration (2) and our Win acceleration (6).
For comparison, we introduce a virtual sequence yk+1 =zk−η̄kuk in Win, and rewrite (6) as
xk+1 =(1 + λkηk)−1 (xk − ηkuk) , yk+1 =zk − η̄kuk, zk+1 = η̄kτkxk+1 + ηkτkyk+1, (7)

where uk is defined in (4). By comparing Nesterov-type acceleration (2) with our Win accelera-
tion (7), one can observe some similarity and also differences as well. For similarity, both methods
use a conservative step ηk and a reckless step η̄k to update xk+1 and yk+1 respectively, and then
linearly combine xk+1 and yk+1 to obtain zk+1. For the differences, the first one is that Win has a
weight-decay-alike factor 1

1+λkηk
in (7) which slightly decays the variable xk like AdamW and also

the update uk, while Nesterov acceleration does not have. Note, weight decay can greatly benefit
generalization in practice as shown in many works, e.g. (Loshchilov & Hutter, 2018; Touvron et al.,
2021; Liu et al., 2021). Another difference is that for almost all acceleration techniques, including
Nesterov-type acceleration (2), the sum of their linear combination factors (e.g. ρk and 1−ρk in (2))
is always one. In contrast, in Eqn. (7), Win uses η̄kτk + ηkτk=1− λkηkη̄k

ηk+η̄k+λkηkη̄k
<1 when λk>0,

which further gives a second weigh decay. Since these two differences are caused by the weight
decay, we call our acceleration “weight-decay-integrated Nesterov acceleration” (Win for short).

3.2 EXTENSION TO LAMB AND SGD
Here we generalize Win acceleration to LAMB (You et al., 2019) and SGD (Robbins & Monro,
1951). For LAMB, it scales the updateuk of AdamW in Eqn. (4) so that uk is at the same magnitude
of the network weight xk. That is, it changes the update rule xk+1 = (1 − λkηk)xk − ηkmk/sk
in AdamW to xk+1 = xk − ηk ‖xk‖2

‖rk+λkxk‖2 (rk + λkxk) where rk = mk/sk. This modification is
to avoid too large or small update, improving optimization efficiency. To extend Win acceleration to
LAMB, we inherit this scaling spirit, and scale the update uk in (4) to the following one:

uk = (‖xk‖2/‖rk + λkxk‖2) · (rk + λkxk). (8)
We scale mk/sk instead of (mk/sk+λkxk) in LAMB, as our scaling can be repeatedly used to
update our two sequences xk and zk. Next, we can respectively follow Eqn. (5) and (6) to update
the two sequences xk and zk. See the detailed steps of Win-accelerated LAMB in Algorithm 1, and
the detailed comparison between LAMB and Win-accelerated LAMB in Appendix A.

4

Published as a conference paper at ICLR 2023

Algorithm 1: Win-Accelerated AdamW, Adam and LAMB
Input: initialization x0 = z0 = 0, step size {(ηk, η̄k)}Tk=0, moment parameters {β1, β2}.
Output: (x̄, z̄) uniformly seleted from {(xk, zk)}Tk=0.

1 while k < T do
2 gk = 1

b

∑b
i=1∇f(zk; ζi)

3 mk = (1− β1)mk−1 + β1gk /* m0 = g0 */
4 vk = (1− β2)vk−1 + β2g

2
k /* v0 = g2

0 */

5 uk = mk√
vk+ν

for AdamW and Adam, uk= ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

(
mk√
vk+ν

+λkxk
)

for LAMB

6 xk+1 = 1
1+λkηk

(xk − ηkuk)

7 zk+1 = η̄kτkxk+1 + ηkτk (zk − η̄kuk) with τk = 1
ηk+η̄k+λkηkη̄k

8 end while

For SGD, applying Win acceleration to it is quite direct. Specifically, the only algorithmic difference
between SGD and AdamW on the `2-regularized problems is that SGD has no second-order moment
vk while AdamW has. So we can borrow the acceleration framework of AdamW in Sec. 3.1 to
accelerate SGD by setting sk = 1 ∈ Rd in Eqn. (4), (5) and (6), and obtain Win-accelerated SGD:

mk=β1mk−1+β
′
1gk, xk+1 =

1

1+λkηk
(xk−ηkmk), zk+1= η̄kτkxk+1+ηkτk

(
zk−η̄kmk

)
, (9)

where β′1∈ [0, 1] is dampening parameter. Here we slightly modify the moment mk to accord with
the one used in Nesterov-accelerated SGD (e.g. SGD-M in Pytorch) whose updating steps are

mk = β1mk−1 + β′1(gk + λkxk), xk+1 = (1− λkηk)xk − ηk(gk + β2mk). (10)

By comparing Win-accelerated SGD and SGD-M in (10), one can find their big differences mainly
caused by their different acceleration strategies and ways to handle weight decay. Win-accelerated
SGD is derived from PPM and a recently proposed acceleration (2), while SGD-M modifies an-
other previous Nesterov-type acceleration (Nesterov, 2003) (of formulation mk = β1mk−1−
ηk
b

∑b
i=1∇f(xk + ηkmk−1; ζi) and xk+1 = xk +mk) to better train networks. See more mecha-

nisms of previous Nesterov acceleration and (10) in (Sutskever et al., 2013; Bengio et al., 2013).

4 CONVERGENCE ANALYSIS

Here we investigate the convergence performance of Win-accelerated algorithms by taking acceler-
ated AdamW, Adam and SGD as examples, as these algorithms are more preferably used in deep
learning field. Moreover, since we aim to accelerate deep network training which is highly noncon-
vex problems, we focus on analyzing nonconvex problems to accord with the practical setting.

For analysis, we follow previous optimization works, e.g. (Kingma & Ba, 2014; Reddi et al., 2019;
Duchi et al., 2011; Zhou et al., 2020b; 2021a;b; Xie et al., 2022), to introduce necessary assumptions.
Assumption 1 (L-smoothness). We say a function f(z, ·) to be L-smooth w.r.t. z, if for ∀z1, z2 and
∀ζ ∼ D, we have ‖∇f(z1, ζ)−∇f(z2, ζ)‖2 ≤ L ‖z1 − z2‖2 with a universal constant L.
Assumption 2 (Unbiased and bounded gradient estimation). The gradient estimation gk is unbi-
ased, i.e. for ∀k, E[gk] = ∇F (zk), and its magnitude and variance are bounded, namely, for ∀k,
‖gk‖∞ ≤ c∞ and E[‖∇F (zk)− gk‖2] ≤ σ with two universal constants c∞ and σ.
Next, we first define a dynamic function Fk(z) at the k-th iteration which is real loss minimized by
our algorithms. It combines the vanilla loss F (z) in (1) and a dynamic regularization λk

2 ‖z‖
2
sk

:

Fk(z) = F (z) +
λk
2
‖z‖2sk = Eζ [f(z; ζ)] +

λk
2
‖z‖2sk , (11)

where sk is given in (4). To obtain (11), following PPM spirit and Eqn. (5), one can approximate
F (z) by its first-order Taylor expansion, and obtain Eqn. (5) with x replaced by z to update zk+1 =

1
1+λkηk

(zk−ηkmk/sk). Since λkηk is very small, one can follow the discussion below Eqn. (5) and
approximate zk+1 as zk+1 = (1−λkηk)zk−ηkmk/sk which becomes the update rule of AdamW.
This is the reason that our analysis on Win-accelerated AdamW involves a dynamic loss Fk(z)
in (11). Note, for Win-accelerated Adam (λk=0), Fk(z) degenerates to the vanilla loss F (z).

With these assumptions, we analyze the convergence behaviors of our accelerated algorithms on gen-
eral nonconvex problems, and summarize our main results in Theorem 1 with proof in Appendix E.

5

Published as a conference paper at ICLR 2023

Theorem 1. Suppose Assumptions 1 and 2 hold, and x?∈argminx F (x). Let η̄k=γηk, γ>1, ηk=

η≤O
(

ν1.25bε2

c1.5γ2.5σ2L

)
, β1≤O

(
ν0.5bε2

cσ2

)
, β2 ∈ (0, 1), c = (c2∞ + ν)0.5, λk = λ(1 − β2c

2
∞
ν)k (k > 0)

and λ0 = 0 with a constant λ > 0. Then after T = O
(c2.5∞ γ2.5σ2L∆

ν1.25bε4

)
iterations with minibatch size

b and ∆ = F (x0) − F (x?), the sequence {(xk, zk)}Tk=0 generated by Win-accelerated AdamW
and Adam in Algorithm 1 satisfies the following four properties.
a) The gradient ∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4
‖mk + λkxk ∗ sk‖22

]
≤ε2.

b) The gradient momentmk can well estimate the full gradient∇F (xk) and∇F (zk):
1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (zk)‖22

}
≤
(

16 +
1

2c
ν0.5L

)
ε2.

c) The sequence {xk, zk} satisfies
1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖zk+1−zk‖22,E‖zk−xk‖

2
2

}
≤
{

4η2ε2,
ν1.5β2

1ε
2

4c(1−β1)3L2
,
ν0.5ε2

4cL

}
.

d) The total stochastic gradient complexity to achieve the above three properties is O
(c2.5∞ ∆σ2L
ν1.25ε4

)
.

Theorem 1 guarantees the convergence of Win-accelerated AdamW and Adam in Algorithm 1 on
nonconvex problems. When λk>0 (λk =0), Algorithm 1 corresponds to Win-accelerated AdamW
(Adam). For both cases, Theorem 1 holds. Theorem 1 a) shows that by running at most T =

O
(c2.5∞ ∆σ2L
ν1.25bε4

)
iterations, the average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
is upper bounded by ε2,

guaranteeing the algorithmic convergence. Theorem 1 b) indicates the gradient momentmk can well
estimate the full gradient ∇F (zk) and also ∇F (xk) because of their small distances, guaranteeing
the good Taylor approximation used in Eqns. (5) and (6). Moreover, in Theorem 1 c), one can find
that although Algorithm 1 uses a conservative step ηk and a reckless step η̄k = γηk (∀γ > 1) to
update, the two sequences xk+1 and zk+1 can converge to each other, which could be the key for
the good convergence behavior of both Win-accelerated AdamW and Adam.

