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Abstract
The few-shot problem is an urgent challenge001
for the generalization capability of the single-002
table text-to-SQL task. Current few-shot meth-003
ods neglect the potential information of un-004
labeled data and have a domain bias due005
to the same weight of samples. Motivated006
by this, this paper proposes a Self-Training007
text-to-SQL (ST-SQL) method which handles008
the problem from both views of data and al-009
gorithms. At the data level, ST-SQL per-010
forms data expansion by using an iterative011
framework to attach pseudo-labels to unla-012
beled data. The expanded data are sampled013
to reversely train the model. At the algorithm014
level, ST-SQL defines a column specificity015
to perform a more fine-grained gradient up-016
date during meta-training. The common sam-017
ples are attached more weight to eliminate the018
domain bias. ST-SQL achieves state-of-the-019
art results on both open-domain and domain-020
specific benchmarks and brings more signifi-021
cant improvements on few-shot tests.022

1 Introduction023

Single-table text-to-SQL is a widely-studied se-024

mantic parsing task, which aims to translate natu-025

ral language questions (NLQ) into SQL programs026

to access a single table. WikiSQL (Zhong et al.,027

2017) is the currently largest single-table text-to-028

SQL dataset, each example of which consists of a029

table, a question, and a target SQL program to be030

obtained. Figure 1 shows an example in WikiSQL.031

Recently, benefiting from tabular-specific pre-032

trained models (Yin et al., 2020; Herzig et al.,033

2020; Zhao et al., 2021; Yu et al., 2020) and well-034

designed strategies (Hui et al., 2021; Chen et al.,035

2021a; Deng et al., 2021), state-of-the-art meth-036

ods have been able to achieve more than 90%037

SQL execution accuracy on full-set WikiSQL. It038

brings a view that the single-table task seems to be039

solved (Suhr et al., 2020), so more and more works040

begin to challenge harder multi-table tasks (Yu041

et al., 2018b; Shi et al., 2021; Chen et al., 2021b).042

Figure 1: An example of single-table text-to-SQL.

However, is this really the case? We observe that 043

most existing text-to-SQL models depend on suffi- 044

cient pairs of NLQ and SQL annotations, which are 045

regarded as the supervision training signal. Unfor- 046

tunately, for each table in the actual scenario, high- 047

quality SQL annotations require a high manual cost, 048

consequently, there are only a few NLQ-SQL pairs 049

that can be used for training. Some works (Chang 050

et al., 2020; Chen et al., 2021a) call it a few-shot 051

table challenge and demonstrate that it directly hin- 052

ders the single-table text-to-SQL technology from 053

theory to application. 054

On the one hand, although pre-trained models 055

designed for tabular data (Yin et al., 2020; Herzig 056

et al., 2020; Zhao et al., 2021; Yu et al., 2020) can 057

bring a wealth of prior knowledge, they require 058

millions of parallel corpus of text and tables for 059

pre-training. It is obviously difficult to implement 060

in some specific domains or non-English scenes. 061

On the other hand, Meta-Learning (ML) is also 062

a natural way to handle few-shot tables. Regret- 063

tably, the current ML-based framework (Chen et al., 064

2021a) is one-size-fits-all for all sub-tasks of text- 065

to-SQL while ignoring their potential priorities. 066

More importantly, a fact is neglected that different 067

column samples typically have different domain 068

relevance. For example in Figure 2, compared to 069

column header “Market Value”, which is almost 070

only found in financial tables, “Company” is more 071
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Figure 2: Column “Company” with low specificity can
appear in tables with different topics, while column
“Market Value” with high specificity may only exist in
the financial tables.

