
VCAF: A Multi-Agent Framework for Venture Capital Decision-Making Using Synthetic Startup Data

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Venture capital (VC) investment decisions rely heavily on evaluating early-stage
2 startup data, which is frequently sparse, incomplete, or proprietary. To address
3 this challenge, we introduce **InvestAI Corpus**, a synthetic dataset comprising
4 158 startup profiles generated using a multi-step large language model (LLM)
5 pipeline with human validation, alongside the **Venture Caption Agents Frame-**
6 **work** (VCAF), a multi-agent decision-making system powered by Claude-3.7-
7 Sonnet. When evaluated on InvestAI Corpus with complete information, VCAF
8 achieves 74.05% accuracy and an 80.56% F1 score, surpassing baseline human
9 VC performance. The framework provides a systematic backtesting approach for
10 venture capital analysis while generating interpretable investment recommenda-
11 tions that capture the nuanced, qualitative factors critical to early-stage investment
12 decisions.

13 1 Introduction

14 Venture capital (VC) investment seeks to identify transformative startups (e.g., Tesla) while avoiding
15 high-profile failures and fraudulent ventures (e.g., Theranos). Investors typically rely on subjective
16 assessments of early-stage factors such as market potential, founding team quality, and product
17 innovation. However, incomplete information and cognitive biases constrain decision-making,
18 resulting in modest success rates (~60–65% for exits exceeding \$50M) [Potanin et al., 2023].

19 Recent AI methods (e.g., FinQA [Chen et al., 2021], StockNet [Xu and Cohen, 2018]) focus largely
20 on structured financial data and mature markets, overlooking the inherently qualitative nature of
21 early-stage ventures. To bridge this gap, we present **InvestAI Corpus**, a comprehensive benchmark
22 of startup information, and the **Venture Caption Agents Framework** (VCAF), which leverages large
23 language models (LLMs) to analyze unstructured venture data and generate actionable investment
24 insights.

25 2 Related Work

26 LLM-powered multi-agent systems have shown promise for complex financial tasks. For example,
27 FinCon [Yu et al., 2024] and TradingAgents [Xiao et al., 2024] employ multi-agent architectures for
28 investment analysis, focusing primarily on trading and public markets rather than early-stage VC. In
29 the VC domain, prior work has applied machine learning (ML) to startup success prediction [Sarisa
30 et al., 2024, Bai and Zhao, 2021] and portfolio simulation [Potanin et al., 2023] using structured
31 datasets (e.g., Crunchbase). While effective for numeric predictions, these approaches struggle with
32 incomplete, multi-dimensional startup information [Wang et al., 2024, Ozince and Ihlamer, 2024].
33 To our knowledge, no existing system uses agent-based LLMs specifically for detailed VC decision
34 support, motivating our InvestAI Corpus set and VCAF framework.

35 3 InvestAI Corpus: Dataset for AI-Driven VC Evaluation

36 **InvestAI Corpus** consists of 158 synthetic startup profiles labeled by outcome. Among these, 57.1%
 37 are labeled successful and 42.9%. A startup is considered successful if it meets at least one of the
 38 following criteria: (1) **Initial Public Offering (IPO)**: a valuation exceeding \$50 million or funds
 39 raised over \$100 million at the time of offering; (2) **Acquisition (ACQ)**: an acquisition price greater
 40 than the company’s total funds raised or exceeding \$100 million in absolute value; (3) **Unicorn
 41 Status (UNIC)**: a valuation exceeding \$1 billion, verified using Crunchbase data.

42 The geographic distribution reveals a pronounced concentration in Silicon Valley, with 44 companies
 43 situated in the SF Bay Area and 13 in New York. Temporally, the sample is biased toward the
 44 2020–2025 period, capturing the recent wave of startup formation and investment (detailed statistics
 45 are provided in Appendix B).

