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ABSTRACT

The goal of imitation learning is to mimic expert behavior from demonstrations,
without access to an explicit reward signal. A popular class of approach infers
the (unknown) reward function via inverse reinforcement learning (IRL) followed
by maximizing this reward function via reinforcement learning (RL). The policies
learned via these approaches are however very brittle in practice and deteriorate
quickly even with small test-time perturbations due to compounding errors. We
propose Imitation with Planning at Test-time (IMPLANT), a new algorithm for
imitation learning that utilizes decision-time planning to correct for compounding
errors of any base imitation policy. In contrast to existing approaches, we retain
both the imitation policy and the rewards model at decision-time, thereby bene-
fiting from the learning signal of the two components. Empirically, we demon-
strate that IMPLANT significantly outperforms benchmark imitation learning ap-
proaches on standard control environments and excels at zero-shot generalization
when subject to challenging perturbations in test-time dynamics.

1 INTRODUCTION

The objective of imitation learning is to optimize agent policies directly from demonstrations of
expert behavior. Such a learning paradigm sidesteps reward engineering, which is a key bottleneck
for applying reinforcement learning (RL) in many real-world domains, e.g., autonomous driving,
robotics. In the presence of a finite dataset of expert demonstrations however, a key challenge with
current approaches is that the learned policies can quickly deviate from intended expert behavior and
lead to compounding errors at test-time (Osa et al., 2018). Moreover, it has been observed that imi-
tation policies can be brittle and drastically deteriorate in performance with even small perturbations
to the dynamics during execution (Christiano et al., 2016; de Haan et al., 2019).

A predominant class of approaches to imitation learning is based on inverse reinforcement learning
(IRL) and involve successive application of two steps: (a) an IRL step where the agent infers the
(unknown) reward function for the expert, followed by (b) an RL step where the agent maximizes
the inferred reward function via a policy optimization algorithm. For example, many popular IRL
approaches consider an adversarial learning framework (Goodfellow et al., 2014), where the reward
function is inferred by a discriminator that distinguishes expert demonstrations from roll-outs of
an imitation policy [IRL step] and the imitation agent maximizes the inferred reward function to
best match the expert policy [RL step] (Ho & Ermon, 2016; Fu et al., 2017). In this sense, reward
inference is only an intermediary step towards learning the expert policy and is discarded post-
training of the imitation agent.

We introduce Imitation with Planning at Test-time (IMPLANT), a new algorithm for imitation learn-
ing that incorporates decision-time planning within an IRL algorithm. During training, we can use
any standard IRL approach to estimate a reward function and a stochastic imitation policy, along
with an additional value function. The value function can be learned explicitly or is often a byprod-
uct of standard RL algorithms that involve policy evaluation, such as actor-critic methods (Konda
& Tsitsiklis, 2000; Peters & Schaal, 2008). At decision-time, we use the learned imitation policy
in conjunction with a closed-loop planner. For any given state, the imitation policy proposes a set
of candidate actions and the planner estimates the returns for each of actions by performing fixed-
horizon rollouts. The rollout returns are estimated using the learned reward and value functions.
Finally, the agent picks the action with the highest estimated return and the process is repeated at
each of the subsequent timesteps.
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Conceptually, IMPLANT aims to counteract the imperfections due to policy optimization in the
RL step by using the reward function (along with a value function) estimated in the IRL step
for decision-time planning. We demonstrate strong empirical improvements using this approach
over benchmark imitation learning algorithms in a variety settings derived from the MuJoCo-based
benchmarks in OpenAI Gym (Todorov et al., 2012; Brockman et al., 2016). In default evaluation
setup where train and test environments match, we observe that IMPLANT improves by 16.5% on
average over the closest baseline.

We also consider transfer setups where the imitation agent is deployed in test dynamics that differ
from train dynamics and the test dynamics are inaccessible to the agent during both training and
decision-time planning. In particular, we consider the following three setups: (a) “causal confusion”
where the agent observes nuisance variables in the state representation during training (de Haan
et al., 2019), (b) motor noise which adds noise in the executed actions during testing (Christiano
et al., 2016), and (c) transition noise which adds noise to the next state distribution during testing. In
all these setups, we observe that IMPLANT consistently and robustly transfers to test environments
with improvements of 35.2% on average over the closest baseline.