common for all the tables. Intuitively, in order to072

make the model general to fast adapt to few-shot ta-073

bles, the training process should pay more attention074

to the common columns, which are at the center of075

the sample space.076

In this paper, we propose a new method called077

Self-Training text-to-SQL (ST-SQL) that over-078

comes the limitations by integrating the views of079

data and algorithms. We select Hydranet (Lyu et al.,080

2020), which is a strong text-to-SQL baseline, as081

our basic model and follow existing work to wrap082

it with content enhancement (Chen et al., 2021a).083

In order to improve its few-shot performance from084

the view of data, we propose a semi-supervised085

learning framework called ST-Semi to promote it086

by utilizing the potential information of unlabeled087

data. Specifically, in each training iteration, the088

basic model first predicts the SQL program of un-089

labeled data to obtain the pseudo labeled data, and090

then trains itself using the original labeled data and091

sampled pseudo labeled data. To obtain few-shot092

improvements from the view of algorithms, we093

propose a new column specificity meta-learning094

algorithm to assist the ST-Semi framework and095

optimize the model with an extra training object,096

which is only relevant to column prediction and is097

fundamental of all the sub-tasks. Considering the098

domain relevance of columns, we define a column099

specificity to weigh samples to make samples with100

a common column have a greater weight during101

loss calculation.102

Our contributions can be summarized as:103

• We propose a semi-supervised learning text-to-104

SQL framework that can automatically annotate105

unlabeled NLQ-table pairs and performs self-106

training. To the best of our knowledge, it is the107

first time to leverage semi-supervised learning to108

enhance text-to-SQL in the few-shot scenario.109

• We propose a column specificity meta-learning110

(CSML) algorithm to make the more general sam-111

ples have the more significant contribution for 112

gradient calculation, in order to make the model 113

easier for fast adaptation. 114

• We conduct comprehensive experiments on the 115

open-domain dataset WikiSQL and domain- 116

specific dataset ESQL (Chen et al., 2021a). Our 117

method outperforms all baselines on few-shot 118

tests and achieves a competitive result on the full 119

set of WikiSQL. 120

2 Preliminaries 121

Given an NLQ q and a table T = (H, C), the goal 122

of the single-table text-to-SQL task is to output a 123

SQL query y, denoted by y =M(q, T ). Here,M 124

is the target mapping (i.e., model) to be learned, 125

hi ∈ H is the i-th column header and ci ∈ C is 126

the set of cells belong to Hi. In addition, each y 127

follows a unified skeleton in Figure 1. The tokens 128

with $ indicate a slot that needs to be filled and 129

* represents that the bracket can be repeated zero 130

or more times. In recent work, the task has been 131

simplified into the following six sub-tasks. 132

• Select-Column(SC): Selecting the column for 133

$COLUMN in the SELECT clause. 134

• Select-Aggregation(SA): Choosing the aggrega- 135

tion function for $AGG in the SELECT clause. 136

• Where-Number(WN): Judging the number of 137

conditions in the WHERE clause. 138

• Where-Column(WC): Selecting columns for 139

$COLUMN of conditions in the WHERE clause. 140

• Where-Operator(WO): Choosing the operators 141

for $OP of each condition in the WHERE clause. 142

• Where-Value(WV): Extracting the mentions 143

from the question as the value for $VALUE of 144

each condition in the WHERE clause. 145

Some works (Lyu et al., 2020; Yin et al., 2020) 146

have proved that SC and WC, which are directly 147

related to columns, have the most important role in 148

the final performance. 149

In this paper, the training data is denoted by 150

D = (A,U), where A = {a1, a2, ..., a|A|} is the 151

set of labeled data and U = {u1, u2, ..., u|U|} is 152

the set of unlabeled data. Here, ai = {(qi, yi, Ti)} 153

and uj = {(qj , Tj)}. yi is the gold SQL for qi. 154

Generally, |A| < |U|. 155

3 Method 156

Figure 3 illustrates the overview of our proposed 157

ST-SQL. ST-SQL consists of a basic modelM and 158

a training framework F . For M with parameter 159
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Figure 3: An overview of ST-SQL. a) The architecture of the basic model. b) The training procedure of ST-Semi.