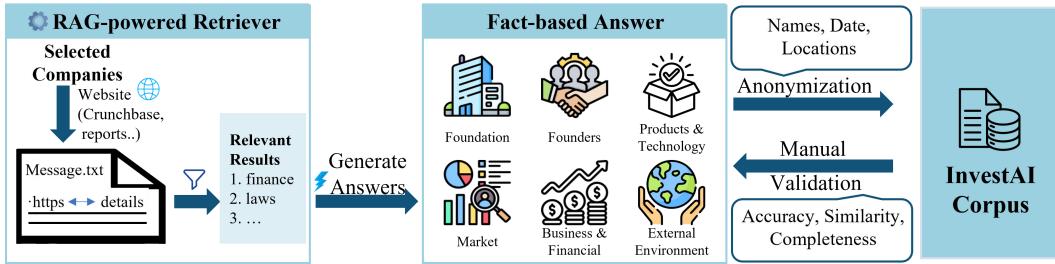


Figure 1: Synthetic startup data generation pipeline.

46 We adopt a multi-stage generation pipeline (see Figure 1) separating retrieval, generation, and
 47 validation, as mentioned in synthetic data generation [Liu et al., 2024]:

- 48 • **RAG-powered Retriever:** The pipeline begins by selecting target companies and collecting
 49 structured input data from multiple sources, such as Crunchbase and press releases. Infor-
 50 mation is stored in structured text files and processed with a top-K retrieval strategy by
 51 *Doubaot-1.5-Thinking-Pro-0415* [Team, 2025], ensuring that LLM-generated profiles are
 52 grounded in factual external sources.
- 53 • **Fact-based Answer Generation:** Retrieved data are processed by a fact-based answer
 54 module powered by *DeepSeek-R1-0528* [Guo et al., 2025], an LLM optimized for struc-
 55 tured output. Profiles cover six evaluation dimensions: *Foundation*, *Founders*, *Products &*
 56 *Technology*, *Market*, *Business & Financial*, and *External Environment* (Appendix C).
- 57 • **Expert Validation and Anonymization:** To emulate VC decision-making, we first
 58 anonymize the generated profiles by removing identifiable attributes (e.g., company and
 59 founder names). The anonymized profiles are then reviewed by domain experts, who assess
 60 their accuracy, completeness, and consistency against a curated reference set (Table 1). This
 61 process ensures that the dataset remains both reliable and privacy-preserving. For detailed
 62 definitions of the evaluation metrics, see Appendix A.

63 This procedure highlights not only the effectiveness of the dataset for backtesting venture
 64 evaluation models, but also the broader applicability of our assessment methodology.

Table 1: Quality Assurance Performance of LLM-Generated Profiles

Outcome	Company	Accuracy	Integrity	Correlation	Score
Success	Tesla	86.67%	100%	83.33%	90%
	DJI	83.33%	100%	83.33%	88.89%
	Airbnb	83.33%	100%	91.67%	91.67%
	Snowflake	90%	100%	80%	90%
Failure	ByteDance	90%	100%	83.33%	91.11%
	Pets.com	80%	100%	86.67%	88.89%
	Vine	76.67%	100%	80%	85.56%
	Juicero	93.33%	100%	86.67%	93.33%
	WeWork	90%	100%	90%	93.33%
Success	Theranos	86.67%	100%	83.33%	90%

65 4 Venture Caption Agents Framework

66 Figure 2 illustrates the multi-agent decision framework of VCAF. At its core, we adopt Claude-3.7-
 67 Sonnet as the primary reasoning engine, which achieves the best accuracy and f1-score on InvestAI
 68 Corpus, outperforming other models such as GPT-4o and Llama-3.1 (Table 2). The framework
 69 is organized into four key modules: *Due Diligence Team*, *Investment Evaluation Manager*, *Risk
 70 Management Team*, and *Investment Decision Committee*. Each module contains specialized agents
 71 focused on distinct aspects of investment analysis, whose outputs are integrated to produce a final
 72 recommendation with prompt in Appendix H. This modular design mitigates potential biases, such as
 73 over-optimism in startup valuation.