Now we discuss the stochastic gradient complexity of Win-accelerated Adam and AdamW. The-
orem 1 d) shows that to find an ε-approximate first-order stationary point, both Win-accelerated
Adam and AdamW have the complexity O

(c2.5∞ σ2L
ν1.25ε4

)
which matches the lower bound Ω(1

ε4) in (Ar-
jevani et al., 2019; 2020) (up to constant factors) under the same Assumptions 1 and 2. Our ac-
celerated Adam and AdamW enjoy superior complexity over Adam-type optimizers, e.g. Adam,
AdaGrad (Duchi et al., 2011), AdaBound (Luo et al., 2018), whose previously best known com-
plexity under the same assumptions is O(

c2∞dσ
2L

ν1.25ε4) in (Zhou et al., 2018; Chen et al., 2021; Guo
et al., 2021). By comparison, both accelerated Adam and AdamW improve their complexity by
a factor O(d

c0.5∞
), where the network parameter dimension d is often much larger than c0.5∞ , espe-

cially for over-parameterized modern networks. Since the convergence of AdamW has not been
proved yet in the literatures, here we cannot directly compare with it. Moreover, the complexity
of Win-accelerated Adam and AdamW is also lower than O(

c62σ
2L

ν2ε4) of Adabelief (Zhuang et al.,

2020) and O(
c0.5∞ d0.5σ2L

νε4) of RMSProp (Tijmen & Geoffrey, 2012; Zhou et al., 2018), especially
on over-parameterized networks, since for a d-dimensional gradient, its `2-norm upper bound c2 is
often much larger than the `∞-norm c∞ and can be

√
d× larger for worse case.

Now we discuss the convergence performance of Win-accelerated SGD in Theorem 2.
Theorem 2. Suppose Assumptions 1 and 2 hold, and x?∈argminx F (x). Let η̄k=γηk, γ>1, ηk=

η≤O
(

bε2

c1.5γ2.5σ2L

)
, β1≤O

(
bε2

cσ2

)
, β′1 = 1−β1, λk =λ, λ0 = 0. After T =O

(
∆σ2L
bε4

)
iterations with

minibatch size b and ∆=F (x0)−F (x?), the sequence {(xk, zk)}Tk=0 generated by Win-accelerated
SGD in (9) satisfies the four properties in Theorem 1 with ν=c∞=c=1 and sk=1∈Rd.

See its proof in Appendix F. Theorem 2 also guarantees the convergence of Win-accelerated SGD.
By using the hyper-parameter settings in Theorem 2, the sequence {(xk, zk)}Tk=0 generated by Win-
accelerated SGD satisfies the four properties in Theorem 1 with ν = c∞ = c = 1 and sk = 1. It
shows the complexity O(Lσ

2

ε4) of Win-accelerated SGD which also matches the lower bound Ω(1
ε4)

in (Arjevani et al., 2019; 2020) (up to constant factors) under Assumptions 1 and 2.

6

Published as a conference paper at ICLR 2023

Table 2: ImageNet top-1 accuracy (%) of ResNet50&101 whose official optimizer is LAMB due to
the stronger data augmentation for better performance. ∗ is reported in (Wightman et al., 2021).

ResNet50 ResNet101
Epoch 100 200 300 avg. 100 200 300 avg.
SAM 77.3 78.7 79.4 78.5 79.5 81.1 81.6 80.7
SGD-H 75.3 76.9 77.2 76.5 77.7 78.6 78.8 78.4
SGD-M 77.0 78.6 79.3 78.3 79.3 81.0 81.4 80.6
SGD-Win 78.0 79.2 79.7 79.0+0.7 80.1 81.2 81.6 81.0+0.4

Adam 76.9 78.4 78.8 78.1 78.4 80.2 80.6 79.7
Adam-Win 77.4 78.8 79.3 78.5+0.4 79.2 80.6 81.0 80.3+0.6

AdamW 77.0 78.9 79.3 78.4 78.9 79.9 80.4 79.7
AdamW-Win 78.0 79.3 79.9 79.1+0.7 80.2 81.1 81.3 80.9+1.2

LAMB 77.0 79.2 79.8∗ 78.7 79.4 81.1 81.3∗ 80.6
LAMB-Win 78.4 79.7 80.1 79.4+0.7 80.6 81.5 81.7 81.2+0.6

5 EXPERIMENTS

Here we evaluate our accelerated algorithms on two representative tasks, including vision classifi-
cation tasks and natural language modeling tasks. For vision tasks, we test accelerated algorithms
on both CNNs, e.g. ResNet (He et al., 2016), and vision transformers (ViTs), e.g. ViT (Dosovit-
skiy et al., 2020) and PoolFormer (Yu et al., 2021; 2022). For language modeling tasks, we use
LSTM (Schmidhuber et al., 1997) and Transformer-XL (Dai et al., 2019) for evaluation.

For clarity, we call our accelerated algorithm “X-Win”, where “X” denotes vanilla optimizers,
e.g. Adam. In all experiments, we do not change model architectures and data augmentations, and
only replace the default optimizer with ours. Moreover, for all experiments, our accelerated algo-
rithms, e.g. AdamW-Win, always use the default optimizer-inherent hyper-parameters of the vanilla
optimizers, e.g. first- and second-order moment parameters β1 and β2 in AdamW; and their reckless
step η̄k always satisfies η̄k = 2ηk. These settings well reduce the parameter-tuning cost of our al-
gorithms. In the experiments, same with other optimizers, we only slightly tune other widely tuned
hyper-parameters around the vanilla ones, e.g. step size and warm-up epochs, etc, which is reason-
able, as our accelerated algorithms have two step sizes and the vanilla ones are not very suitable.

5.1 RESULTS ON VISION CLASSIFICATION TASKS

Table 1: ImageNet top-1 accuracy (%)
of ResNet18. ∗, † and ‡ are respectively
reported in (Chen et al., 2021), (Zhuang
et al., 2020) and (Liu et al., 2019).
AdaBound 68.1∗ Radam 67.7∗
Nadam 68.8 Padam 70.1∗
Yogi 68.2∗ AdaBelief 70.1†
SGD-H 67.3 Adam-M 67.7

SGD-M 70.2∗ Adam 66.5‡
SGD-Win 70.7+0.5 Adam-Win 69.3+2.8

AdamW 67.9∗ LAMB 68.5
AdamW-Win 71.0+3.1 LAMB-Win 71.1+2.6

Results on ResNet18. Here we follow the conventional
supervised training setting used in ResNets (He et al.,
2016) and evaluate our accelerated algorithms on Ima-
geNet (Fei-Fei, 2009). Due to limited space, we defer
the hyper-parameter settings of the four accelerated algo-
rithms in Table 1 into Appendix B.

Table 1 shows that our accelerated algorithms can improve
the corresponding non-accelerated versions by a remark-
able margin. For instance, AdamW-Win, Adam-Win and
LAMB-Win respectively make 3.1%, 2.8% and 2.6% im-
provement over their corresponding non-accelerated coun-
terparts, AdamW, Adam and LAMB. Moreover, SGD-Win improves SGD-H (i.e. SGD + heavy ball)
by 3.4%, and also surpasses SGD-M (Nesterov-accelerated SGD in Sec. 3.2) by 0.5%, also vali-
dating the superiority of our Win acceleration. Besides, our accelerated algorithms, i.e. SGD-Win,
AdamW-Win and LAMB-Win, beat several other optimizers, e.g. AdaBound, Radam (Liu et al.,
2019), Nadam, Padam (Chen et al., 2021), AdaBelief, Yogi (Zaheer et al., 2018), in which Nadam
uses Nesterov acceleration to estimate its first-order gradient moment. Actually, LAMB-Win sets a
new SoTA top-1 accuracy on ResNet18. All these results show the strong compatibility and superi-
ority of our Win-acceleration in adaptive algorithms.

Results on ResNet50&101. Here we adopt the training setting in (Wightman et al., 2021) to train
ResNet50&101, as this setting uses stronger data augmentation and largely improves CNNs’ perfor-
mance. See augmentation details and our algorithmic hyper-parameter settings in Appendix B. Here
LAMB is the default optimizer because of its higher performance than other optimizers caused by
the stronger augmentations (Wightman et al., 2021). All optimizers in Table 2 are under this setting.

Table 2 shows that our accelerated algorithms consistently outperform their corresponding non-
accelerated version. For example, across the three training epoch settings on ResNet50 / ResNet101,

7

Published as a conference paper at ICLR 2023

Table 3: ImageNet top-1 accuracy (%) of ViT and PoolFormer whose default optimizers are both
AdamW. ∗ and � are respectively reported in (Touvron et al., 2021) and (Yu et al., 2021).

ViT-S ViT-B PoolFormer-S12
Epoch 150 300 avg. 150 300 avg. 150 300 avg.
SGD-M 77.4 79.4 78.4 79.6 80.0 79.8 69.7 74.3 72.0
SGD-Win 78.1 80.1 79.1+0.7 80.4 80.8 80.6+0.8 71.1 74.5 72.8+0.8

Adam 77.3 79.3 78.3 79.0 79.7 79.4 74.3 76.3 75.3
Adam-Win 78.6 80.2 79.4+1.1 80.0 80.5 80.3+0.9 75.6 77.1 76.4+1.1

AdamW 78.3 79.8∗ 79.1 79.5 81.8∗ 80.7 75.2 77.1∗ 76.2
AdamW-Win 79.3 81.0 80.2+1.1 81.0 82.3 81.7+1.0 76.7 77.6 77.2+1.0

LAMB 78.0 79.6 78.8 80.3 80.8 80.6 75.4 77.4 76.4
LAMB-Win 79.3 80.6 80.0+1.2 81.0 81.4 81.2+0.6 76.7 78.0 77.4+1.0

LAMB-Win always achieves remarkable improvement over the official optimizer LAMB for this
training recipe. Specifically, LAMB-Win makes 0.7% average improvement over LAMB on both
ResNet50 / ResNet101. For AdamW-Win and Adam-Win, they also respectively improve their coun-
terparts by 0.7% and 0.4% on ResNet50, 1.2% and 0.6% on ResNet101. SGD-Win also makes 2.5%
and 0.8% overall improvement over heavy-ball accelerated SGD (SGD-H) and Nesterov accelerated
SGD (SGD-M) on ResNet50, and also has similar advantage on ResNet101. These improvements
are not trivial because of the following two reasons. 1) Since the performance is already high and
may approach the model limit, it is already very hard to make very large improvement. This is
testified by the fact that in (Wightman et al., 2021), using LAMB to train ResNet50 for 600 epochs
only gives 80.4% top-1 accuracy. In contrast, our accelerated LAMB-Win uses 300 epochs (half
training cost) to achieve 80.2%. 2) By comparing the previous optimizers, including SAM, SGD-M,
Adam, AdamW and LAMB, one can observe smaller accuracy gap (≤ 0.2%) between the best op-
timizer and the runner-up. For example, on ResNet101, the SoTA optimizer, i.e. SAM, only makes
0.1% average improvement over the runner-up LAMB. All these comparisons show the non-travail
improvement of our accelerated algorithms over their counterparts.

