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Abstract

The few-shot problem is an urgent challenge
for the generalization capability of the single-
table text-to-SQL task. Current few-shot meth-
ods neglect the potential information of un-
labeled data and have a domain bias due
to the same weight of samples. Motivated
by this, this paper proposes a Self-Training
text-to-SQL (ST-SQL) method which handles
the problem from both views of data and al-
gorithms. At the data level, ST-SQL per-
forms data expansion by using an iterative
framework to attach pseudo-labels to unla-
beled data. The expanded data are sampled
to reversely train the model. At the algorithm
level, ST-SQL defines a column specificity
to perform a more fine-grained gradient up-
date during meta-training. The common sam-
ples are attached more weight to eliminate the
domain bias. ST-SQL achieves state-of-the-
art results on both open-domain and domain-
specific benchmarks and brings more signifi-
cant improvements on few-shot tests.

1 Introduction

Single-table text-to-SQL is a widely-studied se-
mantic parsing task, which aims to translate natu-
ral language questions (NLQ) into SQL programs
to access a single table. WikiSQL (Zhong et al.,
2017) is the currently largest single-table text-to-
SQL dataset, each example of which consists of a
table, a question, and a target SQL program to be
obtained. Figure 1 shows an example in WikiSQL.

Recently, benefiting from tabular-specific pre-
trained models (Yin et al., 2020; Herzig et al.,
2020; Zhao et al., 2021; Yu et al., 2020) and well-
designed strategies (Hui et al., 2021; Chen et al.,
2021a; Deng et al., 2021), state-of-the-art meth-
ods have been able to achieve more than 90%
SQL execution accuracy on full-set WikiSQL. It
brings a view that the single-table task seems to be
solved (Suhr et al., 2020), so more and more works
begin to challenge harder multi-table tasks (Yu
et al., 2018b; Shi et al., 2021; Chen et al., 2021b).

Question
How many banking panies have headquarters in the USA?
Table
Company |H ters Industry Profits Market Value
Citigroup USA Banking 21.54 247.42
HSBC UK Banking 16.63 202.29
Toyota Japan Automotive 11.68 217.69
ExxonMobil USA Oil and gas 39.50 410.65
SQL SQL Skeleton

COUNT (Company) SAGG SCOLUMN

Headquarters = “USA” SCOLUMN $OP SVALUE

Industry = “Banking” ( SCOLUMN SOP $VALUE)*

Figure 1: An example of single-table text-to-SQL.

However, is this really the case? We observe that
most existing text-to-SQL models depend on suffi-
cient pairs of NLQ and SQL annotations, which are
regarded as the supervision training signal. Unfor-
tunately, for each table in the actual scenario, high-
quality SQL annotations require a high manual cost,
consequently, there are only a few NLQ-SQL pairs
that can be used for training. Some works (Chang
et al., 2020; Chen et al., 2021a) call it a few-shot
table challenge and demonstrate that it directly hin-
ders the single-table text-to-SQL technology from
theory to application.

On the one hand, although pre-trained models
designed for tabular data (Yin et al., 2020; Herzig
et al., 2020; Zhao et al., 2021; Yu et al., 2020) can
bring a wealth of prior knowledge, they require
millions of parallel corpus of text and tables for
pre-training. It is obviously difficult to implement
in some specific domains or non-English scenes.
On the other hand, Meta-Learning (ML) is also
a natural way to handle few-shot tables. Regret-
tably, the current ML-based framework (Chen et al.,
2021a) is one-size-fits-all for all sub-tasks of text-
to-SQL while ignoring their potential priorities.
More importantly, a fact is neglected that different
column samples typically have different domain
relevance. For example in Figure 2, compared to
column header “Market Value”, which is almost
only found in financial tables, “Company” is more



Table 1

| Company |F Industry Profits | Market Value
Citigroup USA Banking 21.54 247.42
Table 2
‘ Title Author Company Format Release Date
Doctor Who Malcolm
and the Cave BBC 4-CD 2007-09-03
Hulke
Monsters

Figure 2: Column “Company” with low specificity can
appear in tables with different topics, while column
“Market Value” with high specificity may only exist in
the financial tables.

common for all the tables. Intuitively, in order to
make the model general to fast adapt to few-shot ta-
bles, the training process should pay more attention
to the common columns, which are at the center of
the sample space.