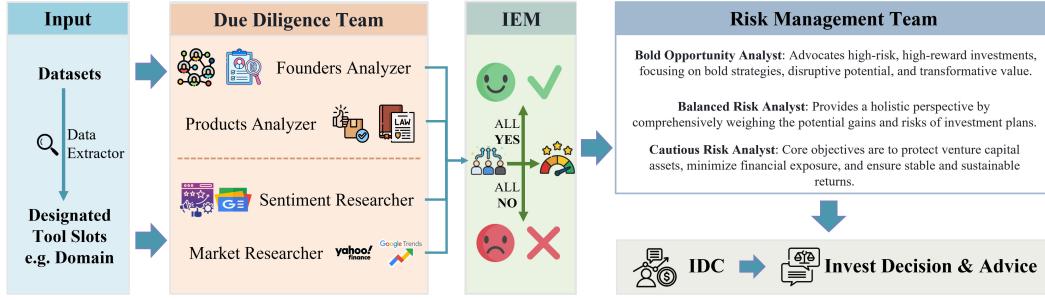


Figure 2: Architecture of the Venture Caption Agents Framework (VCAF).

74 4.1 Due Diligence Team

75 The Due Diligence Team consists of four specialized agents conducting comprehensive startup
 76 assessments. To minimize data leakage, information retrieval is restricted to designated tool slots,
 77 which act as controlled invocation points for external APIs. :

- 78 • **Sentiment Researcher:** Extracts insights from Google News and social media, performing
 79 sentiment analysis, trend detection, and event impact evaluation to gauge public perception
 80 and emerging risks.
- 81 • **Market Researcher:** Aggregates market analytics and financial data of Google Trends
 82 and Yahoo Finance to evaluate sector trends, consumer interest, and competitor activity.
 83 Generates quantitative metrics on market size and growth potential.
- 84 • **Founders Analyzer:** Evaluates the founding team's expertise, experience, and track record
 85 using InvestAI Corpus. Produces credibility scores and team profiles to assess operational
 86 capability.
- 87 • **Product Analyzer:** Assesses product or technology maturity, innovation potential, business-
 88 model viability, and regulatory considerations, identifying potential barriers and vulnerabili-
 89 ties.

90 4.2 Investment Evaluation Manager

91 The Investment Evaluation Manager (IEM) functions as a central analytical unit, evaluating the
 92 outputs from the Due Diligence Team. While it does not issue final decisions, it generates reasoned
 93 preliminary recommendations. In cases of unanimous consensus among analysts, the IEM endorses
 94 the collective view with a concise rationale. If disagreements exist, the IEM performs a balanced
 95 evaluation of supporting and opposing arguments, culminating in a recommendation that reflects the
 96 relative weight of evidence.

97 4.3 Risk Management Team

98 This module includes multiple analysts with distinct risk profiles, containing Risk-Seeking, Neutral
 99 and Conservative. Each analyst evaluates factors such as market volatility, credit risk, and operational
 100 vulnerabilities. Their complementary assessments are aggregated to inform risk-aware decision-
 101 making, ensuring that potential hazards are appropriately considered in the final recommendation.

102 **4.4 Investment Decision Committee**

103 The Investment Decision Committee (IDC) integrates the outputs of the Due Diligence Team, IEM,
104 and Risk Management Team. It synthesizes these inputs to estimate a probability of success and
105 a valuation range for the target company. The committee then issues the final investment decision,
106 accompanied by an actionable recommendation that also considers current market conditions and
107 analyst forecasts.

108 **5 Evaluation and Results**

109 **LLM Performance.** We evaluated 12 representative LLMs on the InvestAI Corpus startup classifi-
110 cation task (Table 2). Claude-3.7-Sonnet achieves the highest F1-score (78.80%) with a balanced
111 precision (66.14%) and high recall (97.67%), reaching 71.50% overall accuracy. Llama-3.3-70B and
112 Claude-3.5-Haiku achieve perfect recall (100.00%) but lower precision, reflecting over-optimistic
113 predictions of successful startups. GPT-4o demonstrates moderate performance (58.86% accuracy,
114 72.34% F1), tending to over-predict successes. Smaller LLMs such as Llama-3.1-8B achieve 55.70%
115 accuracy (69.30% F1), indicating limitations in capturing risk factors. Error analysis shows that
116 false positives in Claude are mainly due to overestimated market sizes, highlighting the challenge of
117 balancing optimism and risk in automated investment predictions.