Results on ViTs. We follow the widely used official training setting of ViTs (Touvron et al., 2021;
Yu et al., 2021). To evaluate the performance of our accelerated algorithms, we select two popular
and representative ViT architures, including ViT (Dosovitskiy et al., 2020) and PoolFormer (Yu
et al., 2021). See the training setting and our hyper-parameter settings in Appendix B.

We test our accelerated algorithms under different model sizes and different training epochs, and
report the results in Table 3. One can find that since AdamW and LAMB use the decoupled weight
decay, they enjoy better performance than SGD and Adam, which is also observed in other works,
e.g. (Xiao et al., 2021; Nado et al., 2021). Moreover, under different training settings, our accelerated
algorithms consistently outperform the corresponding non-accelerated counterparts. Specifically,
compared the default AdamW optimizer on both ViT and PoolFormer, our accelerated AdamW-Win
respectively makes about 1.0%, 0.9%, 1.0% average improvement under the two training epoch set-
tings on ViT-S, ViT-B and PoolFormer-S12. For Adam-Win and LAMB-Win, one can also observe
their remarkable improvements on the three ViT backbones. Moreover, our accelerated SGD-Win
also outperforms the Nesterov-accelerated SGD denoted as “SGD-M” by non-trivial margins under
all settings. All these results are consistent with the observations on ResNets, and they together
demonstrate the advantage of our accelerated optimizers for deep network training.

0 30 60 90
Training Epochs

45

50

55

60

65

70

Te
st

 T
op

-1
 A

cc
ur

ac
y AdamW

AdamW-Win
LAMB
LAMB-Win

Figure 2: Test accuracy
curves of AdamW-Win and
LAMB-Win on ResNet18.

Results Analysis. Here we investigate the convergence behaviors of
our accelerated algorithms, and aim to explain their better test per-
formance over their non-accelerated counterparts. In Fig. 1, we plot
the curves of training and test losses along with the training epochs
on ResNet18 and ViT-B. One can find that our accelerated algorithms,
e.g. AdamW-Win, show much faster convergence behaviors than their
non-accelerated counterparts, e.g. AdamW. Moreover, SGD-Win also
converges faster than Nesterove-accelerated SGD, i.e. SGD-M. We
also plot the curves of test accuracy in Fig. 2, showing the superior
convergence speed of AdamW-Win and LAMB-Win over their non-
accelerated versions. Fig. 3 in Appendix B also reveals SGD-Win and
Adam-Win enjoy faster convergence than their non-accelerated counterparts in terms of test accu-
racy. So these faster convergence behaviors could contribute to our accelerated algorithms for their
higher performance over non-accelerated counterparts under the same computational cost.

8

Published as a conference paper at ICLR 2023

0 30 60 90
Training Epochs

1

2

3

4

5

6

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s SGD-Win on ResNet18
SGD-M train loss
SGD-Win train loss
SGD-M test loss
SGD-Win test loss

0 30 60 90
Training Epochs

1

2

3

4

5

6

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s Adam-Win on ResNet18
Adam train loss
Adam-Win train loss
Adam test loss
Adam-Win test loss

0 30 60 90
Training Epochs

1

2

3

4

5

6

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s AdamW-Win on ResNet18
AdamW train loss
AdamW-Win train loss
AdamW test loss
AdamW-Win test loss

0 30 60 90
Training Epochs

1

2

3

4

5

6

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s LAMB-Win on ResNet18
LAMB train loss
LAMB-Win train loss
LAMB test loss
LAMB-Win test loss

0 50 100 150
Training Epochs

1

2

3

4

5

6

7

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s SGD-Win on ViT-B
SGD-M train loss
SGD-Win train loss
SGD-M test loss
SGD-Win test loss

0 50 100 150
Training Epochs

1

2

3

4

5

6

7

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s Adam-Win on ViT-B
Adam train loss
Adam-Win train loss
Adam test loss
Adam-Win test loss

0 50 100 150
Training Epochs

1

2

3

4

5

6

7

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s AdamW-Win on ViT-B
AdamW train loss
AdamW-Win train loss
AdamW test loss
AdamW-Win test loss

0 50 100 150
Training Epochs

1

2

3

4

5

6

7

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s LAMB-Win on ViT-B
LAMB train loss
LAMB-Win train loss
LAMB test loss
LAMB-Win test loss

Figure 1: Visualization of training and test losses on ImageNet. In all figures, training loss is larger
than test one, as training data use random augmentations, e.g. random crop and clip, while test data
only adopt the centralization crop which eases the recognition difficulty and thus has small loss.

Table 4: Effects of γ to top-1 accuracy (%) of
AdamW-Win and LAMB-Win on ResNet50.

γ 1.5 2 3 4 6 8
AdamW-Win 77.9 78.0 78.0 77.9 78.1 78.0
LAMB-Win 78.3 78.4 78.4 78.4 78.5 78.3

Robust Analysis. For the only extra hyper-
parameter η̄k in our accelerated algorithms over
their non-accelerated counterparts, in experiments,
we always set η̄k = γηk, where γ = 2. Here we
investigate the effects of γ to the accelerated algo-
rithms on ResNet50 by taking AdamW-Win and LAMB-Win as examples because of their superior
performance. Table 4 shows the stable performance of AdamW-Win and LAMB-Win when tuning
γ in a relatively large range, thus validating their robustness to the hyper-parameter γ.

5.2 RESULTS ON NATURAL LANGUAGE MODELING TASKS

Table 5: Test perplexity of LSTM on
Penn Treebank. ∗ is reported by Ad-
aBelief (Zhuang et al., 2020).
AdaBound 63.6∗ Radam 70.0∗
Yogi 67.5∗ AdaBelief 61.2∗
fromage 68.0∗ MSVAG 65.3∗
SGD-H 67.4 Padam 63.2∗

SGD-M 63.8∗ Adam 64.3∗
SGD-Win 61.6+2.2 Adam-Win 62.7+1.6

AdamW 67.0∗ LAMB 66.8
AdamW-Win 66.5+0.5 LAMB-Win 66.2+0.6

Results on LSTM. We follow AdaBelief to test our
accelerated algorithms via training three-layered LSTM
(Schmidhuber et al., 1997) on the Penn TreeBank dataset
(Marcinkiewicz, 1994) for 200 epochs. See optimization
and training details in Appendix B.

From Table 5, one can observe that our Win-accelerated
algorithms consistently surpass the corresponding non-
accelerated counterparts, and actually bring 1.2 over-
all average perplexity improvement over the four non-
accelerated counterparts.

Table 6: Test PPL of Transformer-XL-
base on WikiText-103 where Adam is
the official optimizer. * is reported in
the official implementation.
Transformer-XL Training Steps

50k 100k 200k avg.
Adam 28.5 25.5 24.2∗ 26.7

Adam-Win 26.7 25.0 24.0 25.2+1.5

Results on Transformer-XL. We adopt a widely used lan-
guage sequence model, i.e. Transformer-XL (Dai et al.,
2019), to further evaluate the performance of our accel-
erated algorithms. Since 1) Adam is the most popular and
used optimizer in NLP models, including Transformer-XL,
and 2) our limited resource cannot well tune the hyper-
parameters of other optimizers in Sec. 5.1, we take Adam
as an example to show the superiority of our accelerated
algorithms. Follow the official setting of Transformer-XL-base, we use Adam-Win with the default
hyper-parameters of Adam on the WikiText-103 dataset. See more details in Appendix B.

Table 6 shows that under different training steps, our accelerated Adam-Win always achieves lower
test PPL than the official Adam optimizer. Spefically, it improves 1.5 average test PPL over Adam
on the three test cases. All these results are consistent with observations on vision tasks, and they
together demonstrate the advantages of our accelerated algorithms.

6 CONCLUSION

In this work, we adopt proximal point method to derive a weight-decay-integrated Nesterov acceler-
ation for AdamW and Adam, and extend it to LAMB and SGD. Moreover, we prove the convergence
of our accelerated algorithms, i.e. accelerated AdamW, Adam and SGD, and observe the superior-
ity of the accelerated Adam-type algorithm over the vanilla ones in terms of stochastic gradient
complexity. Finally, experimental results validate the advantages of our accelerated algorithms.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGE

Xingyu Xie was supported by National Key R&D Program of China (2022ZD0160302) and the
National Natural Science Foundation of China (No. 62276004).

REFERENCES

Kwangjun Ahn and Suvrit Sra. Understanding nesterov’s acceleration via proximal point method.
In Symposium on Simplicity in Algorithms (SOSA), pp. 117–130. SIAM, 2022.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. arXiv preprint arXiv:1407.1537, 2014.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin, Todd Phillips,
Cristina Pop, Kevin Regan, Gil I Shamir, et al. On the factory floor: Ml engineering for industrial-
scale ads recommendation models. arXiv preprint arXiv:2209.05310, 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridha-
ran. Second-order information in non-convex stochastic optimization: Power and limitations. In
Conference on Learning Theory, pp. 242–299. PMLR, 2020.

Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory of Com-
puting, 15(1):1–32, 2019.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing
recurrent networks. In 2013 IEEE international conference on acoustics, speech and signal pro-
cessing, pp. 8624–8628. IEEE, 2013.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 9650–9660, 2021.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings
of the Twenty-Ninth International Conference on International Joint Conferences on Artificial
Intelligence, pp. 3267–3275, 2021.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

10

Published as a conference paper at ICLR 2023

Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.
248–255, 2009.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the adam family and beyond. arXiv e-prints, pp. arXiv–2104, 2021.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Junhyung Lyle Kim, Panos Toulis, and Anastasios Kyrillidis. Convergence and stability of the
stochastic proximal point algorithm with momentum. In Learning for Dynamics and Control
Conference, pp. 1034–1047. PMLR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In International Conference on Learning Representations, 2018.

Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Using
Large Corpora, 273, 1994.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv
preprint arXiv:2102.06356, 2021.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Tong Zhang Rie Johnson. Accelerating stochastic gradient descent using predictive variance reduc-
tion. In Proc. Conf. Neural Information Processing Systems, pp. 315–323, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, 22(3):400–407, 1951.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

11

Published as a conference paper at ICLR 2023

Tara N. Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep
convolutional neural networks for LVCSR. In ICASSP, pp. 8614–8618. IEEE, 2013.

Jürgen Schmidhuber, Sepp Hochreiter, et al. Long short-term memory. Neural Comput, 9(8):1735–
1780, 1997.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Tieleman Tijmen and Hinton Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a run- ning
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early
convolutions help transformers see better. Advances in Neural Information Processing Systems,
34:30392–30400, 2021.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing both cnns and vits. Axriv, 2022.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2019.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng,
and Shuicheng Yan. Metaformer is actually what you need for vision. arXiv preprint
arXiv:2111.11418, 2021.

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xin-
chao Wang. Metaformer baselines for vision. arXiv preprint arXiv:2210.13452, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 6023–6032, 2019.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On
the convergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020a.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Hoi. Theory-inspired path-regularized dif-
ferential network architecture search. In Neural Information Processing Systems, 2020b.

12

Published as a conference paper at ICLR 2023

Pan Zhou, Caiming Xiong, Xiaotong Yuan, and Steven Hoi. A theory-driven self-labeling refinement
method for contrastive representation learning. In Neural Information Processing Systems, 2021a.

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understand-
ing why lookahead generalizes better than sgd and beyond. In Neural Information Processing
Systems, 2021b.

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding
why lookahead generalizes better than sgd and beyond. Advances in Neural Information Process-
ing Systems, 34:27290–27304, 2021c.

Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A
multi-granular self-supervised learning framework. arXiv preprint arXiv:2203.14415, 2022.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in Neural Information Processing Systems, 33:18795–18806, 2020.

13

Published as a conference paper at ICLR 2023

APPENDIX

The appendix is structured as follows. In Appendix A, we provide more details of LAMB and Win-
accelerated LAMB. Then, Appendix B provides more experimental details, such as hyper-parameter
settings of the four accelerated algorithms and the official data augmentations. In Appendix C, we
define some necessary notations for our analysis. Then Appendix D provides some auxiliary lemmas
throughout this document. Then Appendix E presents the proof of the convergence results in Sec. 1,
i.e., the proof of Theorems 1 and 2. Finally, Appendix G provides the proofs of some auxiliary
lemmas in Appendix D.

A MORE DETAILS OF LAMB AND WIN-ACCELERATED LAMB

Here we introduce more details of vanilla LAMB (You et al., 2019) and our Win-accelerated LAMB.
Specifically, Algorithm 2 and 3 respectively summarize the algorithmic steps of LAMB and Win-
accelerated LAMB.

B MORE EXPERIMENTAL DETAILS

Due to space limitation, we defer the experimental details, such as hyper-parameter settings of the
four accelerated algorithms, and their official augmentations in (He et al., 2016) and (Wightman
et al., 2021), to this section.

For accelerated algorithms, including AdamW-Win, LAMB-Win, Adam-Win and SGD-Win, always
share the default optimizer-inherent hyper-parameters of the vanilla optimizers and its reckless step
η̄k is always 2× larger than its conservative step ηk for all iterations, i.e. η̄k = 2ηk. For AdamW-
Win, LAMB-Win, Adam-Win, their first- and second-order moment parameters β1 and β2 are set
to the default values β1 = 0.9 and β2 = 0.999 used in AdamW, LAMB and Adam. For LAMB-
Win, its other key parameters, such as “grad averaging” and “trust clip”, also adopt the default ones
in vanilla LAMB. For SGD-Win, it uses the default momentum parameter 0.9 and set dampening
parameter as 0.0 used in vanilla SGD.

Algorithm 2: LAMB in (You et al., 2019)
Input: initialization x0 = z0 = 0, step size {(ηk, η̄k)}Tk=0, moment parameters {β1, β2}.
Output: x̄ uniformly seleted from {xk}Tk=0.

1 while k < T do
2 gk = 1

b

∑b
i=1∇f(zk; ζi)

3 mk = (1− β1)mk−1 + β1gk /* m0 = g0 */
4 vk = (1− β2)vk−1 + β2g

2
k /* v0 = g2

0 */

5 uk = ‖xk‖2
‖mk/

√
vk+ν+λxk‖2

(
mk√
vk+ν

+ λxk

)
6 xk+1 = xk − ηkuk
7 end while

Algorithm 3: Win-Accelerated LAMB
Input: initialization x0 = z0 = 0, step size {(ηk, η̄k)}Tk=0, moment parameters {β1, β2}.
Output: (x̄, z̄) uniformly seleted from {(xk, zk)}Tk=0.

1 while k < T do
2 gk = 1

b

∑b
i=1∇f(zk; ζi)

3 mk = (1− β1)mk−1 + β1gk /* m0 = g0 */
4 vk = (1− β2)vk−1 + β2g

2
k /* v0 = g2

0 */

5 uk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

(
mk√
vk+ν

+ λkxk
)

6 xk+1 = 1
1+λkηk

(xk − ηkuk) where λk = 0 here
7 zk+1 = η̄kτkxk+1 + ηkτk (zk − η̄kuk) with τk = 1

ηk+η̄k+λkηkη̄k
and λk = 0 here

8 end while

14

Published as a conference paper at ICLR 2023

Settings on ResNet18. Here we follow the conventional supervised training setting used in
ResNets (He et al., 2016) and evaluate our accelerated algorithms on ImageNet (Fei-Fei, 2009).
For data augmentation in (He et al., 2016), it uses random crop and horizontal flipping with prob-
ability 0.5. For warm-up epochs, for all four accelerated algorithms, we set it as 5.0. For base
learning rate, we respectively set it as 3 × 10−3, 5 × 10−3, 3 × 10−3, and 1.2 for AdamW-Win,
LAMB-Win, Adam-Win and SGD-Win. Moreover, we follow the default setting and use cosine
learning rate decay. For weight decay, we respectively set it as 5× 10−2, 5× 10−2, 10−6, and 10−3

for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. On ResNet18, all algorithms are trained
for 90 epochs with minibatch size 512 by following the conventional setting.

Settings on ResNet50&101. For these two networks, we use “A2 training recipe” in (Wightman
et al., 2021) to train them, since this training setting uses stronger data augmentation and largely
improves CNNs’ performance. Specifically, the data augmentation in (Wightman et al., 2021) uses
random crop, horizontal flipping with probability, Mixup with parameter 0.1 (Zhang et al., 2018),
CutMix with parameter 1.0 and probability 0.5 (Yun et al., 2019), and RandAugment (Cubuk et al.,
2020) with M = 7, N = 2 and MSTD = 0.5. Moreover, it often use binary cross-entropy (BCE)
loss for training.

On both ResNet50 and ResNet101, for base learning rate, we respectively set it as 2×10−3, 8×10−3,
1 × 10−3, and 0.8 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. Moreover, we follow
the default setting and use cosine learning rate decay. On both ResNet50 and ResNet101, for weight
decay, we respectively set it as 5× 10−2, 2× 10−2, 10−5, and 5× 10−4 for AdamW-Win, LAMB-
Win, Adam-Win and SGD-Win. On both ResNet50 and ResNet101, for warm-up epoch number, we
respectively set it as 5, 5, 10, 5 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win.

Settings on ViT and PoolFormer. We follow the widely used official training setting of ViTs (Tou-
vron et al., 2021; Yu et al., 2021). For this setting, data augmentation includes random crop, horizon-
tal flipping with probability, Mixup with parameter 0.8 (Zhang et al., 2018), CutMix with parameter
1.0 and probability 0.5 (Yun et al., 2019), RandAugment (Cubuk et al., 2020) with M = 9, N = 2
and MSTD = 0.5, and Random Erasing with parameter p = 0.25. For training loss, we use cross
entropy loss.

On both ViT-S and ViT-B, for base learning rate, we respectively set it as 2 × 10−3, 5 × 10−3,
1 × 10−4, and 0.8 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. Moreover, we follow
the default setting and use cosine learning rate decay. On both ResNet50 and ResNet101, for weight
decay, we respectively set it as 5× 10−2, 2× 10−2, 10−5, and 5× 10−4 for AdamW-Win, LAMB-
Win, Adam-Win and SGD-Win. On both ResNet50 and ResNet101, for warm-up epoch number,
we respectively set it as 5, 60, 30, 5 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. For
AdamW-Win, following the default setting in AdamW, its minibatch size is 1024 for ViT-S and 512
for ViT-B. For all other accelerated optimizer, their minibatch sizes are always 1024.

Settings on LSTM. On LSTM, for base learning rate, we respectively set it as 1× 10−3, 1× 10−2,
1× 10−2, and 15.0 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. Moreover, we follow
the default setting and divide the learning rate by 10 at epoch 100 and 145. For weight decay, we
respectively set it as 2× 10−2, 5× 10−2, 1.8× 10−6, and 2× 10−5 for AdamW-Win, LAMB-Win,
Adam-Win and SGD-Win. We do not utilize the warmup strategy in this experiment. Following the
default setting, we set minibatch size as 20.

Settings on Transformer-XL. On Transformer-XL, for base learning rate, we set it as 4× 10−4 for
Adam-Win. Moreover, we follow the default setting and use cosine learning rate decay. For weight
decay, we set it as 10−6 for Adam-Win. For warm-up steps, we set it as 2000. Following the default
setting, we set minibatch size as 60× 4.