θ, the framework F is used to obtain a new set of160

parameters θ
′

as follows.161
Mθ

′ = F(Mθ,A,U) (1)162

where θ
′

has few-shot adaptation capability. Next,163

we will detail the basic modelM and the training164

framework F .165

3.1 Basic Model166

As mentioned in Section 2, the column prediction167

is critical for the total task. Therefore, we adopt168

Hydranet (Lyu et al., 2020) as our basic modelM.169

In addition, in view of the proven improvement of170

the table content to the text-to-SQL task (Yu et al.,171

2020; Chen et al., 2021a), we apply a content en-172

hancement (Chen et al., 2021a) forM. Specifically,173

the basic model consists of an encoding module174

and sub-tasks module.175

3.1.1 Encoding Module176

The encoding module is set to a pre-trained177

RoBERTa. For the purpose of use the semantic178

information of each NLQ-column pair (q, hi), the179

input format is represented by180
[CLS], xti ,[BLK], x

1
hi , ..., x

m
hi ,[BLK], x

1
c1i
, ...,

xl
1

c1i
, ...,[BLK], x1cki

, ..., xl
k

cki
,[SEP], x1q, ..., x

n
q ,

181

where [CLS], [BLK] and [SEP] are the user-182

defined placeholders, xti denotes the type of hi183

and xiz denotes the i-th token of z. cji denotes one184

cell of the column contents under hi, used to en-185

hance the potential semantic information. In this186

paper, top-k cells are obtained by calculating a lit-187

eral score (Chen et al., 2021a) with q. The inputs188

are converted by RoBERTa into the following vec-189

tors.190
[hi[CLS],hti ,h[BLK],h

1
hi , ...,h

m
hi ,h[BLK],h

1
c1i
, ...,

hl
1

c1i
, ...,h[BLK],h

1
cki
, ...,hl

k

cki
,h[SEP],h

1
q, ...,h

n
q ],

191

where each h ∈ Rd is the hidden state of the input192

token x with the context information, and hi
[CLS]193

is regarded as the semantic vector of (q, hi).194

3.1.2 Sub-Tasks Module 195

This module is used to make predictions for the 196

sub-tasks in Section 2. First, for the SC task and 197

WC task, the ranking scores of each columnHi are 198

calculated by 199

Psc(Hi = SC|q) = sigmoid(Wsc · hi
[CLS]), (2) 200

201
Pwc(Hi ∈WC|q,Hi) = sigmoid(Wwc · hi

[CLS]), (3) 202

where Wsc ∈ Rd and Wwc ∈ Rd are trainable 203

parameter matrices. These two scores are the basis 204

of the whole SQL generation procedure. Then, 205

the result of SC can be obtained by selecting the 206

column with the highest Psc score. Before getting 207

the result of WC, WN needs to be calculated the 208

first which can be calculated by a weighted sum 209

of the conditional probability of each candidate 210

number as follows. 211

Pwn(nj |q,Hi) = softmax(Wwn[j :] · hi[CLS]), (4) 212
213

ωij = softmax(Wω[j :] · hi[CLS]), (5) 214

215
n

′
= arg max

j
(
∑
i

ωij · P (nj |q,Hi)), (6) 216

where Wwn ∈ Rn̂×d, Wω ∈ Rd are affine trans- 217

formations. P (nj |q, hi) denotes the probability of 218

nj that i-th column predicts, n̂ denotes the maxi- 219

mum of candidate n, and n
′

is the result for WN. 220

Subsequently, the top n columns with the highest 221

Pwc scores are taken as the result of WC. Finally, 222

the remaining tasks can be predicted based on the 223

columns selected by SC and WC as follows. 224

Psa(aj |q,Hi) = softmax(Wsa[j, :] · hi[CLS]), (7) 225
226

Pwo(oj |q,Hi) = softmax(Wwo[j, :] · hi[CLS]), (8) 227

228
P swv(xij = s|q,Hi) = softmax(hiq[j, :] ·W s

wv), (9) 229
230

P ewv(xij = e|q,Hi) = softmax(hiq[j, :] ·W e
wv), (10) 231
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where Wsa ∈ Rna×d, Wwo ∈ Rno×d, W s
wv ∈ Rd232

and W e
wv ∈ Rd are weight matrices, na and no de-233

note the number of candidate aggregation functions234

and operators, hi
q ∈ Rlq×d represent the question235

embedding for i-th column, lq denotes the length236

of the question. The aggregation function and op-237

erators with the highest Psa and Pwo scores calcu-238

lated according to the columns of SC and WC, are239

chosen as the result of AGG and OP respectively.240

Mentions for WV are extracted by the start and241

end indexes with the highest P s
wv and P e

wv scores.242

Finally, a SQL program is obtained by filling the243

results of the six sub-tasks into the SQL skeleton.244

3.2 Self-Training Framework245

Our proposed self-training framework ST-Semi,246

i.e., F in (1), integrates the meta-learning tech-247

nique into a semi-supervised training process. Al-248

gorithm 1 shows the detailed procedure.249

The entire process can be divided into a warm250

boot stage and an iterative adaptation stage.251

In the warm boot stage (line 2-9), random ini-252

tializedM is trained by a conventional mini-batch253

strategy on labeled data A (line 5-6) while its best254

performance s on the validation set is updated (line255

8). When s reaches threshold λ, the procedure is256

completed and parameters θw are obtained. Here,257

we use LF accuracy (detailed in 4.1.2), which is a258

widely-used metric for text-to-SQL, to evaluate s.259

In the iterative adaptation stage, M is trained260

by using both A and unlabeled data U . Concretely,261

at the first step of each epoch, M predicts SQL262

program ŷ as a pseudo label for each unlabeled263

sample (q, T ) in U (Line 12-17). The pseudo la-264

beled data is used to reversely promote the parame-265

ter update ofM. Intuitively, pseudo-label samples266

with higher model prediction confidence can have267

a greater impact on parameter updating. Therefore,268

we design a confidence score for each sample as269

follows.270

ψi = τ

√∏
zi

max(P (xzi |qi, Ti), ζ), (11)271

where ζ is a threshold and τ is a hyper-parameter.272

P (xzi |qi, Ti) is the confidence in the current task273

according to the model’s output, where zi ∈274

{SC,WC, SA}. Note that we only calculate ψi275

for SC, WC, and SA because the first two tasks are276

very basic and important, and SA generally has a277

poor performance.278

At the second step, θw is updated by the mixed279

data of the labeled data and pseudo labeled data.280

According to the characteristics of different sub-281

tasks, we update θw in two ways. For SC and WC,282

Algorithm 1 Self-Training Framework

Require: Labeled set A, unlabeled set U , validation set Dv ,
basic modelM, hyper-parameters α, β, γ, δ, η.

1: InitializeM with random parameters θ
2: s← 0
3: while s < λ do
4: for batch B ⊆ A do
5: Evaluate B = {(qi, Ti, yi)},

∇θLw = ∇θ
∑
i L(M(qi, Ti, θ), yi)

6: Update parameters with gradient descent:
θ ← θ − α∇θLw

7: end for
8: s← max(score(M, θw,Dv), s)
9: end while

10: θw ← θ
11: while not done do
12: Pseudo labeled set P ← ∅
13: for qj , Tj ∈ U do
14: Predict pseudo label ŷj ←M(qj , Tj , θw)
15: calculate confidence score ψi for ŷi
16: P ← P ∪ (qj , Tj , ŷj , ψj)
17: end for
18: Set ψi = 1 for yi ∈ A
19: Sample DT ⊆ DM = A ∪ P
20: Meta learning training step:

θm ← Fm(DT , θw, γ, δ, η)
21: Sample P ′ ⊆ P
22: for batch B ⊆ Dm = A ∪ P ′ do
23: Evaluate B = {(qk, Tk, yk, ψk)},