118 **Agents Framework Evaluation.** We evaluated three system variants: (1) the baseline Claude-3.7-
119 Sonnet classifier, (2) VCAF without the Risk Management module, and (3) the full VCAF framework.
120 The baseline achieves high recall (97.67–98.84%) but moderate accuracy (71.50%) and precision
121 (66.14%), exhibiting an over-optimistic bias with many false positives. VCAF without the Risk
122 module improves accuracy (74.68%) and precision (73.47%), reducing false positives at the expense
123 of lower recall (83.72%). The full VCAF balances this trade-off, achieving 74.05% accuracy, 80.56%
124 F1 (highest), and 98.80% recall (second highest), effectively capturing true positives while minimizing
125 false positives. Both VCAF variants outperform typical human VC accuracy (60–65%) [Lahr and
126 Trombley, 2020], demonstrating the practical value of our multi-agent framework for investment
127 screening and due diligence.

Table 2: Model performance on InvestAI Corpus startup classification. Twelve representative LLMs
and our framework (based on Claude-3.7-sonnet) are compared.

Model	TP ↑	FP ↓	TN ↑	FN ↓	Accuracy ↑	Precision ↑	Recall ↑	F1-score ↑
Llama-3.1-8B-Instruct	79	63	9	7	55.70	55.63	91.86	69.30
Llama-3.3-70B-Instruct	86	70	2	0	55.70	55.13	100.00	71.07
Mistral-7B-Instruct	85	71	1	1	54.43	54.49	98.84	70.25
Mistral-small-3.1-24B-Instruct	84	61	11	2	60.13	57.93	97.67	72.73
Qwen3-32B	83	56	16	3	62.66	59.71	96.51	73.78
Qwen3-235B-A22B	85	56	16	1	63.92	60.28	98.84	74.89
Claude-3.5-haiku	86	69	3	0	56.33	55.48	100.00	71.37
Claude-3.7-sonnet	84	43	29	2	71.50	66.14	97.67	<u>78.80</u>
Gemini-2.0-flash	80	43	29	6	68.99	65.04	93.02	76.56
Gemini-Pro-1.5	81	58	14	5	60.13	58.27	94.19	72.00
GPT-3.5-turbo	83	60	12	3	60.13	58.04	96.51	72.49
GPT-4o	85	64	8	1	58.86	57.05	98.84	72.34
VCAF w/o risk module	72	26	46	14	74.68	73.47	83.72	78.26
VCAF	85	40	30	1	<u>74.05</u>	<u>68.00</u>	98.80	80.56

128 **6 Conclusion**

129 We presented InvestAI Corpus and VCAF as tools for venture capital analysis. InvestAI Corpus
130 addresses the lack of detailed public startup dataset, while VCAF leverages multi-agent LLMs to
131 analyze qualitative information. On InvestAI Corpus, VCAF achieves up to 74.7% accuracy and
132 80.56% F1-score, surpassing typical human performance. By providing transparent rationales, the
133 framework supports VC analysts in screening and due diligence. Limitations include reliance on
134 synthetic data and computational cost; future work will involve real-world validation and efficiency
135 improvements.

136 **References**

137 Sarah Bai and Yijun Zhao. Startup investment decision support: Application of venture capital scorecards using
138 machine learning approaches. *Systems*, 9(3), 2021. ISSN 2079-8954. doi: 10.3390/systems9030055. URL
139 <https://www.mdpi.com/2079-8954/9/3/55>.

140 Zhiyu Chen, Wenhui Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa, Matt
141 Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. Finqa: A dataset of numerical reasoning
142 over financial data. *Proceedings of EMNLP 2021*, 2021.

143 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihaio Zhu, Shirong Ma,
144 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
145 *arXiv preprint arXiv:2501.12948*, 2025.

146 Henry Lahr and Timothy E. Trombley. Early indicators of fundraising success by venture capital firms. *Journal of
147 Corporate Finance*, 65:101672, 2020. ISSN 0929-1199. doi: <https://doi.org/10.1016/j.jcorpfin.2020.101672>.
148 URL <https://www.sciencedirect.com/science/article/pii/S0929119920301164>.

149 Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
150 Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on synthetic data, 2024. URL
151 <https://arxiv.org/abs/2404.07503>.