In this paper, we propose a new method called
Self-Training text-to-SQL (ST-SQL) that over-
comes the limitations by integrating the views of
data and algorithms. We select Hydranet (Lyu et al.,
2020), which is a strong text-to-SQL baseline, as
our basic model and follow existing work to wrap
it with content enhancement (Chen et al., 2021a).
In order to improve its few-shot performance from
the view of data, we propose a semi-supervised
learning framework called ST-Semi to promote it
by utilizing the potential information of unlabeled
data. Specifically, in each training iteration, the
basic model first predicts the SQL program of un-
labeled data to obtain the pseudo labeled data, and
then trains itself using the original labeled data and
sampled pseudo labeled data. To obtain few-shot
improvements from the view of algorithms, we
propose a new column specificity meta-learning
algorithm to assist the ST-Semi framework and
optimize the model with an extra training object,
which is only relevant to column prediction and is
fundamental of all the sub-tasks. Considering the
domain relevance of columns, we define a column
specificity to weigh samples to make samples with
a common column have a greater weight during
loss calculation.

Our contributions can be summarized as:

e We propose a semi-supervised learning text-to-
SQL framework that can automatically annotate
unlabeled NLQ-table pairs and performs self-
training. To the best of our knowledge, it is the
first time to leverage semi-supervised learning to
enhance text-to-SQL in the few-shot scenario.

e We propose a column specificity meta-learning
(CSML) algorithm to make the more general sam-

ples have the more significant contribution for
gradient calculation, in order to make the model
easier for fast adaptation.

e We conduct comprehensive experiments on the
open-domain dataset WikiSQL and domain-
specific dataset ESQL (Chen et al., 2021a). Our
method outperforms all baselines on few-shot
tests and achieves a competitive result on the full
set of WikiSQL.

2 Preliminaries

Given an NLQ ¢ and a table 7 = (#,C), the goal
of the single-table text-to-SQL task is to output a
SQL query y, denoted by y = M(q, 7). Here, M
is the target mapping (i.e., model) to be learned,
h; € H is the i-th column header and ¢; € C is
the set of cells belong to H;. In addition, each y
follows a unified skeleton in Figure 1. The tokens
with $ indicate a slot that needs to be filled and
* represents that the bracket can be repeated zero
or more times. In recent work, the task has been
simplified into the following six sub-tasks.

e Select-Column(SC): Selecting the column for
$COLUMN in the SELECT clause.

o Select-Aggregation(SA): Choosing the aggrega-
tion function for $AGG in the SELECT clause.

e Where-Number(WN): Judging the number of
conditions in the WHERE clause.

e Where-Column(WC): Selecting columns for
$COLUMN of conditions in the WHERE clause.

o Where-Operator(WO): Choosing the operators
for $OP of each condition in the WHERE clause.

e Where-Value(WYV): Extracting the mentions
from the question as the value for $VALUE of
each condition in the WHERE clause.

Some works (Lyu et al., 2020; Yin et al., 2020)
have proved that SC and WC, which are directly
related to columns, have the most important role in
the final performance.

In this paper, the training data is denoted by
D = (A, U), where A = {ay,az,...,a)4} is the
set of labeled data and U = {us,uz, ..., up} is
the set of unlabeled data. Here, a; = {(q;,v:, T:)}
and u; = {(¢;,7;)}. i is the gold SQL for ¢;.
Generally, |A| < [U].

3 Method

Figure 3 illustrates the overview of our proposed
ST-SQL. ST-SQL consists of a basic model M and
a training framework F. For M with parameter
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Figure 3: An overview of ST-SQL. a) The architecture of the basic model. b) The training procedure of ST-Semi.

0, the framework F is used to obtain a new set of

parameters 0 as follows.
My = F(Mg, AU) )

where 6’ has few-shot adaptation capability. Next,
we will detail the basic model M and the training
framework F.

3.1 Basic Model

As mentioned in Section 2, the column prediction
is critical for the total task. Therefore, we adopt
Hydranet (Lyu et al., 2020) as our basic model M.
In addition, in view of the proven improvement of
the table content to the text-to-SQL task (Yu et al.,
2020; Chen et al., 2021a), we apply a content en-
hancement (Chen et al., 2021a) for M. Specifically,
the basic model consists of an encoding module
and sub-tasks module.

3.1.1 Encoding Module

The encoding module is set to a pre-trained
RoBERTa. For the purpose of use the semantic
information of each NLQ-column pair (g, h;), the
input format is represented by

[CLS],&t;, [BLK],Zh,, .., The, [BLK] ,xi},...,

2, [BLK]7:ci;_¢,...7:cl::_;7 [SEP], T, ., Th,
where [CLS], [Bf.K] and [SEP] are the user-
defined placeholders, x;, denotes the type of h;
and x%, denotes the i-th token of z. C’Z denotes one
cell of the column contents under /;, used to en-
hance the potential semantic information. In this
paper, top-k cells are obtained by calculating a lit-
eral score (Chen et al., 2021a) with ¢. The inputs
are converted by RoOBERTa into the following vec-
tors.

[hicssys hey Biesey, B o B e g ey
bl Biss, bl bl Bsser by, o by,
where each h € R? is the hidden state of the input
token x with the context information, and hi[CL S]

is regarded as the semantic vector of (g, h;).