∇θmLb ← ∇θm
∑
k ψkLb(M(qk, Tk, θm), yk)

24: Update parameters with gradient descent:
θm ← θm − β∇θmLb

25: end for
26: θw ← θm
27: end while
28: θ

′
← θw

29: return θ
′

tasks DT are first sampled from the mixed data 283

DM = A
⋃
P . θm is obtained by updating θw 284

with column specificity meta-learning Fm on DT 285

(Line 19-20). Furthermore, in order to stabilize 286

the parameters and adaptM into the target dataset, 287

for all sub-tasks, a mini-batch is performed after 288

the meta-learning. Here,M is trained by Dm = 289

A
⋃
P ′ in mini-batch form, where P ′ is a subset 290

sampled from P (Line 21-25). 291

After multiple epochs of iterative adaptation, θ
′
, 292

which is the set of parameters with the best perfor- 293

mance on validation data, is returned as the final 294

parameters. 295

3.3 Column Specificity Meta-Learning 296

In ST-Semi, Fm is the column specificity meta- 297

learning (CSML) algorithm used to update θw for 298

few-shot tables. Motivated by the objects of pre- 299

trained text-to-SQL models, for (q,Hi), we define 300

two new training objects to adopt meta-learning 301

procedure: 302

• Predict whetherHi exists in the SELECT clause 303
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Algorithm 2 Column Specificity Meta-Learning

Require: Task set DT , parameters θw of the basic modelM,
hyper-parameters γ, δ, and η

1: for all tasks do
2: Evaluate support set S = {(qj ,Hj , ψj , µj , yj)},

∇θwLS = ∇θwΣjψjµjL(M(qj ,Hj , θw), yj)
3: Update parameters with gradient descent:

θ
′
w ← θw − γ∇θwLS

4: Evaluate query setQ = {(qk,Hk, ψk, µk, yk)},
∇θ′wLQ = ∇θ′wΣkψkµkL(M(qk,Hk, θ

′
w), yk)

5: Update parameters with gradient descent:
LSQ = ηLS + (1− η)LQ, θw ← θ

′
w − δ∇θ′wLSQ

6: end for
7: θm ← θw
8: return θm

of y corresponding to qi.304

• Predict whetherHi exists in the WHERE clause305

of y corresponding to qi.306

There are two reasons for using these two objects:307

1) First, they are relevant to SC and WC tasks,308

which are fundamental for text-to-SQL in our basic309

modelM. 2) More importantly, their results are310

very dependent and sensitive to the table which311

means that they are susceptible to the few-shot ta-312

bles. For each sample (q,Hi), the loss is calculated313

by a binary cross-entropy.314

L =ysc · log (Psc) + (1− ysc) · log (1− Psc)
+ ywc · log (Pwc) + (1− ywc) · log (1− Pwc)