152 Ekin Ozince and Yiğit İhlamur. Automating venture capital: Founder assessment using llm-powered segmenta-
153 tion, feature engineering and automated labeling techniques, 2024. URL <https://arxiv.org/abs/2407.04885>.

155 Mark Potanin, Andrey Chertok, Konstantin Zorin, and Cyril Shtabtsovsky. Startup success prediction and vc
156 portfolio simulation using crunchbase data, 2023. URL <https://arxiv.org/abs/2309.15552>.

157 Manikanth Sarisa, Gagan Kumar Patra, Chandrababu Kuraku, Siddharth Konkimalla, Shravan Kumar Rajaram,
158 and Mohit Surender Reddy. Deep learning to predict the success of startup companies based on smote and
159 xb-rfe model. In *2024 4th International Conference on Mobile Networks and Wireless Communications
(ICMNWC)*, pages 1–5, 2024. doi: 10.1109/ICMNWC63764.2024.10872045.

161 ByteDance Seed Team. Doubao-1.5-pro model overview. https://seed.bytedance.com/zh/special/doubao_1_5_pro, 2025. Accessed Month Day, Year.

163 Xisen Wang, Yigit İhlamur, and Fuat Alican. Ssff: Investigating llm predictive capabilities for startup suc-
164 cess through a multi-agent framework with enhanced explainability and performance. *arXiv preprint
165 arXiv:2405.19456*, 2024.

166 Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Tradingagents: Multi-agents llm financial trading framework.
167 *arXiv preprint arXiv:2412.20138*, 2024.

168 Yumo Xu and Shay B. Cohen. Stock movement prediction from tweets and historical prices. In Iryna Gurevych
169 and Yusuke Miyao, editors, *Proceedings of the 56th Annual Meeting of the Association for Computational
170 Linguistics (Volume 1: Long Papers)*, pages 1970–1979, Melbourne, Australia, July 2018. Association for
171 Computational Linguistics. doi: 10.18653/v1/P18-1183. URL <https://aclanthology.org/P18-1183/>.

172 Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yupeng Cao, Zhi Chen, Jordan W. Suchow, Rong
173 Liu, Zhenyu Cui, Zhaozhuo Xu, Denghui Zhang, Koduvayur Subbalakshmi, Guojun Xiong, Yueru He, Jimin
174 Huang, Dong Li, and Qianqian Xie. Fincon: A synthesized llm multi-agent system with conceptual verbal
175 reinforcement for enhanced financial decision making, 2024. URL <https://arxiv.org/abs/2407.06567>.

176 **A Evaluation Metrics Definitions**

177 • **Accuracy:** Field match rate, scored as 1 (full match), 0.5 (partial match), or 0 (no match).
178 • **Integrity:** The ratio of non-empty fields to the total number of defined fields.
179 • **Correlation:** Keyword overlap, calculated as the Jaccard similarity (intersection over union)
180 of keywords between generated and manual profiles.
181 • **Score:** Average of the above three metrics, representing overall profile quality.

182 **B Data Analysis of InvestAI Corpus**

183 This figure provides a concise overview of the InvestAI Corpus dataset. Startup outcomes show
184 a small fraction (5-10%) achieving successful exits (IPO/acquisition), with most remaining active
185 or failed. Founding year trends indicate a rise in startups since the 2000s, peaking around 2015-
186 2020. Regionally, the U.S., particularly Silicon Valley, dominates (>50%), followed by Europe
187 and Asia. Industry composition highlights software/technology as the leading sector, followed by
188 healthcare/biotech and fintech.