3.1.2 Sub-Tasks Module

This module is used to make predictions for the
sub-tasks in Section 2. First, for the SC task and
WC task, the ranking scores of each column #; are
calculated by

Pso(H' = SC|q) = sigmoid(W. - hicis;),  (2)

Pue(H' € WC|q, H') = sigmoid(Wee - hicig)),  (3)
where Wy, € R? and W, € R? are trainable
parameter matrices. These two scores are the basis
of the whole SQL generation procedure. Then,
the result of SC can be obtained by selecting the
column with the highest Ps. score. Before getting
the result of WC, WN needs to be calculated the
first which can be calculated by a weighted sum
of the conditional probability of each candidate
number as follows.

Pwn(nj\q,?[,i) = softmax(Wynl[j ‘] ~hi[CLS] ), (4
w; = softmax(Wy[j ] ~hi[CLS])7 5)
(6)

n = arg max(z w; - P(njlq, H")),
J i

where W, € R"¥4 W, € R¢ are affine trans-
formations. P(nj|q, h;) denotes the probability of
n; that i-th column predicts, n denotes the maxi-
mum of candidate n, and n’ is the result for WN.
Subsequently, the top n columns with the highest
P, scores are taken as the result of WC. Finally,
the remaining tasks can be predicted based on the
columns selected by SC and WC as follows.

Psa(aj|q, H') = softmax(Wialj, ] - hicis;),  (7)
Pw0(0j|Q7 HZ) = SOftmaX(WwO[ja :} : hi[CLS] )» 8)
P, (a:; = slq, Hi) = softmax(hfz [7,:]  Wau)s 9
P, (xé =elq, ’Hi) = softmax(hfz [7,:] - Weo), (10)



where Wy, € R™%*4 1}, € Rroxd W3, € R¢
and W<, € R? are weight matrices, n, and n,, de-
note the number of candidate aggregation functions
and operators, h!, € R'a*? represent the question
embedding for i-th column, [, denotes the length
of the question. The aggregation function and op-
erators with the highest P;, and P,,, scores calcu-
lated according to the columns of SC and WC, are
chosen as the result of AGG and OP respectively.
Mentions for WV are extracted by the start and
end indexes with the highest P’ and PS scores.
Finally, a SQL program is obtained by filling the
results of the six sub-tasks into the SQL skeleton.

3.2 Self-Training Framework

Our proposed self-training framework ST-Semi,
ie., F in (1), integrates the meta-learning tech-
nique into a semi-supervised training process. Al-
gorithm 1 shows the detailed procedure.

The entire process can be divided into a warm
boot stage and an iterative adaptation stage.

In the warm boot stage (line 2-9), random ini-
tialized M is trained by a conventional mini-batch
strategy on labeled data A (line 5-6) while its best
performance s on the validation set is updated (line
8). When s reaches threshold ), the procedure is
completed and parameters 6,, are obtained. Here,
we use LF accuracy (detailed in 4.1.2), which is a
widely-used metric for text-to-SQL, to evaluate s.

In the iterative adaptation stage, M is trained
by using both .4 and unlabeled data /. Concretely,
at the first step of each epoch, M predicts SQL
program ¢ as a pseudo label for each unlabeled
sample (¢, 7) in U (Line 12-17). The pseudo la-
beled data is used to reversely promote the parame-
ter update of M. Intuitively, pseudo-label samples
with higher model prediction confidence can have
a greater impact on parameter updating. Therefore,
we design a confidence score for each sample as
follows.

wi = . HmaX(P(lei|q'L77;)7O7 (11)

where ( is a threshold and 7 is a hyper-parameter.
P(z.,|q:, T;) is the confidence in the current task
according to the model’s output, where z; €
{SC,WC,SA}. Note that we only calculate 1;
for SC, WC, and SA because the first two tasks are
very basic and important, and SA generally has a
poor performance.

At the second step, 60,, is updated by the mixed
data of the labeled data and pseudo labeled data.
According to the characteristics of different sub-
tasks, we update 6, in two ways. For SC and WC,

Algorithm 1 Self-Training Framework

Require: Labeled set A, unlabeled set U, validation set D,,,
basic model M, hyper-parameters «, 3, v, J, 1.