(12)315

where ysc ∈ {0, 1} and ywc ∈ {0, 1} are the gold316

labels. Psc and Pwc are calculated by (2) and (3).317

Moreover, in CSML, different (q,Hi) have dif-318

ferent contributions when calculating the total loss319

according to the column specificity of Hi. The320

quantitative calculation is as follows.321

µHi =
Ntotal

Ndistinct ·Nhi
, (13)322

where Ntotal denotes the total frequency of all the323

columns and Ndistinct denotes the distinct num-324

ber of columns. Nhi denotes the frequency of the325

header hi. Here, Ntotal divided by Ndistinct repre-326

sents the average frequency of all columns. The327

greater the µHi , the more special ofHi.328

In task sampling, the mixed data DM =329

{(qi,Hi, ψi, µi)} is shuffled, where ψi is derived330

from the score of the sample corresponding to q.331

From DM , each task randomly samples support set332

S and query set Q in nw-way ks/kq-shot settings,333

where the samples related to the same table are334

treated as “a way”.335

The training procedure is shown in Algorithm 2.336

For each task T , the parameter update is divided337

into two steps. In the first step, lossLS is calculated338

by evaluating the support set S using ψ and µ as 339

weights (Line 3). θ
′
w can be obtained by gradient 340

update from θw with learning rate γ (Line 4). In the 341

second step, loss LQ is calculated by evaluating the 342

query set Q on θ
′
c (Line 5). LS and LQ are joined 343

to calculate the gradient which is used to update θ
′
w 344

to new θw with learning rate δ (Line 5). After all 345

tasks are iterated, the final parameters θm are used 346

as the output of the meta-learning step in ST-Semi. 347

4 Experiments 348

In this section, we compare ST-SQL to other ex- 349

isting methods to analyze the impact of different 350

factors on few-shot performance. 351

4.1 Experiment Setup 352

4.1.1 Dataset 353

We evaluate the model performance on the follow- 354

ing two benchmarks. 355

WikiSQL (Zhong et al., 2017) is currently 356

the largest open-domain single-table text-to-SQL 357

dataset which contains more than 20k tables col- 358

lected from Wikipedia. Here, 80k questions are 359

divided into 56,355 training questions, 8,421 devel- 360

opment questions, and 15,878 test questions. 361

ESQL (Chen et al., 2021a) is a Chinese domain- 362

specific single-table text-to-SQL dataset containing 363

17 tables, 10k training questions, 1,000 develop- 364

ment questions, and 2,000 test questions. ESQL 365

also provides zero-shot development and test set 366

which contain 494 questions and 972 questions 367

separately. 368

We also utilize WikiTableQuestions (Pasupat 369

and Liang, 2015) as an available unlabeled data 370

source. It is an open-domain single-table QA 371

dataset that provides more than 2k tables and 20k 372

question-answer pairs. In our experiments, when 373

using the full training data of WikiSQL, all the 374

NLQ-table pairs in WikiTableQuestions are used. 375

4.1.2 Evaluation Metrics 376

Logical Form(LF) accuracy is a general metric for 377

text-to-SQL which evaluates the exact matching 378

results between the predicted SQL and the gold 379

SQL. Execution accuracy(EX) is another metric 380

that evaluates whether query results of the predicted 381

SQL and gold SQL are identical. 382

4.1.3 Implementation Details 383

We performed the experiments on Tesla V100 Su- 384

per GPU. We used AdamW as the optimizer for 385

training. In the experiments on WikiSQL, We did 386
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not limit the number of column content k because387

all tables in WikiSQL only have a small amount388

of data. On the contrary, the scale of the tables in389

ESQL is very large, so we set k equal to 5 when390

experimenting on ESQL. The settings of the other391

hyper-parameters are in Table 1. Our implementa-392

tion is publicly available1393

Params Value Description

α, β 3e-5 learning rate of ST-Semi
γ, δ 3e-5, 1e-5 learning rate of CSML
η 0.5 the weight of loss calculation in CSML
|DT | 100/300 the number of sampled tasks at each iteration
nw, ks, kq 4, 15, 5 the specific settings for each task
λ 80.0/65.0 the threshold of warm boot
σ 20%/5% sampling ratio of the unlabeled data
ζ, τ 0.1, 2.5 the settings for confidence calculation

Table 1: Hyper-parameters settings.“X/X” denotes the
experiments that use full training data or in few-shot
settings separately.

4.1.4 Methods for Comparison394

We compared with notable work that has re-395

ported results on WikiSQL task, including396

Seq2SQL (Zhong et al., 2017), Coarse2Fine (Dong397

and Lapata, 2018), SQLNet (Xu et al., 2017),398

TypeSQL (Yu et al., 2018a), X-SQL (He et al.,399

2019), IE-SQL (Ma et al., 2020), and SDSQL (Hui400

et al., 2021), SQLova (Hwang et al., 2019), Hy-401

draNet (Lyu et al., 2020), BRIDGE (Lin et al.,402

2020), TaBERT (Yin et al., 2020), GRAPPA (Yu403

et al., 2020), TAPAS (Herzig et al., 2020), and404

MC-SQL (Chen et al., 2021a).405

4.2 Overall Results on WikiSQL406

We first evaluated the performance of ST-SQL on407

the full set of WikiSQL. The experimental results408

are shown in Table 2. ST-SQL ranks the third best409

on both LF and EX on the test set of WikiSQL410

while the SSL-only setting achieves state-of-the-art411

results. Here, the “SSL-only” setting represents412

the ST-SQL that is removed the meta-learning step413

from ST-Semi. It proves that self-training on addi-414

tional unlabeled data is useful to enhance the model,415

and can even perform better than using additional416

annotation. Moreover, the middle of Table 2 shows417

that semi-supervised learning is competitive with418

tabular pre-trained models. Here, a possible rea-419

son the drop brought by CSML is that mini-batch420

can optimize parameters more stably than meta-421

learning in the case of sufficient training data422

1https://github.com/ygxw0909/ST-SQL

Method Dev.LF Dev.EX Test.LF Test.EX

Seq2SQL 49.5 60.8 48.3 59.4
SQLNet 63.2 69.8 61.3 68.0
TypeSQL 68.0 74.5 66.7 73.5
Coarse2Fine 72.5 79.0 71.7 78.5
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
MC-SQL*- 84.1 89.7 83.7 89.4
IE-SQL+ 84.6 88.7 84.6 88.8
SDSQL+ 86.0 91.8 85.6 91.4
BRIDGE* 86.2 91.7 85.7 91.1

TaBERT* 84.0 89.6 83.7 89.1
GRAPPA* 85.9 - 84.7 -
TAPAS* 85.1 - 83.6 -

ST-SQL* 85.7 90.8 85.4 90.3
ST-SQL(SSL-only)* 86.4 91.9 85.8 91.6

Table 2: Overall results on WikiSQL. "*" denotes the
model using column content. "+" denotes the model
is trained with additional labeling features. "-" de-
notes the result is based on the base version of the pre-
training model.