2 PRELIMINARIES

Problem Setup. We consider the framework of Markov Decision Processes (MDP) (Puterman,
1990). An MDP is denoted by a tupleM = (S,A, T , p0, r, γ), where S is the state space, A is the
action space, T : S × A × S → R≥0 are the stochastic transition dynamics, p0 : S → R≥0 is the
initial state distribution, r : S ×A → R is the reward function, and γ ∈ [0, 1) is the discount factor.
We assume an infinite horizon setting. At any given state s ∈ S, an agent makes decisions via a
stochastic policy π : S × A → R≥0. We denote a trajectory to be a sequence of state-action pairs
τ = (s0, a0, s1, a1, · · · ). Any policy π, along with MDP parameters, induces a distribution over
trajectories, which can be expressed as pπ(τ) = p(s0)

∏∞
t=0 π(at|st)T (st+1|st, at). The return of

a trajectory is the discounted sum of rewards R(τ) =
∑∞
t=0 γ

tr(st, at).

In reinforcement learning (RL), the goal is to learn a parameterized policy πθ that maximizes the
expected returns w.r.t. the trajectory distribution. Maximizing such an objective requires interaction
with the underlying MDP for simulating trajectories and querying rewards. However, in many high-
stakes scenarios, the reward function is not directly accessible and hard to manually design.

In imitation learning, we sidestep the availability of the reward function. Instead, we have access
to a finite set of D trajectories τE (a.k.a. demonstrations) that are sampled from an expert policy
πE . Every trajectory τ ∈ τE consists of a finite length sequence of state and action pairs τ =
(s0, a0, s1, a1, · · · ), where s0 ∼ p0(s), at ∼ πE(·|st), and st+1 ∼ T (·|st, at). Our goal is to learn
a parameterized policy πθ which best approximates the expert policy given access to τE . Next, we
discuss the two major families of techniques for imitation learning.

2.1 BEHAVIORAL CLONING

Behavioral cloning (BC) casts imitation learning as a supervised learning problem over state-action
pairs provided in the expert demonstrations (Pomerleau, 1991). In particular, we learn the policy
parameters by solving a regression problem with states st and actions at as the features and target
labels respectively. Formally, we minimize the following objective:

`BC(θ) :=
∑

(st,at)∈τE

‖at − πθ(st)‖22. (1)

In practice, BC agents suffer from distribution shift in high dimensions, where small deviations
in the learned policy quickly accumulate during deployment and lead to a significantly different
trajectory distribution relative to the expert (Ross & Bagnell, 2010; Ross et al., 2011).

2.2 INVERSE REINFORCEMENT LEARNING

An alternative indirect approach to imitation learning is based on inverse reinforcement learning
(IRL). Here, the goal is to infer a reward function for the expert and subsequently maximize the in-
ferred reward to obtain a policy. For brevity, we focus on adversarial imitation learning approaches
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to IRL (Goodfellow et al., 2014). These approaches represent the state-of-the-art in imitation learn-
ing and are also relevant baselines for our empirical evaluations.

Generative Adversarial Imitation Learning (GAIL) is an IRL algorithm that formulates imitation
learning as an “occupancy measure matching” objective w.r.t. a suitable probabilistic divergence (Ho
& Ermon, 2016). GAIL consists of two parameterized networks: (a) a policy network πθ (genera-
tor) which is used to rollout agent trajectories (assuming access to transition dynamics), and (b) a
discriminator Dφ which distinguishes between “real” expert demonstrations and “fake” agent tra-
jectories. Given expert trajectories τE and agent trajectories τθ, the discriminator minimizes the
cross-entropy loss:

`IRL(φ) := −EτE [logDφ(τE)]− Eτθ [log(1−Dφ(τθ))] . (2)

We then feed the discriminator output− log(1−Dφ(s, a)) as the inferred reward function to the gen-
erator policy. The policy parameters θ can be updated via any regular policy optimization algorithm
for the RL objective, e.g., Ho & Ermon (2016) use the TRPO algorithm (Schulman et al., 2015).
By simulating agent rollouts, GAIL seeks to match the full trajectory state-action distribution of the
imitation agent with the expert as opposed to BC which greedily matches the conditional distribution
of individual actions given the states. In practice, GAIL and its variants (Li et al., 2017; Fu et al.,
2017) outperform BC but might need excessive interactions with the training environment for sam-
pling rollouts during training. Crucially, both BC and IRL approaches tend to fail catastrophically
in the presence of small perturbations and nuisances at test-time (de Haan et al., 2019).