1: Initialize M with random parameters 6

2: 50

3: while s < A do

4:  for batch B C A do

5: Evaluate B = {(qi, 75, v:) }
Veﬁw = vg Z’L [’(M(qla 72, G)a yl)

6: Update parameters with gradient descent:
0+ 60—aVeLly,

7:  end for

8: s« max(score(M, 0y, Dy), s)

9: end while

10: 0, <0

11: while not done do
12:  Pseudo labeled set P < 0
13:  forgq;,7; € U do

14: Predict pseudo label §; < M(q;, T;,6w)
15: calculate confidence score 1); for ¥;

16: PFPU(Qj,ﬂ,ﬁj,’lﬁj)

17:  end for

18:  Sety; =1fory; € A
19: Sample Dr C Dy = AUP
20: Meta learning training step:
9m — -/T"'m(DTa 91117 e 67 7])
21:  Sample P’ C P
22:  forbatch BC D,, = AUP’ do

23: Evaluate B = {(q&, Tk, Y, ¥x)},
Vo, Lo < Vo, > Wi Lo(M(qr, Tr, Om), yr)
24: Update parameters with gradient descent:
em, — em, - ,Bvem Lb
25:  end for
26: Ow < O
27: end while
28: 0 <« 0,
29: return 6’

tasks D are first sampled from the mixed data
Dy = AUP. 6, is obtained by updating 6,,
with column specificity meta-learning F,,, on D
(Line 19-20). Furthermore, in order to stabilize
the parameters and adapt M into the target dataset,
for all sub-tasks, a mini-batch is performed after
the meta-learning. Here, M is trained by D,,, =
A|J P’ in mini-batch form, where P’ is a subset
sampled from P (Line 21-25).

After multiple epochs of iterative adaptation, 0,
which is the set of parameters with the best perfor-
mance on validation data, is returned as the final
parameters.

3.3 Column Specificity Meta-Learning

In ST-Semi, F, is the column specificity meta-
learning (CSML) algorithm used to update 6,, for
few-shot tables. Motivated by the objects of pre-
trained text-to-SQL models, for (g, H'), we define
two new training objects to adopt meta-learning
procedure:

e Predict whether H? exists in the SELECT clause



Algorithm 2 Column Specificity Meta-Learning

Require: Task set D, parameters 6., of the basic model M,
hyper-parameters -, ¢, and 7
1: for all tasks do
: Evaluate support set S = {(q;, H;, V5, 115, ¥5) }»

Vo, Ls = Vo, 201 L(M(q5, Hj, Ow), y5)

3:  Update parameters with gradient descent:
0, < 00 — Vo, Ls

4:  Evaluate query set Q@ = {(qx, Hr, Yk, ik, Yk) }»
Vo Lo =V Sptepr L(M(qr, Hi, 0u), yr)

5: Update parameters with gradient descent:
Lso=nLs + (1 —=n)Lo,buw 0, —6Vy Lso

6: end for

T: O — O

8: return 0,,

of y corresponding to g;.
e Predict whether 7’ exists in the WHERE clause
of y corresponding to g;.

There are two reasons for using these two objects:
1) First, they are relevant to SC and WC tasks,
which are fundamental for text-to-SQL in our basic
model M. 2) More importantly, their results are
very dependent and sensitive to the table which
means that they are susceptible to the few-shot ta-
bles. For each sample (g, H"), the loss is calculated
by a binary cross-entropy.

L =Ysc * 108; (Psc) + (1 — ysc) . 109; (1 - Psc)

12
4 e - 10g (Puc) + (1 — yue) log (1 — Puc) 02

where ys. € {0,1} and y,,. € {0, 1} are the gold
labels. Ps. and P, are calculated by (2) and (3).

Moreover, in CSML, different (g, H*) have dif-
ferent contributions when calculating the total loss
according to the column specificity of H?. The
quantitative calculation is as follows.
_ Niotal

Naistinet - Nn,’
where Nyyq; denotes the total frequency of all the
columns and Ng;sine: denotes the distinct num-
ber of columns. N}, denotes the frequency of the
header h;. Here, Nyyq; divided by Ng;stinet repre-
sents the average frequency of all columns. The
greater the ji5,:, the more special of H*.

In task sampling, the mixed data Dy; =
{(qi, Hi, i, ;) } is shuffled, where 1); is derived
from the score of the sample corresponding to q.
From D), each task randomly samples support set
S and query set Q in n,,-way k,/k,-shot settings,
where the samples related to the same table are
treated as “a way”’.

The training procedure is shown in Algorithm 2.
For each task T, the parameter update is divided
into two steps. In the first step, loss Ls is calculated

by evaluating the support set S using ¢ and p as
weights (Line 3). 0;, can be obtained by gradient
update from 6,, with learning rate -y (Line 4). In the
second step, loss L is calculated by evaluating the
query set Q on 0; (Line 5). Ls and L are joined
to calculate the gradient which is used to update 9;,
to new 6,, with learning rate J (Line 5). After all
tasks are iterated, the final parameters 6,,, are used
as the output of the meta-learning step in ST-Semi.

4 Experiments

In this section, we compare ST-SQL to other ex-
isting methods to analyze the impact of different
factors on few-shot performance.