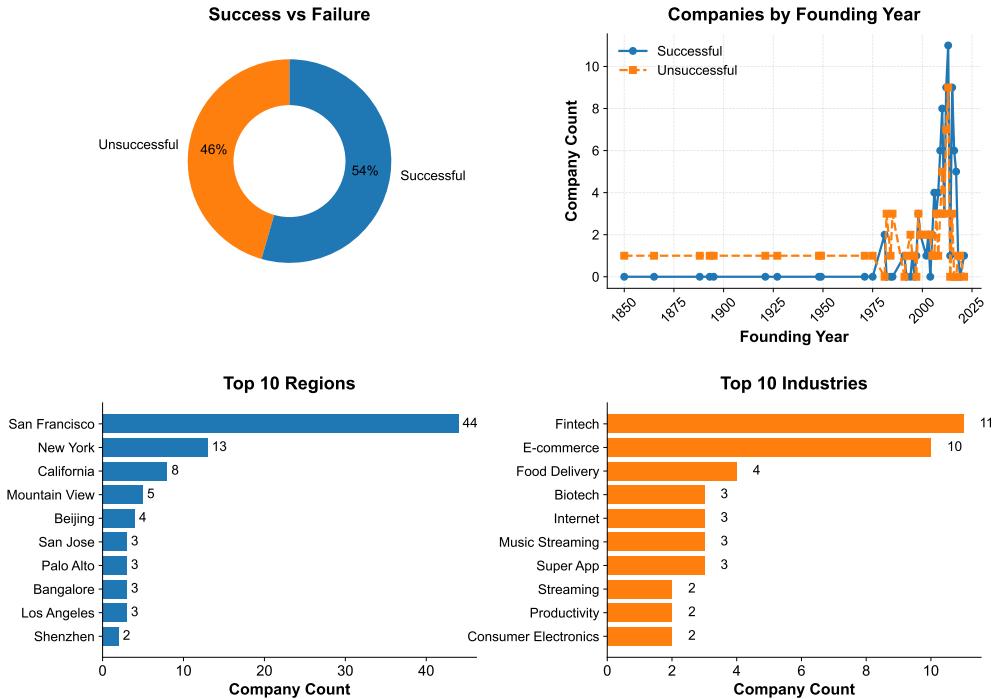


Figure 3: Overview of InvestAI Corpus, including startup outcomes, founding year trends, regional distribution, and industry composition.

189 **C Detailed Data Schema and Dimensions**

190 Each company profile in InvestAI Corpus is structured along six evaluation dimensions. For each
191 dimension, we provide specific sub-items inspired by the structured prompt:

192 **1. Business Model and Strategy:**

193 • Value proposition, revenue model, cost structure, and competitive advantage
194 • Profit model (e.g., subscription, transaction commission)
195 • Business scalability and unit economic efficiency

196 **2. Product and Innovation:**

197 • Product/service quality, market fit, and innovation pipeline
 198 • Technological advantages, patents, and intellectual property
 199 • Development progress (prototype, release timeline)
 200 • Production or supply chain innovations

201 **3. Team and Execution:**
 202 • Founders' expertise, academic background, and team cohesion
 203 • Online footprint (GitHub, LinkedIn, etc.) and network of advisors/investors
 204 • Previous entrepreneurial experience, awards, and achievements
 205 • Operational capabilities and execution track record

206 **4. Market and Competition:**
 207 • Market situation (total addressable market, target users)
 208 • Competitor analysis (direct and indirect competitors)
 209 • Market barriers and entry risks

210 **5. Financial Performance:**
 211 • Revenue growth, profitability, and funding history
 212 • Burn rate and annual recurring revenue
 213 • Financial projections and key metrics (unit economics)

214 **6. Macro and Industry Context:**
 215 • Industry growth trends and regulatory environment
 216 • Macro-economic and socio-cultural factors affecting the industry
 217 • Policy support and government incentives

218 **7. Metadata and Verification:**
 219 • Data sources (primary or secondary)
 220 • Confidence score (1-5, with 1 = unverified)
 221 • Cross-source contradictions or inconsistencies

222 **D Voting Analysis of Investment Evaluation Manager**

223 This table analyzes the non-unanimous voting patterns of the Investment Evaluation Manager (IEM)
 224 when aggregating predictions from multiple domain-specific analysts. Vote distribution shows the
 225 number of analysts voting to Invest versus Reject for each case.

226 The table indicates that the IEM tends to adopt a conservative approach in non-unanimous cases. For
 227 example, in a 2:2 split among analysts, the IEM chooses to Invest in 14 out of 41 cases, while in a 3:1
 228 split, it invests in only 7 out of 17 cases. Overall, the majority of non-unanimous decisions (86 out
 229 of 107) are rejections, demonstrating that the IEM mitigates over-optimistic bias by systematically
 230 weighting analyst votes and erring on the side of caution.