3 THE IMPLANT FRAMEWORK

In the previous section, we showed that current IRL algorithms consider reward inference as an aux-
iliary task for imitation learning. Once the agents have been trained, the reward function is discarded
and the learned policy is deployed.1 Indeed, if the RL step post reward inference (e.g., generator
updates in GAIL) were optimal, then the reward function provides no additional information about
the expert relative to the imitation policy. However, this is far from reality, as current RL algorithms
can fail to return optimal solutions due to either representational or optimization issues. For ex-
ample, there might be a mismatch in the architecture of the policy network and the expert policy,
and/or difficulties in optimizing non-convex objective functions. In fact, the latter challenge gets
exacerbated in adversarial learning scenarios due to a non-stationary reward.

Building off these observations, we propose Imitation with Planning at Test-time (IMPLANT), an
imitation learning algorithm that employs the learned reward function for decision-time planning.
The pseudocode for IMPLANT is shown in Algorithm 1. We can dissect IMPLANT into two se-
quential phases: a training phase and a planning phase.

Training phase: We can invoke any IRL algorithm, e.g., GAIL to optimize for a stochastic imi-
tation policy πθ by optimizing for some inferred reward function rφ. Additionally, we also train a
parameterized value function Vψ at this stage. Value function estimation is often a subroutine for
many RL algorithms including those which are used to update the policy within the IRL setup, such
as actor-critic methods (Konda & Tsitsiklis, 2000). For such algorithms, learning a value function
does not incur any additional computation.

Planning phase: At decision-time, we use the imitation policy along with the learned value and
reward functions for closed-loop planning. We build our planner based on model-predictive control
(MPC) (Camacho & Alba, 2013). At any given state st and time t ≥ 0, we are interested in choosing
action sequences for trajectories which maximizes the following objective:

at, at+1, · · · ,= argmax
at,at+1,···

R(τ) =

∞∑
t′=t

γt
′−tr(st′ , at′) (3)

where s0 ∼ p0 and st+1 ∼ T (·|st, at) for all t ≥ 0.

1In some cases, the reward function is transferred to a new environment and a new policy is learned using
the reward function and additional interactions with the new environment. See Section 5 for further discussion.
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Algorithm 1: Imitation with Planning at Test-time (IMPLANT)

1 Input: available dynamics T̂ , expert demonstrations τE , rollout budget B, rollout policy π,
horizon H , test start state s0

2 Note: For brevity, we omit relevant MDP parameters in the list of arguments

3 Function Train(τE):
4 Learn a policy πθ and a reward function rφ with any existing IRL algorithm given access to

demonstrations τE , e.g., GAIL
5 Estimate a value function Vψ for πθ
6 return πθ, rφ, Vψ;

7 Function Plan(s, πθ, Vψ , rφ, π, H , B, T̂ ):
8 Set s = s0
9 while agent is alive do

10 // Agent planning
11 Sample B trajectories {τ (1), τ (2), ..., τ (B)} of max length H starting from s using

dynamics T̂ ; sample the first action a(i)0 ∼ πθ, and sample subsequent actions from π

as a(i)>0 ∼ π, for i ∈ {1, 2, ..., B}
12 Estimate trajectory returns R̂φ,ψ(τ (i)) using Vψ and rφ (see Eq. 4)
13 Pick best action index i∗ = argmaxi R̂φ,ψ(τ

(i)) and execute the best action a(i
∗)

0
14 // Environment feedback
15 Observe true reward r(s, a(i

∗)
0 ) and true next state s ∼ T (·|s, a(i

∗)
0 )