4.1 Experiment Setup
4.1.1 Dataset

We evaluate the model performance on the follow-
ing two benchmarks.

WikiSQL (Zhong et al.,, 2017) is currently
the largest open-domain single-table text-to-SQL
dataset which contains more than 20k tables col-
lected from Wikipedia. Here, 80k questions are
divided into 56,355 training questions, 8,421 devel-
opment questions, and 15,878 test questions.

ESQL (Chen et al., 2021a) is a Chinese domain-
specific single-table text-to-SQL dataset containing
17 tables, 10k training questions, 1,000 develop-
ment questions, and 2,000 test questions. ESQL
also provides zero-shot development and test set
which contain 494 questions and 972 questions
separately.

We also utilize WikiTableQuestions (Pasupat
and Liang, 2015) as an available unlabeled data
source. It is an open-domain single-table QA
dataset that provides more than 2k tables and 20k
question-answer pairs. In our experiments, when
using the full training data of WikiSQL, all the
NLQ-table pairs in WikiTableQuestions are used.

4.1.2 Evaluation Metrics

Logical Form(LF) accuracy is a general metric for
text-to-SQL which evaluates the exact matching
results between the predicted SQL and the gold
SQL. Execution accuracy(EX) is another metric
that evaluates whether query results of the predicted
SQL and gold SQL are identical.

4.1.3 Implementation Details

We performed the experiments on Tesla V100 Su-
per GPU. We used AdamW as the optimizer for
training. In the experiments on WikiSQL, We did



not limit the number of column content & because
all tables in WikiSQL only have a small amount
of data. On the contrary, the scale of the tables in
ESQL is very large, so we set k equal to 5 when
experimenting on ESQL. The settings of the other
hyper-parameters are in Table 1. Our implementa-
tion is publicly available'

Params Value Description
a, 3e-5 learning rate of ST-Semi
v, 0 3e-5, le-5  learning rate of CSML
n 0.5 the weight of loss calculation in CSML
| Dy 100/300 the number of sampled tasks at each iteration
Ny, ks, kg 4,15,5 the specific settings for each task
80.0/65.0  the threshold of warm boot
o 20%/5% sampling ratio of the unlabeled data
¢, T 0.1,2.5 the settings for confidence calculation

Table 1: Hyper-parameters settings.“X/X” denotes the
experiments that use full training data or in few-shot
settings separately.

4.14 Methods for Comparison

We compared with notable work that has re-
ported results on WikiSQL task, including
Seq2SQL (Zhong et al., 2017), Coarse2Fine (Dong
and Lapata, 2018), SQLNet (Xu et al., 2017),
TypeSQL (Yu et al., 2018a), X-SQL (He et al.,
2019), IE-SQL (Ma et al., 2020), and SDSQL (Hui
et al., 2021), SQLova (Hwang et al., 2019), Hy-
draNet (Lyu et al., 2020), BRIDGE (Lin et al.,
2020), TaBERT (Yin et al., 2020), GRAPPA (Yu
et al., 2020), TAPAS (Herzig et al., 2020), and
MC-SQL (Chen et al., 2021a).

4.2 Overall Results on WikiSQL

We first evaluated the performance of ST-SQL on
the full set of WikiSQL. The experimental results
are shown in Table 2. ST-SQL ranks the third best
on both LF and EX on the test set of WikiSQL
while the SSL-only setting achieves state-of-the-art
results. Here, the “SSL-only” setting represents
the ST-SQL that is removed the meta-learning step
from ST-Semi. It proves that self-training on addi-
tional unlabeled data is useful to enhance the model,
and can even perform better than using additional
annotation. Moreover, the middle of Table 2 shows
that semi-supervised learning is competitive with
tabular pre-trained models. Here, a possible rea-
son the drop brought by CSML is that mini-batch
can optimize parameters more stably than meta-
learning in the case of sufficient training data

'https://github.com/ygxw0909/ST-SQL

Method Dev.LF Dev.EX TestLF Test.EX
Seq2SQL 49.5 60.8 48.3 59.4
SQLNet 63.2 69.8 61.3 68.0
TypeSQL 68.0 74.5 66.7 73.5
Coarse2Fine 72.5 79.0 71.7 78.5
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
MC-SQL*- 84.1 89.7 83.7 89.4
1IE-SQL+ 84.6 88.7 84.6 88.8
SDSQL+ 86.0 91.8 85.6 914
BRIDGE* 86.2 91.7 85.7 91.1
TaBERT* 84.0 89.6 83.7 89.1
GRAPPA* 85.9 - 84.7 -
TAPAS* 85.1 - 83.6

ST-SQL* 85.7 90.8 85.4 90.3

ST-SQL(SSL-only)*  86.4 91.9 85.8 91.6

Table 2: Overall results on WikiSQL. "*" denotes the
model using column content. "+" denotes the model
is trained with additional labeling features. "-" de-
notes the result is based on the base version of the pre-
training model.