Test accuracy curves of SGD-Win and Adam-Win on ResNet18. Here we investigate the con-
vergence behaviors of our accelerated algorithms and hope to explain their better test performance
over their non-accelerated counterparts. In each sub-figure pair of Fig. 1, we plot the curves of train-
ing and test losses along with the training epochs on ResNet18 and ViT-B. One can find that our
accelerated algorithms, e.g. AdamW-Win, show much faster convergence behaviors than their non-
accelerated counterparts, e.g. AdamW. Moreover, SGD-Win also converges faster than Nesterove-
accelerated SGD, i.e. SGD-M. We also plot the curves of test accuracy in Fig. 2, showing the superior
convergence speed of AdamW-Win and LAMB-Win over their corresponding non-accelerated ver-
sions. Fig. 3 in Appendix B also reveals SGD-Win and Adam-Win enjoy faster convergence than

15

Published as a conference paper at ICLR 2023

0 30 60 90
Training Epochs

45

50

55

60

65

70

Te
st

 T
op

-1
 A

cc
ur

ac
y SGD-M

SGD-Win
Adam
Adam-Win

Figure 3: Test accuracy curve of SGD-Win and Adam-Win on ResNet18. See the curves of AdamW-
Win and LAMB-Win in manuscript.

their non-accelerated counterparts in terms of test accuracy. So these faster convergence behaviors
could contribute to our accelerated algorithms for their higher performance over non-accelerated
algorithms under the same computational cost.

C NOTATIONS

Here we first give some important notations used in this document. For brevity, we let

sk =
√
vk + ν.

Since we have ‖mk‖∞ ≤ c∞ and ν ≤ ‖vi + ν‖∞ ≤ c2∞ + ν in Lemma 3 (see Appendix D), for
brevity, let

c1 := ν0.5 ≤ ‖sk‖∞ ≤ c2 := (c2∞ + ν)0.5.

Also we define

wk := mk + λkxk ∗ sk, xk+1 − xk = − ηk
1 + λkηk

mk + λkxk ∗ sk
sk

= − ηk
1 + λkηk

wk
sk
.

Next, we introduce an virtual sequence {yk} into the algorithm. In this way, we can rewrite the
update steps in Algorithm 1 in the manuscript as its equivalent form (12):

gk = 1
b

∑b
i=1∇f(zk; ζi);

mk = (1− β1)mk−1 + β1gk;

vk = (1− β2)vk−1 + β2g
2
k;

xk+1 = 1
1+λkηk

(
xk − ηkmk

sk

)
yk+1 = zk − η̄kmk

sk

zk+1 = η̄kτkxk+1 + ηkτkyk+1

(12)

wherem0 = g0 and v0 = g2
0 .

For analysis, we further define

Fk(θk) = F (θ) +
λk
2
‖θ‖2sk = Eζ [f(θ; ζ)] +

λk
2
‖θ‖2sk , (13)

where λk = λ(1−µ)k in which µ =
β2c

2
∞
δ . In the following, we mainly use these notations to finish

our proofs.

D AUXILIARY LEMMAS

Before giving our analysis, we first provide some important lemmas.

16

Published as a conference paper at ICLR 2023

Lemma 3. Suppose the sequence {xk,yk, zk} are updated by Eqn. (12). That is, xk+1 =
1

1+λkηk

(
xk − ηkmk

sk

)
,yk+1 = zk − η̄k

mk

sk
, zk+1 = η̄kτkxk+1 + ηkτkyk+1, sk =

√
vk + ν.

Then {(mk, sk)} satisfies Assume cs,∞ ≤ ‖gk‖∞ ≤ c∞, then we have

‖mk‖∞ ≤ c∞, ‖vi + ν‖∞ ≤ c
2
∞ + ν,

β2c
2
∞

2(c2s,∞ + ν)
≤
∥∥∥∥ sk
sk+1

∥∥∥∥
∞
< 1 +

β2c
2
∞

2(c2s,∞ + ν)
.

See its proof in Appendix G.1.
Lemma 4. (Xie et al., 2022) Suppose the sequence {xk,yk, zk} are updated by Eqn. (12). That

is, xk+1 = 1
1+λkηk

(
xk − ηkmk

sk

)
,yk+1 = zk − η̄kmk

sk
, zk+1 = η̄kτkxk+1 + ηkτkyk+1, sk =

√
vk + ν. Then {zk} satisfies

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖zk − zk−1‖2

]
+
β2

1σ
2

b
.

Lemma 5. Suppose the sequence {xk,yk, zk} are updated by Eqn. (12). That is, xk+1 =
1

1+λkηk

(
xk − ηkmk

sk

)
,yk+1 = zk − η̄k

mk

sk
, zk+1 = η̄kτkxk+1 + ηkτkyk+1, sk =

√
vk + ν.

By setting ηk = η, η̄k = η̄, β1,k = β1 and β2,k = β2, then we have

yk+1 − (1 + λkη̄)xk+1 =− ρk+1

k∑
i=0

1

ρi+1

η̄ − η
1 + λiη

wi
si
,

‖yk+1 − (1 + λkη̄)xk+1‖2 ≤ρk+1(η̄ − η)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

‖zk+1 − xk+1‖2 ≤τkρk+1η(η̄ − η)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

‖zk+1 − zk‖2 ≤
2η̄2

(1 + λkη)2

∥∥∥∥wksk
∥∥∥∥2

+ 2ρk+1η̄
2(η̄ − η)2τ2

k (1 + λkη)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

where ρk+1 = ητk−1ρk, ρ1 = 1 and ρ0 = 0.

See its proof in Appendix G.2.
Lemma 6. Suppose the sequence {xk,yk, zk} are updated by Eqn. (12). That is, xk+1 =

1
1+ληk

(
xk − ηkmk

sk

)
,yk+1 = zk − η̄k

mk

sk
, zk+1 = η̄kτkxk+1 + ηkτkyk+1, sk =

√
vk + ν.

By setting ηk = η, η̄k = η̄, β1,k = β1 and β2,k = β2, then we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πk(1− β1)2L2

β1
+

2β2
1σ

2

b
+ 2LΠ′k,

where

Πk :=
2η̄2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρkη̄
2(η̄ − η)2τ2

k−1(1 + λk−1η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

Π′k :=τk−1ρkη(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

where ρk+1 = ητk−1ρk, ρ1 = 1 and ρ0 = 0.

see its proof in Appendix G.3.

17

Published as a conference paper at ICLR 2023

E PROOF OF THEOREM 1

Proof. Recall our definition Fk(zk) = F (z) + λk

2 ‖z‖
2
sk

= Eζ [f(z; ζ)] + λk

2 ‖z‖
2
sk
, in the (13).

By using the smoothness of f(θ; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 +

λk+1

2
‖xk+1‖2sk+1

¬
≤F (xk) + 〈∇F (xk),xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk+1

2(1− µ)
‖xk+1‖2sk

­
≤F (xk) +

λk
2
‖xk‖2sk + 〈∇F (xk) + λkxk ∗ sk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk
2
‖xk+1 − xk‖2sk

=Fk(xk)− ηk
1 + λkηk

〈
∇F (xk) + λkxk ∗ sk,

wk
sk

〉
+

Lη2
k

2(1 + λkηk)2

∥∥∥∥wksk
∥∥∥∥2

+
λkη

2
k

2(1 + λkηk)2

∥∥∥∥wksk
∥∥∥∥2

sk

=Fk(xk) +
1

2

∥∥∥∥√ ηk
(1 + λkηk)sk

(∇F (xk) + λkxk ∗ sk −wk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
(1 + λkηk)sk

(∇F (xk) + λkxk ∗ sk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
(1 + λkηk)sk

wk

∥∥∥∥2

+
Lη2

k

2(1 + λkηk)2

∥∥∥∥wksk
∥∥∥∥2

+
λkη

2
k

2(1 + λkηk)2

∥∥∥∥wksk
∥∥∥∥2

sk

®
≤Fk(xk) +

ηk
2c1(1 + λkηk)

‖∇F (xk)−mk‖2 −
ηk

2c2(1 + λkηk)
‖∇Fk(xk)‖2

− ηk
2c2(1 + λkηk)

[
1− c2Lηk

c21(1 + λkηk)
− c2λkηk
c1(1 + λkηk)

]
‖wk‖2

¯
≤Fk(xk) +

ηk
2c1(1 + λkηk)

‖∇F (xk)−mk‖2 −
ηk

2c2(1 + λkηk)
‖∇Fk(xk)‖2 − ηk

4c2(1 + λkηk)
‖wk‖2 ,

where ¬ holds since Lemma 3 proves
∥∥∥ sk
sk+1

∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which µ =

β2c
2
∞
ν ;

­ holds because λk = λk+1

1−µ and

‖xk+1‖2sk = ‖xk‖2sk + ‖xk+1 − xk‖2sk + 2〈xk+1 − xk,xk〉sk .

® holds, because

wk := mk + λkxk ∗ sk, xk+1 − xk = − ηk
1 + λkηk

mk + λkxk ∗ sk
sk

= − ηk
1 + λkηk

wk
sk
,

c1 := ν0.5 ≤ ‖sk‖∞ ≤ c2 := (c2∞ + ν)0.5.

¯ holds, since we set ηk ≤ c21(1+λkηk)
2c2(L+λkc1) such that c2Lηk

c21(1+λkηk)
+ c2λkηk

c1(1+λkηk) ≤
1
2 .