16 end

This objective has also been applied for model-based RL with a learned dynamics model and black-
box access to the rewards function (Nagabandi et al., 2018; Chua et al., 2018). Unlike the RL setting
however, we do not know the reward function for imitation learning. The true dynamics model may
be available for planning (i.e., T̂ = T ) as in Ho & Ermon (2016) or can be estimated from expert
demonstrations or online interactions (Baram et al., 2016). Hence, we can do rollouts as before in
regular model-based RL but need to rely on learned estimates for the reward function. In particular,
we use the learned reward function rφ up to a fixed horizon H and a terminal value function Vψ
thereafter to estimate the trajectory return as:

R(τ) ≈
t+H−1∑
t′=t

γt
′−trφ(st′ , at′) + γHVψ(sH) := R̂φ,ψ(τ). (4)

Substituting Eq. 4 in Eq. 3, we obtain a surrogate objective for optimization. To optimize this
surrogate, we propose a variant of the random shooting optimizer (Richards, 2005) that works as
follows. At the current state st, we first sample a set of B candidate actions independently from the
imitation policy. For each candidate action, we estimate a score based on their expected returns by
performing rollout(s) of fixed-length H . The rollout policy π from which we sample all subsequent
actions could be random (potentially high variance) or the imitation policy πθ (potentially high bias)
or a mixture. In our experiments, we obtained consistently better performance with using πθ as the
rollout policy π. For each trajectory, we estimate its return via Eq. 4 and finally, pick the action with
the largest return.

Consistent with the closed-loop nature of MPC, we repeat the above procedure at the next state st.
Doing so helps correct for errors in estimation and optimization in the previous time step, albeit
at the expense of additional computation. The algorithm has two critical parameters that induce
similar computational trade-offs. First, we need to specify a budget B for the total number of
rollouts. The higher the budget, larger is our search space for the best action. Second, we need
to specify a planning horizon H . For larger lengths, we need extra computation that also involves
interactions with the dynamics of the environment and rely more on the learned reward function than
the value function for estimating returns in Eq. 4. However, since the rollouts are independent, we
can mitigate additional computational costs by parallelizing the rollouts. While this parallelization
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Table 1: Average return of imitation learning algorithms on MuJoCo benchmarks.

Hopper HalfCheetah Walker2d

Expert 3570 891 3593
BC 127± 85 427± 131 258± 262
BC-Dropout 169± 105 542± 275 1622± 861
GAIL 3506± 337 954± 282 2780± 1007
GAIL-Reward Only 319± 123 5± 117 56± 146
IMPLANT (ours) 3633 ± 50 1193 ± 143 3360 ± 442

is indeed bottlenecked by the rollout with the largest horizon, in all of our experiments, we perform
rollouts of fixed length and the horizon that corresponds to the optimal performance is relatively
small (10 ∼ 50). Thus, the gains due to parallelization are significant.

In the next section, we present our empirical validation that also investigates the effect of planning
horizon on the performance of the algorithm in greater detail.

4 EXPERIMENTS

Our experiments aim to evaluate the performance of IMPLANT as a standalone imitation algorithm
in two kinds of settings. First, we evaluate its performance in the default “no-transfer” setting, where
the agent is trained and tested in the same environment. Second, we emphasize the robustness of
IMPLANT by evaluating its zero-shot generalization performance in environments where the test
dynamics are a perturbed version of the training dynamics. We consider 3 such perturbations: causal
confusion (de Haan et al., 2019), motor noise (Christiano et al., 2016), and transition noise. We
will describe each of these setups subsequently alongside the results. For all transfer settings, we
only assume access to the training dynamics Ttrain and use it as T̂ for planning. At test-time, no
additional interactions is allowed, nor do we have access to the test dynamics Ttest.

Setup. We evaluate our approach on MuJoCo enviroments in OpenAI Gym (Brockman et al.,
2016): Hopper, HalfCheetah, and Walker2d. The expert data used for benchmarking imitation
learning on these environments is publicly available2. We replicate the experimental setup of Ho
& Ermon (2016) by fixing a limited number of expert trajectories used for training, as well as
sub-sampling expert trajectories every 20 time steps. All results are averaged over 5 runs of each
algorithm with different seeds. We provide further details in Appendix A.