4.3 Few-Shot Test

To evaluate the performance of ST-SQL on a few-
shot scenario, we establish the following settings
on WikiSQL and ESQL.
Data Settings For the training set of WikiSQL
and ESQL, we sampled 1%(563) and %5(500)
NLQs-table pairs, respectively, to build the few-
shot training sets. The remaining data of the train-
ing set is regarded as unlabeled data. We also
consider the zero-shot settings, which is an ex-
treme case of the few-shot setting. For WikiSQL,
we sampled 2%(359) tables and all the related
NLQs (1148) from the training set and the devel-
opment/test set has 2281/4148 unseen tables. For
ESQL, we followed the few-shot setting and di-
rectly used its released zero-shot development and
test set which contain 7 unseen tables.
Ablation Settings To explore the contribution
of each component of ST-SQL under the few-shot
scenario, we applied the following settings.
e Basic We only employed the basic model de-
scribed in Section 3.1.
e Basic+SSL We applied ST-Semi to the basic
model but removed the meta-learning step.
e Basic+SSL+ML We replaced CSML with an
existing meta-learning algorithm(Chen et al.,
2021a) of the text-to-SQL field.

Baseline Settings We select three categories
of methods from Table 2 for comparison in the
few-shot/zero-shot test. First, SQLova (Hwang
et al., 2019), HydraNet (Lyu et al., 2020), and
BRIDGE (Lin et al., 2020) area supervised


https://github.com/ygxw0909/ST-SQL

FS on WikiSQL

ZS on WikiSQL

FS on ESQL ZS on ESQL

Method Dev.LF TestLF DevLF TestLF Dev.LF TestLF Dev.LF Test.LF
SQLova 35.7 35.1 46.2 45.7 59.1 54.9 52.0 53.3
MC-SQL* 52.8 53.7 62.8 62.8 62.3 62.6 53.0 53.9
HydraNet 66.3 66.0 68.7 68.9 66.8 68.8 63.6 66.8
BRIDGE* 64.4 64.0 70.3 70.5 - - - -
TaBERT+SQLova* 56.1 55.9 72.9 72.9 - - -
TAPAS-+basic* 43.4 422 63.1 62.8 - - -
GRAPPA+basic* 74.1 74 76.2 76.2 - - -
ST-SQL* 78.1 78.9 79.1 79.0 77.1 76.1 71.1 71.1
Basic* 71.5 71.5 74.1 73.5 67.2 70.5 66.8 68.6
Basic+SSL* 77.2 71.1 78.3 71.9 69.5 69.7 67.6 69.4

Basic+SSL+ML*  76.2 76.2 711

77.1 722 72.8 68.2 69.2

Table 3: Results of the few-shot and zero-shot tests. "*" denotes the model using column content.

learning-based methods that are representative due
to their good performance. Second, TABERT (Yin
et al., 2020), Grappa (Yu et al., 2020), and
TAPAS (Herzig et al., 2020) are pre-trained text-to-
SQL models with rich prior knowledge. Third, MC-
SQL (Chen et al., 2021a) is a specifically-designed
method for zero-shot tables, which also leverages
the meta-learning. For the above methods, we di-
rectly ran its public source code to obtained exper-
iments. We did not consider the other methods in
Table 1 because they had not released the source
code or were not advanced enough.

The results in Table 3 show that our method out-
performs all the baselines and gains significant im-
provements on few-shot and zero-shot tests on both
WikiSQL and ESQL. These representative end-to-
end methods can not handle few-shot and zero-shot
tables very well. For the pre-trained models, we
set different basic models according to their output
characteristics. However, the Chinese version of
these pre-training models had not been released yet,
so that they were only tested on WikiSQL. Since
they involve a wealth of prior knowledge and do
not require many samples to fine-tune, they got bet-
ter performance on WikiSQL, especially GRAPPA.
Despite that, the proposed ST-Semi framework
demonstrated a stronger ability to effectively using
on additional unlabeled data and deal with few-shot
and zero-shot tables. Amazingly, the accuracy of
ST-SQL on WikiSQL with only a 1% labeling rate
is close to some methods using full labeled training
data.

In the ablation tests, first, the basic ST-SQL
model showed the significance of table content
according to the comparison with HydraNet. The
semi-supervised learning in ST-Semi also improved
the accuracy greatly on WikiSQL. However, it
did not contribute obviously to ESQL, the rea-

son we supposed is that, as a domain-specific
dataset, ESQL is more difficult than WikiSQL to be
adapted, and it leads to much noise of pseudo labels
to semi-supervised learning without the assistance
of meta-learning. While it was combined with
CSML as ST-SQL, the promotion becomes remark-
able. For comparing our CSML with other similar
meta-learning algorithms, we replaced CSML with
the training process in (Chen et al., 2021a), and the
results showed CSML performed much better.