Table 3: Non-unanimous voting distributions by the Investment Evaluation Manager. Each row shows the distribution of votes for a given voting pattern.

Vote Distribution(Invest vs Reject)	Invest	reject	Total
1:3	49	0	49
2:2	27	14	41
3:1	10	7	17
Total	86	21	107

231 **E Scatter Plot of LLMs and VCAF Performance Comparison**

232 The scatter plot compares accuracy and F1-scores across various large language model families,
 233 including Claude, Gemini, GPT, LLaMA, Mistral, Qwen3, and VCAF, highlighting VCAF's superior
 234 performance on the InvestAI Corpus dataset.

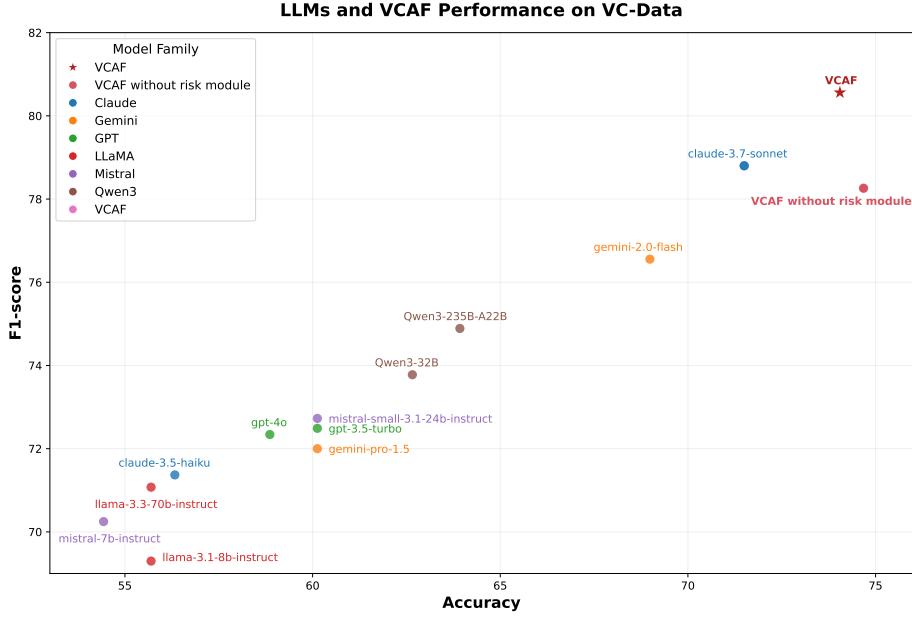


Figure 4: Evaluation results for large language models and VCAF on the InvestAI Corpus dataset.

235 F Analysis of Investment Decisions and Key Variables

236 Investment decisions are associated with higher success probabilities and larger valuation ranges
 237 compared to non-investments, confirming the model's decision logic.

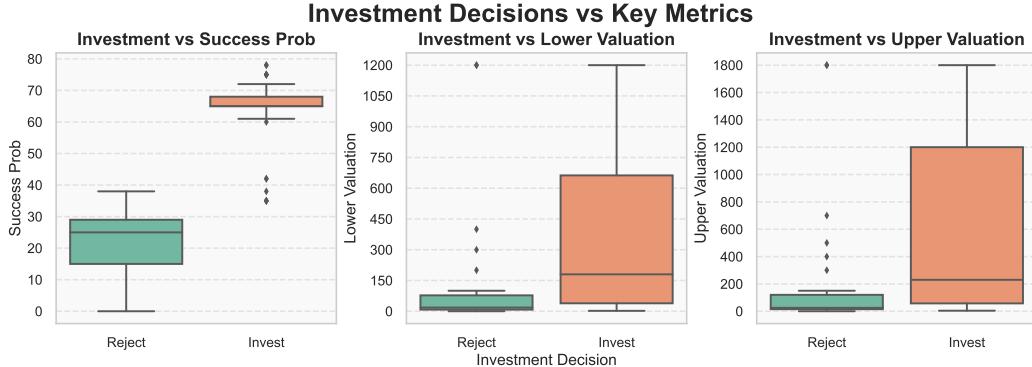


Figure 5: Boxplot analysis of investment decisions versus key variables: (a) success probability, (b) lower valuation, and (c) higher valuation.