4.3 Few-Shot Test 423

To evaluate the performance of ST-SQL on a few- 424

shot scenario, we establish the following settings 425

on WikiSQL and ESQL. 426

Data Settings For the training set of WikiSQL 427

and ESQL, we sampled 1%(563) and %5(500) 428

NLQs-table pairs, respectively, to build the few- 429

shot training sets. The remaining data of the train- 430

ing set is regarded as unlabeled data. We also 431

consider the zero-shot settings, which is an ex- 432

treme case of the few-shot setting. For WikiSQL, 433

we sampled 2%(359) tables and all the related 434

NLQs (1148) from the training set and the devel- 435

opment/test set has 2281/4148 unseen tables. For 436

ESQL, we followed the few-shot setting and di- 437

rectly used its released zero-shot development and 438

test set which contain 7 unseen tables. 439

Ablation Settings To explore the contribution 440

of each component of ST-SQL under the few-shot 441

scenario, we applied the following settings. 442

• Basic We only employed the basic model de- 443

scribed in Section 3.1. 444

• Basic+SSL We applied ST-Semi to the basic 445

model but removed the meta-learning step. 446

• Basic+SSL+ML We replaced CSML with an 447

existing meta-learning algorithm(Chen et al., 448

2021a) of the text-to-SQL field. 449

Baseline Settings We select three categories 450

of methods from Table 2 for comparison in the 451

few-shot/zero-shot test. First, SQLova (Hwang 452

et al., 2019), HydraNet (Lyu et al., 2020), and 453

BRIDGE (Lin et al., 2020) area supervised 454

6
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FS on WikiSQL ZS on WikiSQL FS on ESQL ZS on ESQL
Method Dev.LF Test.LF Dev.LF Test.LF Dev.LF Test.LF Dev.LF Test.LF

SQLova 35.7 35.1 46.2 45.7 59.1 54.9 52.0 53.3
MC-SQL* 52.8 53.7 62.8 62.8 62.3 62.6 53.0 53.9
HydraNet 66.3 66.0 68.7 68.9 66.8 68.8 63.6 66.8
BRIDGE* 64.4 64.0 70.3 70.5 - - - -

TaBERT+SQLova* 56.1 55.9 72.9 72.9 - - - -
TAPAS+basic* 43.4 42.2 63.1 62.8 - - - -
GRAPPA+basic* 74.1 74 76.2 76.2 - - - -

ST-SQL* 78.1 78.9 79.1 79.0 77.1 76.1 71.1 71.1
Basic* 71.5 71.5 74.1 73.5 67.2 70.5 66.8 68.6
Basic+SSL* 77.2 77.7 78.3 77.9 69.5 69.7 67.6 69.4
Basic+SSL+ML* 76.2 76.2 77.7 77.1 72.2 72.8 68.2 69.2

Table 3: Results of the few-shot and zero-shot tests. "*" denotes the model using column content.

learning-based methods that are representative due455

to their good performance. Second, TaBERT (Yin456

et al., 2020), Grappa (Yu et al., 2020), and457

TAPAS (Herzig et al., 2020) are pre-trained text-to-458

SQL models with rich prior knowledge. Third, MC-459

SQL (Chen et al., 2021a) is a specifically-designed460

method for zero-shot tables, which also leverages461

the meta-learning. For the above methods, we di-462

rectly ran its public source code to obtained exper-463

iments. We did not consider the other methods in464

Table 1 because they had not released the source465

code or were not advanced enough.466

The results in Table 3 show that our method out-467

performs all the baselines and gains significant im-468

provements on few-shot and zero-shot tests on both469

WikiSQL and ESQL. These representative end-to-470

end methods can not handle few-shot and zero-shot471

tables very well. For the pre-trained models, we472

set different basic models according to their output473

characteristics. However, the Chinese version of474

these pre-training models had not been released yet,475

so that they were only tested on WikiSQL. Since476

they involve a wealth of prior knowledge and do477

not require many samples to fine-tune, they got bet-478

ter performance on WikiSQL, especially GRAPPA.479

Despite that, the proposed ST-Semi framework480

demonstrated a stronger ability to effectively using481

on additional unlabeled data and deal with few-shot482

and zero-shot tables. Amazingly, the accuracy of483

ST-SQL on WikiSQL with only a 1% labeling rate484

is close to some methods using full labeled training485

data.486

In the ablation tests, first, the basic ST-SQL487

model showed the significance of table content488

according to the comparison with HydraNet. The489

semi-supervised learning in ST-Semi also improved490

the accuracy greatly on WikiSQL. However, it491

did not contribute obviously to ESQL, the rea-492

son we supposed is that, as a domain-specific 493

dataset, ESQL is more difficult than WikiSQL to be 494

adapted, and it leads to much noise of pseudo labels 495

to semi-supervised learning without the assistance 496

of meta-learning. While it was combined with 497

CSML as ST-SQL, the promotion becomes remark- 498

able. For comparing our CSML with other similar 499

meta-learning algorithms, we replaced CSML with 500

the training process in (Chen et al., 2021a), and the 501

results showed CSML performed much better. 502

4.4 Detail Analysis 503

Effect of ST-Semi Figure 4 shows the impact of 504

the adoption of ST-Semi on the trend of accuracy 505

changes during the training process in the few-shot 506

tests. After reaching the threshold and finishing 507

warm boot, ST-Semi further boosts the increase of 508

accuracy compared with the basic model. The self- 509

training process mostly completed in 30 epochs. 510

WikiSQL

ESQL

Figure 4: Performance trend with/without ST-Semi.
The green line shows the threshold of the warm boot.