4.4 Detail Analysis

Effect of ST-Semi  Figure 4 shows the impact of
the adoption of ST-Semi on the trend of accuracy
changes during the training process in the few-shot
tests. After reaching the threshold and finishing
warm boot, ST-Semi further boosts the increase of
accuracy compared with the basic model. The self-
training process mostly completed in 30 epochs.
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—ST-SQL —Basic Model

Figure 4: Performance trend with/without ST-Semi.
The green line shows the threshold of the warm boot.

Moreover, we made a comparative experiment
on the influence of the number of unlabeled data on
ST-Semi, where the sampling ratio of mini-batch
and the relevant settings of task sampling had been



scaled suitably. The results in Figure 5 show that
with proper sampling-related hyper-parameter set-
tings to ensure that unlabeled data is not excessively
added to each round of training, for ST-Semi, in-
creasing the total number of additional unlabeled
data can improve the effectiveness of the ST-SQL.
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Figure 5: Results of using different sizes of additional
unlabeled sets.

Error Analysis We randomly sampled 200 bad
cases after the few-shot tests and analyzed the error
reason. Here, we divide error into 5 categories
and statistics the frequency of each type of error
in sampled bad cases which is shown in Figure 6.
According to the results, Column selection and
aggregation function prediction are the tasks that
still need to be promoted.

o m Aggregation Function Error
iz} m ® Operator Error
Column Error
Value Error
46%} The Number of Conditions Error
WikiSQL ESQL

Figure 6: Percentage of error causes.

5 Related Work

Single table text-to-SQL task recently attract lots
of attention since the release of WikiSQL (Zhong
et al., 2017). Previous work can be mainly divided
into two directions. The earlier methods (Dong
and Lapata, 2018; Krishnamurthy et al., 2017; Sun
et al., 2018; Zhong et al., 2017) use sequence-to-
sequence models to generate SQL token by to-
ken, which is called the generation-based method.
But the sketch-based methods first proposed by
SQLNet (Xu et al., 2017) later show better per-
formance. Based on that, TypeSQL (Yu et al.,
2018a) adds data type of columns into representa-
tion. SQLova (Hwang et al., 2019) and X-SQL (He

et al., 2019) leverage BERT (Devlin et al., 2019)
and MT-DNN (Liu et al., 2019) to text-to-SQL
models and achieve significant improvement. Fur-
thermore, HydraNet (Lyu et al., 2020) proposes a
column-wise model which performs better than all
the former question-wise models. BRIDGE (Lin
et al., 2020) designs a sequential text-DB encoder
to enhance the representation which achieves out-
standing performance. IE-SQL (Ma et al., 2020)
transfers the task into an information extraction
problem. In the latest work SDSQL (Hui et al.,
2021) designs an assistant task to help model learn-
ing the dependency between questions and schema.

Recently, lots of customized pre-training models
appear in different research areas, as well as text-
to-SQL. TaBERT (Yin et al., 2020) is proposed for
a joint understanding of textual and tabular data,
where table content is leveraged into representation.
TAPAS (Herzig et al., 2020) is proposed for Table
QA, but the table encoding ability also can be used
in text-to-SQL. GRAPPA (Yu et al., 2020) is pro-
posed for table semantic parsing combined with a
grammar-augmented pre-training framework.

Few-shot and zero-shot problem in the text-to-
SQL task is first mentioned by (Chang et al., 2020),
where the model is additionally trained to map
the entity of questions to the columns of tables.
But the limitation is that additional annotations
are needed. MC-SQL (Chen et al., 2021a) lever-
ages table content features into embedding and
uses meta-learning for training. However, the ex-
periment shows that the meta-learning algorithm is
not greatly helpful.

6 Conclusion

In this paper, we presented a new self-training
method on the single table text-to-SQL task. We
leveraged column content into a column-wise
model as the basic model. Base on that, we de-
signed a self-training framework ST-Semi which
combines semi-supervised learning and meta-
learning technique to make effective use of unla-
beled data and adopt self-training ability. Moreover,
we proposed a column specificity meta-learning
algorithm to handle few-shot tables. The exper-
imental results indicated that our method outper-
forms the other baselines on multiple benchmarks
in few-shot settings. Furthermore, our method also
showed a good performance on zero-shot tables.
In future work, we will try to optimize the design
of meta-learning and expand the research area to
multi-tables, complex text-to-SQL.
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Few-Shot Zero-Shot