Baselines. As we observed in Algorithm 1, IMPLANT can employ any IRL algorithm under the
hood. For our experiments, we consider GAIL (Ho & Ermon, 2016) as the IRL algorithm of choice
both as input for IMPLANT and consequently, as the closest baseline of interest. GAIL is amongst
the current state-of-the-art methods for imitation learning; see Section 2.2 for a detailed description.
For every environment, we report results for IMPLANT using a single set of hyperparameters for
the rollout budget and planning horizon. We provide further details in Appendix A.

In addition, we also consider a Behavioral Cloning (BC) baseline; see Section 2.1 for a detailed
description. Further, we also tested two variants of GAIL and BC that employ dropout (Srivastava
et al., 2014) to demonstrate the limited utility of standard regularization techniques in countering
the challenges due to low data and test noise. In fact, GAIL with dropout completely failed to learn
in the adversarial setting on any of the environments; for brevity, we exclude it from presentation.

Last, we include a “GAIL-Reward Only” ablation baseline where we discard the imitation policy
(generator) of GAIL during execution and instead, only use the inferred reward model (discrimina-
tor) in conjunction with a random policy for decision-time planning. This directly contrasts with the
GAIL baseline, which by default only uses the generator. On the other hand, IMPLANT uses both
the generator and discriminator for imitation via decision-time planning.

2https://github.com/openai/baselines
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Table 2: Average return of imitation learning algorithms in causal confusion setting.

Hopper HalfCheetah Walker2d

Expert 3570 891 3593
BC 209± 121 331± 141 119± 206
BC-Dropout 162± 108 548± 175 700± 433
GAIL 579± 484 699± 200 613± 465
GAIL-Reward Only 515± 302 −82± 79 57± 146
IMPLANT (ours) 1717 ± 1262 827 ± 375 807 ± 395

4.1 IMITATION WITH LIMITED EXPERT TRAJECTORIES

With a relatively low number of expert trajectories, it has been shown by Ho & Ermon (2016)
that GAIL can achieve near-expert performance in almost all these environments. We evaluate the
performance of IMPLANT using the lowest number of expert trajectories tested in prior work. The
results are shown in Table 1. We find that IMPLANT can achieve near-optimal performance on
all these environments, including Walker2d where GAIL performs much worse than the expert. As
expected, BC and BC and BC-Dropout perform poorly in this setting. GAIL-Reward Only exhibits
the poorest performance suggesting the benefits of explicitly learning a parametric policy.

4.2 ZERO-SHOT TRANSFER SETTING: CAUSAL CONFUSION

de Haan et al. (2019) observed that imitation learning approaches are susceptible to causal confu-
sion, i.e., their performance deteriorates significantly in the presence of nuisance confounders in
the state representation. To demonstrate this phenomena empirically, de Haan et al. (2019) further
propose a challenging example setup in which the nuisance can be created by appending the agent’s
observation with its action from the previous time step. A standard imitation agent trained in this
environment will learn to copy the previous action (since successive actions are highly correlated in
expert demonstrations), falling prey to causal confusion. At test-time, the agent’s performance drops
drastically if the appended action is replaced by random noise (i.e., the confounding is removed).
We refer the reader to de Haan et al. (2019) for further details and analysis.

We now benchmark the zero-shot test performance of IMPLANT under the same setup in Table 2.
While all baselines, including GAIL, fail drastically due to the confounding nuisance, IMPLANT is
significantly more robust in all environments. We can visualize the agent performance qualitatively
in Figure 3. Note that we provided the IMPLANT agent access to only the confounded dynamics
for decision-time planning. The algorithm is hence zero-shot, unlike the proposed solutions of Fu
et al. (2017) and de Haan et al. (2019) which require further interactions with the non-confounded
test environment for recovery.

4.3 ZERO-SHOT TRANSFER SETTING: OBSERVATION AND ACTION NOISE

Next, we consider two kinds of noisy perturbations motivated by real-world applications in sim2real.