From Lemma 6, by setting ηk = η, η̄k = η̄ and β1,k = β1, we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πk(1− β1)2L2

β1
+

2β2
1σ

2

b
+ 2LΠ′k,

(14)

where

Πk :=
2η̄2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρkη̄
2(η̄ − η)2τ2

k−1(1 + λk−1η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

Π′k :=τk−1ρkη(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

,

(15)

18

Published as a conference paper at ICLR 2023

Here ρk+1 = ητk−1ρk, ρ1 = 1 and ρ0 = 0. By considering c2 ≥ ‖sk‖∞ ≥ c1, we have

Πk ≤ Π̄k :=
2η̄2

c21(1 + λk−1η)2
‖wk−1‖2 +

2ρkη̄
2(η̄ − η)2τ2

k−1(1 + λk−1η)2

c21

k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2 ,

Π′k ≤ Π̄′k :=
τk−1ρkη(η̄ − η)2

c21

k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2 ,

(16)

Therefore, by plugging the results in Eqn. (14) into the upper bound of Fk+1(xk+1), we have

Fk+1(xk+1)

≤Fk(xk)− η

2c2(1 + λkη)
‖∇Fk(xk)‖2 − η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1(1 + λkη)
E
[
‖mk−1 −∇F (zk−1)‖2

]
+
ηΠ̄k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄′k
c1(1 + λkη)

¬
≤Fk(xk)− η

2c2(1 + λkη)
‖∇Fk(xk)‖2 − η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1
E
[
‖mk−1 −∇F (zk−1)‖2

]
+
ηΠ̄k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄′k
c1(1 + λkη)

,

(17)

where ¬ uses the fact that 0 < λk ≤ λ. Then, from Lemma 4, we have

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖zk − zk−1‖2

]
+
β2

1σ
2

b

¬
≤(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2Π̄k

β1
+
β2

1σ
2

b

(18)

where we use the results in Lemma 5 that

‖zk − zk−1‖2 ≤Πk ≤ Π̄k.

Then we add Eqn. (17) and α× (18) as follows:

Fk+1(xk+1) + αE
[
‖mk −∇F (zk)‖2

]
≤Fk(xk)− η

2c2(1 + λkη)
‖∇Fk(xk)‖2 − η

4c2(1 + λkη)
‖wk‖2

+ (1− β1)

(
η

c1
+ α

)
E
[
‖mk−1 −∇F (zk−1)‖2

]
+
ηΠ̄k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b

+
ηLΠ̄′k

c1(1 + λkη)
+
α(1− β1)2L2Π̄k

β1
+
αβ2

1σ
2

b

(19)

19

Published as a conference paper at ICLR 2023

Then by setting α = η(1−β1)
c1β1

andGk+1(xk+1) = Fk+1(xk+1)+ η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
=

Eζ [f(z; ζ)] + λk

2 ‖z‖
2
sk

+ η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
, we can obtain

Gk+1(xk+1) ≤Gk(xk)− η

2c2(1 + λkη)
‖∇Fk(xk)‖2 − η

4c2(1 + λkη)
‖wk‖2

+
ηΠ̄k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄′k
c1(1 + λkη)

+
η(1− β1)3L2Π̄k

c1β2
1

+
η(1− β1)β1σ

2

c1b

¬
≤Gk(xk)− η

2c2(1 + λkη)
‖∇Fk(xk)‖2 − η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)2L2Π̄k

c1β2
1

+
ηLΠ̄′k

c1(1 + λkη)
+
ηβ1σ

2

c1b
,

where ¬ uses the fact that 0 < λk ≤ λ. Then summing the above inequality from k = 0 to k = T−1
and using 0 < λk ≤ λ give

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]
≤2c2(1 + λη)

ηT
[G(x0)−G(xT)] +

2c2β1σ
2(1 + λη)

c1bT
+

2c2β
2
1σ

2

c1b

+
2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄k +
2c2L

c1T

T−1∑
k=0

Π̄′k

≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄k +
2c2L

c1T

T−1∑
k=0

Π̄′k

where

G(x0)−G(xT)

=F0(x0) +
η(1− β1)

c1β1
E
[
‖m−1 −∇F (x−1)‖2

]
− FT (xT)− η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
=F (x0) + λ0 ‖x0‖s0 − F (xT)− λT ‖xT ‖sT −

η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
≤F (x0)− F (xT)

≤∆

20

Published as a conference paper at ICLR 2023

where ∆ = F (x0)−F (x?); x−1 andm−1 are two virtual points which satisfym−1 = ∇F (x−1).
Now we try to bound

∑T−1
k=0 Π̄k and

∑T−1
k=0 Π̄k. Firstly, we have

T−1∑
k=0

Π̄k =

T−1∑
k=0

[
2η̄2

c21(1 + λk−1η)2
‖wk−1‖2 +

2ρkη̄
2(η̄ − η)2τ2

k−1(1 + λk−1η)2

c21

k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2

]
¬
≤2η̄2

c21

T−1∑
k=0

[
‖wk−1‖2

]
+

2η̄2(η̄ − η)2

c21

T−1∑
k=0

ρkτ
2
k−1(1 + λk−1η)2

[
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2

]

=
2η̄2

c21

T−1∑
k=0

[
‖wk−1‖2

]
+

2η̄2(η̄ − η)2

c21

T−1∑
k=0

1

ρk+1(1− ητk−1)(1 + λkη)2
‖wk‖2

[
T−1∑
i=k

ρiτ
2
i−1(1 + λi−1η)2

]
­
≤2η̄2

c21

T−1∑
k=0

[
‖wk−1‖2

]
+

2a2η̄2(η̄ − η)2

c21(1− ητ)

T−1∑
k=0

1

ρk+1
‖wk‖2

[
T−1∑
i=k

ρiτ
2
i−1

]

=
2η̄2

c21

T−1∑
k=0

[
‖wk−1‖2

]
+

2a2η̄2(η̄ − η)2τ

c21η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
®
≤2η̄2

c21

T−1∑
k=0

[
‖wk−1‖2

]
+

2a2η̄2(η̄ − η)2τ

c21η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
¯
≤2γ2η2

c21

[
1 + a2(1 + γ)(γ − 1)2

] T−1∑
k=0

[
‖wk−1‖2

]
≤2γ2η2

c21

[
1 + a2γ3

] T−1∑
k=0

[
‖wk−1‖2

]
,

where ¬ holds since 0 ≤ λk ≤ λ; ­ holds, since 1) for i ≥ k we have 1+λi−1η
1+λkη

≤ 1+λk−1η
1+λkη

=
1+λk−1η

1+(1−µ)λk−1η
≤ 1+λη

1+(1−µ)λη = a ≤ 1
1−µ and 2) 1

1−ητi−1
= η+η̄+λi−1η̄η

η̄+λi−1η̄η
= 1 + η

η̄+λi−1η̄η
≤

1 + η
η̄ = 1

1−ητ whose minimum is at λi−1 = 0 and τ = 1
η+η̄ ; ® holds, since

∑T−1
i=k ρiτ

2
i−1 =

1
η

∑T−1
i=k ρi+1τi−1 ≤ τ

η

∑T−1
i=k ρi+1 ≤ τ

η
ρk+1(1−ηT−kτT−k)

1−ητ ≤ τρk+1

η(1−ητ) ; ¯ holds by setting η̄ = γη.
Similarly, we can bound

T−1∑
k=0

Π̄′k =

T−1∑
k=0

τk−1ρkη(η̄ − η)2

c21

[
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2

]

≤τη(η̄ − η)2

c21(1− ητ)

T−1∑
k=0

ρk

[
k−1∑
i=0

1

ρi+1
‖wi‖2

]

≤τη(η̄ − η)2

c21(1− ητ)

T−1∑
k=0

‖wk‖2

ρk+1

[
T−1∑
i=k

ρi

]
¬
≤ (η̄ − η)2

c21(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ2(γ − 1)2

c21(1 + γ)2

T−1∑
k=0

[
‖wk‖2

]
≤ η2(γ − 1)2

c21

T−1∑
k=0

[
‖wk‖2

]
(20)

where ¬ holds since 1) ρk+1 = ητk−1ρk ≤ ητρk and ρ1 = 1 and 2)
∑T−1
i=k ρi ≤

ρk(1−ηT−kτT−k)
1−ητ ≤

ρk
1−ητ which together give 1

ρk+1

[∑T−1
i=k ρi

]
≤ 1

ρk+1

ρk
1−ητ ≤

1
ητ

1
1−ητ ≤

1
ητ(1−ητ) . Therefore, we

21

Published as a conference paper at ICLR 2023

have

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]
≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b

+
4c2γ

2η2(1− β1)2L2(1 + λη)(1 + a2γ3)

c31β
2
1T

T−1∑
k=0

[
‖wk−1‖2

]
+

2c2η
2L(γ − 1)2

c31T

T−1∑
k=0

[
‖wk‖2

]
¬
≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

1

4T

T−1∑
k=0

[
‖wk‖2

]
where ¬ holds since we choose proper η and β1 such that

4c2γ
2η2(1− β1)2L2(1 + λη)(1 + a2γ3)

c31β
2
1

≤ 1

8

2c2η
2L(γ − 1)2

c31
≤ 1

8

(21)

where ¬ uses γ3(γ−1)2(1+λτ)
(1+γ)5 ≤ 1 + γτ = 1 + γη(γ+ 1) and ­ uses γ3(γ−1)2

(1+γ)4 < γ. Now we select
η and β1 such that (21) holds:

η ≤ min

(
c1.51 β1

4
√

2c0.52 γ(1− β1)L(1 + λη)0.5(1 + a2γ3)0.5
,

c1.51

4c0.52 L0.5(γ − 1)

)
So we arrive at

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

4
‖wk‖2

]
≤2c2(1 + λη)∆

ηT
+

2c2β1(1 + λη)σ2

c1b

¬
≤ ε2, (22)

where we set T ≥ 4c2(1+λη)∆
ηε2 and β1 ≤ c1bε

2

4c2(1+λη)σ2 . This result directly bounds

1

T

T−1∑
k=0

‖sk ∗ (xk − xk+1)‖2 =
η2

T

T−1∑
k=0

1

(1 + λkη)2
‖mk + λxk ∗ sk‖2

≤η
2

T

T−1∑
k=0

‖wk‖2 ≤ η2ε2.

Moreover, from Lemma 5, we have

1

T

T−1∑
k=0

‖yk − (1 + λk−1η̄)xk‖2
¬
≤ 1

T

T−1∑
k=0

ρk(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

®
=

1

T

T−1∑
k=0

Π′′k ,

1

T

T−1∑
k=0

‖zk − xk‖2
¬
≤ 1

T

T−1∑
k=0

τk−1ρkη(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

­
=

1

T

T−1∑
k=0

Π′k,

1

T

T−1∑
k=0

‖zk+1 − zk‖2
¬
≤ 1

T

T−1∑
k=0

[
2η̄2

(1 + λkη)2
+ 2ρk+1η̄

2(η̄ − η)2τ2
k (1 + λkη)2

k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

]∥∥∥∥wksk
∥∥∥∥2

­
≤ 1

T

T−1∑
k=0

Πk

where ρk+1 = ητk−1ρk, ρ1 = 1 and ρ0 = 0. where ¬ holds by using Lemma 5; ­ holds by using
the definition in Eqn. (15); ® holds by defining:

Π′′k :=ρk(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

.