238 G Additional Model Performance Evaluation

239 Table 4 reports performance metrics for selected models, including two VCAF variants and Qwen3-
 240 235B-A22B.

241 As shown, removing the risk-management module ('VCAF without risk module') yields higher
 242 accuracy and F1-score relative to the full VCAF. This occurs because the risk module introduces
 243 conservative adjustments that slightly reduce true positives. However, the full VCAF demonstrates a
 244 more balanced performance profile, achieving higher recall and a trade-off that aligns with practical
 245 investment risk considerations. This highlights the framework's ability to moderate aggressive
 246 predictions while maintaining robustness.

247 Importantly, when applied to a different base model (Qwen3-235B-A22B), VCAF still improves key
248 metrics, demonstrating the framework’s general effectiveness in enhancing model performance while
249 preserving a controlled balance between precision and recall.

Table 4: Performance Metrics of Qwen Model and VCAF Variants on InvestAI Corpus.

Model	TP	FP	TN	FN	Accuracy	Precision	Recall	F1-Score
Base (Qwen3-235B-A22B)	85	56	16	1	63.92	60.28	98.84	74.89
VCAF without risk module	79	32	40	7	70.25	<u>66.39</u>	91.90	77.09
VCAF	82	46	26	4	<u>68.35</u>	64.06	<u>95.35</u>	<u>76.63</u>

250 **H Agent Prompts**

251 This section provides examples of prompts used for some representative agents in our multi-agent
252 framework, demonstrating how agent behavior is guided for consistent task execution.

253 **H.1 Data Extractor**

254 The data extractor obtains structured information from startup descriptions.

Prompts for Data Extractor

You are a professional market data extractor skilled at obtaining key information from texts. Please extract the following from the startup description:

- **Time information (trade_date):** establishment date, key funding date, or product launch date in YYYY-mm-dd format. Leave blank if unavailable.
- **Regional information (startup_area):** headquarters location, main operating region, or market coverage.
- **Domain information (startup_domain):** main business field or industry (e.g., AI, biomedicine).
- **Keywords (startup_keywords):** key terms related to products, technologies, or business models.

Output the result in JSON format.

255

256 **H.2 Product Analyzer**

257 The Product Analyzer evaluates product fundamentals based solely on the provided description.

Prompts for Product Analyzer

Analyze the flagship product of the startup. Focus strictly on the provided description; do not speculate about company identity or make external comparisons. Document assumptions if details are missing.

258

259 **H.3 Market Researcher**

260 The Market Researcher evaluates market environment and trends.

Prompts for Market Researcher

Analyze up to eight market indicators derived from the description:

- **Market Size Estimate:** potential market size
- **Market Growth Potential:** qualitative/quantitative outlook
- **Competitive Intensity:** level of competition
- **Consumer Demand Signal:** inferred demand
- **Policy Support Impact:** regulatory incentives
- **Macro Trend Influence:** economic/environmental trends
- **Competitor Activity Level:** inferred competitor actions
- **Barriers to Entry:** structural challenges

Provide a detailed, actionable report with a Markdown table of findings. Do not speculate beyond the provided description.

261

262 H.4 Investment Evaluation Manager

263 This agent aggregates expert analyses to make the final investment decision.

Prompts for Investment Evaluation Manager

If all four specialists (Market, Founder, Tech, Risk) agree on *invest* or *no-invest*, return the consensus decision with a brief rationale.

If disagreement exists, evaluate arguments for and against the investment and make a balanced decision.

264

265 H.5 Investment Decision Committee

266 The Committee evaluates risk analysts' debate to provide a final recommendation.

Prompts for Investment Decision Committee

Provide a clear recommendation: **INVEST** or **NOINVEST**.

Include:

- Success probability (0–100%) for the potential outcome
- Valuation range (in monetary terms)
- Summary of key arguments from analysts
- Documented reasoning with references to description data and past lessons

Generate a structured, actionable investment report (investment plan) including the probability, valuation, rationale, and recommended next steps.

267