Method SC SA WN wC WO WV SC SA WN wC WO WV
SQLova 81.9/80.8 77.3/774 888/884 66.1/653 77.6/774 67.0/669 | 89.1/88.3 822/825 92.0/920 762/750 835/83.7 71.1/71.4
MC-SQL* 88.2/883 83.8/852 922/912 86.5/853 822/81.8 73.8/74.0|91.4/909 879/885 957/95.1 92.0/90.8 88.1/87.5 80.3/80.0
HydraNet 942/94.1 86.2/86.7 929/92.1 84.0/83.1 89.5/88.9 854/84.1|958/955 88.0/88.4 940/93.5 849/844 91.7/91.1 86.0/855
BRIDGE* - - . - - - - - - - - _

TaBERT+SQLova* 91.1/91.0 83.2/83.2 94.8/948 87.4/872 87.7/87.8 789/78.7|957/959 88.6/885 97.2/97.3 935/93.5 95.7/958 88.3/88.4
TAPAS+basic* 86.6/857 84.1/84.0 89.1/88.5 789/784 854/85.1 57.6/572|93.9/93.6 87.4/875 940/939 90.1/89.9 923/92.0 759/756
GRAPPA+basic* 95.0/94.8 87.1/88.1 93.8/93.6 90.4/89.9 92.0/91.9 89.3/88.8|96.2/959 88.7/889 948/94.6 91.1/90.7 93.0/92.8 90.4/90.3

ST-SQL* 97.1/97.0 87.6/88.5 95.1/951 93.3/934 93.9/941 92.9/929 | 97.1/96.8 88.7/89.0 96.0/955 94.1/93.7 94.8/943 93.4/93.0
Basic* 95.6/95.0 88.0/88.1 923/91.9 87.6/874 90.4/903 86.8/86.4|956/955 87.9/88.1 943/939 90.4/89.6 923/91.9 89.0/88.2
Basic+SSL* 96.3/96.5 88.1/88.6 94.5/945 92.1/922 93.1/93.1 91.7/91.6 | 96.0/95.8 88.9/89.4 958/953 932/929 94.6/93.1 93.1/925

Basic+SSL+ML*  96.8/96.5 86.8/87.4 94.1/93.6 91.9/91.6 92.7/922 91.6/91.0 | 96.9/96.8 88.0/88.1 956/95.1 93.8/932 943/939 92.8/924

Table 4: The results of each sub-task in few-shot and zero-shot tests on WikiSQL.

Few-Shot Zero-Shot
Method SC SA WN wC WO WV ‘ SC SA WN WC WO WV
SQLova 86.7/89.7 96.8/959 98.4/96.7 76.8/69.8 89.4/864 75.0/69.3 |82.4/86.8 949/952 96.4/964 733/703 84.6/853 70.2/68.5
MC-SQL* 90.2/90.3 94.1/93.7 97.7/96.1 80.9/79.7 89.1/87.8 72.9/71.3 | 83.8/83.5 98.2/959 96.8/94.1 81.2/819 92.5/88.8 63.4/64.8
HydraNet 93.0/97.8 92.6/933 97.5/96.8 81.3/83.3 90.2/92.1 76.5/80.9 |91.9/92.5 957/97.1 97.0/959 80.2/820 88.5/874 73.9/750
ST-SQL* 98.9/98.6 96.0/97.0 98.1/97.0 86.3/86.5 93.5/93.3 83.0/81.7 | 97.5/97.2 98.2/97.3 97.8/96.6 83.8/83.7 92.5/94.2 74.7/76.1
Basic* 95.6/972 92.4/93.8 979/97.0 82.4/84.6 89.4/89.6 774/802 |954/954 97.8/972 97.9/96.8 763/809 90.5/85.8 73.9/75.1
Basic+SSL* 97.7/96.9 933/943 98.0/97.1 82.0/849 919/89.6 77.3/79.1 |95.8/958 97.7/97.0 97.3/962 79.4/81.0 92.1/92.6 73.6/749

Basic+SSL+ML* 97.9/98.0 95.6/959 98.1/97.2 80.4/82.6 91.1/89.5 80.0/77.8 | 96.6/96.6 93.5/96.7 97.2/959 773/80.0 91.5/909 73.1/715

Table 5: The results of each sub-task in few-shot and zero-shot tests on ESQL.

A Appendices

Table 4 and Table 5 show the detailed results of the
few-shot and zero-shot experiments on WikiSQL
and ESQL. Here, we evaluated the performance of
each sub-task. ST-SQL achieved the best perfor-
mance for most of the sub-tasks, especially SC and
WC. It reveals that CSML can bring improvements
in column selection. Leveraging the column con-
tent also significantly improved the effect of WV.
Benefiting from the enhancement of the ST-Semi
using additional unlabeled data, all sub-tasks had a
certain improvement compared to the basic model.
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