Moreover, we made a comparative experiment 511

on the influence of the number of unlabeled data on 512

ST-Semi, where the sampling ratio of mini-batch 513

and the relevant settings of task sampling had been 514

7



scaled suitably. The results in Figure 5 show that515

with proper sampling-related hyper-parameter set-516

tings to ensure that unlabeled data is not excessively517

added to each round of training, for ST-Semi, in-518

creasing the total number of additional unlabeled519

data can improve the effectiveness of the ST-SQL.520

WikiSQL

ESQL

Figure 5: Results of using different sizes of additional
unlabeled sets.

Error Analysis We randomly sampled 200 bad521

cases after the few-shot tests and analyzed the error522

reason. Here, we divide error into 5 categories523

and statistics the frequency of each type of error524

in sampled bad cases which is shown in Figure 6.525

According to the results, Column selection and526

aggregation function prediction are the tasks that527

still need to be promoted.528

WikiSQL ESQL

Figure 6: Percentage of error causes.

5 Related Work529

Single table text-to-SQL task recently attract lots530

of attention since the release of WikiSQL (Zhong531

et al., 2017). Previous work can be mainly divided532

into two directions. The earlier methods (Dong533

and Lapata, 2018; Krishnamurthy et al., 2017; Sun534

et al., 2018; Zhong et al., 2017) use sequence-to-535

sequence models to generate SQL token by to-536

ken, which is called the generation-based method.537

But the sketch-based methods first proposed by538

SQLNet (Xu et al., 2017) later show better per-539

formance. Based on that, TypeSQL (Yu et al.,540

2018a) adds data type of columns into representa-541

tion. SQLova (Hwang et al., 2019) and X-SQL (He542

et al., 2019) leverage BERT (Devlin et al., 2019) 543

and MT-DNN (Liu et al., 2019) to text-to-SQL 544

models and achieve significant improvement. Fur- 545

thermore, HydraNet (Lyu et al., 2020) proposes a 546

column-wise model which performs better than all 547

the former question-wise models. BRIDGE (Lin 548

et al., 2020) designs a sequential text-DB encoder 549

to enhance the representation which achieves out- 550

standing performance. IE-SQL (Ma et al., 2020) 551

transfers the task into an information extraction 552

problem. In the latest work SDSQL (Hui et al., 553

2021) designs an assistant task to help model learn- 554

ing the dependency between questions and schema. 555

Recently, lots of customized pre-training models 556

appear in different research areas, as well as text- 557

to-SQL. TaBERT (Yin et al., 2020) is proposed for 558

a joint understanding of textual and tabular data, 559

where table content is leveraged into representation. 560

TAPAS (Herzig et al., 2020) is proposed for Table 561

QA, but the table encoding ability also can be used 562

in text-to-SQL. GRAPPA (Yu et al., 2020) is pro- 563

posed for table semantic parsing combined with a 564

grammar-augmented pre-training framework. 565

Few-shot and zero-shot problem in the text-to- 566

SQL task is first mentioned by (Chang et al., 2020), 567

where the model is additionally trained to map 568

the entity of questions to the columns of tables. 569

But the limitation is that additional annotations 570

are needed. MC-SQL (Chen et al., 2021a) lever- 571

ages table content features into embedding and 572

uses meta-learning for training. However, the ex- 573

periment shows that the meta-learning algorithm is 574

not greatly helpful. 575

6 Conclusion 576

In this paper, we presented a new self-training 577

method on the single table text-to-SQL task. We 578

leveraged column content into a column-wise 579

model as the basic model. Base on that, we de- 580

signed a self-training framework ST-Semi which 581

combines semi-supervised learning and meta- 582

learning technique to make effective use of unla- 583

beled data and adopt self-training ability. Moreover, 584

we proposed a column specificity meta-learning 585

algorithm to handle few-shot tables. The exper- 586

imental results indicated that our method outper- 587

forms the other baselines on multiple benchmarks 588

in few-shot settings. Furthermore, our method also 589

showed a good performance on zero-shot tables. 590

In future work, we will try to optimize the design 591

of meta-learning and expand the research area to 592

multi-tables, complex text-to-SQL. 593
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Few-Shot Zero-Shot
Method SC SA WN WC WO WV SC SA WN WC WO WV

SQLova 81.9 / 80.8 77.3 / 77.4 88.8 / 88.4 66.1 / 65.3 77.6 / 77.4 67.0 / 66.9 89.1 / 88.3 82.2 / 82.5 92.0 / 92.0 76.2 / 75.0 83.5 / 83.7 71.1 / 71.4
MC-SQL* 88.2 / 88.3 83.8 / 85.2 92.2 / 91.2 86.5 / 85.3 82.2 / 81.8 73.8 / 74.0 91.4 / 90.9 87.9 / 88.5 95.7 / 95.1 92.0 / 90.8 88.1 / 87.5 80.3 / 80.0
HydraNet 94.2 / 94.1 86.2 / 86.7 92.9 / 92.1 84.0 / 83.1 89.5 / 88.9 85.4 / 84.1 95.8 / 95.5 88.0 / 88.4 94.0 / 93.5 84.9 / 84.4 91.7 / 91.1 86.0 / 85.5
BRIDGE* - - - - - - - - - - - -