First, we perturb the intended actions via motor noise (Christiano et al., 2016), e.g., due to imperfect
hardware, a real robot might execute a noisy version of the action proposed by the agent. We
implement this scenario by adding independent Gaussian noise to each dimension of the executed
action at test-time, i.e., εaction

i.i.d.∼ N (0, σ2) and we vary the noise stddev σ ∈ [0.1, 0.2, 0.5, 1.0].

Second, we consider transition noise due to an imperfect dynamics model for a simulator that may
not be able to account for perturbations due to drag or friction. Hence, we specify the test-time
dynamics to be a perturbed noisy version of the training dynamics. Similar to motor noise, we
sample the transition noise as εtransition

i.i.d.∼ N (0, σ2) with σ ∈ [0.001, 0.002, 0.005, 0.01].

For ease of visualization, we show the normalized performance of the different algorithms in Fig-
ure 2. See Appendix B for raw absolute results. We also include another competitive baseline
“GAIL-Expert-Noise” relevant to this scenario that artificially adds independent noise to the demon-
stration data for every gradient update during GAIL training. For a very high noise level, any
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(a) GAIL

(b) GAIL-Reward Only

(c) IMPLANT (ours)

(d) Return over time of the above agents

Figure 1: Trajectory visualization for Hopper environment in causal confusion setup at test-time.
While all agents start from the same state, only IMPLANT can effectively hop forward. All agents
are trained in the confounded setting and tested in the non-confounded setting.

algorithm will naturally deteriorate in performance due to significant shift in training and testing
environments. More importantly, for modest noise levels, we find that IMPLANT outperforms the
baselines in almost all cases, highlighting its robustness.

4.4 EFFECT OF PLANNING HORIZON

Figure 3: Effect of varying
planning horizon H on IM-
PLANT performance.

Finally, we analyze the effect of planning horizon on IMPLANT
performance in the same setup as Section 4.1. Specifically, we
vary the planning horizon H ∈ [0, 10, 50, 100] for a rollout budget
B = 10. The normalized performance curves are shown in Fig-
ure 3. When the planning horizon is 0, we only rely on the terminal
value function for estimating returns. Conversely, for large planning
horizons (e.g., H = 100), the returns are dominated by rewards ac-
cumulated at every time step. We observe that picking neither a
very large horizon (h ≥ 100) nor a very small one (h = 0) re-
sults in optimal performance, suggesting imperfections in both the
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(a) Hopper: Motor Noise (b) HalfCheetah: Motor Noise (c) Walker2d: Motor Noise

(d) Hopper: Transition Noise (e) HalfCheetah: Transition Noise (f) Walker2d: Transition Noise

Figure 2: Average return of imitation learning algorithms on motor and transition noise settings.

learned reward and value functions and the sweet-spot for the planning horizon is typically between
the extremes.

5 DISCUSSION & RELATED WORK

Traditionally, algorithms for imitation learning fall into one of two categories. They are either
completely model-free during both training and execution, as in behavioral cloning and its vari-
ants (Pomerleau, 1991; Ross et al., 2011). Alternatively, they are model-based in the sense that they
utilize dynamics and (inferred) rewards models during training, but are model-free during execution,
as in inverse reinforcement learning (Ng et al., 2000; Ratliff et al., 2006; Ziebart et al., 2008). Our
work introduces a novel model-based perspective to imitation learning where the reward and tran-
sition models are used both during training and execution. Borrowing the terminology from Sutton
& Barto (2018), the use of models for the MDP during training and execution are also referred to as
background and decision-time planning respectively.

While imitation via background planning has showed immense promise for control in complex en-
vironments (Abbeel & Ng, 2004; Ratliff et al., 2009; Ho & Ermon, 2016; Choudhury et al., 2018),
we showed that decision-time planning in IMPLANT can further improve the data efficiency and
robustness of the learned policies. There have also been several alternate attempts for characterizing
and enhancing the robustness of imitation policies. For example, Fu et al. (2017) seek robustness
in the sense of recovering the true reward function via adversarial imitation learning and transfer
the inferred reward function to external dynamics in the non-zero shot setting. A significant body
of work also considers IRL approaches that can accurately capture the uncertainty in the reward
function for safe deployment (Zheng et al., 2014; Brown et al., 2018; Huang et al., 2018; Lacotte
et al., 2019; Brown et al., 2020). While these utility-based notions are distinct from ours, they are
complementary approaches to robustness that could be combined with IMPLANT in future work.