22

Published as a conference paper at ICLR 2023

Now remaining task is to upper bound 1
T

∑T−1
k=0 Π′′k , 1

T

∑T−1
k=0 Πk and 1

T

∑T−1
k=0 Π′k. Here we first

bound 1
T

∑T−1
k=0 Π′′k by using almost the same proof in Eqn. (20):

1

T

T−1∑
k=0

Π′′k
¬
≤
T−1∑
k=0

ρk(η̄ − η)2

c21T

[
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2
‖wi‖2

]

≤ (η̄ − η)2

c21(1− ητ)T

T−1∑
k=0

ρk

[
k−1∑
i=0

1

ρi+1
‖wi‖2

]
≤ (η̄ − η)2

c21(1− ητ)T

T−1∑
k=0

‖wk‖2

ρk+1

[
T−1∑
i=k

ρi

]
­
≤ (η̄ − η)2

c21ητ(1− ητ)2T

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ2(γ − 1)2

c21(1 + γ)T

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ(γ − 1)2

c21T

T−1∑
k=0

[
‖wk‖2

]
®
≤ c1γ

16c2L
4ε2 =

c1γε
2

4c2L
(23)

where ¬ holds since 1
1−ητi−1

= η+η̄+λi−1η̄η
η̄+λi−1η̄η

= 1 + η
η̄+λi−1η̄η

≤ 1 + η
η̄ = 1

1−ητ whose minimum
is at λi−1 = 0 and τ = 1

η+η̄ ; ­ holds since 1) ρk+1 = ητk−1ρk ≤ ητρk and ρ1 = 1 and

2)
∑T−1
i=k ρi ≤

ρk(1−ηT−kτT−k)
1−ητ ≤ ρk

1−ητ which together give 1
ρk+1

[∑T−1
i=k ρi

]
≤ 1

ρk+1

ρk
1−ητ ≤

1
ητ

1
1−ητ ≤

1
ητ(1−ητ) ; ® holds by using 1) 1

T

∑T−1
k=0 E‖wk‖2 ≤ 4ε2 in Eqn. (22); 2) we use the

results in Eqn. (21) to obtain

η2γ(γ − 1)2

c21
≤γ(γ − 1)2

c21

c31
16c2L(γ − 1)2

≤ c1γ

16c2L
.

From the bound in Eqn. (16) and the following bound on 1
T

∑T−1
k=0 Π̄k and 1

T

∑T−1
k=0 Π̄′k, we have

1

T

T−1∑
k=0

Πk ≤
1

T

T−1∑
k=0

Π̄k ≤
2γ2η2

c21T

[
1 + a2γ3

] T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ c1β

2
1ε

2

4c2(1− β1)2L2(1 + λη)

1

T

T−1∑
k=0

Π′k ≤
1

T

T−1∑
k=0

Π̄′k ≤
η2(γ − 1)2

c21T

T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ c1ε

2

4c2L

where ¬ holds, since 1) 1
T

∑T−1
k=0 E‖wk‖2 ≤ 4ε2; 2) we use the results in Eqn. (21) to obtain

2γ2η2

c21

[
1 + a2γ3

]
≤2γ2

c21

[
1 + a2γ3

] c31β
2
1

32c2γ2(1− β1)2L2(1 + λη)(1 + a2γ3)
≤ c1β

2
1

16c2(1− β1)2L2(1 + λη)

η2(γ − 1)2

c21
≤ (γ − 1)2

c21

c31
16c2L(γ − 1)2

≤ c1
16c2L

Therefore, we have

1

T

T−1∑
k=0

E ‖yk − (1 + λkη̄)xk‖2 ≤
c1γε

2

4c2L
,

1

T

T−1∑
k=0

E ‖zk − xk‖2 ≤
c1ε

2

4c2L
,

1

T

T−1∑
k=0

E ‖zk+1 − zk‖2 ≤
c1β

2
1ε

2

4c2(1− β1)2L2(1 + λη)
.

23

Published as a conference paper at ICLR 2023

Besides, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λkxk ∗ sk −∇F (xk)− λkxk ∗ sk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λkxk ∗ sk‖2 + ‖∇F (xk) + λkxk ∗ sk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λkxk ∗ sk‖2 + ‖∇Fk(xk)‖2

]
¬
≤2

[
ε2 +

3

4
× 4ε2

]
≤ 8ε2.

where in ¬ we use wk = mk + λkxk ∗ sk. In this way, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (zk)‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2 + ‖∇F (xk)−∇F (zk)‖2

]
≤16ε2 +

2L2

T

T−1∑
k=0

E
[
‖xk − zk‖2

]
≤16ε2 +

c1Lε
2

2c2
=

(c1L+ 32c2)

2c2
ε2.

For all hyper-parameters, we put their constrains together:

β1 ≤
c1bε

2

4c2(1 + λη)σ2
= O

(
c1bε

2

c2σ2

)
,

where c1 = ν0.5 ≤ ‖sk‖∞ ≤
(
c2∞ + ν

)0.5
= c2.

For η, it should satisfy

η ≤ min

(
c1.51 β1

4
√

2c0.52 γ(1− β1)L(1 + λη)0.5(1 + a2γ3)0.5
,

c1.51

4c0.52 L0.5(γ − 1)
,
c21(1 + λη)

2c2(L+ λc1)

)
Considering λη << 1, 1+λη

1+(1−µ)λη = a ≤ 1
1−µ , µ is a constant, and c1 = ν0.5 << 1, then we have

η ≤O
(

min

(
c1.51 β1

c0.52 γ2.5L
,

c1.51

c0.52 γL0.5
,
c21
c2L

))
=O

(
min

(
c2.51 bε2

c1.52 γ2.5σ2L
,

c1.51

c0.52 γL0.5
,
c21
c2L

))
= O

(
c2.51 bε2

c1.52 γ2.5σ2L

)
where ν is often much smaller than one, and β1 is very small. For T , we have

T ≥4c2(1 + λη)∆

ηε2
= O

(
c2∆

ε2
c1.52 γ2.5σ2L

c2.51 bε2

)
=O

(
c2.52 γ2.5σ2L∆

c2.51 bε4

)
= O

(
c2.52 γ2.5σ2L∆

ν1.25bε4

)
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(
c2.52 γ2.5σ2L∆

ν1.25ε4

)
.

The proof is completed.

24

Published as a conference paper at ICLR 2023

F PROOFS OF THEOREM 2

Proof. Recall our definition Fk(θk) = F (θ) + λk

2 ‖θ‖
2
2 = Eζ [f(θ; ζ)] + λk

2 ‖θ‖
2
2 in the (13). By

setting β′1 = 1 − β1, then we have ‖mk‖∞ ≤ c∞ by using Lemma 3 (see Appendix D). Also we
define

wk := mk + λxk, xk+1 − xk = − ηk
1 + ληk

(mk + λxk) = − ηk
1 + ληk

wk.

Note in the following, we set all λk = λ. By using the smoothness of f(θ; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1‖2

¬
≤F (xk) +

λ

2
‖xk‖2 + 〈∇F (xk) + λxk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1 − xk‖2

=Fk(xk)− ηk
1 + ληk

〈∇F (xk) + λxk,wk〉+
Lη2

k

2(1 + ληk)2
‖wk‖2 +

λη2
k

2(1 + ληk)2
‖wk‖2

=Fk(xk) +
1

2

∥∥∥∥√ ηk
(1 + ληk)

(∇F (xk) + λxk −wk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
(1 + ληk)

(∇F (xk) + λxk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
(1 + ληk)

wk

∥∥∥∥2

+
Lη2

k

2(1 + ληk)2
‖wk‖2 +

λη2
k

2(1 + ληk)2
‖wk‖2

­
≤Fk(xk) +

ηk
2(1 + ληk)

‖∇F (xk)−mk‖2 −
ηk

2(1 + ληk)
‖∇Fk(xk)‖2

− ηk
2(1 + ληk)

[
1− Lηk

(1 + ληk)
− ληk

(1 + ληk)

]
‖wk‖2

®
≤Fk(xk) +

ηk
2(1 + ληk)

‖∇F (xk)−mk‖2 −
ηk

2(1 + ληk)
‖∇Fk(xk)‖2 − ηk

4(1 + ληk)
‖wk‖2 ,

where ¬ holds because

‖xk+1‖2sk = ‖xk‖2sk + ‖xk+1 − xk‖2sk + 2〈xk+1 − xk,xk〉sk .

­ holds, because

wk := mk + λxk, xk+1 − xk = − ηk
1 + ληk

(mk + λxk) = − ηk
1 + ληk

wk.

¯ holds, since we set ηk ≤ c21(1+ληk)
2c2(L+λc1) such that c2Lηk

c21(1+ληk)
+ c2ληk

c1(1+ληk) ≤
1
2 .

Then in the following, we can directly follow the proof of Theorem 1. This is because the only
difference between accelerated SGD and AdamW is that SGD has no the second-order moment vk,
while AdamW has. By let sk = 1 in accelerated AdamW and setting β′1 = 1 − β1 in accelerated
SGD, then they share the exact the same updating rules. So after setting β′1 = 1− β1 in accelerated
SGD, to follow the proofs of Theorem 1, we only need to verify whether the auxiliary lemmas
and the proof process of Theorem 1 hold for sk = 1. This is the true case. Please check our
auxiliary lemmas, including Lemma 3 ∼ 6, and the proof process of Theorem 1. Consider sk = 1
in accelerated SGD, we have c1 := 1 ≤ ‖sk‖∞ ≤ c2 := 1.