TaBERT+SQLova* 91.1 / 91.0 83.2 / 83.2 94.8 / 94.8 87.4 / 87.2 87.7 / 87.8 78.9 / 78.7 95.7 / 95.9 88.6 / 88.5 97.2 / 97.3 93.5 / 93.5 95.7 / 95.8 88.3 / 88.4
TAPAS+basic* 86.6 / 85.7 84.1 / 84.0 89.1 / 88.5 78.9 / 78.4 85.4 / 85.1 57.6 / 57.2 93.9 / 93.6 87.4 / 87.5 94.0 / 93.9 90.1 / 89.9 92.3 / 92.0 75.9 / 75.6
GRAPPA+basic* 95.0 / 94.8 87.1 / 88.1 93.8 / 93.6 90.4 / 89.9 92.0 / 91.9 89.3 / 88.8 96.2 / 95.9 88.7 / 88.9 94.8 / 94.6 91.1 / 90.7 93.0 / 92.8 90.4 / 90.3

ST-SQL* 97.1 / 97.0 87.6 / 88.5 95.1 / 95.1 93.3 / 93.4 93.9 / 94.1 92.9 / 92.9 97.1 / 96.8 88.7 / 89.0 96.0 / 95.5 94.1 / 93.7 94.8 / 94.3 93.4 / 93.0
Basic* 95.6 / 95.0 88.0 / 88.1 92.3 / 91.9 87.6 / 87.4 90.4 / 90.3 86.8 / 86.4 95.6 / 95.5 87.9 / 88.1 94.3 / 93.9 90.4 / 89.6 92.3 / 91.9 89.0 / 88.2
Basic+SSL* 96.3 / 96.5 88.1 / 88.6 94.5 / 94.5 92.1 / 92.2 93.1 / 93.1 91.7 / 91.6 96.0 / 95.8 88.9 / 89.4 95.8 / 95.3 93.2 / 92.9 94.6 / 93.1 93.1 / 92.5
Basic+SSL+ML* 96.8 / 96.5 86.8 / 87.4 94.1 / 93.6 91.9 / 91.6 92.7 / 92.2 91.6 / 91.0 96.9 / 96.8 88.0 / 88.1 95.6 / 95.1 93.8 / 93.2 94.3 / 93.9 92.8 / 92.4

Table 4: The results of each sub-task in few-shot and zero-shot tests on WikiSQL.

Few-Shot Zero-Shot
Method SC SA WN WC WO WV SC SA WN WC WO WV

SQLova 86.7 / 89.7 96.8 / 95.9 98.4 / 96.7 76.8 / 69.8 89.4 / 86.4 75.0 / 69.3 82.4 / 86.8 94.9 / 95.2 96.4 / 96.4 73.3 / 70.3 84.6 / 85.3 70.2 / 68.5
MC-SQL* 90.2 / 90.3 94.1 / 93.7 97.7 / 96.1 80.9 / 79.7 89.1 / 87.8 72.9 / 71.3 83.8 / 83.5 98.2 / 95.9 96.8 / 94.1 81.2 / 81.9 92.5 / 88.8 63.4 / 64.8
HydraNet 93.0 / 97.8 92.6 / 93.3 97.5 / 96.8 81.3 / 83.3 90.2 / 92.1 76.5 / 80.9 91.9 / 92.5 95.7 / 97.1 97.0 / 95.9 80.2 / 82.0 88.5 / 87.4 73.9 / 75.0

ST-SQL* 98.9 / 98.6 96.0 / 97.0 98.1 / 97.0 86.3 / 86.5 93.5 / 93.3 83.0 / 81.7 97.5 / 97.2 98.2 / 97.3 97.8 / 96.6 83.8 / 83.7 92.5 / 94.2 74.7 / 76.1
Basic* 95.6 / 97.2 92.4 / 93.8 97.9 / 97.0 82.4 / 84.6 89.4 / 89.6 77.4 / 80.2 95.4 / 95.4 97.8 / 97.2 97.9 / 96.8 76.3 / 80.9 90.5 / 85.8 73.9 / 75.1
Basic+SSL* 97.7 / 96.9 93.3 / 94.3 98.0 / 97.1 82.0 / 84.9 91.9 / 89.6 77.3 / 79.1 95.8 / 95.8 97.7 / 97.0 97.3 / 96.2 79.4 / 81.0 92.1 / 92.6 73.6 / 74.9
Basic+SSL+ML* 97.9 / 98.0 95.6 / 95.9 98.1 / 97.2 80.4 / 82.6 91.1 / 89.5 80.0 / 77.8 96.6 / 96.6 93.5 / 96.7 97.2 / 95.9 77.3 / 80.0 91.5 / 90.9 73.1 / 77.5

Table 5: The results of each sub-task in few-shot and zero-shot tests on ESQL.

A Appendices784

Table 4 and Table 5 show the detailed results of the785

few-shot and zero-shot experiments on WikiSQL786

and ESQL. Here, we evaluated the performance of787

each sub-task. ST-SQL achieved the best perfor-788

mance for most of the sub-tasks, especially SC and789

WC. It reveals that CSML can bring improvements790

in column selection. Leveraging the column con-791

tent also significantly improved the effect of WV.792

Benefiting from the enhancement of the ST-Semi793

using additional unlabeled data, all sub-tasks had a794

certain improvement compared to the basic model.795
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