Given the synergies between generative modeling and imitation learning as exemplified in GAIL (Ho
& Ermon, 2016), improvements in the former often translate into improved imitation, e.g., the use of
autoencoder embeddings to improve diversity (Wang et al., 2017), better loss functions and architec-
tures for stable GAN/GAIL training (Pfau & Vinyals, 2016; Kuefler et al., 2017; Li et al., 2017), etc.
These modifications are conceptually complementary to the key contribution of IMPLANT to incor-
porate decision-time planning and are likely to further boost our performance. In fact, decision-time
planning in IMPLANT can be viewed as filtering of trajectories sampled from the policy network.
This is similar to recent work in using importance weighting for improving sample quality of a
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generative model (Grover & Ermon, 2017; Azadi et al., 2018; Grover et al., 2019). However, our
solution is tailored towards sequential decision making and deterministically picks the best outcome
in line with model predictive control, unlike importance weighting filters.

6 CONCLUSION

We presented Imitation with Planning at Test-time (IMPLANT), a new algorithm for imitation learn-
ing that uses decision-time planning to mitigate compounding errors of any base IRL algorithm.
Unlike existing approaches, IMPLANT is truly model-based in the sense of utilizing the inferred
rewards and dynamics model both during training and execution. We demonstrated that IMPLANT
matches or outperforms existing benchmark imitation learning algorithms with very few expert tra-
jectories. Finally, we empirically demonstrated the robustness of IMPLANT via its impressive per-
formance at zero-shot generalization in several challenging perturbation settings.
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635, 2011.

10



Under review as a conference paper at ICLR 2021

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In Advances in Neural Information Processing Systems,
pp. 5320–5329, 2017.

Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. Robust bayesian inverse reinforcement learning
with sparse behavior noise. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2198–2205, 2014.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11



Under review as a conference paper at ICLR 2021

Table 3: Detailed information on environments

Environment Observation space Action space

Hopper Box(11, ) Box(3, )
HalfCheetah Box(17, ) Box(6, )
Walker2d Box(17, ) Box(6, )

Table 4: Detailed information on expert data used in training

Environment # of trajectories # of state-action pairs

Hopper 4 200
HalfCheetah 4 200
Walker2d 20 1000

A ADDITIONAL EXPERIMENTAL DETAILS AND SETUPS

A.1 ENVIRONMENTS AND EXPERT DATA

As mentioned above, we consider 3 continuous tasks from OpenAI Gym (Brockman et al., 2016)
simulated with MuJoCo (Todorov et al., 2012): Hopper, HalfCheetah, and Walker2d. We acquire
expert data from OpenAI Baselines (Dhariwal et al., 2017). Table 3 lists more detailed information
about each environment, and Table 4 contains information about the expert demonstrations we use
for training all of the agents.

A.2 HYPERPARAMETERS AND NETWORK ARCHITECTURES

We use a 2-layer MLP with tanh activations and 64 hidden units for all of our policy networks. For
BC, we use a learning rate of 10−4 across all environments. We use a dropout rate of 0.2 for our
BC-Dropout agent. The hyperparameters of GAIL are listed in Table 5. For our IMPLANT agent,
we directly utilize the value function, reward function, and policy from a trained GAIL agent. In
all settings, we choose B = 20 and H = 50 for Hopper, B = 2 and H = 10 for HalfCheetah and
Walker2d to plan.

B ADDITIONAL RESULTS

The complete results for Section 4.3 can be found in Table 6, 7, 8.