In this way, by setting η̄k =γηk, γ >1, ηk =η≤O
(

bε2

c1.5γ2.5σ2L

)
, β1≤O

(
bε2

cσ2

)
, β′1 =1−β1, λk =λ,

λ0 =0, after T =O
(

∆σ2L
bε4

)
iterations with minibatch size b and ∆=F (x0)−F (x?), the sequence

{(xk, zk)}Tk=0 generated by accelerated SGD satisfies the following four properties.
a) The gradient ∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4
‖mk + λkxk‖22

]
≤ε2.

b) The gradient momentmk can well estimate the full gradient∇F (xk) and ∇F (zk):
1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (zk)‖22

}
≤
(

16 +
1

2
L
)
ε2.

25

Published as a conference paper at ICLR 2023

c) The sequence {xk, zk} satisfies

1

T

T−1∑
k=0

{
E‖xk−xk+1‖2,E‖zk+1−zk‖22,E‖zk−xk‖

2
2

}
≤
{

4η2ε2,
β2

1ε
2

4(1−β1)3L2
,
ε2

4L

}
.

d) The total stochastic gradient complexity to achieve the above three properties is O
(c2.5∞ ∆σ2L
ν1.25ε4

)
.

The proof is completed.

G PROOFS OF AUXILIARY LEMMAS

G.1 PROOF OF LEMMA 3

Proof. To begin with, we assume that ∀t ≤ k, it holds

‖mt‖∞ ≤ c∞, ‖vt + ν‖∞ ≤ c∞ + ν

Then we consider the case where t = k + 1 as follows
‖mk+1‖∞ = ‖(1− β1)mk + β1gk‖∞ ≤ (1− β1) ‖mk‖∞ + β1 ‖gk‖∞ ≤ c∞,
‖vk+1‖∞ =

∥∥(1− β2)vk + β2g
2
k

∥∥
∞ ≤ (1− β2) ‖vk‖∞ + β2

∥∥g2
k

∥∥
∞ ≤ c

2
∞.

Then we derive the second results as follows:∥∥∥∥√ vk + ν

vk+1 + ν

∥∥∥∥
∞

=

∥∥∥∥√1 +
vk − vk+1

vk+1 + ν

∥∥∥∥
∞

=

∥∥∥∥∥∥
√

1 +
β2(vk − g2

k)

vk+1 + ν

∥∥∥∥∥∥
∞

.

Therefore, we have

1− β2c
2
∞

2(c2s,∞ + ν)
<

√
1− β2c2∞

c2s,∞ + ν
≤
∥∥∥∥√ vk + ν

vk+1 + ν

∥∥∥∥
∞
≤

√
1 +

β2c2∞
c2s,∞ + ν

< 1 +
β2c

2
∞

2(c2s,∞ + ν)
.

We complete the proof.

G.2 PROOF OF LEMMA 5

Proof. To begin with, we have

yk+1 − (1 + λkη̄k)xk+1

=zk − η̄k
mk

sk
− 1 + λkη̄k

1 + λkηk

(
xk − ηk

mk

sk

)
=η̄k−1τk−1xk + ηk−1τk−1yk − η̄k

mk

sk
− 1 + λkη̄k

1 + λkηk

(
xk − ηk

mk

sk

)
=ηk−1τk−1 (yk − (1 + λkη̄k−1)xk)−

(
η̄k −

1 + λkη̄k−1

1 + λkηk−1
ηk

)
mk

sk
+
λk(ηk − η̄k)

1 + λkηk
xk

¬
=ηk−1τk−1 (yk − (1 + λkη̄k−1)xk)−

(
η̄k −

1 + λkη̄k−1

1 + λkηk−1
ηk

)
wk − λk

√
vk

sk
+
λk(ηk − η̄k)

1 + λkηk
xk

=ηk−1τk−1 (yk − (1 + λkη̄k−1)xk)−
(
η̄k −

1 + λkη̄k−1

1 + λkηk−1
ηk

)
wk
sk

+

(
λkη̄k −

1 + λkη̄k−1

1 + λkηk−1
λkηk +

λk(ηk − η̄k)

1 + λkηk

)
xk

­
=ητk−1 (yk − (1 + λkη̄)xk)− η̄ − η

1 + λkη

wk
sk

where ¬ holds since wk := mk + λkxk ∗ sk; ­ holds since we set all ηk = η and η̄k = η̄ which
gives τk = τ = 1

η+η̄+λkηη̄
. Therefore, by defining ρk+1 = ητk−1ρk, ρ1 = 1 and ρ0 = 0, then we

have
yk+1 − (1 + λkη̄)xk+1

ρk+1
=
yk − (1 + λkη̄)xk

ρk
− 1

ρk+1

η̄ − η
1 + λkη

wk
sk

(k ≥ 1)

26

Published as a conference paper at ICLR 2023

For k = 0, we have

y1 − (1 + λ0η̄)x1 =z0 − η̄
m0

s0
− 1 + λ0η̄

1 + λ0η

(
x0 − η

m0

s0

)
=z0 − η̄

w0 − λ0s0 ∗ x0

s0
− 1 + λ0η̄

1 + λ0η

(
x0 − η

w0 − λ0s0 ∗ x0

s0

)
=z0 − x0 −

η̄ − η
1 + λ0η

w0

s0

In this way, one can obtain

yk+1 − (1 + λkη̄)xk+1

ρk+1
=z0 − x0 −

η̄ − η
1 + λ0η

w0

s0
−

k∑
i=1

1

ρi+1

η̄ − η
1 + λiη

wi
si

=−
k∑
i=0

1

ρi+1

η̄ − η
1 + λiη

wi
si

where ¬ hold since z0 = x0 and ρ1 = 1. Then we can upper bound∥∥∥∥yk+1 − (1 + λkη̄)xk+1

ρk+1

∥∥∥∥2

=

∥∥∥∥∥
k∑
i=0

ρk+1(1− ητi−1)

ρi+1

η̄ − η
ρk+1(1− ητi−1)(1 + λiη)

wi
si

∥∥∥∥∥
2

¬
≤

k∑
i=0

ρk+1(1− ητi−1)

ρi+1

(η̄ − η)2

ρ2
k+1(1− ητi−1)2(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

=
(η̄ − η)2

ρk+1

k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

where ¬ holds since 1)
∑k
i=0

1−ητi−1

ρi+1
=
∑k
i=0(1

ρi+1
− 1

ρi
) = 1

ρk+1
, and 2) Jensen’ inequality.

Therefore, we have

‖yk+1 − (1 + λkη̄)xk+1‖2 ≤ ρk+1(η̄ − η)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

.

Moreover, we can also bound

‖zk+1 − xk+1‖2 = ‖η̄τkxk+1 + ητkyk+1 − xk+1‖2

=ητk ‖yk+1 − (1 + λkη̄)xk+1‖2

≤τkρk+1η(η̄ − η)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

.

On the other hand, we have
‖zk+1 − zk‖ = ‖η̄τkxk+1 + ητkyk+1 − zk‖

¬
=

∥∥∥∥η̄τkxk+1 + ητkyk+1 − yk+1 − η̄
mk

sk

∥∥∥∥
=

∥∥∥∥η̄τkxk+1 + ητkyk+1 − yk+1 − η̄
wk − λkxk ∗ sk

sk

∥∥∥∥
=

∥∥∥∥η̄τkxk+1 + ητkyk+1 − yk+1 − η̄
wk
sk

+ η̄λkxk

∥∥∥∥
­
=

∥∥∥∥(η̄τk + η̄λk)xk+1 − (1− ητk)yk+1 −
η̄

1 + λkη

wk
sk

∥∥∥∥
®
=

∥∥∥∥η̄τk(1 + λkη) ((1 + λkη̄)xk+1 − yk+1)− η̄

1 + λkη

wk
sk

∥∥∥∥
≤η̄τk(1 + λkη) ‖(1 + λkη̄)xk+1 − yk+1‖+

η̄

1 + λkη

∥∥∥∥wksk
∥∥∥∥

27

Published as a conference paper at ICLR 2023

where ¬ we plug in yk+1 = zk − η̄k
mk

sk
; in ­ we plug in xk+1 = 1

1+λkη

(
xk − ηmk

sk

)
=

1
1+λkη

(
xk − ηwk−λkxk∗sk

sk

)
= xk− η

1+λkη
wk

sk
; and ® we have η̄τk+η̄λk = η̄τk(1+η̄λk)(1+ηλk)

and (1− ητk) = η̄τk(1 + ηλk). Then we can upper bound

‖zk+1 − zk‖2 ≤2η̄2τ2
k (1 + λkη)2 ‖(1 + λkη̄)xk+1 − yk+1‖2 +

2η̄2

(1 + λkη)2

∥∥∥∥wksk
∥∥∥∥2

≤ 2η̄2

(1 + λkη)2

∥∥∥∥wksk
∥∥∥∥2

+ 2ρk+1η̄
2(η̄ − η)2τ2

k (1 + λkη)2
k∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

The proof is completed.

G.3 PROOF OF LEMMA 6

Proof. From Lemma 4, we have

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1,k)2L2

β1,k
E
[
‖zk − zk−1‖2

]
+
β2

1,kσ
2

b

¬
≤(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

Πk(1− β1,k)2L2

β1,k
+
β2

1,kσ
2

b

where in ¬, we use the results in Lemma 5 that

‖zk − zk−1‖2 ≤Πk

with

Πk :=
2η̄2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρkη̄
2(η̄ − η)2τ2

k−1(1 + λk−1η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

.

Then we have

E
[
‖mk −∇F (xk)‖2

]
≤2E

[
‖mk −∇F (zk)‖2

]
+ 2E

[
‖∇F (zk)−∇F (xk)‖2

]
≤2E

[
‖mk −∇F (zk)‖2

]
+ 2LE

[
‖zk − xk‖2

]
¬
≤2(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πk(1− β1,k)2L2

β1,k
+

2β2
1,kσ

2

b
+ 2LΠ′k,

where in ¬, we use the results in Lemma 4 that

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1,k)2L2

β1
E
[
‖zk − zk−1‖2

]
+
β2

1,kσ
2

b
.

and also the results in Lemma 5 that

‖zk − xk‖2 ≤ Π′k :=τk−1ρkη(η̄ − η)2
k−1∑
i=0

1

ρi+1(1− ητi−1)(1 + λiη)2

∥∥∥∥wisi
∥∥∥∥2

.

The proof is completed.

28