Table 5: Detailed information on GAIL’s hyperparameters

Parameters Hopper HalfCheetah Walker2d

Discriminator network 100-100 MLP 100-100 MLP 100-100 MLP
Discriminator entropy coeff. 0.01 0.01 0.01
Batch size 1024 1024 1024
Max kl 0.01 0.01 0.01
CG steps/damping 10, 0.01 10, 0.1 10, 0.1
Entropy coeff. 0.0 0.0 0.0
Value fn. steps/step size 3, 3e-4 5,1e-3 5,1e-3
Generator steps 3 3 3
Discriminator steps 1 1 1
λ 0.98 0.97 0.97
γ 0.99 0.995 0.995
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Table 6: Raw results of Figure 2 in Hopper environment

(a) Hopper with motor noise

Sigma 0.0 0.1 0.2 0.5 1.0

BC 127± 85 114± 64 117± 61 179± 105 123± 82
BC-Dropout 169± 105 156± 85 163± 95 158± 89 142± 94
GAIL 3506± 337 2572± 1008 1360± 687 598± 243 252± 128
GAIL-Reward Only 319± 123 293± 87 268± 92 160± 113 49± 54
GAIL-Expert-Noise 3602± 46 2716± 921 1449± 667 618± 264 218± 136
IMPLANT (ours) 3633± 50 3209± 714 1764± 856 596± 234 269± 130

(b) Hopper with transition noise

Sigma 0.0 0.001 0.002 0.005 0.01

BC 127± 85 123± 81 116± 65 137± 98 114± 84
BC-Dropout 169± 105 175± 113 165± 99 161± 98 151± 101
GAIL 3506± 337 3209± 756 2672± 1012 1377± 901 616± 563
GAIL-Reward Only 319± 123 884± 230 804± 269 665± 296 349± 215
GAIL-Expert-Noise 3576± 36 2966± 1089 2160± 1311 875± 865 323± 357
IMPLANT (ours) 3633± 50 3557± 313 2844± 915 1301± 810 598± 467

Table 7: Raw results of Figure 2 in HalfCheetah environment

(a) HalfCheetah with motor noise

Sigma 0.0 0.1 0.2 0.5 1.0

BC 427± 131 377± 139 289± 118 −87± 81 −703± 66
BC-Dropout 542± 275 555± 232 409± 194 −6± 85 −655± 61
GAIL 954± 282 892± 287 764± 200 172± 121 −697± 82
GAIL-Reward Only 5± 117 −11± 110 −39± 100 −214± 72 −732± 53
GAIL-Expert-Noise 933± 216 888± 195 740± 179 127± 124 −745± 74
IMPLANT (ours) 1193± 143 1025± 115 863± 94 260± 72 -652± 65

(b) HalfCheetah with transition noise

Sigma 0.0 0.001 0.002 0.005 0.01

BC 427± 131 433± 126 430± 136 395± 131 361± 120
BC-Dropout 542± 275 549± 252 509± 276 505± 249 447± 223
GAIL 954± 282 942± 472 946± 263 900± 264 808± 276
GAIL-Reward Only 5± 117 6± 116 8± 115 0± 112. −11± 116
GAIL-Expert-Noise 1103± 265 934± 201 914± 209 891± 186 828± 192
IMPLANT (ours) 1193± 143 1137± 132 1089± 123 1021± 115 923± 103
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Table 8: Raw results of Figure 2 in Walker2d environment

(a) Walker2d with motor noise

Sigma 0.0 0.1 0.2 0.5 1.0

BC 258± 262 402± 444 384± 368 298± 191 172± 128
BC-Dropout 1622± 861 1386± 826 1498± 901 918± 450 339± 129
GAIL 2780± 1007 2560± 1047 1893± 1045 576± 272 234± 133
GAIL-Reward Only 56± 146 33± 109 25± 94 13± 36 4± 13
GAIL-Expert-Noise 2253± 1081 2245± 1098 1448± 891 495± 221 247± 144
IMPLANT (ours) 3360± 442 3251± 682 2816± 1019 701± 301 228± 148

(b) Walker2d with transition noise

Sigma 0.0 0.001 0.002 0.005 0.01

BC 258± 262 318± 338 329± 365 298± 274 233± 230
BC-Dropout 1622± 861 1559± 848 1380± 819 1123± 937 584± 658
GAIL 2780± 1007 2746± 1015 2383± 1136 1168± 958 464± 511
GAIL-Reward Only 56± 146 46± 124 53± 128 36± 120 59± 129
GAIL-Expert-Noise 2627± 927 2244± 1098 1832± 1125 935± 812 414± 412
IMPLANT (ours) 3360± 442 3299± 558 3170± 725 1899± 1249 600± 644
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